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Abstract—We introduce a new formalism for com-
puting expectations of functionals of arbitrary ran-
dom vectors, by using generalised integration by
parts formulae. In doing so we extend recent repre-
sentation formulae for the score function introduced
in [19] and also provide a new proof of a central
identity first discovered in [7]. We derive a repre-
sentation for the standardised Fisher information of
sums of i.i.d. random vectors which we use to provide
rates of convergence in information theoretic central
limit theorems (both in Fisher information distance
and in relative entropy) and a Stein bound for Fisher
information distance.

Index Terms—Score function, Stein matrix, Fisher
information, Representation formulae, Total variation
distance.

I. INTRODUCTION

Let X be a random vector in Rd, with differ-
entiable density f . The score function ρX(x) =
∇ log f(x) has long been known to provide useful
handles on the law of X . A much less studied
object is the Stein matrix of X , defined in (2)
which can be interpreted as a counterpart to the
score where, rather than taking log-derivatives, one
considers a special form of integration. This matrix
(whose properties when d = 1 are closely related
to the so-called zero-bias transform, see [6]) has
only recently started to attract the attention of the
community, see e.g. [18], [19], [12]. We refer the
reader to [1] for a detailed study.

In this paper we explore the connexion between
the score and the Stein matrix of an arbitrary
random vector X . Rather than defining these two
quantities explicitly in terms of the density f , we
choose to characterise them by their behaviour
through specialised integration by parts formulae
(see equations (1) and (2)). Exploiting these we
obtain new representation formulae for the Fisher
information J(X) = E

[
ρX(X)ρX(X)T

]
of an

arbitrary random vector X (see Theorem III.3).
Such results are akin to those from [7] (see The-
orem IV.2 for details) and, more generally, to the

classical representation formulae for Fisher infor-
mation in terms of conditional expectations (see
[13] or [16] for a discussion). As an application
we obtain (under the assumption that the Stein
matrix exists) new information theoretic bounds
for Gaussian approximation problems. Our bounds
are of the same order as those obtained in the
pathbreaking references [8], [2] (in the univariate
setting under the assumption of a finite Poincaré
constant/spectral gap; see also [3] for multivariate
extensions).

Our approach is inspired by results usually ex-
ploited within the context of the so-called Stein’s
method (see [17], [5]). The connexion between
Stein’s method and Fisher information was discov-
ered in [4] (in the context of compound Poisson
approximation) and first studied explicitly by [14],
[15] as well as [20]. We conclude the paper in
Section V with a new proof of these bounds; our
take on these matters does not rely on Stein’s
method and is of independent interest to the ISIT
crowd.

The outline of the paper is as follows. All
formulae and definitions are given in Section II. In
Section III we prove the representation formulae
for the score in terms of the Stein matrix. In
Section IV we prove a version of the celebrated
MMSE formula from [7]. In Section V we provide
a general “Stein bound” on the standardised Fisher
information of sums of iid random vectors.

II. SCORE AND STEIN MATRIX

Fix an integer d ≥ 1. Let X,Y be centered
random d-vectors (all elements in Rd are taken as
d×1 column vectors) which we throughout assume
to admit a density (with respect to the Lebesgue
measure) with support S ⊂ Rd.

Definition II.1. The score of X is the random
vector ρX(X) which satisfies

E [ρX(X)ϕ(X)] = −E [∇ϕ(X)] (1)



(with ∇ the usual gradient in Rd) for all test
functions ϕ ∈ C∞c (Rd). Any random d× d matrix
τX(X) which satisfies

E [τX(X)∇ϕ(X)] = E [Xϕ(X)] (2)

for all test functions ϕ ∈ C∞c (Rd) is called a Stein
matrix for X .

If X has covariance matrix C, then a direct
application of the definition of the Stein matrix
yields E [τX(X)] = C; E [ρX(X)] = 0 and
E
[
ρX(X)XT

]
= −Id, where ·T denotes the

transpose operator and Id is the d × d identity
matrix. For a Gaussian random vector Z with
covariance matrix C one uses the well-known Stein
identity (see, e.g., [8])

E [Zϕ(Z)] = CE [∇ϕ(Z)] (3)

to prove that ρZ(Z) = −C−1Z is the Gaussian
score and τZ(Z) = C is a Gaussian Stein matrix.
Identity (3) characterizes the Gaussian distribution
in the sense that a random vector X with support
Rd satisfies (3) for all ϕ ∈ C∞c (Rd) if and only
if X is itself Gaussian with covariance C. More
generally, the following result holds (see, e.g., [8]).

Proposition II.2. Let X have density f . If X has
a score then it is uniquely defined as ρX(X) with
ρX(x) = ∇ log f(x).

