Tightening linearizations of non-linear binary optimization problems

Elisabeth Rodríguez Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX

January 2016, Louvain-la-Neuve, ORBEL 30

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [5]).

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: extensive literature in integer programming.
- Quadratization: exact algorithms, heuristics, polyhedral results...
- Direct resolution methods

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: extensive literature in integer programming.
- Quadratization: exact algorithms, heuristics, polyhedral results...
- Direct resolution methods

The Standard Linearization

Standard linearization (SL)

$$
\begin{gathered}
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}, \\
\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0 \text { and }|S| \geq 2\right\} \text { (non-constant and non-linear monomials) }
\end{gathered}
$$

1. Substitute monomials

s.t. $y_{S}=\prod_{k \in S} x_{k}$,

$$
\begin{aligned}
& y_{s} \in\{0,1\}, \\
& x_{k} \in\{0,1\},
\end{aligned}
$$

The Standard Linearization

Standard linearization (SL)

$$
\begin{gathered}
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}, \\
\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{S} \neq 0 \text { and }|S| \geq 2\right\} \text { (non-constant and non-linear monomials) }
\end{gathered}
$$

1. Substitute monomials

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\text { s.t. } y_{S}=\prod_{k \in S} x_{k}, \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
y_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
x_{k} \in\{0,1\}, & \forall k=1, \ldots, n
\end{array}
$$

2. Linearize constraints

$\forall S \in \mathcal{S}$
$x_{k} \in\{0,1\}$,
$\forall k=1, \ldots, n$

Standard linearization (SL)

$$
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{s} \neq 0\right.$ and $\left.|S| \geq 2\right\}$ (non-constant and non-linear monomials)

1. Substitute monomials
2. Linearize constraints
$\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}$
s.t. $y_{S}=\prod_{k \in S} x_{k}, \quad \forall S \in \mathcal{S}$

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\text { s.t. } y_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S}
$$

$$
y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
y_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
x_{k} \in\{0,1\}, & \forall k=1, \ldots, n
\end{array}
$$

$$
y_{s} \in\{0,1\}
$$

$$
\forall S \in \mathcal{S}
$$

$$
x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
$$

Standard linearization (SL)

$$
\min _{\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{s} \neq 0\right.$ and $\left.|S| \geq 2\right\}$ (non-constant and non-linear monomials)

1. Substitute monomials

$\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}$
s.t. $y_{S}=\prod_{k \in S} x_{k}, \quad \forall S \in \mathcal{S}$

$$
\begin{array}{r}
\forall S \in \mathcal{S} \\
\forall k=1, \ldots, n
\end{array}
$$

3. Linear relaxation

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\text { s.t. } y_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S}
$$

$$
y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
0 \leq y_{S} \leq 1, & \forall S \in \mathcal{S} \\
0 \leq x_{k} \leq 1, & \forall k=1, \ldots, n
\end{array}
$$

Linearized problem

Linearized problem

$$
\begin{gathered}
\min _{(x, y) \in P_{S L}^{*}} \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}, \text { where } \\
P_{S L}^{*}=\operatorname{conv}\left(\left\{(x, y) \in\{\mathbf{0}, \mathbf{1}\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
\end{gathered}
$$

Relaxing integrality constraints we obtain the standard linearization polytope $P_{S L}=\operatorname{conv}\left(\left\{(x, y) \in[\mathbf{0}, \mathbf{1}]^{n+|S|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)$

Linearized problem

Linearized problem

$$
\begin{gathered}
\min _{(x, y) \in P_{S L}^{*}} \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}, \text { where } \\
P_{S L}^{*}=\operatorname{conv}\left(\left\{(x, y) \in\{\mathbf{0}, \mathbf{1}\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
\end{gathered}
$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$
P_{S L}=\operatorname{conv}\left(\left\{(x, y) \in[\mathbf{0}, \mathbf{1}]^{n+|S|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
$$

Linearized problem

Linearized problem

$$
\begin{gathered}
\min _{(x, y) \in P_{S L}^{*}} \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}, \text { where } \\
P_{S L}^{*}=\operatorname{conv}\left(\left\{(x, y) \in\{\mathbf{0}, \mathbf{1}\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
\end{gathered}
$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$
P_{S L}=\operatorname{conv}\left(\left\{(x, y) \in[\mathbf{0}, \mathbf{1}]^{n+|S|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
$$

For a function containing a single non-linear monomial, $P_{S L}^{*}=P_{S L}$

Linearized problem

Linearized problem

$$
\begin{gathered}
\min _{(x, y) \in P_{S L}^{*}} \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}, \text { where } \\
P_{S L}^{*}=\operatorname{conv}\left(\left\{(x, y) \in\{\mathbf{0}, \mathbf{1}\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
\end{gathered}
$$

Relaxing integrality constraints we obtain the standard linearization polytope

$$
P_{S L}=\operatorname{conv}\left(\left\{(x, y) \in[\mathbf{0}, \mathbf{1}]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \quad \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)\right\}\right)
$$

Not for two non-linear terms, in general $P_{S L}$ is a very weak relaxation!!!

