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Introduction

I would like to see this problem solved before I die.
H. Robbins, Amhersty, June 1990

Where we introduce the sequential selection problem known as Rob-
bins’ problem (of optimal stopping).

1 Historical background

Robbins’ problem belongs to an interesting class of optimal selection
problems which are sometimes referred to as Secretary Problems. These
are problems whose statement starts roughly as follows. “A decision maker
sequentially observes a given number, say n, of realizations of random vari-
ables. At each time i ≥ 1 he must decide whether or not to reject the current
observation, say Xi, and examine the next observation, or to accept Xi and
therefore reject all subsequent observations. His objective is to maximize a
specified payoff function. Solving a secretary problem requires describing (i)
the form of the optimal rule, (ii) the value of this optimal rule (as a function
of the number of observations), and (iii) the limiting value and behavior as
n grows to infinity.

Behind the apparent triviality of the above problem lies a fundamental
mathematical question that has been in the mathematical community since
the days of the English mathematician Arthur Cayley (1821-1895). Answer-
ing such questions brings to light the “unreasonable efficiency of mathemat-
ics”, since such problems deal with the question of optimal action under
worst circumstances. In other words, solving a secretary problem answers
the question of what one can do to get the best out of a situation when we
have little or no information about what is going to happen to us.

i
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The interest in such problems was kindled by Martin Gardner, who posed
its simplest version as a recreational problem in his column of the Scientific
American (see Gardner 1960). Rapidly thereafter the problem spread its way
around the mathematical community, each new author bringing a different
light on the implications and ramifications which lie behind this seemingly
anecdotic mathematical game. From that time on “it has been taken up and
developed by a number of eminent probabilists and statisticians [...]” and it
has spawned a whole class of problems which now “[...] constitute a ‘field’ of
study within mathematics-probability-optimization1.”

Now although the theory of optimal stopping (as described in Chow et al
(1971)) provides in principle a solution to (nearly) all such problems through
the method of backward induction, obtaining tractable descriptions of the op-
timal stopping rules and values requires far more than the simple application
of a standard tool. In fact, each variation on the above problem requires de-
veloping ad hoc methods, and therefore demands for elegant and innovative
thinking. This perhaps explains the intense research on these problems by
such eminent mathematicians as Dynkin, Ferguson, Robbins, Samuels and
many others (see the survey papers by Freeman (1983), Petruccelli (1988)
or Samuels (1991)).

2. The classical secretary problems

Although it would be fruitless to recall all the existing versions of the
above problem, it is necessary to inscribe our problem within its context,
i.e. that of the the four classical secretary problems. Of these, the first
three were solved successively by Lindley (1961), Chow, Moriguti, Robbins
and Samuels (1964), and Gilbert and Mosteller (1966). The fourth problem,
Robbins’ problem, remains to this date unsolved.

2.1 The no-information best-choice problem

Consider a situation where an employer has advertised an opening for a
secretary. There are a known number, n, of applicants, and the employer
interviews them one at a time. He is very specific about the qualities that
are needed for the job so that, after each interview, he can rank the present
applicant with respect to all previous applicants with no ties. The applicant

1Ferguson (1984).
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must be told immediately after each interview whether or not he has been
hired and there cannot be any regrets later on. Moreover if the first n − 1
applicants have been rejected, then the employer is forced to hire the last
one.

What selection strategy will maximize the probability of the employer se-
lecting the best candidate? What is the maximal probability of choosing the
best candidate? In particular, what is the limiting value of this probability
when the number of applicants becomes infinite?

These questions are the essence of the problem that has come to be
known as the classical no-information secretary problem (abbreviated CSP),
where the terminology “no-information” refers to the fact that the decisions
of the employer must be based solely on the relative ranks of the different
observations and not on their specific values.

The first solution of the CSP to be published in a scientific journal is due
to Lindley (1961). It is obtained by simple backward recursion and states
that if, for r = 1, 2, . . . , n− 1, we define

ar =
1
r

+
1

r + 1
+ . . .+

1
n− 1

,

then the optimal action is to ignore any candidate who is not the best so
far, and, if the rth candidate is the relative best at the time at which it
is observed, then he should be chosen if ar < 1 and rejected if ar > 1
(see also e.g. Gilbert and Mosteller (1966) or the survey papers Freeman
(1983), Petruccelli (1988), or Samuels (1991)). Thus, if r? is the first integer
for which ar−1 ≥ 1 > ar, the optimal strategy is to reject the first r? − 1
applicants and then to accept the first applicant thereafter that is better
than all previous applicants.

The probability of the employer selecting the best candidate with this
policy is given by (r? − 1)ar?−1/n, and integral approximation yields that
for n large, r?/n ≈ e−1. With this result, one shows that the asymptotic
optimal win probability is given by 1/e = 0.368.... We see that with very
little information, the employer still has a surprisingly high probability of
obtaining the overall best applicant. This result is perhaps even more striking
when one notices that when there are, for example, 100 candidates, then it
is (approximately) optimal to reject the first 36 applicants and to hire the
first candidate thereafter who is relative best. The probability of selecting a
record candidate is even much higher than 1/e, typically over 60%.
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Remark 1 An alternative solution is due to Dynkin (1963), who considers
this problem as an application of the theory of Markov stopping times. In this
setting, the optimal strategy is given by the one-stage look-ahead rule. There
was a third different solution obtained by Rasche (1975). This solution is a
corollary of the more general Odds-Theorem of optimal stopping, see Bruss
(2000).

2.2 The full-information best-choice problem

Consider the following situation. “An urn contain n tags, identical ex-
cept that each has a different number printed on it. The tags are to be
successively drawn at random without replacement (the n! permutations are
equally likely). Knowing the number of tags, a player must choose just one
of the tags, his object being to choose the one with the largest number. The
player’s behavior is restricted because after each tag is drawn he must either
choose it, thus ending the game, or permanently reject it. The problem is
to find the strategy that maximizes the probability of obtaining the largest
tag and to evaluate that probability2.”

Let us suppose that the numbers on each tag (say X1, . . . , Xn) are a
random sample from some specified continuous distribution (which we can
take to be the uniform continuous distribution on [0, 1] since we are only
interested in the comparative quality of each tag). Clearly, this problem is
equivalent to the CSP if the player only considers the relative ranks of the
numbers on the tags, since the hypothesis of continuity of the distribution
guarantees the absence of ties. But suppose now that at each stage i, the
player is allowed to know the values X1, . . . , Xi. Then his decisions are to be
based on a more informative data set, and thus the optimal win probability
should be better than in the classical no-information problem.

As an illustration of this fact, let us consider the case n = 2 and let
X1, X2 be the first and second numbers examined, respectively. In the no-
information problem, the player does not have much of a choice, since the
first arrival will always be of relative rank one (it is obviously the best so
far) and thus the player will simply win with one chance out of two. Suppose
now that the player is allowed full information on the problem and let us

2This presentation of the problem is the same as that in Gilbert and Mosteller (1966).
It is equivalent to the presentation made by Gardner, see Gardner (1960), under the name
‘game of Googol’.
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choose any number x between 0 and 1. We define the rule

τx =
{

1 if X1 > x
2 otherwise.

If both X1 and X2 are greater or smaller than x, this rule selects the larger
of the two with probability 1/2. If not, then this rule necessarily selects the
maximum of the two. Hence the win probability with the rule τx is given by

P[Xτx = max(X1, X2)] = 1/2 + x− x2,

which is always greater than 1/2 and equal to 3/4 for x = 0.5.

The optimal strategy for all n (say τ?n) was obtained by Gilbert and
Mosteller (1966). These authors show that it is defined through a sequence
of thresholds, which they call decision numbers, b0 = 0, b1, b2, . . ., not de-
pending on n such that

τ?n = min
1≤i≤n

{
i : Xi = max

j≤i
Xj and Xi ≥ bn−i

}
.

Each decision number bm, m = 1, 2, . . . is solution to

m∑
j=1

j−1b−jm = 1 +
m∑
j=1

j−1,

where, as one would expect from the example we gave above, b1 = 1/2. These
numbers form an increasing sequence which goes to one as the number of
draws becomes large.

Now let wn = P[Xτ?n = max{X1, . . . , Xn}] denote the win probability
under the optimal strategy. Samuels (1982) showed that wn is strictly de-
creasing in n and that

lim
n→∞

wn ≈ 0.580164...

Hence we see that there is an improvement of roughly 58% from the no-
information to the full-information problem.

2.3 The no-information expected rank problem

We consider the same situation as in the classical secretary problem, in
which an employer interviews n candidates for a job under the restriction
that, at each interview, the only information he can work on is the relative
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ranks of the preceding applicants. Now suppose that instead of maximizing
the probability of selecting the best, we consider the objective of minimizing
the total expected rank of the selected candidate, where the overall best
candidate is given rank one, the second best two, etc., and the worst rank n.

This objective is arguably more realistic than that of the CSP. Indeed,
maximizing the probability of accepting only the best candidate implies a
utility function that takes the value 1 if the best is accepted and 0 other-
wise. Such ‘nothing-but-the-best’3 objectives are therefore very restrictive
in comparison to real-life problems in which one could imagine that an em-
ployer would also be satisfied with a less perfect candidate. In this respect, a
more appropriate utility function would be that which takes the value n− i
if the ith best candidate is accepted; maximizing the expected value of this
utility function corresponds to minimizing the expected rank of the selected
observation.

With this in mind, it is now easy to surmise that the optimal strategy
for the best-choice problem is no longer optimal with respect to this new
objective. Indeed, although this policy selects an arrival which has absolute
rank 1 with a high probability, it also has a major drawback: it suffices
for the overall best candidate to appear among the first r? − 1 applicants
to ensure that this strategy never stops and thus selects the last candidate.
Since the last candidate has expected rank n+1

2 , we infer that this policy
must be suboptimal in this setting.

The optimal strategy for this problem can for example be obtained by
the method of backward induction (see e.g. Chow et al. (1971)). Labeling
the relative ranks of each applicant by r1, r2, . . . rn respectively, a direct
application of this method shows (see e.g. Lindley (1961) or Chow et al.
(1966)) that the optimal strategy is given by a sequence of thresholds s1 ≤
s2 ≤ . . . ≤ sn = n such that it is optimal to stop on the first applicant whose
relative rank satisfies ri ≤ si. However, it turns out that the recurrence
equations which define the si’s are extremely complicated and thus this result
lends little insight into the asymptotic value of the optimal expected rank.

A heuristic argument given in Lindley (1961) indicated that, by approx-
imating these recurrence relations by a differential equation, the optimal
expected rank should approach a finite limit as n goes to infinity. Chow et
al. (1964) were able to make this rigorous and obtained then the limiting
form of the expected rank under the optimal policy. For this they showed
that the minimum expected rank for the n arrival problem is a strictly in-

3This appellation is due to Lindley (1961).
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creasing function of n, and that it converges to
∞∏
j=1

(
j + 2
j

)1/(j+1)

= 3.8695....

It is here of interest to point out that H. Robbins was co-author of this paper.