In the case d = 1, under standard assumptions
of regularity of the density f , the existence of the
Stein matrix τ (which is indeed a one-dimensional
mapping sometimes called Stein factor) follows
from standard integration by parts arguments, from
which one deduces that τ is uniquely defined as
τ(x) = f(x)−1

∫∞
x
f(y)dy. In higher dimensions,

the existence of a Stein matrix for X also follows
easily from an integration by parts argument, once
one can find a matrix valued function x 7→ A(x)
whose components aij with 1 ≤ i, j ≤ d sat-
isfy

∑d
j=1

∂
∂xj

(aij(x)f(x)) = −xi for all i =
1, . . . , d. As demonstrated in the huge body of
literature revolving around Malliavin calculus (see
[19] as well as the monograph [17]), a Stein matrix
always exists for random vectors that are given by
a smooth transformation of a given Gaussian field.
Contrarily to the score, however, there is no reason
for which the Stein matrix, at least according to our
definition, should be unique.

Definition II.3. Let X be a d-random vec-
tor with density f and covariance B (invert-
ible), and let φ be the density of a centered
Gaussian random vector Z with covariance C.
The relative entropy of X is D(X ‖Z) =

E [log(f(X)/φ(X))]. The Fisher information (ma-
trix) of X is J(X) = E

[
ρX(X)ρX(X)T

]
and

its relative Fisher information matrix is J (X) =
E
[
(ρX(X) +B−1X)(ρX(X) +B−1X)T

]
. The

standardised Fisher information distance of X is
Jst(X) = tr (BJ (X)), with ‘tr’ the usual trace
operator.

Entropy and Fisher information are related to
one another via the so-called de Bruijn’s identity,
see [10, Lemma 2.2] for the original statement,
as well as [19, Lemma 2.3] for the forthcoming
version.

Lemma II.4 (Multivariate de Bruijn’s identity).
Let X be a random d-vector with covariance C
(invertible) and let Z be Gaussian with covariance
C as well. Then D(X ‖Z) =

∫ 1

0
1
2tJst(Xt)dt.

Remark II.5. There is some confusion surround-
ing the denomination “de Bruijn’s identity” as
several different (and not perfectly equivalent) for-
mulations of this identity are available in the liter-
ature. See e.g. [7, Section II.D] for an alternative
formulation.

III. REPRESENTATION FORMULAE

The following lemma is a generalization of
[19, Lemma 2.9] to the case of summands with
arbitrary distribution. The device contained in the
proof (namely a probabilistic integration by parts
formula) will be used throughout the subsequent
arguments.

Lemma III.1. Let X and Y be stochastically
independent centered random vectors in Rd. Sup-
pose that X (resp., Y ) has score ρX(X) (resp.,
ρY (Y )) and Stein matrix τX(X) (resp., τY (Y )).
For 0 < t < 1, let Wt =

√
tX +

√
1− tY and Γt

be the covariance matrix of Wt. Then

ρWt
(Wt) + Γ−1t Wt (4)

= E

[
t√

1− t
(Id− Γ−1t τX(X))ρY (Y )

+
1− t√
t

(Id− Γ−1t τY (Y ))ρX(X)
∣∣Wt

]
is a version of the score of Wt.

Proof. Let ϕ ∈ C∞c (Rd) be a test function. Ap-
plying first (1) (with respect to Y ) then (2) (with
respect to X) we get

1√
1− t

E
[
(Id− Γ−1t τX(X))ρY (Y )ϕ(Wt)

]
= −E

[
(Id− Γ−1t τX(X))∇ϕ(Wt)

]
= −

(
E [∇ϕ(Wt)]− Γ−1t

1√
t
E [Xϕ(Wt)]

)
.



Likewise
1√
t
E
[
E
[
(Id− Γ−1t τY (Y ))ρX(X) |Wt

]
ϕ(Wt)

]
= −

(
E [∇ϕ(Wt)]− Γ−1t

1√
1− t

E [Y ϕ(Wt)]

)
.

Hence

E

[
E

[
t√

1− t
(Id− Γ−1t τX(X))ρY (Y )

+
1− t√
t

(Id− Γ−1t τY (Y ))ρX(X)
∣∣Wt

]
ϕ(Wt)

]
= −E [∇ϕ(Wt)] + E

[
Γ−1t Wtϕ(Wt)

]
= E

[
(ρWt

(Wt) + Γ−1t Wt)ϕ(Wt)
]
,

and the conclusion (4) follows.
It is immediate to extend (4) to an arbitrary

number of summands.