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in \mathcal{S}$ such that $|S \cap T| \geq 2$, and their corresponding variables y_{S}, y_{T}. The 2-link between S and T is

$$
y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S|
$$

- For $|S \cap T|<2$, the 2-links are implied by the standard linearization.

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in \mathcal{S}$ such that $|S \cap T| \geq 2$, and their corresponding variables y_{S}, y_{T}. The 2-link between S and T is

$$
y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S|
$$

- For $|S \cap T|<2$, the 2-links are implied by the standard linearization.
- Interpretation: if $y_{S}=\prod_{i \in S} x_{i}=1$ and $y_{T}=\prod_{i \in T} x_{i}=0$, a variable in $T \backslash S$ must be zero.

Definition of the 2-links

Definition: 2-links

Consider two monomials $S, T \in \mathcal{S}$ such that $|S \cap T| \geq 2$, and their corresponding variables y_{S}, y_{T}. The 2-link between S and T is

$$
y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S|
$$

- For $|S \cap T|<2$, the 2-links are implied by the standard linearization.
- Interpretation: if $y_{S}=\prod_{i \in S} x_{i}=1$ and $y_{T}=\prod_{i \in T} x_{i}=0$, a variable in $T \backslash S$ must be zero.

Validity and strength

Proposition: Validity

For any $S, T \in \mathcal{S}$, the corresponding 2 -link is valid for $P_{S L}^{*}$.

Proposition: Facet-defining for nested monomials

Consider a pseudo-Boolean function defined on I monomials such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(I)}$ and $\left|S^{(1)}\right| \geq 2$. Then, the 2-links corresponding to consecutive monomials in the nest

$$
y_{S(k)} \leq y_{S^{(k+1)}}-\sum_{i \in S^{(k+1)} \backslash S^{(k)}} x_{i}+\left|S^{(k+1)} \backslash S^{(k)}\right|
$$

$$
y_{S^{(k+1)}} \leq y_{S^{(k)}},
$$

for $k=1, \ldots, I-1$, are facet-defining for $P_{S L}^{*, \text { nest }}$.

Validity and strength

Proposition: Validity

For any $S, T \in \mathcal{S}$, the corresponding 2 -link is valid for $P_{S L}^{*}$.
Proposition: Facet-defining for nested monomials
Consider a pseudo-Boolean function defined on I monomials such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(I)}$ and $\left|S^{(1)}\right| \geq 2$. Then, the 2-links corresponding to consecutive monomials in the nest

$$
\begin{aligned}
& y_{S^{(k)}} \leq y_{S^{(k+1)}}-\sum_{i \in S^{(k+1)} \backslash S^{(k)}} x_{i}+\left|S^{(k+1)} \backslash S^{(k)}\right| \\
& y_{S^{(k+1)}} \leq y_{S^{(k)}},
\end{aligned}
$$

for $k=1, \ldots, l-1$, are facet-defining for $P_{S L}^{*, \text { nest }}$.

The case of two non-linear monomials

Consider f containing exactly two non-linear terms $S, T(|S \cap T| \geq 2)$, and the corresponding 2-links

$$
\begin{align*}
& y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S| \tag{1}\\
& y_{T} \leq y_{S}-\sum_{i \in S \backslash T} x_{i}+|S \backslash T| \tag{2}
\end{align*}
$$

Proposition: Facet-defining

The 2-links (1) and (2) are facet-defining for $P_{S L}^{*}$.

The case of two non-linear monomials

Consider f containing exactly two non-linear terms $S, T(|S \cap T| \geq 2)$, and the corresponding 2-links

$$
\begin{align*}
& y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S| \tag{1}\\
& y_{T} \leq y_{S}-\sum_{i \in S \backslash T} x_{i}+|S \backslash T| \tag{2}
\end{align*}
$$

Proposition: Facet-defining
The 2-links (1) and (2) are facet-defining for $P_{S L}^{*}$.

