Tightening linearizations of non-linear binary optimization problems

Elisabeth Rodríguez Heck and Yves Crama

QuantOM, HEC Management School, University of Liège Partially supported by Belspo - IAP Project COMEX

January 2016, Louvain-la-Neuve, ORBEL 30

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f: \{0,1\}^n \to \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [5]).

Example:

$$f(x_1, x_2, x_3) = 9x_1x_2x_3 + 8x_1x_2 - 6x_2x_3 + x_1 - 2x_2 + x_3$$

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

 $\min_{x\in\{0,1\}^n}f(x)$

- **Optimization is** \mathcal{NP} -hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
 - Linearization: extensive literature in integer programming.
 - Quadratization: exact algorithms, heuristics, polyhedral results...
 - Direct resolution methods

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

 $\min_{x\in\{0,1\}^n}f(x)$

- **Optimization is** \mathcal{NP} -hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
 - Linearization: extensive literature in integer programming.
 - Quadratization: exact algorithms, heuristics, polyhedral results...
 - Direct resolution methods

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k+\sum_{i=1}^na_ix_i,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} \mid a_S \neq 0 \text{ and } |S| \geq 2 \}$ (non-constant and non-linear monomials)

1. Substitute monomials

$$\min \sum_{S \in S} a_S y_S + \sum_{i=1}^n a_i x_i$$

s.t. $y_S = \prod_{k \in S} x_k, \qquad \forall S \in S$
 $y_S \in \{0, 1\}, \qquad \forall S \in S$
 $x_k \in \{0, 1\}, \qquad \forall k = 1, \dots, n$

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k+\sum_{i=1}^na_ix_i,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} \ | \ a_S \neq 0 \ \text{and} \ |S| \geq 2 \} \ (\text{non-constant and non-linear monomials})$

1. Substitute monomials		2. Linearize constraints	
$\min \sum_{S \in S} a_S y_S + \sum_{i=1}^n a_i x_i$ s.t. $y_S = \prod_{k \in S} x_k$,	$orall oldsymbol{S} \in \mathcal{S}$	$\min \sum_{S \in S} a_S y_S + \sum_{i=1}^n a_i$ s.t. $y_S \le x_k$,	$\forall k \in S, \forall S \in S$
$y_{\mathcal{S}} \in \{0,1\}, \ x_k \in \{0,1\},$	$orall S \in \mathcal{S}$ $orall k = 1, \dots, n$	$y_{S} \ge \sum_{k \in S} x_{k} = (S)$ $y_{S} \in \{0, 1\},$ $x_{k} \in \{0, 1\},$	$\forall S \in S$ $\forall k = 1, \dots, n$

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k+\sum_{i=1}^na_ix_i,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} ~|~ a_S \neq 0 \text{ and } |S| \geq 2 \} \text{ (non-constant and non-linear monomials)}$

1. Substitute monomials		2. Linearize constraints	; ;
$\min\sum_{S\in\mathcal{S}}a_Sy_S+\sum_{i=1}^na_ix_i$		$\min\sum_{S\in\mathcal{S}}a_Sy_S+\sum_{i=1}^na_i$	a _i x _i
s.t. $y_S = \prod x_k$,	$orall S \in \mathcal{S}$	s.t. $y_S \leq x_k$,	$\forall k \in S, \forall S \in S$
k∈S		$y_S \ge \sum_{k \in S} x_k - (S)$	$ S -1$), $\forall S \in S$
$y_{\mathcal{S}}\in\{0,1\},$	$orall S \in \mathcal{S}$	$y_S \in \{0,1\},$	$orall oldsymbol{S} \in \mathcal{S}$
$x_k \in \{0,1\},$	$\forall k = 1, \ldots, n$	$x_k \in \{0,1\},$	$\forall k = 1, \dots, n$
			3 / 19

