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De�nitions

De�nition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0, 1}n → R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [5]).

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

min
x∈{0,1}n

f (x)

Optimization is NP-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f ).

Approaches:

Linearization: extensive literature in integer programming.
Quadratization: exact algorithms, heuristics, polyhedral results...
Direct resolution methods
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Standard linearization (SL)

min
{0,1}n

∑
S∈S

aS
∏
k∈S

xk +
n∑

i=1

aixi ,

S = {S ⊆ {1, . . . , n} | aS 6= 0 and |S | ≥ 2} (non-constant and non-linear monomials)

1. Substitute monomials

min
∑
S∈S

aSyS +
n∑

i=1

aixi

s.t. yS =
∏
k∈S

xk , ∀S ∈ S

yS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n

2. Linearize constraints

min
∑
S∈S

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S ,∀S ∈ S

yS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

yS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n
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k∈S

xk , ∀S ∈ S

yS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n

3. Linear relaxation

min
∑
S∈S

aSyS +
n∑

i=1

aixi

s.t. yS ≤ xk , ∀k ∈ S ,∀S ∈ S

yS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

0 ≤ yS ≤ 1, ∀S ∈ S
0 ≤ xk ≤ 1, ∀k = 1, . . . , n
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Linearized problem

Linearized problem

min
(x,y)∈P∗

SL

∑
S∈S

aSyS +
n∑

i=1

aixi , where

P∗SL = conv({(x , y) ∈ {0, 1}n+|S| | yS ≤ xk ∀k ∈ S , yS ≥
∑
k∈S

xk − (|S | − 1)})

Relaxing integrality constraints we obtain the standard linearization polytope

PSL = conv({(x , y) ∈ [0, 1]n+|S| | yS ≤ xk ∀k ∈ S , yS ≥
∑
k∈S

xk − (|S | − 1)})

For a function containing a single non-linear monomial, P∗SL = PSL
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PSL = conv({(x , y) ∈ [0, 1]n+|S| | yS ≤ xk ∀k ∈ S , yS ≥
∑
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Not for two non-linear terms, in general PSL is a very weak relaxation!!!
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De�nition of the 2-links

De�nition: 2-links

Consider two monomials S ,T ∈ S such that |S ∩ T | ≥ 2, and their
corresponding variables yS , yT . The 2-link between S and T is

yS ≤ yT −
∑

i∈T\S

xi + |T\S |

For |S ∩ T | < 2, the 2-links are implied by the standard linearization.

Interpretation: if yS =
∏

i∈S xi = 1 and yT =
∏

i∈T xi = 0, a variable in
T\S must be zero.
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Validity and strength

Proposition: Validity

For any S ,T ∈ S, the corresponding 2-link is valid for P∗SL.

Proposition: Facet-de�ning for nested monomials

Consider a pseudo-Boolean function de�ned on l monomials such that
S (1) ⊆ S (2) ⊆ · · · ⊆ S (l) and |S (1)| ≥ 2. Then, the 2-links corresponding to
consecutive monomials in the nest

yS(k) ≤ yS(k+1) −
∑

i∈S(k+1)\S(k)

xi + |S (k+1)\S (k)|

yS(k+1) ≤ yS(k) ,

for k = 1, . . . , l − 1, are facet-de�ning for P∗,nestSL .
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The case of two non-linear monomials

Consider f containing exactly two non-linear terms S ,T (|S ∩ T | ≥ 2), and
the corresponding 2-links

yS ≤ yT −
∑

i∈T\S

xi + |T\S | (1)

yT ≤ yS −
∑

i∈S\T

xi + |S\T | (2)

Proposition: Facet-de�ning

The 2-links (1) and (2) are facet-de�ning for P∗SL.

Notation

P2links
SL = PSL ∩ {(x , yS , yT ) such that (1), (2) are satis�ed}

7 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

The case of two non-linear monomials

Consider f containing exactly two non-linear terms S ,T (|S ∩ T | ≥ 2), and
the corresponding 2-links

yS ≤ yT −
∑

i∈T\S

xi + |T\S | (1)

yT ≤ yS −
∑

i∈S\T

xi + |S\T | (2)

Proposition: Facet-de�ning

The 2-links (1) and (2) are facet-de�ning for P∗SL.

Notation

P2links
SL = PSL ∩ {(x , yS , yT ) such that (1), (2) are satis�ed}

7 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

The case of two non-linear monomials

Consider f containing exactly two non-linear terms S ,T (|S ∩ T | ≥ 2), and
the corresponding 2-links

yS ≤ yT −
∑

i∈T\S

xi + |T\S | (1)

yT ≤ yS −
∑

i∈S\T

xi + |S\T | (2)

Proposition: Facet-de�ning

The 2-links (1) and (2) are facet-de�ning for P∗SL.