2.4 The full-information expected rank problem

This problem has the same formulation as the full-information best choice
problem but instead of maximizing the probability of obtaining the best Xi,
the objective is now to minimize the expected rank of the selected observa-
tion. One sees that this problem fits perfectly in the two-by-two pattern of
the classical secretary problems. Surprisingly, although the three previous
problems had been solved by the mid 60’s, it was not until Professor Herbert
Robbins (1915-2001) kindled the interest of the mathematical community
(at the International Conference on Search and Selection in Real Time in
1990) that results were published on this problem. For this reason among
others, it has been named in his honor (see Bruss and Ferguson (1993) and
Assaf and Samuel-Cahn (1996); for a review see Bruss (2005)).

We defer a precise definition of this problem to Chapter 1. However,
we can already deduce an upper bound on the optimal expected rank from
the previous remarks. Indeed, a player with full-information can only do
better than a player with no information, since he can always choose to use
a strategy which only considers the relative ranks of the arrivals. Therefore,
letting v(n) be the value of the optimal expected rank for the n-arrival full-
information expected rank problem, we know that

lim
n→∞

v(n) ≤ 3.8695...

Now, in light of the fact that the passage from no-information to full-
information in the best choice problems yielded a 58% increase in the asymp-
totic win probability, it seems reasonable to hope that the improvement for
the rank problem should be of the same order, i.e. that limw(n) ≈ 2.44. We
will see that the improvement is, in fact, better.

3. Moser’s problem

Before moving on, we need to relate Robbins’ problem to one final exam-
ple of selection problem which we will refer to as Moser’s problem, in honor
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of Professor Leo Moser, who was the first to obtain its solution (see Moser
(1956)). This problem is an extension of a problem posed by Cayley in 1875
(see Cayley (1875)). Although it is not per se a ‘secretary problem’, we will
see that it yields some necessary intuitions on Robbins’ problem.

The problem is as follows. A player observes sequentially n random
variables X1, . . . , Xn which are known to be independent, identically and
uniformly distributed on [0, 1]. His cost for stopping at time j is equal to the
value of the observation, and no recall of preceding observations is permitted.
His objective it to use an adapted stopping rule τ which minimizes E[Xτ ].

Moser (1956) shows that if we define recursively the sequence (ak)k≥0 by
a0 = 1 and

aj+1 = aj −
1
2
a2
j , j ≥ 1,

then it is optimal to stop on Xj if Xj ≤ an−j , i.e. the optimal strategy τ̂n is

τ̂n = min{k ≥ 1 | Xk ≤ ak}.

The optimal return with this strategy is given by E[Xτ̂n ] = an. These thresh-
olds are asymptotically equal to

ak ≈
2

n− k + 1
∧ 1,

and for large n,

an ≈
2

n+ log n+O(1)
,

so that
lim
n→∞

E[nXτ̂n ] = 2.

In the sequel, we will often refer to this problem, and to the optimal rule τ̂n.

4. Acknowledgments and outline of the mémoire

The following work is the outcome of our efforts on the full-information
expected rank problem. The original research which is recalled in the next
few pages was conducted in close collaboration with Professor F. T. Bruss
from the ULB, and the author of this manuscript gratefully acknowledges
that without Professor Bruss’ insight and experience, nothing would have
been achieved. We are also grateful to Prof. F. Delbaen, from ETH Zurich,
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and to Prof. M. Drmota from TU Wien for their help and interesting dis-
cussions. Part of this work has been published, in 2009, under the title “A
continuous time approach to Robbins’ Problem of minimizing the expected
rank”. Also recorded are a number of results which, though not yet pub-
lished, we deem of interest.

We must, sadly, warn our reader that he will not find in these next few
pages a solution to the problem. We do hope, however, that after reading
this account, our reader will have the flash of intuition that we have not had
and perhaps find the missing piece of information that yields the solution.
Despite our lack of success, we can nevertheless proudly present a number
of fundamental results on a problem which has so far baffled all those who
have tackled it; moreover we believe that herein lies the hope for a definite
answer.

The outline of this mémoire is as follows. In Chapter 1 we present a
number of known results as well as a fundamental inequality linking ex-
pected values and expected ranks in optimal selection problems. Chapter 2
describes continuous-time approach to the problem. Our third chapter pro-
vides the link between the results of the first two chapters, while the fourth
and concluding chapter provides some analytic results which we believe to
contain the solution. A list of references concludes the manuscript.





Chapter 1

The classical Robbins’ Problem

Where we summarize the known results on Robbins’ Problem, and
provide a crucial relationship between ranks and values.

1.1 Definition and notations

A player observes sequentially n i.i.d random variables X1, . . . , Xn dis-
tributed uniformly on [0, 1] and has to chose exactly one of them. The
objective of the player is to minimize the expected rank of the chosen obser-
vation, where the best observation is given rank one, the second best rank
two, etc., and the worst rank n. However, once a value is rejected, it cannot
be recalled afterwards, so that at time k, only Xk can be selected, and the
data on which the decision is made are the values of the arrivals up to time
k. Let Fk = σ(X1, . . . , Xk) be the σ-algebra generated by X1, . . . , Xk. The
relative rank of an arrival Xk is defined by

rk =
k∑
j=1

1{Xj≤Xk},

and the (absolute) rank of the kth observation is defined by

R?k =
n∑
j=1

1{Xj≤Xk}.

Since R?k is not Fk-measurable, we replace it by

Rk = E[R?k|Fk] = rk + (n− k)Xk.

1
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The objective of the player is to use a non anticipating strategy τ which min-
imizes E[Rτ ] (where this problem is clearly equivalent to that of minimizing
E[R?τ ] since the corresponding expressions are equal for all stopping rules τ).
Now let Tn = {τ : {τ = k} ∈ Fk, ∀k = 1, 2, . . . , n} be the set of stopping
rules adapted to X1, . . . , Xn, and define the value function for n arrivals by

v(n) = inf
τ∈Tn

E[Rτ ]. (1.1)

Robbin’s problem consists in studying the value function v(n) defined by
equation (1.1), the stopping rule τ? = τ?n which achieves v(n) and the asymp-
totic value

v = lim
n→∞

v(n). (1.2)

1.2 Memoryless threshold rules

Before studying v(n) and the optimal rule in Tn, it is appropriate to
introduce the subclass of memoryless threshold rules. These are stopping
rules which are defined for each n through a sequence of constants (called
threshold constants) 0 ≤ an,1 ≤ an,2 ≤ . . . ≤ an,n = 1 by

τn = min{k : Xk ≤ an,k}. (1.3)

The restriction an,n = 1 is necessary in order to ensure that rules defined by
(1.3) stop for at least one of the arrivals Xk, and hence for exactly one.

Assaf and Samuel-Cahn (1996) prove that for any discrete memoryless
threshold rule defined by a sequence which is not monotone increasing, there
exists a rule determined by a monotone increasing sequence which yields a
better value. Thus only monotone increasing sequences need to be consid-
ered. This statement is, of course, rather transparent.

Now let Mn be the set of all such rules, and for all τn ∈Mn, denote the
value of Robbins’ problem under τn by

V (τn) = E[Rτn ]. (1.4)

Straightforward computations yield the following lemma (see Bruss and Fer-
guson (1993) and Assaf and Samuel-Cahn (1996)).

Lemma 1.1 Consider the threshold sequence 0 < a1 ≤ a2 ≤ . . . ≤ an = 1
and let τn be the corresponding strategy. Then if ak−1 < 1,
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V (τn) = 1 +
1
2

n−1∑
k=1

(n− k)a2
k

k−1∏
j=1

(1− aj) +
1
2

n∑
k=1

k−1∏
j=1

(1− aj)
k−1∑
j=1

(ak − aj)2

1− aj
(1.5)

where 0/0 should be interpreted as 0 in the last sum.

We define the restricted value function V (n) (with a capital ‘V’) as the
optimal value of V (τn) among all τn ∈ Mn (i.e. it is the minimal expected
rank attainable through a memoryless threshold rule) and we define the
restricted asymptotic value

V = lim
n→∞

V (n), (1.6)

if it exists. Note that V (n) gives an upper bound on v(n) for all n, and
hence v ≤ V .

The following results are well-known, and due to Bruss and Ferguson
(1993, 1996), and Assaf and Samuel-Cahn (1996). They are therefore stated
without proof or explanation.

Theorem 1.2 There exists an optimal rule τ?n ∈ Mn, i.e. there exists a
memoryless threshold rule τ?n for which V (τ?n) = V (n). Moreover this rule is
uniquely defined.

Theorem 1.3 V (n) is an increasing and bounded function of n and hence
the limit V = limn→∞ V (n) exists and is finite.

Theorem 1.4 For any stopping rule τn let

Un(τn) = (2E[nXτn ](1 + E[τn/n]))
1
2 . (1.7)

Also let U? = lim inf Un(τ?n) where τ?n is the optimal memoryless threshold
rule. Then

V = U?, (1.8)

and
V ≥ lim inf

n→∞
inf

τn∈Mn

Un(τn). (1.9)

These results are, obviously, of great importance for our problem. We
will return to them, and to their consequences, in Section 1.4.
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1.3 The optimal rule

Backward induction (see Chow. et al (1971)) guarantees the existence of
an optimal strategy τ?n ∈ Tn for all n, and provides, in principle, a way to
compute it. However, even for small values of n ≥ 3, computing the optimal
strategy through backward induction is a formidable task which does not give
any intuition on the asymptotic value (see Assaf and Samuel-Cahn (1996)
for the case n = 3).

Bruss and Ferguson (1996) prove that the optimal rule is a threshold rule
of the form

τ?n = inf{1 ≤ k ≤ n : Xk ≤ p
(n)
k (X1, X2, . . . , Xk)},

where the functions p(n)
k (.) are fully history dependent in the sense that for

each k, the value of the corresponding threshold depends on every arrival
X1, . . . , Xk. They also show that no nontrivial statistic of X1, . . . , Xk is
sufficient to achieve the optimal value v(n), and hence the optimal thresholds
have an unbounded number of arguments and “figure in the list of most
undesirable mathematical objects1”.

Now although this property of the optimal rule seems to demonstrate
that the problem is not tractable, Bruss and Ferguson (1993) also prove that
this problem possesses some monotonic features. More precisely they show
that the optimal thresholds are stepwise-monotone-increasing in the sense
that for each n and for all k = 1, . . . , n− 2,

0 ≤ p(n)
k (X1, X2, . . . , Xk) ≤ p

(n)
k+1(X1, X2, . . . , Xk, Xk+1) < p(n)

n = 1

almost surely. They also show that the value function v(n) is increasing in
n. In particular this proves that the limiting value v = limn→∞ v(n) exists,
since, as we have already seen, the value function is bounded above for all n
by the value function in the corresponding no-information problem.

1.4 Bounds on the value functions

We know thatMn ⊂ Tn and thus the asymptotic value limn→∞ V (τn) for
any sequence of memoryless threshold rules (τn)n≥1 gives an upper bound
on v. For example, by considering a version of Moser’s rule of the form

τn = min
{
k ≥ 1 : Xk ≤

2
n− k + 2

}
,

1Bruss (2005)
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Bruss and Ferguson (1993) show by use of integral approximation of (1.5)
that

v ≤ lim
n→∞

V (τn) =
7
3
.