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k+\sum_{i=1}^na_ix_i,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} ~|~ a_S \neq 0 \text{ and } |S| \geq 2 \} \text{ (non-constant and non-linear monomials)}$

1. Substitute monomials		3. Linear relaxation	
$\min\sum_{S\in\mathcal{S}}a_Sy_S+\sum_{i=1}^na_ix_i$		$\min\sum_{S\in\mathcal{S}}a_Sy_S+\sum_{i=1}^na_i$	a _i x _i
s.t. $y_S = \prod x_k$,	$orall S \in \mathcal{S}$	s.t. $y_S \leq x_k$,	$\forall k \in S, \forall S \in S$
k∈S		$y_S \ge \sum_{k \in S} x_k - (S)$	$ S -1$), $\forall S \in S$
$y_{\mathcal{S}}\in\{0,1\},$	$orall S \in \mathcal{S}$	$0 \leq y_S \leq 1$,	$orall \mathcal{S} \in \mathcal{S}$
$x_k \in \{0,1\},$	$\forall k = 1, \ldots, n$	$0\leq x_k\leq 1,$	$\forall k = 1, \dots, n$
			3 / 19

Linearized problem

Linearized problem

$$\min_{(x,y)\in P_{SL}^*} \sum_{S\in\mathcal{S}} a_S y_S + \sum_{i=1}^n a_i x_i, \text{ where}$$
$$P_{SL}^* = conv(\{(x,y)\in\{\mathbf{0},\mathbf{1}\}^{n+|\mathcal{S}|} \mid y_S \le x_k \ \forall k\in S, y_S \ge \sum_{k\in\mathcal{S}} x_k - (|\mathcal{S}|-1)\})$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$P_{SL} = conv(\{(x, y) \in [0, 1]^{n+|S|} \mid y_S \le x_k \; \forall k \in S, y_S \ge \sum_{k \in S} x_k - (|S| - 1)\})$$

Linearized problem

Linearized problem

$$\min_{(x,y)\in P_{SL}^*} \sum_{S\in\mathcal{S}} a_S y_S + \sum_{i=1}^n a_i x_i, \text{ where}$$
$$P_{SL}^* = conv(\{(x,y)\in\{\mathbf{0},\mathbf{1}\}^{n+|\mathcal{S}|} \mid y_S \le x_k \ \forall k\in S, y_S \ge \sum_{k\in\mathcal{S}} x_k - (|\mathcal{S}|-1)\})$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$P_{SL} = conv(\{(x, y) \in [0, 1]^{n+|S|} \mid y_{S} \le x_{k} \; \forall k \in S, y_{S} \ge \sum_{k \in S} x_{k} - (|S| - 1)\})$$

For a function containing a single non-linear monomial, $P_{SL}^* = P_{SL}$

Linearized problem

Linearized problem

$$\min_{(x,y)\in P_{SL}^*} \sum_{S\in\mathcal{S}} a_S y_S + \sum_{i=1}^n a_i x_i, \text{ where}$$
$$P_{SL}^* = conv(\{(x,y)\in\{\mathbf{0},\mathbf{1}\}^{n+|\mathcal{S}|} \mid y_S \le x_k \ \forall k\in S, y_S \ge \sum_{k\in S} x_k - (|\mathcal{S}|-1)\})$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$P_{SL} = conv(\{(x, y) \in [0, 1]^{n+|S|} \mid y_S \le x_k \; \; \forall k \in S, y_S \ge \sum_{k \in S} x_k - (|S| - 1)\})$$

For a function containing a single non-linear monomial, $P_{SL}^* = P_{SL}$

Linearized problem

Linearized problem

$$\min_{(x,y)\in P_{SL}^*} \sum_{S\in S} a_S y_S + \sum_{i=1}^n a_i x_i, \text{ where}$$
$$P_{SL}^* = conv(\{(x,y)\in \{\mathbf{0},\mathbf{1}\}^{n+|S|} \mid y_S \le x_k \ \forall k \in S, y_S \ge \sum_{k\in S} x_k - (|S|-1)\})$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$P_{SL} = conv(\{(x, y) \in [0, 1]^{n+|S|} \mid y_{S} \le x_{k} \; \forall k \in S, y_{S} \ge \sum_{k \in S} x_{k} - (|S| - 1)\})$$

Not for two non-linear terms, in general P_{SL} is a very weak relaxation!!!