Notation

$$
P_{S L}^{2 l i n k s}=P_{S L} \cap\left\{\left(x, y_{S}, y_{T}\right) \text { such that (1), (2) are satisfied }\right\}
$$

The case of two non-linear monomials

Consider f containing exactly two non-linear terms $S, T(|S \cap T| \geq 2)$, and the corresponding 2-links

$$
\begin{align*}
& y_{S} \leq y_{T}-\sum_{i \in T \backslash S} x_{i}+|T \backslash S| \tag{1}\\
& y_{T} \leq y_{S}-\sum_{i \in S \backslash T} x_{i}+|S \backslash T| \tag{2}
\end{align*}
$$

Proposition: Facet-defining
The 2-links (1) and (2) are facet-defining for $P_{S L}^{*}$.

Notation

$$
P_{S L}^{2 l i n k s}=P_{S L} \cap\left\{\left(x, y_{S}, y_{T}\right) \text { such that (1), (2) are satisfied }\right\}
$$

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$
P_{S L}^{2 \text { links }}=P_{S L}^{*}
$$

Idea of the proof:

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$
P_{S L}^{2 \text { links }}=P_{S L}^{*}
$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_{S}, y_{T} to 0 or to 1 in $P_{S L}^{2 l i n k s}$:
- $P_{00}: y_{S}=0, y_{T}=0$
- $P_{11}: y_{S}=1, y_{T}=1$
- $P_{10}: y_{S}=1, y_{T}=0$
- $P_{01}: y_{S}=0, y_{T}=1$

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$
P_{S L}^{2 \text { links }}=P_{S L}^{*}
$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_{S}, y_{T} to 0 or to 1 in $P_{S L}^{2 \text { links }: ~}$
- $P_{00}: y_{S}=0, y_{T}=0$
- $P_{11}: y_{S}=1, y_{T}=1$
- $P_{10}: y_{S}=1, y_{T}=0$
- $P_{01}: y_{S}=0, y_{T}=1$
- Observe that they all have integer vertices.

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$
P_{S L}^{2 \text { links }}=P_{S L}^{*}
$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_{S}, y_{T} to 0 or to 1 in $P_{S L}^{2 \text { links: }}$
- $P_{00}: y_{S}=0, y_{T}=0$
- $P_{11}: y_{S}=1, y_{T}=1$
- $P_{10}: y_{S}=1, y_{T}=0$
- $P_{01}: y_{S}=0, y_{T}=1$
- Observe that they all have integer vertices.
- See that $P_{S L}^{2 l i n k s}=\operatorname{conv}\left(P_{00} \cup P_{11} \cup P_{10} \cup P_{01}\right)$.

The case of two non-linear monomials

Theorem: Perfect formulation for two intersecting non-linear monomials

$$
P_{S L}^{2 l i n k s}=P_{S L}^{*}
$$

Idea of the proof:

- Consider the four polytopes obtained by fixing y_{S}, y_{T} to 0 or to 1 in $P_{S L}^{2 \text { links: }}$
- $P_{00}: y_{S}=0, y_{T}=0$
- $P_{11}: y_{S}=1, y_{T}=1$
- $P_{10}: y_{S}=1, y_{T}=0$
- $P_{01}: y_{S}=0, y_{T}=1$
- Observe that they all have integer vertices.
- See that $P_{S L}^{2 \text { links }}=\operatorname{conv}\left(P_{00} \cup P_{11} \cup P_{10} \cup P_{01}\right)$.

Computational experiments: Motivation

- Example of function containing 3 non-linear monomials for which optimizing over $P_{S L}^{2 l i n k s}$ leads to a fractional solution:

$$
f(x)=5 x_{1} x_{2} x_{4}-3 x_{1} x_{3} x_{4}-3 x_{1} x_{2} x_{3}+2 x_{3}
$$

- It is hopeless (unless $\mathcal{P}=\mathcal{N} \mathcal{P}$) to find a concise perfect formulation for the general case.

Computational experiments: Motivation

- Example of function containing 3 non-linear monomials for which optimizing over $P_{S L}^{2 l i n k s}$ leads to a fractional solution:

$$
f(x)=5 x_{1} x_{2} x_{4}-3 x_{1} x_{3} x_{4}-3 x_{1} x_{2} x_{3}+2 x_{3}
$$

- It is hopeless (unless $\mathcal{P}=\mathcal{N P}$) to find a concise perfect formulation for the general case.
- Are the 2 -links still useful for the general case?