Assaf and Samuel-Cahn (1996) go one step further and obtain a limiting form
of (1.5) for certain thresholds. This allows them to compute the limiting
value limn→∞ V (τn) for rules of the form

τn = min
{
k ≥ 1 : Xk ≤

g(k)
n− k + c

}
,

with g(z) =
∑m

j=0 cjz
j . Direct computation with these expressions prove

that taking m = 2 and c0 = 1.77, c1 = 0.54 and c2 = −0.27 yields

V ≤ lim
n→∞

V (τn) = 2.3267;

this is the best upper bound they obtain.

Such small improvements are however not unexpected. Indeed, Bruss
and Ferguson (1993) further extrapolate that the limiting value is given by
V = 2.32659. Our own explorations of the above rules have yielded a mem-
oryless rule which achieves 2.32661. Also, standard results from calculus of
variations applied to equation (1.7) of Theorem 1.4 allow Assaf and Samuel-
Cahn to show that infτn∈Mn Un(τn) = 2.29558..., so that we now know

2.29558... ≤ V ≤ 2.3267....

Interestingly the statement of Theorem 1.4 can be further strengthened to
show that for all sequences of stopping rules τn satisfying limE[Rτn ] < ∞
one has

limE[Rτn ] ≥ lim inf U(τn) = lim inf (2E[nXτn ](1 + E[τn]/n))1/2 . (1.10)

Although this last result, in a sense, hints towards the main result of this
chapter (see Theorem 1.5), a little reflection shows that this inequality is in
no way strong enough to yield any positive result other than that obtained
by Assaf and Samuel-Cahn. In fact, it does not even suffice to prove that
nE(Xτ?n) is bounded! It nevertheless brings some intuition. For instance,
plugging τ̂n, the optimal strategy for Moser’s problem, into (1.10) allows us
to conclude

limU(τ̂n) =
√

16/3 = 2.3094.

These results concur to suggest that the quest for the optimal memoryless
value is essentially over.
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The bounds given above obviously provide upper bounds on v, a value
which we know exist. They do not tell us, however, what we need to know,
i.e. they do not allow for proving (or disproving) the equality v = V . This
question is still open, although Gnedin (2007) has recently proved that, in a
limiting Poisson model similar to the one we will present in the next chapter,
the full-history dependence persists. Such a result only holding within the
framework of Gnedin’s (specific) model, it is of limited interest to us here.

The best information on this aspect of the problem is due to Bruss and
Ferguson (1993), who consider a sequence of truncated games which yield
systematically lower payoff than the original problem. Although these trun-
cated problems represent considerable simplifications over the original prob-
lem, the authors report that the computational aspects involved with this
approach are still severe. Some computations were nevertheless carried out
for m = 1 through m = 5, and all they were able to conclude is that

v ≥ 1.908.

1.5 Ranks and values

A natural question, to which we have already hinted, is that of the link
between Moser’s and Robbins’ problem. Of course we know that, for finite n,
minimizing the value is different from minimizing the rank since we know that
the optimal rule for minimizing the value is memoryless, and can be strictly
improved upon in the rank problem by taking into account the history of the
process. Naturally, it is also important to verify whether or not this still holds
true as n grows. A first step towards answering this fundamental question
is to determine whether, for τ?n the optimal (non threshold) rule we have
nE[Xτ?n bounded. Now although such an affirmation is rather transparent
(indeed, how could one imagine a strategy which minimizes the rank without
selecting a value which is at least smaller than 1/n?), we have not been able
to prove it. The best we have obtained is the following.

Theorem 1.5 Let τ?n be the optimal strategy for the discrete n-arrival Rob-
bins’ Problem. Then, for all p > 1,

E(Xτ?n) ≤ E(Rτ?n)

(
n∑
k=1

apn,k

) 1
p

, (1.11)
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where

apn,k = k2−p
(
n

k

)∫ 1

0
xp+k−1(1− x)n−kdx. (1.12)

Proof: Conditioning on the ranks we obtain

E(Xτ?n) = E(E(Xτ?n

∣∣ Rτ?n)) =
n∑
k=1

E(X(k)1{Rτ?n=k})

where X(k) is the kth smallest order statistic of the sample X1, . . . , Xn. Note
that the expectation cannot be factorized. Applying Hölder’s inequality
yields

E(Xτ?n) ≤
n∑
k=1

(E(Xp
(k)))

1/p(P (Rτ?n = k))1/q,

for all p, q such that 1
p + 1

q = 1. Hence

E(Xτ?n) ≤
n∑
k=1

k−1/q(E(Xp
(k)))

1/p(kP (Rτ?n = k))1/q.

Now let an,k = k−1/q(E(Xp
(k)))

1/p. Applying Hölder’s inequality this time to
the sum on the rhs of the above inequality for the same choice of p and q
gives

E(Xτ?n) ≤

(
n∑
k=1

apn,k

)1/p( n∑
k=1

kP (Rτ?n = k)

)1/q

=

(
n∑
k=1

apn,k

)1/p

E(Rτ?n)1/q.

Since E(Rτ?n) ≥ 1 for all n, we obtain

E(Xτ?n) ≤

(
n∑
k=1

apn,k

)1/p

E(Rτ?n).

The known expressions for the moments of the kth order statistics then yield
(1.12).

Note that nowhere do we use the properties of τ? in the proof of Theorem
1.5. Hence this result is valid for every stopping rule, and we get the following
(rather intuitive) result.
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Corollary 1.6 Let 0 ≤ α < 1, and let τn be a sequence of stopping rules
for which limnE(Rτ ) <∞. Then

lim
n→∞

nαE(Xτn) = 0

for all 0 < α < 1.

Proof: It suffices to show that the constants
(∑n

k=1 a
p
k

)1/p are well behaved
for n large. For this, first fix some integer p > 1. Computing the apn,k
explicitly, we obtain

apn,k = k1−p n!
(n+ p)!

(k + p− 1)!
(k − 1)!

.

Applying Stirling’s approximation

√
2πn

(n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(n
e

)n
e1/(12n)

we get
n∑
k=1

apn,k = A(n, p)B(n, p),

where

A(n, p) =
√

n

n+ p

(
n

n+ p

)n
ep
(

1
n+ p

)p
f1(n, p),

with f1(n, p) ≈ 1 for all p when n is large, and

B(n, p) = p! + e−p
n∑
k=2

k

√
1 +

p

k − 1

(
1 +

p

k − 1

)k−1(
1 +

p− 1
k

)p
f2(k, p),

with f2(k, p) ≤ 1 for all k and p.

It is easy to check that, for n large,

A(n, p) ≈
(

1
n+ p

)p
. (1.13)

Also, since
(

1 + p
k−1

)k−1
≤ ep, we get

B(n, p) ≤ p! +
√

1 + p
n∑
k=2

k

(
1 +

p− 1
k

)p
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so that, using Newton’s Binomial formula on
(

1 + p−1
k

)p
, one obtains

B(n, p) ≤ p! +
√

1 + p

(
n∑
k=2

k +
p∑
l=1

(
p

l

)
(p− 1)l

n∑
k=2

1
kl−1

)
.

For fixed p > 1 this last function is in the order of n2, and hence, from (1.13),(
n∑
k=1

apk

)1/p

= A(n, p)B(n, p) ≈ Kpn
2/p−1 (1.14)

for some positive constant Kp.

These results will play a fundamental rôle in the sequel, and we will
return to them in Chapter 3.





Chapter 2

Embedding Robbins’ Problem

Where we consider a variation on Robbins’ problem with a random
number of arrivals.

2.1 Definition and notations

We first consider the following variation on the original problem. A de-
cision maker observes opportunities occurring according to a planar Poisson
process of homogeneous rate 1. He inspects each option when the opportu-
nity arises and has to chose exactly one before a given time t. Decisions are
to be made immediately after each arrival, and no recall of preceding obser-
vations is permitted. The loss incurred by selecting an arrival is defined at
time t as the total number of observations in [0, t] which are smaller than
the selected observation. If no decision has been reached before the given
time t, then his loss is equal to some function of t, say Π(t). At all times
the decision maker has the knowledge of the full history of the process, and
his objective is to use a non anticipating strategy which will minimize the
expected loss.

Formally, this problem can be translated as follows. Fix t > 0. Let
(T1, X1), (T2, X2), . . . denote a point arrival process with T1 ≤ T2 ≤ . . .
being the arrival times of a homogeneous Poisson counting process (N(s))s≥0

of rate 1, and X1, X2, . . . the associated i.i.d. random values . With this
notation, define the absolute rank of the kth arrival Xk (with respect to t)

11
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by

R
(t)
k =

N(t)∑
j=1

1{Xj≤Xk},

where the sum is set to 0 if N(t) = 0. The loss incurred for selecting Xk at
time Tk is then

R̃
(t)
k := R

(t)
k 1{Tk≤t} + Π(t)1{Tk>t}, (2.1)

and the objective of the decision maker is to use a stopping time τ which
minimizes E(R̃(t)

τ ). Since we only allow stopping upon inspection, the set of
adapted strategies is restricted to the collection T of all random variables
with values in the set {Tr}r≥1 of arrival times of the point process, which
satisfy {τ ≤ s} ∈ Fs where

Fs = σ
{

(N(u))0≤u≤s, (T1, X1) . . . , (TN(s), XN(s))
}
,

and where it is understood that Fs = σ{(N(u))0≤u≤s} for all s for which
N(s) = 0. Such stopping rules are called “canonical stopping times” in Kühne
and Rüschendorf (2000) or Gnedin (2007).

Remark 2 We will from now onwards always use the notation {τ = k}
instead of {τ = Tk} to denote the event that the decision maker selects the
kth arrival. Hence the notations Rτ , Xτ and Tτ are well defined and will be
used systematically throughout the paper.

The Poisson embedded Robbins’ Problem consists in studying the value
function w(t) defined by

w(t) = inf
τ
E
(
R̃(t)
τ

)
= inf

τ
E
(
R(t)
τ 1{Tτ≤t} + Π(t)1{Tτ>t}

)
, (2.2)

including its asymptotic value w = limt→∞w(t), if it exists, as well as the
stopping rule τ?t which achieves this value.

Remark 3 The function Π(t) reflects the loss incurred for selecting no ob-
servation before time t. We call it the penalty function. Although we keep
this function unspecified throughout the text, we suppose that Π(0) = 0 and
that Π(.) is increasing and differentiable with bounded derivative. Hence
this function is Lipschitz-continuous and satisfies

lim
t→∞

Π(t)
t
≤ κ, (2.3)

for some κ ∈ (0,∞).
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Remark 4 Note that for all τ , the expected rank of an arrival selected by
τ before the horizon t satisfies

E(R(t)
τ ) = E(E(R(t)

τ | FTτ )) = E(rτ + (t− Tτ )Xτ )

where rk =
∑k

j=1 1{Xj≤Xk} is the relative rank of the kth observation. Hence,

although the absolute ranks R(t)
k are not measurable with respect to FTk ,

the problem of minimizing the loss among all adapted stopping rules is well
defined via that of minimizing E(rτ + (t − τ)Xτ ), as already seen in Bruss
and Ferguson (1993) and Assaf and Samuel-Cahn (1996).