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in S$ such that $|S \cap T| \ge 2$, and their corresponding variables y_S, y_T . The 2-link between S and T is

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$

• For $|S \cap T| < 2$, the 2-links are implied by the standard linearization.

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in S$ such that $|S \cap T| \ge 2$, and their corresponding variables y_S, y_T . The 2-link between S and T is

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$

• For $|S \cap T| < 2$, the 2-links are implied by the standard linearization.

• Interpretation: if $y_S = \prod_{i \in S} x_i = 1$ and $y_T = \prod_{i \in T} x_i = 0$, a variable in $T \setminus S$ must be zero.

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in S$ such that $|S \cap T| \ge 2$, and their corresponding variables y_S, y_T . The 2-link between S and T is

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$

- For $|S \cap T| < 2$, the 2-links are implied by the standard linearization.
- Interpretation: if $y_S = \prod_{i \in S} x_i = 1$ and $y_T = \prod_{i \in T} x_i = 0$, a variable in $T \setminus S$ must be zero.

Validity and strength

Proposition: Validity

For any $S, T \in S$, the corresponding 2-link is valid for P_{SL}^* .

Proposition: Facet-defining for nested monomials

Consider a pseudo-Boolean function defined on I monomials such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(l)}$ and $|S^{(1)}| \ge 2$. Then, the 2-links corresponding to consecutive monomials in the nest

$$y_{S^{(k)}} \le y_{S^{(k+1)}} - \sum_{i \in S^{(k+1)} \setminus S^{(k)}} x_i + |S^{(k+1)} \setminus S^{(k)}|$$

 $y_{S^{(k+1)}} \leq y_{S^{(k)}},$

for k = 1, ..., l - 1, are facet-defining for $P_{SL}^{*,nest}$.

Validity and strength

Proposition: Validity

For any $S, T \in S$, the corresponding 2-link is valid for P_{SL}^* .

Proposition: Facet-defining for nested monomials

Consider a pseudo-Boolean function defined on I monomials such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(l)}$ and $|S^{(1)}| \ge 2$. Then, the 2-links corresponding to consecutive monomials in the nest

$$y_{S^{(k)}} \leq y_{S^{(k+1)}} - \sum_{i \in S^{(k+1)} \setminus S^{(k)}} x_i + |S^{(k+1)} \setminus S^{(k)}|$$

$$y_{S^{(k+1)}} \leq y_{S^{(k)}}$$

for k = 1, ..., l - 1, are facet-defining for $P_{SL}^{*,nest}$

The case of two non-linear monomials

Consider f containing exactly two non-linear terms S, T ($|S \cap T| \ge 2$), and the corresponding 2-links

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$
(1)

$$y_{T} \leq y_{S} - \sum_{i \in S \setminus T} x_{i} + |S \setminus T|$$
⁽²⁾

Proposition: Facet-defining

The 2-links (1) and (2) are facet-defining for P_{SL}^* .

The case of two non-linear monomials

Consider f containing exactly two non-linear terms S, T ($|S \cap T| \ge 2$), and the corresponding 2-links

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$
(1)

$$y_{T} \leq y_{S} - \sum_{i \in S \setminus T} x_{i} + |S \setminus T|$$
⁽²⁾

Proposition: Facet-defining

The 2-links (1) and (2) are facet-defining for P_{SL}^* .