Computational experiments: Motivation

- Example of function containing 3 non-linear monomials for which optimizing over $P_{S L}^{2 l i n k s}$ leads to a fractional solution:

$$
f(x)=5 x_{1} x_{2} x_{4}-3 x_{1} x_{3} x_{4}-3 x_{1} x_{2} x_{3}+2 x_{3}
$$

- It is hopeless (unless $\mathcal{P}=\mathcal{N P}$) to find a concise perfect formulation for the general case.
- Are the 2 -links still useful for the general case?

Computational experiments: Objectives

Two objectives of the computational experiments:

- Quality of the bounds: of $P_{S L}$ and $P_{S L}^{2 l i n k s}$.
- Computational performance: of exact resolution methods with different types of cuts

Method name	CPLEX cuts	2-links (User cuts)
No cuts $\left(P_{S L}\right)$	X	\times
User cuts $\left(P_{S L}^{\text {2links }}\right)$	X	
CPLEX cuts		\times
CPLEX \& user cuts		

Computational experiments: Objectives

Two objectives of the computational experiments:

- Quality of the bounds: of $P_{S L}$ and $P_{S L}^{2 l i n k s}$.
- Computational performance: of exact resolution methods with different types of cuts

Method name	CPLEX cuts	2-links (User cuts)
No cuts $\left(P_{S L}\right)$	X	X
User cuts $\left(P_{S L}^{2 \text { links }}\right)$	X	\checkmark
CPLEX cuts	\checkmark	X
CPLEX \& user cuts	\checkmark	\checkmark

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: n (variables), m (monomials).

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: n (variables), m (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: n (variables), m (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.
(1) Same-degree. All monomials have the same degree $d=3$ or 4 .

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: n (variables), m (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.
(1) Same-degree. All monomials have the same degree $d=3$ or 4 .
(ㄹ) Random-degree. The degree d of each monomial is chosen with probability 2^{d-1} (less high-degree monomials, more low-degree monomials).

Random instances: Generation

- Same generation procedure as Buchheim, Rinaldi ([1]).
- Input: n (variables), m (monomials).
- Monomials are always generated by randomly choosing the variables in it and the coefficient.
(1) Same-degree. All monomials have the same degree $d=3$ or 4 .
(2) Random-degree. The degree d of each monomial is chosen with probability 2^{d-1} (less high-degree monomials, more low-degree monomials).

Random instances: Results

Instance			LP gap (\%)		IP execution times (secs)			
d	n	m	$P_{S L}$	$P_{S L}^{2 \text { links }}$	no cuts	user	cplex	c \& u
3	400	800	4.51	3.49	3.65	$\mathbf{2 . 5 7}$	7.46	6.68
3	400	900	9.31	7.93	502.41	243.58	104.52	$\mathbf{8 7 . 7 5}$
3	400	1000	14.77	13.13	841.36	434.76	1334.96	1884.21
3	600	1100	2.78	2.32	14.09	$\mathbf{9 . 8 8}$	16.07	14.52
3	600	1200	6.06	5.37	645.16	333.94	$\mathbf{1 9 7 . 1 3}$	270.07
3	600	1300	10.17	9.15	>3600	>3600	2157.84	2234.61
4	400	550	4.37	3.26	36.97	17.10	14.76	$\mathbf{1 1 . 6}$
4	400	600	8.15	5.91	58.79	$\mathbf{1 3 . 8 6}$	63.1	20.19
4	400	650	10.22	7.72	177.74	681.06	$\mathbf{3 4 8 . 7 9}$	514.13
4	400	700	12.25	8.92	1343.18	1179.95	602.68	329.05
4	600	750	1.54	1.28	3.42	$\mathbf{3 . 0 5}$	6.15	5.89
4	600	800	2.59	2.14	16.54	$\mathbf{1 2 . 0 8}$	18.37	15.5
4	600	850	5.20	4.02	475.43	359.65	664.29	$\mathbf{3 1 6 . 7 3}$
4	600	900	9.38	7.59	103.49	42.29	1526.84	1475.3