2.2 Memoryless threshold rules

For each t > 0, we define the set of threshold functions on [0, t] as the set
of all functions gt : R → [0, 1] : s 7→ gt(s) such that gt(s) = 1 ∀s ≥ t. To
each such function we associate (uniquely) a memoryless threshold rule σt

σt = inf{i, i = 1, 2, . . . such that Xi ≤ gt(Ti)}, (2.4)

and a value

W (σt) = E[R̃σt ] = E[Rσt1{Tσt≤t} + Π(t)1{Tσt>t}]. (2.5)

Let Mt be the set of all such rules (note the indexing in t). We define the
restricted value function W (t) as the minimal value of W (σt) obtainable on
Mt, i.e.

W (t) = inf
σt∈Mt

W (σt). (2.6)

We also denote the restricted asymptotic value (if it exists) by

W = lim
t→∞

W (t). (2.7)

Clearly, for all t, we have Mt ⊂ T . Therefore, as in the discrete problem,
the restricted optimal valueW (t) gives an upper bound on the optimal value
w(t) for all t, and thus the corresponding limits, if they exist, must satisfy
w ≤W .

Our next result shows that, as in the discrete case, only increasing thresh-
olds need to be considered. Intuitively, this simply translates the fact that
if it is optimal to accept an arrival of value x at time s, then it should also
be optimal to accept an arrival of smaller value at later times s′ ≥ s.
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Proposition 2.1 Let σ?t ∈ Mt be the optimal memoryless threshold rule
and let g?t (.) be the corresponding threshold function. Then for all 0 ≤ s ≤
s′ ≤ t, g?t (s) ≤ g?t (s′).

Proof: Suppose that there is an arrival Xi at time Ti, and define E(i, t)
as the minimal expected rank obtainable with memoryless strategies which
stop almost surely after the ith arrival, i.e.

E(i, t) = infσt∈Mt,σt>iE[R̃(t)
σt | Fi],

where the infimum is taken over the set of all stopping rules σt ∈ Mt such
that P[σt > i] = 1. We know that it is optimal to stop on an arrival (Ti, Xi)
if and only if

E[R̃(t)
i | Fi] ≤ E(i, t).

Since E[R̃(t)
i | Fi] = ri + (t− Ti)Xi, this implies that it is optimal to stop on

(Ti, Xi) if and only if it satisfies

ri + (t− Ti)Xi ≤ E(i, t). (2.8)

Now suppose that σ?t is optimal but that g?t (.) is not increasing on [0, t] (as
illustrated in Figure 1).

A1

A2

g(s)

a b c

Figure 1: The threshold function is not monotone increasing and hence we
can define the areas A1 and A2.

Since g?t (.) is not increasing, it must be possible to choose areas A1, A2 and
a, b, c as illustrated in Figure 1. By definition of σ?t , any arrival in A1 will
be accepted, and any arrival in A2 will be rejected. Now suppose that the
ith arrival (Ti, Xi) lies in A1. Then this arrival is accepted and must be
an optimal choice in the class of memoryless strategies, so that it satisfies
equation (2.8), which yields

ri + (t− Ti)Xi ≤ E(i, t). (2.9)
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If the next arrival (Ti+1, Xi+1) lies in A2, then, although Xi+1 ≤ Xi, it will
not be selected by σ?t . Hence it is not optimal to stop on this arrival, and

ri+1 + (t− Ti+1)Xi+1 > E(i+ 1, t). (2.10)

Since Xi+1 ≤ Xi, we must have ri+1 ≤ ri. Also, under fixed history up to
time i− 1, we see that E(i, t) ≤ E(i+ 1, t). Therefore, from (2.9) and (2.10)
we obtain

E(i, t) ≤ E(i+ 1, t) < ri+1 + (t− Ti+1)Xi+1 ≤ ri + (t− Ti)Xi,

which in turn yields
ri + (t− Ti)Xi > E(i, t). (2.11)

Hence, if the optimal strategy σ?t is defined through a non monotone increas-
ing threshold function, we see that there is a positive probability of there
being a realization of the process for which equations (2.9) and (2.11) must
hold at the same time. This yields a contradiction.

From now on we will only consider threshold functions gt(.) that are
monotone increasing on [0, t]. Let gt(.) be such a threshold function on [0, t]
and take σt ∈ Mt to be the corresponding memoryless threshold rule (see
equation (2.4)). Define the function µt(s) for s ≥ 0 by

µt(s) =
∫ s

0
gt(u)du. (2.12)

From the properties of homogeneous Poisson processes we see that for all
s ∈ [0, t],

P[Tσt ≥ s] = e−µt(s),

and hence the density of Tσt is given on (0, t) by

fTσt (s) = gt(s)e−µt(s). (2.13)

Hence, conditioning on the arrival time, we see that for all σt ∈Mt,

E[R(t)
τ 1{Tσt≤t}] =

∫ t

0
E[R(t)

τ | Tσt = s]fTσt (s)ds. (2.14)

We now use this equation to obtain an integral version of (1.5) for memoryless
threshold rules.
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Proposition 2.2 Let gt(s) be a continuous increasing threshold function,
and let σt ∈Mt be the corresponding memoryless threshold rule. Let µt(s) =∫ s

0 gt(u)du. Then

W (σt) = 1 + (Π(t)− 1)e−µt(t) + 1
2

∫ t

0
gt(s)2(t− s)e−µt(s)ds

+1
2

∫ t

0

∫ s

0

(gt(s)− gt(u))2

1− gt(u)
du e−µt(s)ds

(2.15)

Proof: Recall that for a memoryless threshold rule σt defined by a function
gt, the density of Tσt is given on (0, t) by

fTσt (s) = gt(s)e−µt(s). (2.16)

Now choose s ∈ (0, t) and suppose that Tσt = s. Then, conditionally to
XN(s) = x ∈ [0, gt(s)], the relative rank rN(s) is given by the number of
arrivals in A1 and A2 (see Figure 1) , and

E[R(t)
σt | Tσt = s,Xσt = x] =

1 + x(t− s) if 0 ≤ x ≤ gt(0)

1 + x(t− s) +
∫ g−1

t (x)

0

x− gt(u)
1− gt(u)

du if gt(0) ≤ x ≤ gt(s).

(2.17)

where the second part of (2.17) holds because we know that if we haven’t
stopped before s then there can have been no arrivals under the curve before
s so that, conditionally to Tσt = s, the value of any arrival occurring at time
0 ≤ u ≤ g−1

t (x) is uniformly distributed on [gt(u), 1].

x

g−1(x) s

A1 A2

g(s)

Figure 2: Smaller arrivals can only occur in A1 and A2.
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Now, conditionally to Tσt = s, we know that the arrivals are distributed
uniformly on [0, gt(s)]. Therefore, integrating (2.17) yields

E[R(t)
σt | Tσt = s] = 1 + 1

gt(s)

∫ gt(s)

0
x(t− s)dx

+ 1
gt(s)

∫ gt(s)

gt(0)

∫ g−1
t (x)

0

x− gt(u)
1− gt(u)

dudx.

(2.18)

Using

W (σt) =
∫ t

0
E[R(t)

σt |Tσt = s]fTσt (s)ds+ Π(t)P[Tσt ≥ t],

straightforward rearrangement and integration of (2.18) yields (2.15).

Finally take gn(.) and σn as above. If there have been no satisfactory
arrivals for σn before time n, then the loss of the decision maker is given by
R̃σn = Π(n) and thus

W (σn) ≥ Π(n)e−µn(n), (2.19)

where µn(s) is, as before, defined for all 0 ≤ s ≤ n by µn(s) =
∫ s

0 gn(u)du.
Since we are interested in optimal values, and since the penalty function
is chosen to be asymptotically linear in the horizon t, we see from (2.19)
that we can restrict our attention without loss of generality to sequences of
threshold functions which satisfy

lim
n→∞

ne−µn(n) = 0. (2.20)

Now let (gn(.))n≥1 be a sequence of strict monotone increasing threshold
functions on [0, n] (i.e. for each n, the function gn(.) is a strictly increasing
threshold function with horizon n) and let σn ∈ Mn be the corresponding
sequence of memoryless threshold strategies. Clearly, for all n, we have

w(n) ≤W (n) ≤W (σn).

We shall show that, under general conditions on the threshold sequence, we
can use equation (2.15) to obtain limn→∞W (σn).

We first define the functions

hn(u) = ngn(nu)
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for u ∈ [0, 1]. A change of variables in (2.15) yields

W (σn) = 1 + (Π(n)− 1)e−µt(n) +
1
2

∫ 1

0
d1
n(s)ds+

1
2

∫ 1

0

∫ s

0
d2
n(s, u)duds

(2.21)
where 

d1
n(s) = hn(s)2(1− s)e−

R s
0 hn(v)dv

d2
n(s, u) =

(hn(s)− hn(u))2

1− hn(u)/n
e−

R s
0 hn(v)dv

Now suppose that the sequence gn(.) satisfies (2.20) and that, for all u ∈
(0, 1), the sequence hn(u) converges. We can define the limit function

g(u) = lim
n→∞

hn(u) = lim
n→∞

ngn(nu).

Note that this function is unbounded in u = 1. In order to interchange the
limit and the integration appearing in (2.21), we need some stronger assump-
tions on the sequence of thresholds gn(.). We will impose two conditions.

(C1) For every s ∈ (0, 1), hn(s) increases monotonically as it approaches
g(s).

(C2) The sequence of functions hn(s) is uniformly convergent on every
interval [0, a], for a < 1.

With these assumptions, a version of the dominated convergence theorem
applies to d1

n(.) and d2
n(., .) so that

lim
n→∞

∫ 1

0
d1
n(s)ds =

∫ 1

0
lim
n→∞

d1
n(s)ds =

∫ 1

0
d1(s)ds,

with
d1(s) = g(s)2(1− s)e−

R s
0 g(u)du,

and also

lim
n→∞

∫ 1

0

∫ s

0
d2
n(s, u)duds =

∫ 1

0

∫ s

0
d2(s, u)duds,

with
d2(s, u) = (g(s)− g(u))2 e−

R s
0 g(u)du.

Hence, taking the limit for n going to infinity in (2.15), we get

lim
n→∞

W (σn) = 1 +
1
2

∫ 1

0
d1(s)ds+

1
2

∫ 1

0

∫ s

0
d2(s, u)duds =: L(g).
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Likewise, if for each n ≥ 1 we define the threshold sequence ai = gn(i),
i = 1, . . . , n and let τn ∈ Mn be the discrete stopping rule defined through
these thresholds, then (1.5) applies and gives V (τn) as the Lebesgue integral
of suitably chosen step functions. Under the same conditions on the sequence
gn(.) as above, we see that we can take the limit for n going to infinity of
V (τn) and this also yields L(g).

This explains the following proposition.

Proposition 2.3 Let (gn(.))n≥1 be a sequence of threshold functions satis-
fying (2.20), such that limn→∞ ngn(u) exists and is finite for all u ∈ (0, 1).
Define the function

g(u) = lim
n→∞

ngn(u).