Notation

$$P_{SL}^{2links} = P_{SL} \cap \{(x, y_S, y_T) \text{ such that } (1), (2) \text{ are satisfied}\}$$

The case of two non-linear monomials

Consider f containing exactly two non-linear terms S, T ($|S \cap T| \ge 2$), and the corresponding 2-links

$$y_{S} \leq y_{T} - \sum_{i \in T \setminus S} x_{i} + |T \setminus S|$$
(1)

$$y_{T} \leq y_{S} - \sum_{i \in S \setminus T} x_{i} + |S \setminus T|$$
⁽²⁾

Proposition: Facet-defining

The 2-links (1) and (2) are facet-defining for P_{SL}^* .

Notation

$$P_{SL}^{2links} = P_{SL} \cap \{(x, y_S, y_T) \text{ such that } (1), (2) \text{ are satisfied}\}$$

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$P_{SL}^{2links} = P_{SL}^*$$

Idea of the proof:

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$P_{SL}^{2 \, links} = P_{SL}^{*}$$

Idea of the proof:

• Consider the four polytopes obtained by fixing y_S, y_T to 0 or to 1 in P_{SL}^{2links} :

•
$$P_{00}$$
: $y_S = 0, y_T = 0$

•
$$P_{11}$$
: $y_S = 1, y_T = 1$

•
$$P_{10}$$
: $y_S = 1, y_T = 0$

•
$$P_{01}$$
: $y_S = 0, y_T = 1$

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$${\sf P}^{2\it links}_{\it SL}={\sf P}^*_{\it SL}$$

Idea of the proof:

• Consider the four polytopes obtained by fixing y_S, y_T to 0 or to 1 in P_{SL}^{2links} :

•
$$P_{00}$$
: $y_S = 0, y_T = 0$

•
$$P_{11}$$
: $y_S = 1, y_T = 1$

•
$$P_{10}$$
: $y_S = 1, y_T = 0$

•
$$P_{01}$$
: $y_S = 0, y_T = 1$

• Observe that they all have integer vertices.

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$${\sf P}^{2\it links}_{\it SL}={\sf P}^*_{\it SL}$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_S, y_T to 0 or to 1 in P_{SL}^{2links} :
 - P_{00} : $y_S = 0, y_T = 0$
 - P_{11} : $y_S = 1, y_T = 1$
 - P_{10} : $y_S = 1, y_T = 0$
 - P_{01} : $y_S = 0, y_T = 1$
- Observe that they all have integer vertices.
- See that $P_{SL}^{2links} = conv(P_{00} \cup P_{11} \cup P_{10} \cup P_{01}).$

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$${\sf P}_{SL}^{2 \, links} = {\sf P}_{SL}^{*}$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_S, y_T to 0 or to 1 in P_{SL}^{2links} :
 - P_{00} : $y_S = 0, y_T = 0$
 - P_{11} : $y_S = 1, y_T = 1$
 - P_{10} : $y_S = 1, y_T = 0$
 - P_{01} : $y_S = 0, y_T = 1$
- Observe that they all have integer vertices.
- See that $P_{SL}^{2links} = conv(P_{00} \cup P_{11} \cup P_{10} \cup P_{01}).$

Computational experiments: Motivation

• Example of function containing 3 non-linear monomials for which optimizing over P_{SL}^{2links} leads to a fractional solution:

$$f(x) = 5x_1x_2x_4 - 3x_1x_3x_4 - 3x_1x_2x_3 + 2x_3$$

• It is hopeless (unless $\mathcal{P} = \mathcal{NP}$) to find a concise perfect formulation for the general case.

Computational experiments: Motivation

• Example of function containing 3 non-linear monomials for which optimizing over P_{SL}^{2links} leads to a fractional solution:

$$f(x) = 5x_1x_2x_4 - 3x_1x_3x_4 - 3x_1x_2x_3 + 2x_3$$

- It is hopeless (unless $\mathcal{P} = \mathcal{NP}$) to find a concise perfect formulation for the general case.
- Are the 2-links still useful for the general case?