Notation

P2links
SL = PSL ∩ {(x , yS , yT ) such that (1), (2) are satis�ed}

7 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

P2links
SL = P∗SL

Idea of the proof:

Consider the four polytopes obtained by �xing yS , yT to 0 or to 1 in P2links
SL :

P00: yS = 0, yT = 0
P11: yS = 1, yT = 1
P10: yS = 1, yT = 0
P01: yS = 0, yT = 1

Observe that they all have integer vertices.

See that P2links
SL = conv(P00 ∪ P11 ∪ P10 ∪ P01).
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Computational experiments: Motivation

Example of function containing 3 non-linear monomials for which
optimizing over P2links

SL leads to a fractional solution:

f (x) = 5x1x2x4 − 3x1x3x4 − 3x1x2x3 + 2x3

It is hopeless (unless P = NP) to �nd a concise perfect formulation
for the general case.

Are the 2-links still useful for the general case?
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Computational experiments: Objectives

Two objectives of the computational experiments:

Quality of the bounds: of PSL and P2links
SL .

Computational performance: of exact resolution methods with
di�erent types of cuts

Method name CPLEX cuts 2-links (User cuts)

No cuts (PSL) 7 7

User cuts (P2links
SL ) 7 3

CPLEX cuts 3 7

CPLEX & user cuts 3 3
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Random instances: Generation

Same generation procedure as Buchheim, Rinaldi ([1]).

Input: n (variables), m (monomials).

Monomials are always generated by randomly choosing the variables in
it and the coe�cient.

1 Same-degree. All monomials have the same degree d = 3 or 4.
2 Random-degree. The degree d of each monomial is chosen with

probability 2d−1 (less high-degree monomials, more low-degree
monomials).

11 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Generation

Same generation procedure as Buchheim, Rinaldi ([1]).

Input: n (variables), m (monomials).

Monomials are always generated by randomly choosing the variables in
it and the coe�cient.

1 Same-degree. All monomials have the same degree d = 3 or 4.
2 Random-degree. The degree d of each monomial is chosen with

probability 2d−1 (less high-degree monomials, more low-degree
monomials).

11 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Generation

Same generation procedure as Buchheim, Rinaldi ([1]).

Input: n (variables), m (monomials).

Monomials are always generated by randomly choosing the variables in
it and the coe�cient.

1 Same-degree. All monomials have the same degree d = 3 or 4.

2 Random-degree. The degree d of each monomial is chosen with
probability 2d−1 (less high-degree monomials, more low-degree
monomials).

11 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Generation

Same generation procedure as Buchheim, Rinaldi ([1]).

Input: n (variables), m (monomials).

Monomials are always generated by randomly choosing the variables in
it and the coe�cient.

1 Same-degree. All monomials have the same degree d = 3 or 4.
2 Random-degree. The degree d of each monomial is chosen with

probability 2d−1 (less high-degree monomials, more low-degree
monomials).

11 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Generation

Same generation procedure as Buchheim, Rinaldi ([1]).

Input: n (variables), m (monomials).

Monomials are always generated by randomly choosing the variables in
it and the coe�cient.

1 Same-degree. All monomials have the same degree d = 3 or 4.
2 Random-degree. The degree d of each monomial is chosen with

probability 2d−1 (less high-degree monomials, more low-degree
monomials).

11 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Results

Instance LP gap (%) IP execution times (secs)

d n m PSL P2links
SL no cuts user cplex c & u

3 400 800 4.51 3.49 3.65 2.57 7.46 6.68
3 400 900 9.31 7.93 502.41 243.58 104.52 87.75

3 400 1000 14.77 13.13 841.36 434.76 1334.96 1884.21
3 600 1100 2.78 2.32 14.09 9.88 16.07 14.52
3 600 1200 6.06 5.37 645.16 333.94 197.13 270.07
3 600 1300 10.17 9.15 >3600 >3600 2157.84 2234.61
4 400 550 4.37 3.26 36.97 17.10 14.76 11.6

4 400 600 8.15 5.91 58.79 13.86 63.1 20.19
4 400 650 10.22 7.72 177.74 681.06 348.79 514.13
4 400 700 12.25 8.92 1343.18 1179.95 602.68 329.05

4 600 750 1.54 1.28 3.42 3.05 6.15 5.89
4 600 800 2.59 2.14 16.54 12.08 18.37 15.5
4 600 850 5.20 4.02 475.43 359.65 664.29 316.73