Let σn ∈Mn be the sequence of memoryless threshold rules (for the Poisson
embedded problem with horizon n) defined, for each n, by gn(.) and let
τn ∈ Mn be the sequence of memoryless threshold rules (for the discrete
n-arrival Robbins’ problem) defined, for each n, by the threshold sequence
(gn(i))i=1,...,n. Then, under assumptions C1 and C2,

lim
n→∞

W (σn) = lim
n→∞

V (τn) = L(g) (2.22)

where

L(g) = 1 + 1
2

∫ 1

0
g(u)2(1− u)e−

R u
0 g(x)dxdu

+1
2

∫ 1

0

∫ u

0
(g(u)− g(v))2dv e−

R u
0 g(x)dxdu.

(2.23)

Remark 5 This is the same integral expression as that obtained by Assaf
and Samuel-Cahn (1996), see Section 1.4.

Example 1 Let gn(s) =
c

n− s+ c
, with c > 1. This sequence satisfies the

conditions imposed above with g(u) =
c

1− u
. Applying (2.22) yields

L(c) = 1 +
c

2
+

1
c2 − 1

.

Therefore for all c > 1 and all t ∈ [0,∞) we get w(t) ≤ W (t) ≤ L(c). This
expression is minimal for c = 1.94697 and yields the upper bound

w(t) ≤ 2.33183.



Chapter 2: Embedding Robbins’ Problem 20

This upper bound has already been obtained in Bruss and Ferguson (1993)
and Assaf and Samuel Cahn (1996) for the discrete n arrival problem.

2.3 Properties of the value functions

The bounds obtained for W (t) can obviously be extended to w(t). This
explains the following result, which we can now state without proof.

Proposition 2.4 The value functions are bounded on ]0,∞], and satisfy

1 ≤ w(t) ≤W (t) ≤ 2.33182

for all t sufficiently large.

Lemma 2.5 For all t sufficiently large and all δ > 0,

w(t+ δ)− w(t) ≥ −3δ(δ + 1). (2.24)

Proof: Consider the Poisson embedded problem with horizon t+ δ. Recall
the notation R̃(t)

k from equation (2.1). By conditioning on the number N(δ)
of arrivals in (0, δ) we get

w(t+ δ) ≥ e−δ inf
τ
E(R̃(t+δ)

τ | N(δ) = 0) + δe−δ inf
τ
E(R̃(t+δ)

τ | N(δ) = 1),

(2.25)
where we have neglected the case N(δ) ≥ 2.

We first consider the first term appearing in the rhs of (2.25). From the
homogeneity assumptions on the arrival process, one sees that solving the
Poisson embedded Robbins’ Problem on [0, t+δ] with no arrivals before time
δ is equivalent to solving the same problem on [0, t] with penalty Π(t + δ).
Since Π(·) is increasing this implies

inf
τ
E
(
R̃(t+δ)
τ | N(δ) = 0

)
≥ w(t). (2.26)

Next consider the second term of (2.25). By conditioning on the value
X of the (only) arrival in (0, δ), we get

inf
τ
E
(
R̃(t+δ)
τ | N(δ) = 1

)
= inf

τ

∫ 1

0
E
(
R̃(t+δ)
τ | N(δ) = 1, X = x

)
dx

≥
∫ 1

0
inf
τ
E
(
R̃(t+δ)
τ | N(δ) = 1, X = x

)
dx.

(2.27)
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From the optimality principle we know that an optimal action given {X = x}
is to select this arrival if and only if its expected rank is smaller than the
optimal value obtainable by refusing it. Selecting x yields an expected loss
of 1 + xt, and refusing it an expected loss given by

Et(x, δ) := inf
τ,Tτ>δ

{
E
(
R̃(t+δ)
τ | N(δ) = 1, X = x

)}
,

where the infimum is taken over all strategies for which Tτ > δ almost surely.
Hence

inf
τ
E
(
R̃(t+δ)
τ | N(δ) = 1, X = x

)
= min {1 + xt, Et(x, δ)} . (2.28)

As above, the homogeneity of the arrival process and the hypothesis on Π(·)
guarantee that Et(x, δ) ≥ w(t) so that, from (2.27) and (2.28),

inf
τ
E
(
R̃(t+δ)
τ | N(δ) = 1

)
≥
∫ 1

0
min {1 + xt, w(t)} dx. (2.29)

Combining (2.25), (2.26) and (2.29) then yields

w(t+ δ) ≥ e−δw(t) + δe−δ
∫ 1

0
min {1 + xt, w(t)} dx. (2.30)

Now choose t sufficiently large to ensure that w(t) ≥ 1. Then there exists
x0 ∈ [0, 1) for which 1 + x0t = w(t) and thus∫ 1

0
min {1 + xt, w(t)} dx =

∫ x0

0
(1 + xt)dx+ w(t)(1− x0).

From (2.30) this then yields

w(t+ δ) ≥ e−δw(t) + δe−δ
(
w(t)− (w(t)− 1)2

2t

)
.

Now use e−δ ≥ 1− δ, to obtain

w(t+ δ) ≥ w(t)− δ2w(t)− δe−δ (w(t)− 1)2

2t
.

Since w(t) ≤ 3 for t sufficiently large, this implies

w(t+ δ) ≥ w(t)− 3δ2 − 2δ
e−δ

t
,

and equation (2.24) follows.
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Lemma 2.6 There exists a constant L > 0 such that, for all t and δ positive,

w(t+ δ)− w(t) ≤ Lδ. (2.31)

Proof: Let Kt be the subset of T consisting of all strategies which disregard
any event occurring in (t, t + δ). Clearly w(t + δ) = infT E

(
R̃

(t+δ)
τ

)
≤

infKt E
(
R̃

(t+δ)
τ

)
. Now take τ ∈ Kt. Then 1{Tτ≤t+δ} = 1{Tτ≤t} almost surely.

Since the rank of the selected arrival (evaluated with respect to the number
of observations in (0, t+ δ)) cannot increase from t to t+ δ by more than the
number of arrivals in (t, t+ δ), this yields

E
(
R(t+δ)
τ 1{Tτ≤t+δ}

)
≤ E

(
R(t)
τ 1{Tτ≤t}

)
+ δ.

This inequality holds for all τ ∈ Kt and thus

w(t+ δ) ≤ inf
Kt

{
E
(
R(t)
τ 1{Tτ<t}

)
+ Π(t+ δ)P (Tτ > t)

}
+ δ.

Adding and subtracting infKt {(Π(t)−Π(t+ δ))P (Tτ > t)} to the rhs of this
last equation, and using the fact that the sum of infima is smaller than the
infimum of a sum, we get

w(t+ δ) ≤ infKt
{
E
(
R

(t)
τ 1{Tτ<t}

)
+ Π(t)P (Tτ > t)

}
+(Π(t+ δ)−Π(t)) supKt P (Tτ > t) + δ

= infKt E
(
R̃

(t)
τ

)
+ (Π(t+ δ)−Π(t)) + δ.

Since, by definition, infKt E
(
R̃

(t)
τ

)
= w(t) we get

w(t+ δ) ≤ w(t) + (Π(t+ δ)−Π(t)) + δ.

The hypothesis on Π(·) give (2.31).

Lemmas 2.5 and 2.6 immediately yield the following.

Theorem 2.7 The value function w(t) is continuous on R and Lipschitz
continuous on (t0,∞), for some t0 sufficiently large.

If we restrict our attention to Mt, i.e. the set of memoryless threshold
rules on [0, t], we see that the proof of Proposition 2.7 holds for W (t) with
only minor changes. Hence we obtain
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Proposition 2.8 The value function W (t) restricted to the class of memo-
ryless threshold rules is uniformly continuous on [0,∞).

We now prove the existence of optimal strategies for the Poisson embed-
ded Problem. This is intuitively clear since we have shown that the value
functions w(t) and W (t) are well defined and bounded, so that we should
be able to compare the expected rank of each arrival to the best obtainable
value and thus decide at each arrival whether or not it is optimal to stop.
The point is that this comparison is possible at any arrival time, and so leads
to an almost surely unique optimal strategy.

Proposition 2.9 For each t there exists a stopping rule τ?t in T such that

w(t) = E
[
R̃

(t)
τ?t

]
, (2.32)

and a stopping rule σ?t ∈Mt such that

W (t) = E
[
R̃

(t)
σ?t

]
. (2.33)

Proof: Fix t > 0, and suppose that there is an arrival of value Xi at time
Ti, 0 < Ti < t, i ≥ 1. Let E(i, t) be the expected loss incurred by refusing
this arrival and continuing optimally thereafter, i.e. E(i, t) is the minimal
expected rank obtainable under the history Fi by using strategies which stop
almost surely after the ith arrival. It is given by

E(i, t) = infτ∈T ,τ>iE[R̃(t)
τ | Fi],

where the infimum is taken over the set of all stopping rules τ ∈ T such that
P[τ > i] = 1. For all i ≥ 0 and every history Fi, we see that E(i, t) is well
defined for all horizons t > 0. Using arguments similar to those appearing
in the proof of Proposition 2.7 we see that it satisfies the upper bound

E(i, t) ≤ ri + w(t− Ti) + Π(t)−Π(Ti).

From the optimality principle, we know that it can only be optimal to stop
on an arrival Xi if the expected loss incurred by selecting Xi is smaller than
the expected loss incurred by refusing Xi. Hence, if we define the rule τ?t by{

τ?t = i if E[R̃(t)
i | Fi] ≤ E(i, t)

τ?t > i if E[R̃(t)
i | Fi] > E(i, t),

(2.34)

then τ?t belongs to T and must be optimal for each time t.

Minor adaptations of these arguments show that the same result holds
for the restricted problem.
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2.4 Variations on the embedding

The painstaking care with which we have set up the above Poisson em-
bedding has a number of advantages, first and foremost of which is the fact
that we can now define a number of variations on this embedding which
profit from the framework we have just established. Among these variations,
the following stand out.

First, instead of considering a fixed penalty Π(t), one could decide that
if no decision has been reached before time t, the decision maker is forced to
choose the first arrival thereafter. His loss is therefore defined by

Rτ =
N(t)∑
i=1

1{Xi≤Xτ}

where it is now implicit that Xτ ∼ U [0, 1] if Tτ ≥ t. We will refer to this
version of the problem as Variation A.

Another option (which we will refer to as Variation B) consists in ran-
domizing the number of arrivals without embedding the problem within a
Poisson process. In other words, we could consider a situation where a
prophet draws a number N from a given known discrete distribution, and
then draws N independent uniform random samples. The prophet then
presents these values to the decision maker without telling him the value of
N . If no decision has been reached before the Nth arrival is presented, the
prophet warns the decision maker upon visualizing the Nth arrival that he
is obliged to choose it. The objective if therefore to minimize the loss

Rτ =
N∑
i=1

1{Xi≤Xτ},

where it is now implicit that Xτ ∼ U [0, 1] if τ = N . Letting the mean of N
vary towards infinity, we see that we are in a situation similar to the above.