Table: Results for random (same-degree) instances

Random instances: Results

Instance			LP gap (\%)				IP execution times (secs)			
d	n	m	$P_{s L}$	$P_{S L}^{2 l i k s}$	no cuts	user	cplex	c \& u		
12.6	200	600	12.21	10.15	10.42	8.08	7.15	$\mathbf{5 . 8 1}$		
11.2	200	700	12.73	10.73	78.72	30.12	34.74	$\mathbf{2 8 . 1 7}$		
11	200	800	18.99	16.10	748.15	254.81	118.55	$\mathbf{1 1 1 . 6 4}$		
13.6	200	900	27.29	23.72	889.37	690.72	1029.25	863.39		
11.2	400	900	3.03	2.43	3.09	$\mathbf{1 . 7 2}$	4.15	3.88		
11	400	1000	3.50	2.82	19.56	$\mathbf{6 . 7 7}$	8.87	8.44		
11.4	400	1100	7.27	6.64	55.64	347.27	59.86	$\mathbf{5 3 . 6 6}$		
11.8	400	1200	7.04	6.45	256.80	117.35	254.46	147.80		
13.8	600	1300	1.38	1.21	2.97	$\mathbf{2 . 5 3}$	5.42	5.42		
11.4	600	1400	3.86	3.57	294.03	238.87	$\mathbf{1 2 4 . 3 0}$	135.38		
12.2	600	1500	4.63	4.10	593.70	228.02	10.28	$\mathbf{8 6 . 3 6}$		
12.6	600	1600	5.00	4.53	1374.74	561.85	345.37	$\mathbf{2 8 0 . 9 5}$		

Table: Results for random (random-degree) instances

Vision instances: Idea

Figure: Image from "Corel database" with additive Gaussian noise [6].

Figure: Restoration of an old digitalized image with scratches [6].

The Standard Linearization
 The 2-links

Vision instances: Input generation

- Base image

1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0		0	0	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0		0	0	0	0	1	1	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0		0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0		0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0		0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

(a) top left rect
(b) centre rect
(c) cross

Figure: Base images: size 10×10

- Perturbation: None, Low (change any pixel with probability 5\%), High (change zero's with probability 50\%).

Vision instances: Input generation

- Base image

1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

(a) top left rect

(b) centre rect
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
0000000000000
0000011100000
0000011100000
$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$
$0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$
0000000000000
0000000000
(c) cross

Figure: Base images: size 10×10

- Perturbation: None, Low (change any pixel with probability 5\%), High (change zero's with probability 50\%).

Vision instances: Image restoration model

- Input: $p_{i j} \in\{0,1\}$ value of pixel (i, j) in the input image.
- Variables: $x_{i j} \in\{0,1\}$ value assigned to pixel (i, j) in the output.
- Objective function: $\min f(x)=L(x)+P(x)$

Vision instances: Image restoration model

- Input: $p_{i j} \in\{0,1\}$ value of pixel (i, j) in the input image.
- Variables: $x_{i j} \in\{0,1\}$ value assigned to pixel (i, j) in the output.
- Objective function: $\min f(x)=L(x)+P(x)$
(1) Similarity between input and output $L(x)=25\left(p_{i j}-x_{i j}\right)^{2}$ (linear).

Vision instances: Image restoration model

- Input: $p_{i j} \in\{0,1\}$ value of pixel (i, j) in the input image.
- Variables: $x_{i j} \in\{0,1\}$ value assigned to pixel (i, j) in the output.
- Objective function: $\min f(x)=L(x)+P(x)$
(1) Similarity between input and output $L(x)=25\left(p_{i j}-x_{i j}\right)^{2}$ (linear).
(3) Smoothness of the image (polynomial: 2×2 windows - degree 4).

Vision instances: Image restoration model

- Input: $p_{i j} \in\{0,1\}$ value of pixel (i, j) in the input image.
- Variables: $x_{i j} \in\{0,1\}$ value assigned to pixel (i, j) in the output.
- Objective function: $\min f(x)=L(x)+P(x)$
(1) Similarity between input and output $L(x)=25\left(p_{i j}-x_{i j}\right)^{2}$ (linear).
(2) Smoothness of the image (polynomial: 2×2 windows - degree 4).

Window assignments	Penalty		
0	0	1	1
0	0	1	1
0	0	0	0
0	1	1	0
1	1	0	0
0	0	1	1
1	0	0	1
0	1	1	0

Vision instances: Image restoration model

- Input: $p_{i j} \in\{0,1\}$ value of pixel (i, j) in the input image.
- Variables: $x_{i j} \in\{0,1\}$ value assigned to pixel (i, j) in the output.
- Objective function: $\min f(x)=L(x)+P(x)$
(1) Similarity between input and output $L(x)=25\left(p_{i j}-x_{i j}\right)^{2}$ (linear).
(2) Smoothness of the image (polynomial: 2×2 windows - degree 4).

