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Introduction
The present report presents a solution to the problem of irrotational flow around a cylinder
with perturbed boundary conditions. More precisely, one wants to find an expression for the
irrotational flow potential ϕ such that

∆ϕ(r, θ) = 0, (r, θ) ∈ [0; +∞[×[0; 2π[,

~n · ∇ϕ = 0, r = r0(1 + ε cos(θ)), ε > 0,

ϕ(r → +∞) = Ur cos(θ).

In the above equations, r0 is the unperturbed radius of the cylinder while U is the magnitude
of the velocity of the fluid sufficiently far from the cylinder. It was taken here to be along the
x-axis, such that ~v = ∇ϕ(r → +∞) = U~ex.

The solution developed here is based on complex analysis and conformal mappings, and has
been developed based on [1] [2] [3] [4]. Results from these documents will be used extensively
throughout this short work. In the following, for the sake of clarity U was taken equal to 1,
without loss of generality.

Solution using conformal mappings
The proposed solution is based on conformal mappings and thus implies switching from the
physical space to the conformal space. For the sake of clarity, in the following, the complex
variable ξ ∈ C will refer to the physical space Ω (where the initial problem is formulated) while
the complex variable z ∈ C will refer to the conformal space D (namely, that of the regular
cylinder).

In the physical space, we are dealing with a perturbed cylinder, which can be described by
the set of points

ξ = r0(1 + ε cos(θ)) exp(iθ), r0, ε ∈ R+, θ ∈ [0, 2π].

Note that the variable ξ was used, in agreement with previous remarks.
Riemann’s mapping theorem ensures that one can map any simply connected subset of C to

the unitary disk. This is very useful in this problem as the knowledge of a conformal mapping
would enable us to transfer the knowledge of the solution around a unitary disk (and thus a
regular cylinder) to that around a perturbed cylinder. One can use the following holomorphic
function (which is then similar to a conformal map at any point where its derivative is non-zero)
to map the cylinder z = r0 exp(iθ) to the perturbed cylinder:

ξ(z) =
ε

r0
z2 + z + εr0. (1)

This amounts to saying that we can switch back from the conformal space to the physical space
with

z =
r0
2ε

(
((r0 + ζε4i+ 4εη − 4ε2r0)/r0)

1/2 − 1
)
, (2)

where ξ = η + iζ, (η, ζ) ∈ R2. We thus have to solve the problem in the conformal space with
appropriate boundary conditions and then translate it back to the physical space.
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Finding appropriate boundary conditions

The first boundary condition, which states that no fluid can penetrate the solid, is valid in
both spaces Ω and D. Therefore, we have that ~n · ∇ϕ = 0 on ∂D. The condition "far" from
the solid, however, is not identical. In the physical space, we want that ϕ = η as |ξ| → ∞.
Indeed, that amounts to requiring v = ∇ξϕ = (1, 0) far from the solid, and thus amounts to an
unperturbed horizontal flow. Relation (1) enables us to write η as a function of the two axes
of the conformal space. Writing z = x+ iy, we indeed have

η = <(ξ) =
ε

r0
(x2 − y2) + x+ εr0. (3)

Solving in the conformal space

Therefore, we have two boundary conditions. We can now solve in the conformal space the
following problem:

∆ϕ(z) = 0, z ∈ D = {z ∈ C : |z| >= 1}
~n · ∇ϕ = 0,∀z ∈ ∂D

ϕ =
ε

r0
(x2 − y2) + x+ εr0, z →∞.

We will now work with polar coordinates in the conformal space, that is z = x+ iy = r exp(iθ).
In those coordinates, we know the general solution to the problem at hand :

φ = A0 log(r) +B0 +
∑
n≥1

[An cos(nθ) +Bn sin(nθ)] rn +
∑
n≥1

[
Ãn cos(nθ) + B̃n sin(nθ)

]
r−n. (4)

In polar coordinates, the condition at ∞ translates to

ϕ =
ε

r0
r2 cos(2θ) + r cos(θ) + εr0, r →∞. (5)

Therefore, this leads us to A0 = 0, B0 = εr0, A1 = 1, A2 = ε
r0
, B≥1 = A≥3 = 0. However,

nothing can be said regarding Ãn and B̃n. The condition at the boundary of the cylinder
simply amounts to ∂ϕ

∂r
|r0 = 0. Therefore, we easily have B̃≥1 = Ã≥3 = 0, Ã1 = r20 and Ã2 = εr30.