Going over the proofs of the different results of this chapter, one sees that
most carry through basically without change for the above two variations on
the problem. Moreover, some properties are nicer in these problems. Indeed,
consider the second variation, and let ṽ(n) denote the minimal expected loss
when E[N ] = n. Then the following holds.

Lemma 2.10 The function ṽ(n) is increasing.
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Proof: Clearly we can write

v(n+ 1) ≥ inf E[Rτ |N ≤ n]P [N ≤ n] + inf E[Rτ |N ≥ n]P [N ≥ n]

Now obviously we have inf E[Rτ |N ≤ n] = v(n), since otherwise v(n) would
not be the optimal value. Also, we have inf E[Rτ |N ≥ n] ≥ v(n). Indeed,
suppose the existence of a half-prophet who will tell the decision maker the
values of the N − n+ 1 worst arrivals. In this case, the decision maker can
ignore all these values and concentrate on acting optimally with n arrivals.
This he can achieve with a value at best of v(n). Whence the claim.





Chapter 3

Comparison of the classical
and the embedded problems

Where we prove that the variations presented in the previous chap-
ter are, at least asymptotically, equivalent to the original problem.

3.1 Equivalence of the Poisson embedded and the
classical problems

We now prove that the asymptotic value for the Poisson embedded prob-
lem exists, and is equal to that of the

Proposition 3.1 For all ε > 0 there exists t? > 0 such that for all t ≥ t?,

w(t) > v − ε.

Proof: Fix ε > 0 and consider the Poisson embedded problem with horizon
t. Suppose that the decision maker (say Q) is told in advance the number of
arrivals which will occur in [0, t]. Let wQ(t) be the corresponding expected
optimal value. Since Q is facing our problem with more information, he can
only do better than us so that

wQ(t) ≤ w(t). (3.1)

27



Chapter 3: Comparison of the classical and the embedded problems 28

Conditioning on the number of arrivals in [0, t] yields

wQ(t) = inf
σ∈T̃

∞∑
k=0

P (N(t) = k)E(R̃(t)
σ | N(t) = k)

≥
∞∑
k=0

P (N(t) = k) inf
σ∈T̃

E(R̃(t)
σ | N(t) = k).

Now consider the minimal expected rank obtainable by Q conditionally
to {N(t) = k}. On the one hand, if k ≤ Π(t), the best Q can do is apply τ?k ,
the strategy that is optimal for exactly k arrivals; hence, for all k ≤ Π(t),

inf
σ∈T̃

E(R̃(t)
σ | N(t) = k) = v(k). (3.2)

On the other hand, if k > Π(t), this equality does not hold since Q is solving
Robbins’ Problem for k arrivals with the knowledge that he can always obtain
at the worst a penalty of Π(t), i.e. he is in a better position than a player
in the discrete setting with k arrivals. However we have

inf
σ∈T̃

E(R̃(t)
σ | N(t) = k) ≥ v(bΠ(t)c), (3.3)

for all k > Π(t). To see this, let vQ(k) = infσ∈T̃ E(R̃(t)
σ | N(t) = k). The

same half-prophet argument as that used by Bruss and Ferguson (1993) to
prove the monotonicity of v(n) applies in this setting, and shows that vQ(k)
must be an increasing function of k. Hence, for all k > Π(t), vQ(k) ≥
vQ(bΠ(t)c), and thus (3.3) holds. Combining (3.1), (3.2) and (3.3) we obtain

w(t) ≥
bΠ(t)c∑
k=0

P (N(t) = k)v(k) +
∞∑

k=bΠ(t)c+1

P (N(t) = k)v(bΠ(t)c). (3.4)

We know that v(k) increases to v. Hence there exists m0 = m0(ε) ∈ N
such that v(m) > v − ε for all m ≥ m0. The monotonicity of Π(·) implies
that there exists t0 = t0(ε) such that Π(t) > m0 for all t ≥ t0. Therefore,
from (3.4),

w(t) ≥ (v − ε)
∞∑

k=m0

P (N(t) = k) = (v − ε)P (N(t) ≥ m0)

for all t ≥ t0.
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Since P (N(t) ≥ m0) → 1 as t → ∞ for all m0, there exists t1 such that
for all t ≥ t1, P (N(t) ≥ m0) ≥ 1− ε. Therefore, for all t ≥ max{t0, t1},

w(t) ≥ (v − ε)(1− ε) = v + ε2 − (ε+ vε),

and thus, since v ≤ 3,
w(t) ≥ v − 4ε.

Corollary 3.2 If the limit w = limt→∞w(t) exists, then it satisfies w ≥ v.

The arguments in this proof also hold if we restrict our attention to the set
of memoryless strategiesMt. Hence Proposition 3.1 holds for the asymptotic
memoryless values W and V , and we obtain the following corollary.

Corollary 3.3 Let W be the minimal expected rank obtainable through
memoryless thresholds in the Poisson embedded Robbins’ Problem, and let
V be its discrete counterpart. Then

V ≤W.

To obtain an inequality in the other direction, we first need a preparatory
lemma on the tail probabilities for Poisson processes.

Lemma 3.4 Let N(n) be the number of arrivals of a Poisson process of rate
1 on [0, n]× [0, 1], and let 1

2 < α < 1. Then

lim
n→∞

(
nP (N(n) < n− nα)

)
= 0. (3.5)

Proof: N(n) is a Poisson random variable of mean and variance n so that,
by the central limit theorem, (N(n)− n)/

√
n converges in law to a standard

normal distribution N (0, 1). Now choose some α between 1
2 and 2

3 , in order
to ensure that nα−

1
2 increases to ∞ as n → ∞ and that (nα−

1
2 )3/
√
n =

n3α−2 decreases to 0 as n → ∞. Then we can apply a theorem on normal
approximation (see Feller (1968), p.193) to get

P

(
N(n)− n√

n
> nα−

1
2

)
∼ 1√

2π
1

nα−
1
2

e−
1
2

(nα−
1
2 )2 . (3.6)
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For n sufficiently large we can then use the approximate symmetry of the
distribution of (N(n)− n)/

√
n to obtain, from (3.6),

P (N(n) < n− nα) = P

(
N(n)− n√

n
< −nα−

1
2

)
∼ 1√

2π
1

nα−
1
2

e−
1
2

(nα−
1
2 )2 .

Hence altogether

nP (N(n) < n− nα) ∼ 1√
2π
n

3
2
−αe−

1
2

(nα−
1
2 )2 <

1√
2π

n

e
1
2
n2α−1

which tends to 0 as n tends to infinity. This establishes (3.5) for all α ∈(
1
2 ,

2
3

)
, and the extension to α ∈ (1

2 , 1) is immediate. Hence the result.

Proposition 3.5 Let α ∈ (1
2 , 1) and t > 0. Define βt = bt− tαc and let τ?βt

be the optimal strategy for the discrete problem with βt arrivals. Then, for
all ε > 0 and all t sufficiently large,

w(t) ≤ v(βt) + E
(
Xτ?βt

)
(tα + 1) + ε. (3.7)

Proof: Any strategy for the discrete case with n arrivals can be extended
in a natural way to define a (sub-optimal) strategy for the continuous case,
so that we can consider τ?βt as a strategy acting in continuous time on [0, t].
Let σβt denote this strategy and let w̃(βt) be its corresponding value, i.e.
w̃(βt) is the expected rank obtained by using a strategy which is optimal if
and only if there are exactly βt arrivals before the horizon t. Conditioning
on the number of arrivals in [0, t], we get

w̃(βt) = w̃(βt|N(t) < βt)P (N(t) < βt) + w̃(βt|N(t) ≥ βt)P (N(t) ≥ βt),
(3.8)

where w̃(βt | E) denotes the expected loss under σβt conditioned on the
event E.

First suppose that N(t) < βt. Since σβt acts on βt arrivals, there is a
positive probability that no arrival is selected within the given time. Hence
we must distinguish two cases. On the one hand, if Tσβt > t, the player
loses the penalty. On the other hand, if Tσβt ≤ t, his loss is given by some

function E(R(t)
σβt
| N(t) < βt) ≤ v(βt). This yields

w̃(βt|N(t) < βt) ≤ v(βt)P (Tσβt ≤ t) + Π(t)P (Tσβt > t),

and thus, since v(·) is bounded,

w̃(βt|N(t) < βt) ≤ Π(t) +K
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for some positive constant K. This last inequality, combined with the as-
sumptions on Π(·) (see (2.3)) and Lemma 3.4, proves that

w̃(βt|N(t) < βt)P (N(t) < βt) <
ε

2
(3.9)

for t sufficiently large.

Next suppose that N(t) ≥ βt. Then, since the βt-optimal strategy stops
almost surely not later than the βtth arrival,

w̃(βt|N(t) ≥ βt) = v(βt) + E(Xσβt
(N(t)− βt)|N(t) ≥ βt). (3.10)

Now, given N(t) ≥ βt, Xσβt
is independent of N(t) and of Xβt+1, Xβt+2, . . ..

Hence
E(Xσβt

| N(t) ≥ βt) = E(Xσβt
) = E(Xτ?βt

),

and thus, from (3.10),

w̃(βt | N(t) ≥ βt) = v(βt) + E(Xτ?βt
)
(
E(N(t) | N(t) ≥ βt)− βt

)
. (3.11)

Furthermore,

E(N(t)|N(t) ≥ βt) =
∞∑
k=βt

k
P (N(t) = k)
P (N(t) ≥ βt)

≤ E(N(t))
1− P (N(t) < βt)

.

Now, since P (N(t) < βt) → 0 as t → ∞, we know that 1
1−P (N(t)<βt)

<

1 + 2P (N(t) < βt) for t sufficiently large. Therefore

E(N(t)|N(t) ≥ βt) ≤ E(N(t))(1 + 2P (N(t) < βt)) = t+ 2tP (N(t) < βt),

and, from Lemma 3.4,

E(N(t)|N(t) ≥ βt) ≤ t+
ε

2
,

for all t sufficiently large. From (3.11) this yields

w̃(βt|N(t) ≥ βt) ≤ v(βt) + E(Xτ?βt
)(t− βt +

ε

2
),

and thus, since t− βt ≤ tα + 1,

w̃(βt|N(t) ≥ βt) ≤ v(βt) + E(Xτ?βt
)(tα + 1) +

ε

2
(3.12)

for t sufficiently large. Combining (3.8), (3.9) and (3.12), we obtain

w̃(βt) ≤ v(βt) + E(Xτ?βt
)(tα + 1) + ε,

and thus, since w(t) ≤ w̃(βt),

w(t) ≤ v(βt) + E(Xτ?βt
)(tα + 1) + ε

for all t sufficiently large.



Chapter 3: Comparison of the classical and the embedded problems 32

From Corollary 3.2 and Proposition 3.5 we see that, in order to prove
both the existence of w and its equality with v, we need

lim
t→∞

tαE
(
Xτ?βt

)
= 0, (3.13)

for some α > 1
2 . This obviously follows from Theorem 1.5. We have therefore

proved the following

Corollary 3.6 If the limit w = limt→∞w(t) exists then it satisfies w ≤ v.

