Biomarkers of prognosis and efficacy of treatment

Yves Henrotin, PhD University of Liège

Drug discovery is protracted, risky and costly

R&D is risky & costly

Nothing new to offer at the patients and the OA research community

The Gold Standard (Radiography) is inadequate

...We need better methods to predict OA progression and response to therapy

Slide courtesy of Dr A Mobasheri (Nottingham University)

The main limitations of JSN

- Indirect measure of the alteration in articular cartilage.
- Fails to measure a dynamic process
- Confounded by the presence of meniscal lesions and extrusion.
- Changes overtime are small, and occur in only a subset (progressors) of patients.
- Poorly reproducible (full extension).
- Poorly correlated with joint function and pain.

Definition - Classification

A biomarker is a <u>characteristic</u> that is objectively <u>measured</u> and <u>evaluated</u> as an indicator of normal biologic processes, pathogenic processes, or **pharmacologic responses to a therapeutic intervention**. »

Biomarkers Definitions Working Group I. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89-95.

The long and winding road...

Process of soluble biomarkers development

Brain/OMICS technics

OA Biomarkers

Biomarkers of cartilage metabolism

BIPEDS classification

Bauer et al. Osteoarthritis Cart 2006

Biomarkers of efficacy of treatment (BIPEDS)

Updated Van Spil et al.2010

« Biochemical marker concentration differed statistically significantly between patient populations with or without treatment, or before and after treatment within patient »

BIPEDS	Biomarkers
Efficacy of intervention	uCTX-II, sColl2-1,sCOll2-1NO2, sC2C, sCOMP, sKS, sYLK40, sPIIANP, uNTX-I, sOC, sHA, sMMP-3, sCRP

Levels of qualification of biomarkers for drug development use

Kraus et al. Osteoarthritis Cart, 2011

Surrogate

None

Characterization

uCTX-II, sMMP-3

« To qualify for the efficacy of intervention category, a marker must demonstrate a statistically significant relationship between treatment-related changes in a biomarker and the clinical or imaging outcome"

Demonstration

sC2C, sHA, NTX-1, Coll2-1, Coll2-1NO2

Exploratory

COMP, C1,2C, CTX-1, CS846

Is CTX-II an efficacy of intervention biomarker? **Interpretation pitfalls!**

Intervention	CTX-II levels		
НА	\downarrow		
CS	0		
Naproxen,Licofelone	0		
Tibolone	0		
Risedronate	\downarrow		
Calcitonine	\downarrow		
Strontium ranelate	\downarrow		
SERM	\downarrow		
Estradiol	\downarrow		

All antiresorptive therapies decrease CTX-II

Richette, Roux Osteoporosis Int 2012

u CTX-II reflects bone rather than cartilage metabolism

van Spil W E et al. Ann Rheum Dis 2013

BIOVISCO study: Study design

Open-label, observational prospective study

BIOVISCO study

An open label observational prospective study

Conrozier et al, J Orthp Res, 2012; Henrotin et al, J Orthp Res, 2013.

- ✓ 45 patients with unilateral symptomatic tibiofemoral and/or patellofemoral OA
- ✓ 3-weekly intraarticular injection of hyalan G20 (Synvisc®)
- ✓ Follow-up D1, D30 and D90 after the last injection

	D1 (after the last injection)	90 days (after the last injection)	p-Value D1 vs D90
sColl2-1 (nM)	140.34(882.44-285.32)	128.41 (85.6-241.34)	0.05*
sColl2-1NO2 (nM)	0.400 (0.050-1.010)	0.370 (0.14-0.870)	0.025*
uCTX-II (ng/nmolcreat)	392.7 (90.0-816.4)	306.0 (90-1123.9)	0.02*
sPIICP (ng/ml)	817.9 (131.4-1848.6)	874.8.3 (326.4-1435.0)	0.41
sC2C (ng/ml)	223.6 (99.4-329)	209.5 (135.9-291.7)	0.11
sCOMP (U/L)	10.9 (6.0-20.2)	10.5 (6.0-20.0)	0.82
sCS846 (ng/ml)	99.8 (45.9-172.3)	102.2 (53.0-190)	0.38
sHA (ng/ml)	34.1 (15.4-211)	33.3 (9.5-230.1)	0.38

Coll2-1 and Coll2-1NO2: two cartilage specific biomarkers

Coll2-1

- Specific of degradated cartilage
- Multiple pathological processes (inflammation + degradation)
- Not confounded

BIOVISCO study

Other observations

- ✓Only sColl2-1 was significantly decreased 30 days after final injection
- ✓Only uCTX-II variation correlated with clinical response (walking pain decrease)
- ✓uCTX, sColl2-1 and sHA were independently predictive of clinical response

(WP decrease > 30 mm over 90 days)

MOVES study

CS + GuHCL (Droglican) vs Celecoxib Preliminary data

- 416 knee OA (PP)
- 1200 mg CS/1500 GuHCL
- 200 mg celecoxib
- 6 months treatment

						BMI
	n	AGE	SEX	Weight (Kg)	Height (cm)	(kg/m2)
celebrex	202	64 (9)	165/37 (82%)	78 (14)	162 (18)	30 (6)
droglican	214	62 (9)	187/27 (87%)	81 (16)	161 (18)	31 (7)
PP	416	63 (9)	352/64 (85%)	80 (15)	162 (18)	30 (6)

Droglican

Both drugs decreased sColl2-1 Only Droglican decreased significantly Coll2-1 No significant difference between groups

MOVES study

CS + GuHCL (Droglican) vs Celecoxib

P value = droglican vs celebrex

Conclusions

- Soluble biomarkers should be included early in the development of a drug: « Drug developement tool »
- → Preclinical development and phase 1-4 trials Why?
- → to assist with selection of lead compound
- → to assess safety, mechanism of action, dose finding and selection, dose reponse profile, enrichment of a target population, enrichment for progressors, post-marketing safety surveillance
- →Companion biomarker (personalized medicine)

Thank you for your attention!

International collaborations:

F Blanco (La coruna, Spain)

T Conrozier (CHU Lyon, France)

V Kraus (Duke University, USA)

L Punzi (University of Padova, Italy)

A Mobasheri (University of Notttingham, UK)

J Monfort (Hospital del mare (Spain)

P Richette (Lariboisiere, France)

J Runhaar (Erasmus MC, Rotterdam)