Therefore, the solution can easily be written in polar coordinates in the conformal space as

ϕ =
ε

r0
r2 cos(2θ) + r cos(θ) + εr0 +

r20
r

cos(θ) +
εr30
r2

cos(2θ). (6)

Switching back to the physical space

Now that the solution has been well-established in the conformal space, we need to recover it in
the physical space. As the conformal mapping has been established in cartesian coordinates, one
should first translate the derived potential in the (x, y) axes of the conformal space. This is easily
done by writing r, θ as functions of x, y which leads to an expression ϕ(r(x, y), θ(x, y)) = ϕ(x, y).

The solution in the physical space is then obtained by using the conformal transformation.
Indeed, we have x = <(z) = x(η, ζ) and y = =(z) = y(η, ζ). Injecting those values in the
expression for the potential yields the solution in the actual space. No closed-form expression
of the final solution has been achieved, as it requires tedious and non-interesting calculations.
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Results
In order to illustrate and validate the proposed solution, some results are provided here below.

Potential field

Figs. 1 and 2 provide illustrations of both the perturbed cylinder and the equipotential field
lines for different values of ε. As can be seen, even for relatively large values of the perturbation
parameter, both boundary conditions are still satisfied. On a qualitative standpoint at least,
this observation validates the solution.

ε = 0.01

(a)

ε = 0.05

(b)

Figure 1 – Perturbed cylinder and equipotential field lines for different values of the perturbation
parameter ε, with r0 = 1.

ε = 0.1

(a)

ε = 0.2

(b)

Figure 2 – Perturbed cylinder and equipotential field lines for different values of the perturbation
parameter ε, with r0 = 1.
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Comparison with estimated solution

In the course, the approximate solution in the physical space has been derived as

ϕ = Ur cos(θ)
(

1 + (
r0
r

)2
)

+ εUr0 cos(2θ)(
r0
r

)2 +O(ε2). (7)

Note that here the polar coordinates are used in the physical space, that is ξ = η+iζ = r exp(iθ).
In order to further validate the solution on a more quantitative standpoint, let us compare both
the above estimation (with U = 1) and the solution obtained with conformal mappings. Below,
ϕCM refers to the solution obtained with conformal mappings while ϕPM refers to the estimate
derived with perturbation methods.

Figs. 3 and 4 provide cuts of the potential field along the η-axis for both solutions, while
Figs. 5 and 6 provide cuts of the potential field along the ζ-axis. As can be seen, for small
values of ε, both solutions are indistinguishable while this is not the case anymore for larger
values of ε.
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Figure 3 – Potential field along the η-axis. Comparison of both solutions for different values of
the perturbation parameter.
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Figure 4 – Potential field along the η-axis. Comparison of both solutions for different values of
the perturbation parameter, with r0 = 1.
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Figure 5 – Potential field along the ζ-axis. Comparison of both solutions for different values of
the perturbation parameter, with r0 = 1.
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Figure 6 – Potential field along the ζ-axis. Comparison of both solutions for different values of
the perturbation parameter, with r0 = 1.
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In order to make it even clearer, Fig. 7 provides a graph of the error on a whole domain for
increasing values of ε. The error was defined as

Error =
1

NηNζ

Nη∑
i=1

Nζ∑
j=1

(ϕCM(ηi, ζj)− ϕPM(ηi, ζj))
2 , (8)

where (ηi, ζj) are the grid points at which both functions are evaluated, and Nη, Nζ are the
number of grid points along each axis. As can be seen, the error rises dramatically for values of
ε > 10−2. Therefore, one can conclude that the estimated solution is not valid anymore beyond
this point.

10
-4

10
-3

10
-2

10
-1

ε

0

0.002

0.004

0.006

0.008

0.01

E
r
r
o
r

Figure 7 – Error between both solutions on the domain (η, ζ) ∈
[−3; 3]2, with grid size 5 · 10−2.
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