Corollaries 3.2 and 3.6 immediately yield

Theorem 3.7 The limiting value for the Poisson embedded Robbins’ Prob-
lem exists and satisfies

w = lim
t→∞

w(t) = v.

3.2 Equivalence of the variations on the problem

We conclude this chapter by noting that the above equivalence can be
transposed without further ado to most reasonable embeddings of the prob-
lem, such as those introduced at the end of Chapter 2. More precisely, one
sees that our proof of the equivalence can be carried through to Variation A
and, more generally, we can prove the following.

Theorem 3.8 Let Pn be a family of discrete probability distributions on
the positive integers such that if X ∼ Pn, then E[X] = n. Suppose that the
family Pn has sufficiently thin tails for Lemma 3.4 to hold. Finally consider
Variation B with N ∼ Pn. Then

lim
n→∞

ṽ(n) = v.

The proof runs along the same lines as that for the Poisson embedded
problem, the only difference being that Proposition 3.1 is now significantly
easier to establish since there is no need to differentiate with respect to the
value of the penalty function. Again the key step is the inequality between
expected values and expected ranks which we established in Chapter 1.



Chapter 4

Randomizing Stopping
Problems

Where we explore the consequences of the results given in the pre-
vious chapters.

4.1 Calculus of variations and optimal memoryless
rules

Considering some of the equations given throughout this manuscript, one
sees that some questions could be quite elegantly answered by methods of
calculus of variations. The first section of this final chapter aims to give an
account of what can be achieved through this tool.

4.1.1 An astonishingly simple solution to Moser’s problem

Recall the statement of Moser’s problem from the Introduction to this
mémoire. Now consider a Poisson embedding of the form given by Variation
A. Using the same notations and setup as before, we can therefore consider
a Poisson version of Moser’s problem defined by the value function

M(t) = inf
τ
E(Xτ ),

where the infimum is to be chosen among all canonical stopping times for
this problem.

33
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The arrivals being independent of each other, it is clear that an optimal
decision at time Tk depends only on the value of the arrival and on the length
of the time interval [Tk, t]. Hence the optimal rule for this problem τ̂t, say,
is of the form

τ = inf{s > 0 : Xs ≤ g?(s)},

where g?(·) is some threshold function (see Section 1.2). Direct integration
along the same lines as in the proof of Proposition 2.4 then yields

M(t) =
1
2

inf
g

{∫ t

0
g2(u) exp

(
−
∫ u

0
g(v)dv

)
du+ exp

(
−
∫ t

0
g(v)dv

)}
.

Minimizing this last equation can, to the best of our knowledge, only be
performed numerically. The second term in the rhs is, nevertheless, of lesser
importance than the first since we expect that, for the strategy to be good,
it selects an arrival with a probability which tends rapidly to 1. It therefore
makes sense to consider the suboptimal stopping rule which minimizes

L(u,G(u), g(u)) :=
∫ t

0
g2(u) exp (−G(u)) du

with G(u) =
∫ u

0 g(v)dv. Setting L(u, x, v) = e−xv2, we see that the problem
has become a standard minimization problem in calculus of variations. The
solution g? must therefore be a solution to the Euler-Lagrange equations

∂xL(u,G(u), g(u) = dt∂vL(u,G(u), g(u)) (4.1)

which satisfies the border condition g(t) = 1. Solving (4.1) is, in this case,
easy. It yields

g?(u) =
2

t− s+ 2
,

which is exactly the form of the asymptotic optimal threshold sequence for
the discrete version of Moser’s problem.

In particular this proves that

M(t) ≤ 2
t+ 1

(2 + t)2
,

and all known results about Moser’s problem are easily re-obtained.
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4.1.2. How close are Moser’s and Robbins’ problem?

Recall equation (2.15). The same arguments as in the previous section
allow for solving, in principle, Robbins’ problem when the quest for optimal
rules is restricted to the set of memoryless thresholds. Indeed, minimizing the
rank through memoryless threshold rules is equivalent to finding a function
g which satisfies the constraints on threshold functions and minimizes the
functional

I(g) =
∫ t

0

[
(t− u)g2(u) +

∫ u

0

(g(u)− g(v))2

1− g(v)
dv

]
exp

(
−
∫ u

0
g(v)dv

)
du.

Hence the optimal g is, in principle, given by the tools of calculus of varia-
tions. The corresponding equations are, however, much less tractable than
for Moser’s problem, and we know of no explicit solution. Rewriting I(g),
we get

I(g) = t

∫ t

0
g2(u) exp

(
−
∫ u

0
g(v)dv

)
du

+
∫ t

0

(∫ u

0

(g(v)− g(u))2

1− g(v)
− g(u)2dv

)
exp

(
−
∫ u

0
g(v)dv

)
du,

which proves that, in the context of our embedded memoryless problems,
the ranks satisfy

E(Rτ ) = 1 +
1
2

(tE(Xτ ) + I(τ)) ,

with I(τ) =
∫ t

0

(∫ u

0

(g(v)− g(u))2

1− g(v)
− g(u)2dv

)
exp

(
−
∫ u

0
g(v)dv

)
du.

It is easy to show that

0 ≤ lim
t→∞

inf
g
I(τ) ≤ 2

3
.

Better estimates have, so far, eluded our sagacity.

4.2 A differential equation on the value function

In this final section we prove that w(·) is a differentiable function which
satisfies the relationship

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)}dx+ χ(t), (4.2)
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where χ(t) tends to zero as t tends to infinity, and h(t, x) is a continuous
function depending on the value of an arrival selected before time t. Although
this is not a differential equation in the usual sense, it is a capsule that
contains an infinite dimensional problem in a closed form. Moreover, our
results from the previous section show that a solution to this equation is
tantamount to a solution to Robbins’ Problem. Of course the presence of two
unknown functions in (4.2) does not allow for obtaining explicit solutions.
This equation, however, does open the way for a numerical study of the
behavior of w(t) in terms of the function h(t, x).

Before proceeding to the proof of (4.2), we need, for all t, the existence
of a strategy τ?t such that

w(t) = wτ?t (t),

i.e. we need the existence – for every horizon – of an optimal strategy. This
follows from the optimality principle and the continuity of w(t).

To see this, fix t ∈ R+ and suppose that there is an arrival of value Xi

at time 0 ≤ Ti ≤ t for some i ≥ 1. Let ri be the relative rank of Xi and
Fi be shorthand for the history of the process up to time Ti. Then, from
the optimality principle, we know that it is optimal to select (Ti, Xi) if and
only if the expected loss incurred for selecting (Ti, Xi), is smaller than the
expected loss incurred for refusing it. The former is given by

E(R̃(t)
i | Fi) = ri +Xi(t− Ti),

and the latter by
infτ∈T ,τ>iE(R̃(t)

τ | Fi) =: E(i, t),

where the infimum is taken over the set of all stopping rules τ ∈ T such
that P (Tτ > Ti) = 1. The function E(i, t) is well defined for all i ≥ 1, every
history Fi and all horizons t. Also, for all i and fixed history Fi, the same
arguments as for Theorem 2.7 prove that E(i, t) is continuous in t. Hence
the stopping rule τ?t given by{

τ?t = i if ri +Xi(t− Ti) ≤ E(i, t)
τ?t > i if ri +Xi(t− Ti) > E(i, t)

is well defined at all stages of the process and is optimal for each horizon t.

Proposition 4.1 For all t > 0,

P (Tτ?t ≥ t) = lim
δ→0

P (Tτ?t−δ ≥ t− δ).
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Proof: The probability of there being no arrivals in (t − δ, t) tends to one
as δ → 0 independently of preceding arrivals. Hence, as δ → 0, a decision
maker using either τ?t−δ or τ?t will be a. s. confronted with the same set
of arrivals before t. The continuity of Π(t) implies that, as δ tends to zero,
there exists a. s. a unique optimal limiting rule, and the statement follows.

Remark 6 Note that, since w(t) is bounded, P (Tτ?t ≥ t)→ 0 as t→∞.

Theorem 4.2 Let τ?t be the optimal strategy with respect to the horizon t.
The value function w(t) is differentiable and satisfies

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t | x)}dx+ χ(t), (4.3)

where χ(t) = Π′(t)P (Tτ?t > t) and w(t | x) is the optimal value conditioned
on a first arrival at time 0 of value x which cannot be selected, i.e.

w(t | x) = inf
τ∈T

{
E
(
R(t)
τ 1{Tτ≤t} + Π(t)1{Tτ>t} + 1{Xτ≥x}1{Tτ≤t}

)}
. (4.4)

Proof: Fix δ > 0. Conditioning on N(δ), the number of arrivals in (0, δ),
we get

w(t) = P (N(δ) = 0)E(R̃(t)
τ?t
| N(δ) = 0) + P (N(δ) = 1)E(R̃(t)

τ?t
| N(δ) = 1)

+P (N(δ) ≥ 2)E(R̃(t)
τ?t
| N(δ) ≥ 2).

Since w(t) is bounded, so must be E(R̃(t)
τ?t
| N(δ) ≥ 2) and thus, for δ

sufficiently small,

w(t) = (1− δ)E(R̃(t)
τ?t
| N(δ) = 0) + δ E(R̃(t)

τ?t
| N(δ) = 1) + o(δ). (4.5)

We now need to study the behavior ofE(R̃(t)
τ?t
| N(δ) = 0) andE(R̃(t)

τ?t
| N(δ) =

1) for δ → 0. For the sake of clarity, we will separate these results in two
preparatory lemmas.

Lemma 4.3 Set

χ(t, δ) = E(R̃(t)
τ?t
| N(δ) = 0)− w(t− δ).

Then χ(t, δ) ≥ 0 for all t > 0 and all δ > 0, and

lim
δ→0+

χ(t, δ)
δ

= Π′(t)P (Tτ?t > t).
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Proof: Set ∆Π(t, δ) = Π(t)−Π(t−δ). First consider the Poisson embedded
Robbins’ Problem with horizon t − δ, and let τ̃ be a strategy acting on
(0, t − δ) as τ?t would act on (δ, t) under the condition that N(δ) = 0. We
have

wτ̃ (t− δ) = E(R(t)
τ?t

1{Tτ?t ≤t}
| N(δ) = 0) + Π(t− δ)P (Tτ?t > t | N(δ) = 0)

= E(R̃(t)
τ?t
| N(δ) = 0)−∆Π(t, δ)P (Tτ?t > t | N(δ) = 0).

Hence, since w(t− δ) ≤ wτ̃ (t− δ),

E(R̃(t)
τ?t
| N(δ) = 0)− w(t− δ) ≥ ∆Π(t, δ)P (Tτ?t > t | N(δ) = 0). (4.6)

Next consider the Poisson embedded problem with respect to the horizon
t, and let σ̃ be a strategy that ignores every arrival, if any, in (0, δ) and applies
τ?t−δ on (δ, t). We have

E(R̃(t)
σ̃ | N(δ) = 0) = E(R(t−δ)

τ?t−δ
1{τ?t−δ≤t−δ}) + Π(t)P (Tτ?t−δ > t− δ)

= w(t− δ) + ∆Π(t, δ)P (Tτ?t−δ > t− δ).