Computational experiments: Motivation

• Example of function containing 3 non-linear monomials for which optimizing over P_{SL}^{2links} leads to a fractional solution:

$$f(x) = 5x_1x_2x_4 - 3x_1x_3x_4 - 3x_1x_2x_3 + 2x_3$$

- It is hopeless (unless $\mathcal{P} = \mathcal{NP}$) to find a concise perfect formulation for the general case.
- Are the 2-links still useful for the general case?

Computational experiments: Objectives

Two objectives of the computational experiments:

- Quality of the bounds: of P_{SL} and P_{SL}^{2links} .
- **Computational performance**: of exact resolution methods with different types of cuts

Method name	CPLEX cuts	2-links (User cuts)
No cuts (<i>P_{SL}</i>)	×	×
User cuts (P_{SL}^{2links})	X	\checkmark
CPLEX cuts	\checkmark	×
CPLEX & user cuts	1	\checkmark

Computational experiments: Objectives

Two objectives of the computational experiments:

- Quality of the bounds: of P_{SL} and P_{SL}^{2links} .
- **Computational performance**: of exact resolution methods with different types of cuts

Method name	CPLEX cuts	2-links (User cuts)
No cuts (<i>P_{SL}</i>)	×	×
User cuts (P_{SL}^{2links})	×	✓
CPLEX cuts	 Image: A set of the set of the	×
CPLEX & user cuts	 Image: A set of the set of the	✓

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: *n* (variables), *m* (monomials).

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: *n* (variables), *m* (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: *n* (variables), *m* (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.

(1) Same-degree. All monomials have the same degree d = 3 or 4.

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: *n* (variables), *m* (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.
 - **()** Same-degree. All monomials have the same degree d = 3 or 4.
 - Random-degree. The degree d of each monomial is chosen with probability 2^{d-1} (less high-degree monomials, more low-degree monomials).

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: *n* (variables), *m* (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.
 - **()** Same-degree. All monomials have the same degree d = 3 or 4.
 - 2 Random-degree. The degree d of each monomial is chosen with probability 2^{d-1} (less high-degree monomials, more low-degree monomials).

Random instances: Results

	Instan	ice	LP ga	ар (%)	l	P execution	times (secs	6)
d	n	т	P _{SL}	P_{SL}^{2links}	no cuts	user	cplex	с & u
3	400	800	4.51	3.49	3.65	2.57	7.46	6.68
3	400	900	9.31	7.93	502.41	243.58	104.52	87.75
3	400	1000	14.77	13.13	841.36	434.76	1334.96	1884.21
3	600	1100	2.78	2.32	14.09	9.88	16.07	14.52
3	600	1200	6.06	5.37	645.16	333.94	197.13	270.07
3	600	1300	10.17	9.15	>3600	>3600	2157.84	2234.61
4	400	550	4.37	3.26	36.97	17.10	14.76	11.6
4	400	600	8.15	5.91	58.79	13.86	63.1	20.19
4	400	650	10.22	7.72	177.74	681.06	348.79	514.13
4	400	700	12.25	8.92	1343.18	1179.95	602.68	329.05
4	600	750	1.54	1.28	3.42	3.05	6.15	5.89
4	600	800	2.59	2.14	16.54	12.08	18.37	15.5
4	600	850	5.20	4.02	475.43	359.65	664.29	316.73
4	600	900	9.38	7.59	103.49	42.29	1526.84	1475.3

