# How does the visuo-spatial deficit impact basic numerical processing in Williams syndrome? The question of domain specificity 



Laurence Rousselle

Chargé de recherche FNRS
Catholic University of Louvain, Belgium
Marie-Pascale Noël
Chercheur qualifié FNRS
Catholic University of Louvain, Belgium

Leuven, February 2012


## Williams Syndrome : cognitive profile

Known to be highly unequal:

- IQ~60 : majority of mild mental retardation [low average to severe MR]
- VIQ > NvIQ
- Relatively spared langage
- Relatively spared face processing but still peculiarities
- Deficient visuo-spatial capacities : Local > global processing
- Academic cursus : slight evolution in reading and spelling until adult age
- Rapid stagnation of math development from adolescence (Udwin et al., 1996)


## About math development...

- Verbal number sequence can be retained but remains inflexible Paterson et al. (2006)
- Counting procedure OK (overlearned, How many, Give me n (Ansari et al. (2003)
- Single digit Arabic number reading OK in WS adults (Ansari et al., 2007) but multi-digit Arabic number reading < Down syndrome (Paterson et al., 2006)
- Some WS adults OK to check one-digit additions and multiplications
- Better performance for small calculations learned by root (Krajcsi et al., 2009)


## These studies :

$\Rightarrow$ Information about the nature of the difficulties experienced quite late in the development
$\Rightarrow$ But no information about the origins of these difficulties, about basic numerical processing
(= foundation of math competence)

## Basic numerical processing?

Early sensitivity to numerosities : $\cong$ Approximate Number System


- $\nearrow$ imprecision with the nb of elements to quantify:

D Size, Distance and Ratio effects
D Weber fraction : Smallest numerical change to a stimulus that can be reliably detected => "numerical acuity" (Halberda \& Feigenson, 2008)

- Innate/precocious : Independent of learning
- Basis of subsequent math learning


## ANS in WS

- Young WS children (CA = 35 months; DA = 22 months) :

Difficulty to detect the difference between collections of 8 vs 16 dots (Van Herwegen et al., 2008)

- Older WS children and adults (CA = 20 y-old [10-32 y] ; MA = 6;9 y [5-9y])

Difficulty to determine which collections has more dots \% children of the same MA (Paterson et al., 2006)

## Deficit of the ANS in WS?

- Premature ...
$\rightarrow$ Only tested with visual quantities involving processing the stimuli position in space

But, WS have important visuo-spatial difficulties
$\Rightarrow$ How do they process quantities in tasks with no visuo-spatial processing requirement?

## Study : Quantitative processing in WS

- Impact of visuo-spatial deficit on quantitative processing : 2 types :

D Continuous/ Non numerical
D Discrete / non symbolic numerical
$\rightarrow$ Æxperiment 1
Æxperiment 2

- The focus on continuous quantitative processing? :

Walsh (2003) : central magnitude system for the processing of time, space and number magnitude information.

Simon (2008, 22q11 deletion syndrome) : Spatiotemporal processing form the basis of numerical and mathematical competence: Spatiotemporal processing deficit create "suboptimal foundation for the subsequent development of numerical and mathematical competence, thereby "cascading" impairments into those more academic domains"

## XP 1 : Continuous quantities

- 20 SW \& 20 TD children matched on verbal MA
- 2 tasks:

- Ratio of increasing difficulty $=>$ Weber fraction

| $1 / 2$ | $2 / 3$ | $3 / 4$ | $5 / 6$ | $7 / 8$ | $8 / 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Hypothesis:
- If difficulty to process continuous quantities, then WS patients should have weaker performance in both tasks
- If their visuo-spatial deficit interferes with visual quantitative processing, they should be impaired in the visual modality only.


## XP 1 : Continuous quantities: Weber fraction

Rank of the amplitude of the Difference


Wilcoxon: Group effects :

- Length : p = . 001
- Duration : p>. 10


## XP 1 : Continuous quantities : \% correct responses



Wilcoxon: Group effects
(ratio 7/8)

- Length : p = . 02
- Duration : p > . 10


## XP 2 : Non symbolic numerical quantities

- 20 SW \& 20 TD children matched on verbal MA
- 2 conditions:

- Ratio of increasing difficulty

| $1 / 2$ | $2 / 3$ | $3 / 4$ | $5 / 6$ | $7 / 8$ | $8 / 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Hypothesis:
- If difficulty to process non symbolic numerical quantities, WS patients should have weaker performance in both tasks
- If their visuo-spatial deficit interfere with visual quantitative processing, they should be impaired in the spatial condition only.


## XP 2 : Non symbolic numerical quantities : Weber Fraction



Wilcoxon: Group effects :

- Collection : p=. 008
- Dot sequence : p>. 10


## XP 2 : Non symbolic numerical quantities : \% correct responses



Wilcoxon: Group effects
(ratio 3/4)

- Collection: $\mathrm{p}=.03$
- Dot sequence : p>. 10


## Conclusion

SW patients :

- Difficulty to process numerical and non numerical quantities involving visuo-spatial processing
- Much less difficulty to process numerical and non numerical quantities distributed in time, and thus involving no visuo-spatial processing
=> WS difficulties in quantitative processing task are not domain specific.


## Thank you for your attention

## Math Development

- Verbal number sequence can be retained but remains inflexible

D Difficulty to count between 2 numbers ( 25 to 35 )
D Difficulty to count backwards (20 to 1 )
D Difficulty to give the number coming after $n$
\% Down syndrome
(same MA et CA)

Paterson et al. (2006)

- Counting procedure OK : (overlearned)
- How many
- Give men
= children matched on visuo-spatial MA

Ansari et al. (2003)

## Math Development

- Transcoding :

D Single digit Arabic number reading OK in adults (Ansari et al., 2007)
D But multi-digit Arabic number reading < Down syndrome of the same MA et CA (Paterson et al., 2006)

- Arithmetic:

D Some WS adults OK to check one-digit additions and multiplications

D Better performance for small calculations learned by root (Krajcsi et al., 2009)

## XP 1 : Continuous quantities: Correct responses



Mann-Whitney: Group effects (ratio 7/8):

- Length : N = 20 : $\mathrm{p}=.02$
- Duration : N = 16 : p > . 10


## Study 2 : Symbolic numerical processing

- Association symbol ------ quantity
- Difficult step for dyscalculic children

D Also difficult for WS patients
(Paterson et al., 2006 ; Ansari et al. 2007 ; Krajsci et al., 2009)


Ex : SW < TD children matched on MA (O'Hearn \& Landau, 2007) :
7


## Study 2 : Symbolic numerical processing

- 17 SW \& 17 TD children matched on verbal MA
- 2 tasks:

- Hypothesis:

D Si difficulty to associate a symbol to its quantitative meaning, then WS patients should have weaker performance in both tasks.
D If their visuo-spatial deficit interfere with visual symbolic processing, they should be impaired in the visual comparison task only.

## Study 2 : Symbolic numerical processing



Wilcoxon: Group effects (ratio 3/4)

- Arabic number: p < . 05
- Verbal number: $\mathrm{p}<.01$