4 600 900 9.38 7.59 103.49 42.29 1526.84 1475.3

Table: Results for random (same-degree) instances

12 / 19



Introduction
The Standard Linearization

The 2-links
Computational experiments

Conclusions

Random instances: Results

Instance LP gap (%) IP execution times (secs)
d n m PSL P2links

SL no cuts user cplex c & u
12.6 200 600 12.21 10.15 10.42 8.08 7.15 5.81

11.2 200 700 12.73 10.73 78.72 30.12 34.74 28.17

11 200 800 18.99 16.10 748.15 254.81 118.55 111.64

13.6 200 900 27.29 23.72 889.37 690.72 1029.25 863.39
11.2 400 900 3.03 2.43 3.09 1.72 4.15 3.88
11 400 1000 3.50 2.82 19.56 6.77 8.87 8.44
11.4 400 1100 7.27 6.64 55.64 347.27 59.86 53.66

11.8 400 1200 7.04 6.45 256.80 117.35 254.46 147.80
13.8 600 1300 1.38 1.21 2.97 2.53 5.42 5.42
11.4 600 1400 3.86 3.57 294.03 238.87 124.30 135.38
12.2 600 1500 4.63 4.10 593.70 228.02 100.28 86.36

12.6 600 1600 5.00 4.53 1374.74 561.85 345.37 280.95

Table: Results for random (random-degree) instances
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Vision instances: Idea

Figure: Image from "Corel database" with additive Gaussian noise [6].

Figure: Restoration of an old digitalized image with scratches [6].
14 / 19
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Vision instances: Input generation

Base image

(a) top left rect (b) centre rect (c) cross

Figure: Base images: size 10× 10

Perturbation: None, Low (change any pixel with probability 5%),
High (change zero's with probability 50%).
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Vision instances: Image restoration model

Input: pij ∈ {0, 1} value of pixel (i , j) in the input image.

Variables: xij ∈ {0, 1} value assigned to pixel (i , j) in the output.

Objective function: min f (x) = L(x) + P(x)

1 Similarity between input and output L(x) = 25(pij − xij)
2 (linear).

2 Smoothness of the image (polynomial: 2× 2 windows - degree 4).

Window assignments Penalty
0 0 1 1

10
0 0 1 1
0 0 0 0

20
0 1 1 0
1 1 0 0

30
0 0 1 1
1 0 0 1

40
0 1 1 0
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Vision instances: Results

Instance (10× 15) LP gap (%) IP execution times (secs)
Base image Perturbation PSL P2links

SL no cuts user cplex c & u
top left rect none 621.80 318.05 > 3600 > 3600 6.22 1.98

top left rect low 749.58 396.66 > 3600 > 3600 15.50 2.04

top left rect high 480.87 251.87 > 3600 > 3600 38.49 3.35

centre rect none 859.13 458.65 > 3600 > 3600 7.94 2.04

centre rect low 1015.13 552.04 > 3600 > 3600 15.74 2.59

centre rect high 464.31 242.59 > 3600 > 3600 49.42 3.11

cross none 1608.33 883.33 > 3600 > 3600 32.37 2.26

cross low 1790.63 999.23 > 3600 > 3600 20.78 2.54

cross high 468.24 245.07 > 3600 > 3600 38.22 3.46

Table: Results for vision instances of size 10× 15, n = 150 m = 1033
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Vision instances: Results

Instance (15× 15) LP gap (%) IP execution times (secs)
Base image Perturbation PSL P2links

SL no cuts user cplex c & u
top left rect none 660.90 340.26 > 3600 > 3600 19.5 3.49

top left rect low 714.29 374.27 > 3600 > 3600 28.06 6.41

top left rect high 565.72 302.48 > 3600 > 3600 111.3 12.86

centre rect none 698.13 366.75 > 3600 > 3600 30.12 4.71

centre rect low 851.09 457.40 > 3600 > 3600 38.33 8.44

centre rect high 483.33 253.69 > 3600 > 3600 97.17 10.34

cross none 1284.52 698.57 > 3600 > 3600 16.54 5.63

cross low 1457.22 801.10 > 3600 > 3600 22.30 7.26

cross high 530.46 282.23 > 3600 > 3600 103.75 11.02

Table: Results for vision instances of size 15× 15, n = 225 m = 1598
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Conclusions

Main contributions:

De�nition of the 2-links to strengthen PSL linearization.

For f containing two intersecting non-linear monomials, P2links
SL is a

complete description.

Computational experiments for the general case:

Random instances: results depend on ratio m
n , adding 2-links helps.

Vision instances: CPLEX cuts make the di�erence from infeasible to
feasible. Adding 2-links always improves even more.

Open questions:

Other problem structures for which 2-links can help computationally?
Provide a complete description? When is SL enough?

Similar inequalities linking 3 terms?
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