Table: Results for random (same-degree) instances

Random instances: Results

	nstanc	e	LP ga	ър (%)	IP execution times (secs)									
d	n	т	P _{SL}	P_{SL}^{2links}	no cuts	user	cplex	с & и						
12.6	200	600	12.21	10.15	10.42	8.08	7.15	5.81						
11.2	200	700	12.73	10.73	78.72	30.12	34.74	28.17						
11	200	800	18.99	16.10	748.15	254.81	118.55	111.64						
13.6	200	900	27.29	23.72	889.37	690.72	1029.25	863.39						
11.2	400	900	3.03	2.43	3.09	1.72	4.15	3.88						
11	400	1000	3.50	2.82	19.56	6.77	8.87	8.44						
11.4	400	1100	7.27	6.64	55.64	347.27	59.86	53.66						
11.8	400	1200	7.04	6.45	256.80	117.35	254.46	147.80						
13.8	600	1300	1.38	1.21	2.97	2.53	5.42	5.42						
11.4	600	1400	3.86	3.57	294.03	238.87	124.30	135.38						
12.2	600	1500	4.63	4.10	593.70	228.02	100.28	86.36						
12.6	600	1600	5.00	4.53	1374.74	561.85	345.37	280.95						

Table: Results for random (random-degree) instances

Vision instances: Idea

Figure: Image from "Corel database" with additive Gaussian noise [6].

Figure: Restoration of an old digitalized image with scratches [6].

Vision instances: Input generation

• Base image

	(a) ton left rect								•t	(b) centre rect								Ĭ	Č	(°,	١	~r	Ň	s	Ĭ	Ŭ			
C		5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
C	0)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
С	0)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
1	. 1	L	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
1	. 1	L	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
1	. 1	L	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
1	. 1	L	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	. 1	L	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure: Base images: size 10×10

• **Perturbation**: None, Low (change any pixel with probability 5%), High (change zero's with probability 50%).

Vision instances: Input generation

• Base image

(a) top eft rect								t	-	(b)	ce	en	tr	e	re	ect	t			(c)) (cr	os	s			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure: Base images: size 10×10

• **Perturbation**: None, Low (change any pixel with probability 5%), High (change zero's with probability 50%).

- Input: $p_{ij} \in \{0,1\}$ value of pixel (i,j) in the input image.
- Variables: $x_{ij} \in \{0,1\}$ value assigned to pixel (i,j) in the output.
- **Objective function**: $\min f(x) = L(x) + P(x)$

Vision instances: Image restoration model

- Input: $p_{ij} \in \{0,1\}$ value of pixel (i,j) in the input image.
- Variables: $x_{ij} \in \{0,1\}$ value assigned to pixel (i,j) in the output.
- Objective function: $\min f(x) = L(x) + P(x)$

3 Similarity between input and output $L(x) = 25(p_{ij} - x_{ij})^2$ (linear).

- Input: $p_{ij} \in \{0,1\}$ value of pixel (i,j) in the input image.
- Variables: $x_{ij} \in \{0,1\}$ value assigned to pixel (i,j) in the output.
- Objective function: $\min f(x) = L(x) + P(x)$
 - **()** Similarity between input and output $L(x) = 25(p_{ij} x_{ij})^2$ (linear).
 - **2 Smoothness** of the image (polynomial: 2×2 windows degree 4).

- Input: $p_{ij} \in \{0,1\}$ value of pixel (i,j) in the input image.
- Variables: $x_{ij} \in \{0,1\}$ value assigned to pixel (i,j) in the output.
- Objective function: $\min f(x) = L(x) + P(x)$
 - **()** Similarity between input and output $L(x) = 25(p_{ij} x_{ij})^2$ (linear).
 - **2** Smoothness of the image (polynomial: 2×2 windows degree 4).

Window	assignments	Penalty
0 0	1 1	10
0 0	1 1	10
0 0	0 0	20
0 1	1 0	20
11	0 0	2.0
0 0	1 1	50
1 0	0 1	4.0
0 1	1 0	40

- Input: $p_{ij} \in \{0,1\}$ value of pixel (i,j) in the input image.
- Variables: $x_{ij} \in \{0,1\}$ value assigned to pixel (i,j) in the output.
- Objective function: $\min f(x) = L(x) + P(x)$
 - **()** Similarity between input and output $L(x) = 25(p_{ij} x_{ij})^2$ (linear).
 - **2** Smoothness of the image (polynomial: 2×2 windows degree 4).