Now one can easily check, from the definitions, that

E(R̃(t)
τ?t
| N(δ) = 0) ≤ E(R̃(t)

σ̃ | N(δ) = 0) + o(δ).

Hence

E(R̃(t)
τ?t
| N(δ) = 0)− w(t− δ) ≤ ∆Π(t, δ)P (Tτ?t−δ > t− δ) + o(δ). (4.7)

Combining (4.6) and (4.7), we then get

∆Π(t, δ)P (Tτ?t > t | N(δ) = 0) ≤ χ(t, δ) ≤ ∆Π(t, δ)P (Tτ?t−δ > t− δ) + o(δ),

and thus, from Proposition 4.1,

lim
δ→0+

χ(t, δ)
δ

= Π′(t)P (Tτ?t > t).
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Recall the definition of w(t | x) from equation (4.4). For fixed x ∈ [0, 1],
the same arguments as those used to prove the continuity of w(t) apply to
w(t | x). Hence, for each x, w(t | x) is continuous in t. Also, for fixed t, one
can check that w(t | x) it is monotone decreasing in x on [0, 1], with

w(t) + 1 ≥ w(t | 0) ≥ w(t | x) ≥ w(t | 1) = w(t) for all 0 ≤ x ≤ 1.

The following holds.

Lemma 4.4 For all t > 0,

lim
δ→0+

E(R̃(t)
τ?t
| N(δ) = 1) =

∫ 1

0
min{1 + xt, w(t | x)}dx.

Proof: Fix δ > 0 and let X denote the value of the (unique) arrival in (0, δ).
Conditioning on X yields

E(R̃(t)
τ?t
| N(δ) = 1) =

∫ 1

0
E(R̃(t)

τ?t
| N(δ) = 1, X = x)dx, (4.8)

where, by definition of τ?t ,

E(R̃(t)
τ?t
| N(δ) = 1, X = x)

= min
{

1 + x(t− δ), infτ∈T ,Tτ>δ E
(
R̃

(t)
τ | N(δ) = 1, X = x

)}
.

One can check that, for all t,

w(t− δ | x) ≤ inf
τ∈T ,Tτ>δ

E(R̃(t)
τ | N(δ) = 1, X = x) ≤ w(t− δ | x) + ∆Π(t, δ).

Hence, from the continuity of w(t | x),

lim
δ→0

(
inf

τ∈T ,Tτ>δ
E(R̃(t)

τ?t
| N(δ) = 1, X = x)

)
= w(t | x),

and

limδ→0+ E(R̃(t)
τ?t
| N(δ) = 1) = limδ→0+

∫ 1

0
E(R̃(t)

τ?t
| N(δ) = 1, X = x)dx

=
∫ 1

0
lim
δ→0+

E(R̃(t)
τ?t
| N(δ) = 1, X = x)dx

=
∫ 1

0
min {1 + xt, w(t | x)}dx.
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Proof of Theorem 4.2, continued

From Lemma 4.3 we know that E(R̃(t)
τ?t
| N(δ) = 0) = w(t − δ) + χ(t, δ), so

that, after straightforward rearrangements, equation (4.5) yields

w(t)− w(t− δ)
δ

− χ(t, δ)
δ

= −w(t− δ) + E(R̃(t)
τ?t
| N(δ) = 1) +

o(δ)
δ
. (4.9)

Now let δ go to zero on both sides of (4.9). We know, from the continuity
of w(t) and Lemma 4.4, that the limit of the rhs exists. Therefore the
limit of the lhs must also exist. Also, from Lemma 4.3, we know that χ(t) :=
limδ→0 χ(t, δ)/δ exists and is finite for all t. Hence limδ→0(w(t)− w(t− δ))/δ
also exists and thus w(·) must be differentiable on R. This completes the
proof of Theorem 4.2.

Remark 7 Set h(t, x) = w(t | x)− w(t). Equation (4.3) can be rewritten

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)}dx+ χ(t), (4.10)

with χ(t) = Π′(t)P (Tτ?t > t). This yields (4.2). Also note that our as-
sumptions on Π(·) imply that Π′(t) is positive and uniformly bounded on
R. Hence χ(t) ≤ KP (Tτ?t > t) for some K > 0 and thus, from remark 6,
χ(t) → 0 as t → ∞. For all strategies we can think of as being close to op-
timal, χ(t) proves to decrease exponentially fast to zero. Hence we suggest
to focus interest on the simpler equation

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)}dx. (4.11)

This is still an equation in two unknown functions, and the challenge is to
find a good estimate for h(t, x).

If w(t | x) were known, then equation (4.3) would be solvable, at least
numerically, and this solution would yield the value function for the Poisson
embedded problem. This defines a new secondary aim into Robbins’ problem,
namely to estimate the difference between w(t | x) and w(t) sufficiently
precisely in order to be able to use (4.3) to obtain estimates on w(t). This
problem turns out to share the same difficulties as Robbins’ problem itself.
We are, however, able to give some rough estimates on w(t | x).
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Proposition 4.5 For all x ∈ [0, 1],

w(t) ≤ w(t|x) ≤ w(t) + 1− e−(1−x)t

Proof: The first inequality is evident. To show the second one, we need to
express w(t | x) in terms of w(t). This is done in the following way.

w(t|x) =

w(t|x) + infτ∈Tt {−P[Xτ ≥ x, Tτ < t]} − infτ∈Tt {−P[Xτ ≥ x, Tτ < t]}

≤ w(t) + supτ∈Tt {P[Xτ ≥ x, Tτ < t]} .

Now let τ? = infi {Xi > x}. This is a stopping time which stops on the first
arrival, if any, over x. It is clear that τ? yields the supremum appearing in
the previous inequality, therefore

w(t|x) ≤ w(t) + P[Xτ? ≥ x, Tτ? < t]

≤ w(t) + P[Tτ? < t]

= w(t) + 1− P[ there is no arrival in [0, t]× [x, 1]]

= w(t) + 1− e−(1−x)t

We define the difference function

h(t, x) = w(t | x)− w(t).

For each x ∈ [0, 1], h(t, x) is the difference between two continuous functions
and thus is continuous in t. Moreover, this function is decreasing in x and
satisfies

0 ≤ h(t, x) ≤ 1− e−(1−x)t.

Since estimates on h(t, x) yield estimates on w(t | x), it is natural to consider
h(t, x) for specific strategies. In this spirit, for every strategy τ ∈ T , we
define the function

hτ (t, x) = P[Xτ > x, Tτ < t].

This function has some interesting properties.
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Proposition 4.6 Let gt(.) be a threshold function and let τ be the corre-
sponding memoryless threshold rule. Let hτ (t, x) be defined by hτ (t, x) =
P[Xτ > x, Tτ < t]. Then

hτ (t, x) =


1− e−µt(t) − x

∫ t

0
e−µt(s)ds 0 ≤ x ≤ gt(0)

1− e−µt(t) − x
∫ t

g−1
t (x)

e−µt(s)ds gt(0) ≤ x ≤ 1

Moreover this functions satisfies

hτ (t, x) = 1− e−µ(t) − xE[Tτ ] if 0 ≤ x ≤ gt(0)
hτ (t, x) > 1− e−µ(t) − xE[Tτ ] if gt(0) < x ≤ 1

Proof: From the definition of τ we know that, conditionally to Tτ = s ∈
[0, t), Xτ is distributed uniformly on [0, gt(s)]. Hence, using the density of
Tτ which is given by (2.16), we see that if 0 ≤ x ≤ gt(0), then

P[Xτ > x, Tτ < t] =
∫ t

0

gt(s)− x
gt(s)

fTτ (s)ds

= 1− e−µ(t) − x
∫ t

0
e−µt(s)ds

= 1− e−µ(t) − xE[Tτ ].

Likewise, if gt(0) ≤ x ≤ 1, then we see from the definition of a threshold
rule that P[Xτ > x | Tτ = s] will be identically nil for all s ∈ [0, g−1

t (x)].
Therefore

P[Xτ > x, Tτ < t] =
∫ g−1

t (x)

0
fTτ (s)ds+

∫ t

g−1
t (x)

gt(s)− x
gt(s)

fTτ (s)ds

= 1− e−µt(t) − x
∫ t

g−1
t (0)

e−µt(s)ds

≥ 1− e−µt(t) − x
∫ t

0
e−µt(s)ds.

This yields the result.
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The function χ(t) is a nuisance parameter of equation (4.3). However, it
is uniformly bounded by an o(1/t), and will not play any role asymptotically.

Now choose some constant c > 1. Then for all s > 0 in which the
differential equation is satisfied, we can write

w′(s) + w(s) ≤
∫ c

c+s

0
(1 + xs)dx +

∫ 1

c
c+s

(w(s) + h(s, x))dx + χ(s)

≤ w(s)− c
c+sw(s) +H(s, c)

where

H(s, c) =
∫ c

c+s

0
(1 + xs)dx +

∫ 1

c
c+s

h(s, x)dx + χ(s). (4.12)

Hence
w′(s) +

c

s+ c
w(s) ≤ H(s, c), (4.13)

Multiplying both sides of (4.13) by (c+ s)c, we get

((c+ s)cw(s))′ ≤ (c+ s)cH(s, c),

which after integration yields

w(t) ≤ (c+ t)−c
∫ t

0
(c+ s)cH(s, c)ds. (4.14)

Example 2 We saw that h(t, x) ≤ 1 − e−(1−x)t. Applying (4.14) to 1 −
e−(1−x)t and taking the limit of this expression for t → ∞ yields the trivial
upper bound w ≤ ∞. In fact, one can show that any upper bound on h(t, x)
which is not asymptotically equivalent to zero will always yield from (4.14)
a trivial upper bound on w(t).

Example 3 If τ is the memoryless threshold strategy defined by the thresh-
old function gt(s) = c

t−s+c (see Example 1), then an explicit computation of
hτ (t, x) = P[XN(τ) > x, Tτ < t] yields

hτ (t, x) =


1 + gt(0)c( c

c+1x− 1)− c
c+1

x
gt(0) 0 ≤ x ≤ gt(0)

gt(0)c( c
c+1x− 1) + 1

c+1

(
gt(0)
x

)c
gt(0) ≤ x ≤ 1

(4.15)

Applying (4.14) to hτ (t, x), and taking the limit for t→∞ we see that this
yields, as before, the upper bound

w ≤ 1 +
c

2
+

1
c2 − 1

.
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4.3 Conclusion

Although we cannot solve the differential equation explicitly, we hope that
it will prove to be a starting point for a numerical analysis of the behavior
of w(t), and hence of v(n). Indeed, equation (4.11) bypasses the full-history
dependence which lies at the heart of Robbins’ Problem. The idea is to plug
estimates of h(t, x) into (4.11) and to study the corresponding solutions. To
facilitate this approach, we have, throughout the paper, avoided specifying
the penalty function Π(t) in order to leave room for the choice of initial
conditions on “candidate” solutions. The key to success for improvements on
the known bounds on v should therefore be a sufficiently close estimate of
h(t, x). Unfortunately, the estimates we have obtained so far are not precise
enough. The problem remains a challenge but, as we see it, with a new
focus.
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