Window assignments			Penalty
0	0	1	1
0	0	1	1
0	0	0	0
0	1	1	0
1	0	20	
0	0		1
1	0	0	30
0	1	1	

Vision instances: Results

Instance (10×15)		LP gap (\%)		IP execution times (secs)			
Base image		Perturbation	$P_{S L}$	$P_{S L}^{2 \text { links }}$	no cuts	user	cplex
c \& u							
top left rect	none	621.80	318.05	>3600	>3600	6.22	$\mathbf{1 . 9 8}$
top left rect	low	749.58	396.66	>3600	>3600	15.50	$\mathbf{2 . 0 4}$
top left rect	high	480.87	251.87	>3600	>3600	38.49	$\mathbf{3 . 3 5}$
centre rect	none	859.13	458.65	>3600	>3600	7.94	$\mathbf{2 . 0 4}$
centre rect	low	1015.13	552.04	>3600	>3600	15.74	$\mathbf{2 . 5 9}$
centre rect	high	464.31	242.59	>3600	>3600	49.42	$\mathbf{3 . 1 1}$
cross	none	1608.33	883.33	>3600	>3600	32.37	$\mathbf{2 . 2 6}$
cross	low	1790.63	999.23	>3600	>3600	20.78	$\mathbf{2 . 5 4}$
cross	high	468.24	245.07	>3600	>3600	38.22	$\mathbf{3 . 4 6}$

Table: Results for vision instances of size $10 \times 15, n=150 m=1033$

Vision instances: Results

Instance (15×15)		LP gap (\%)		IP execution times (secs)			
Base image	Perturbation	$P_{S L}$	$P_{S L}^{2 l i n k s}$	no cuts	user	cplex	c \& u
top left rect	none	660.90	340.26	>3600	>3600	19.5	$\mathbf{3 . 4 9}$
top left rect	low	714.29	374.27	>3600	>3600	28.06	$\mathbf{6 . 4 1}$
top left rect	high	565.72	302.48	>3600	>3600	111.3	$\mathbf{1 2 . 8 6}$
centre rect	none	698.13	366.75	>3600	>3600	30.12	$\mathbf{4 . 7 1}$
centre rect	low	851.09	457.40	>3600	>3600	38.33	$\mathbf{8 . 4 4}$
centre rect	high	483.33	253.69	>3600	>3600	97.17	$\mathbf{1 0 . 3 4}$
cross	none	1284.52	698.57	>3600	>3600	16.54	$\mathbf{5 . 6 3}$
cross	low	1457.22	801.10	>3600	>3600	22.30	$\mathbf{7 . 2 6}$
cross	high	530.46	282.23	>3600	>3600	103.75	$\mathbf{1 1 . 0 2}$

Table: Results for vision instances of size $15 \times 15, n=225 m=1598$

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:
- Random instances: results depend on ratio $\frac{m}{n}$, adding 2 -links helps.

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:
- Random instances: results depend on ratio $\frac{m}{n}$, adding 2 -links helps.
- Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2 -links always improves even more.

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:
- Random instances: results depend on ratio $\frac{m}{n}$, adding 2-links helps.
- Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2 -links always improves even more.

Open questions:

- Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:
- Random instances: results depend on ratio $\frac{m}{n}$, adding 2 -links helps.
- Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2 -links always improves even more.

Open questions:

- Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?
- Similar inequalities linking 3 terms?

Conclusions

Main contributions:

- Definition of the 2-links to strengthen $P_{S L}$ linearization.
- For f containing two intersecting non-linear monomials, $P_{S L}^{2 l i n k s}$ is a complete description.
- Computational experiments for the general case:
- Random instances: results depend on ratio $\frac{m}{n}$, adding 2 -links helps.
- Vision instances: CPLEX cuts make the difference from infeasible to feasible. Adding 2 -links always improves even more.
Open questions:
- Other problem structures for which 2-links can help computationally? Provide a complete description? When is SL enough?
- Similar inequalities linking 3 terms?

Some references I

C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.
Y. Crama and P. L. Hammer. Boolean functions: Theory, algorithms, and applications. Cambridge University Press, New York, N. Y., 2011.
R. Fortet. L'algèbre de boole et ses applications en recherche opérationelle. Cahiers du Centre d'Études de recherche opérationelle, 4:5-36, 1959.
F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Operations Research, 21(1):156-161, 1973.P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian.

Some references II

S. Roth. High-Order Markov Random Fields for Low-Level Vision. PhD thesis, Brown University, Providence, Rhode Island, USA, 2007.