Window	assignments	Penalty
0 0	11	10
0 0	$1 \ 1$	10
0 0	0 0	20
01	1 0	20
11	0 0	20
0 0	$1 \ 1$	30
10	0 1	40
01	1 0	40

Vision instances: Results

Instance	(10×15)	LP ga	p (%)	IP execution times (secs)								
Base image	Perturbation	P _{SL}	P_{SL}^{2links}	no cuts	user	cplex	с & u					
top left rect	none	621.80	318.05	> 3600	> 3600	6.22	1.98					
top left rect	ow	749.58	396.66	> 3600	> 3600	15.50	2.04					
top left rect	high	480.87	251.87	> 3600	> 3600	38.49	3.35					
centre rect	none	859.13	458.65	> 3600	> 3600	7.94	2.04					
centre rect	ow	1015.13	552.04	> 3600	> 3600	15.74	2.59					
centre rect	high	464.31	242.59	> 3600	> 3600	49.42	3.11					
cross	none	1608.33	883.33	> 3600	> 3600	32.37	2.26					
cross	ow	1790.63	999.23	> 3600	> 3600	20.78	2.54					
cross	high	468.24	245.07	> 3600	> 3600	38.22	3.46					

Table: Results for vision instances of size 10×15 , n = 150 m = 1033

Vision instances: Results

Instance $(15 imes15)$		LP gap (%)		IP execution times (secs)			
Base image	Perturbation	P _{SL}	P_{SL}^{2links}	no cuts	user	cplex	с & u
top left rect	none	660.90	340.26	> 3600	> 3600	19.5	3.49
top left rect	ow	714.29	374.27	> 3600	> 3600	28.06	6.41
top left rect	high	565.72	302.48	> 3600	> 3600	111.3	12.86
centre rect	none	698.13	366.75	> 3600	> 3600	30.12	4.71
centre rect	ow	851.09	457.40	> 3600	> 3600	38.33	8.44
centre rect	high	483.33	253.69	> 3600	> 3600	97.17	10.34
cross	none	1284.52	698.57	> 3600	> 3600	16.54	5.63
cross	ow	1457.22	801.10	> 3600	> 3600	22.30	7.26
cross	high	530.46	282.23	> 3600	> 3600	103.75	11.02

Table: Results for vision instances of size 15×15 , n = 225 m = 1598

Conclusions

- Definition of the 2-links to strengthen P_{SL} linearization.
- For *f* containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.

Conclusions

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:

Conclusions

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:
 - Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.

Conclusions

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:
 - Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.
 - Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2-links always improves even more.

Conclusions

Main contributions:

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:
 - Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.
 - Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2-links always improves even more.

Open questions:

• Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?

Conclusions

Main contributions:

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:
 - Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.
 - Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2-links always improves even more.

Open questions:

• Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?

• Similar inequalities linking 3 terms?

Conclusions

Main contributions:

- Definition of the 2-links to strengthen P_{SL} linearization.
- For f containing two intersecting non-linear monomials, P_{SL}^{2links} is a complete description.
- Computational experiments for the general case:
 - Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.
 - Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2-links always improves even more.

Open questions:

- Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?
- Similar inequalities linking 3 terms?

Some references |

C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the guadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.

Y. Crama and P. L. Hammer. Boolean functions: Theory, algorithms, and applications. Cambridge University Press, New York, N. Y., 2011.

📎 R. Fortet. L'algèbre de boole et ses applications en recherche opérationelle. Cahiers du Centre d'Études de recherche opérationelle, 4:5-36, 1959.

📡 F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156-161, 1973.

📚 P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian.

Some references II

📚 S. Roth. High-Order Markov Random Fields for Low-Level Vision. PhD thesis, Brown University, Providence, Rhode Island, USA, 2007.