Lemma III.2. Let Xi, i = 1, . . . , n be independent
random vectors with Stein matrices τi = τXi

and score functions ρi = ρXi , i = 1, . . . , n.
For all t = (t1, . . . , tn) ∈ [0, 1]d such that∑n

i=1 ti = 1 we define Wt =
∑n

i=1

√
tiXi

and denote Γt the corresponding covariance
matrix. Then ρt(Wt) + Γ−1t Wt =∑n

i=1
ti√
ti+1

E
[(
Id− Γ−1t τi(Xi)

)
ρi+1(Xi+1)|Wt

]
where we identify Xn+1 = X1 and tn+1 = t1,
and where we set ρt = ρWt .

In [19] we use a version of (4) specialised to
the case where X has covariance C and Y = Z is
a Gaussian random vector also with covariance C.
Then Γt = C and, setting Xt =

√
tX +

√
1− tZ,

we get, for all 0 < t < 1,

ρt(Xt) + C−1Xt (5)

= − t√
1− t

E
[(
Id− C−1τX(X)

)
C−1Z |Xt

]
.

Taking squares and simplifying accordingly we
obtain the following representations for the Fisher
information and the standardised Fisher informa-
tion of an arbitrary random vector with density.

Theorem III.3. Let X be centered with covariance
Id independent of Z standard Gaussian and Xt =√
tX +

√
1− tZ. For all 0 < t < 1, J(Xt) equals

t2

1− t
E
[
E
[(
Id− C−1τX(X)

)
C−1Z|Xt

]
(6)

×E
[(
Id− C−1τX(X)

)
C−1Z|Xt

]T ]
+ C−1,

and Jst(Xt) equals

=
t2

1− t
tr
(
CE
[
E
[(
Id− C−1τX(X)

)
C−1Z|Xt

]
× E

[(
Id− C−1τX(X)

)
C−1Z|Xt

]T ])
. (7)

IV. CONNECTION WITH A FORMULA OF GUO,
SHAMAI AND VERDÚ

It was brought to our attention (by Oliver John-
son, personal communications) that representation
(5) resembled, at least in principle, an identity for
Fisher information discovered in [7]. The purpose
of this section is to make the connection between
the two approaches explicit.

Lemma IV.1 ([7, equation (56)]). Let X be a
centered random vector with covariance C in-
dependent of Z Gaussian with the same covari-
ance as X . Then, for all 0 < t < 1, the
random vector Xt =

√
tX +

√
1− tZ has a

score ρt(Xt) = − 1
1−tC

−1 (Xt −
√
tE [X |Xt]

)
and its Fisher information J(Xt) equals C−1

1−t −
t C−1

(1−t)2E
[
(X−E [X|Xt])(X−E [X|Xt])

T
]
C−1.

Proof. Clearly, Xt has a differentiable density with
support Rd. Let ϕ ∈ C∞c (Rd) be a test function.
Then

E
[
C−1

(
Xt −

√
t E [X |Xt]

)
ϕ(Xt)

]
= E

[
C−1

(
Xt −

√
tX
)
ϕ(Xt)

]
=
√

1− tE
[
C−1Zϕ(Xt)

]
= (1− t)E [∇ϕ(Xt)] .

Both claims then follow after straightforward com-
putations

Next, as in [7], we define MMSE(X, t) =

E
[
(X − E [X |Xt]) (X − E [X |Xt])

T
]
. Direct

application of the above yields the following.

Proposition IV.2. If A is a matrix we write A2

for AAT . Then Id − 1
1−tMMSE(X, t)C−1 =

t CE
[
E
[(
Id− C−1τX(X)

)
C−1Z|Xt

]2]
so that

Jst(Xt) = t
1−t tr

(
Id− 1

(1−t)MMSE(X, t)C−1
)

.

Plugging this last identity into Lemma II.4 shows
that relative entropy is an integral of minimal
squared error; this claim is equivalent (up to scal-
ing) to [7, equation (57)].

V. INFORMATION BOUNDS FOR SUMS OF
RANDOM VECTORS

In the sequel we suppose for simplicity that
all random vectors are isotropic (i.e. have identity
covariance matrix).

Theorem V.1. Let X1, . . . , Xn be independent
random vectors in Rd and suppose that the Xi

have Stein matrix τi(Xi) and score function
ρi(Xi). Let Wn = 1√

n

∑n
i=1Xi. Define

W
(t)
n =

√
tWn +

√
1− tZ. Then Jst(W

(t)
n ) ≤



t2

n2(1−t)
∑n

i=1tr
(
E
[
(Id− τi(Xi))(Id− τi(Xi))

T
])

for all 0 ≤ t ≤ 1.

Proof. First, by Jensen’s inequality, we see that

tr
(
E[E[(Id− τn(Wn))Z |W (t)

n ]

× E[(Id− τn(Wn))Z |W (t)
n ]T ]

)
≤ tr

(
E[(Id− τWn

(Wn))(Id− τWn
(Wn))T ]

)
.

Next, it is easy to prove (see [19] for a proof when
d = 1) that τWn

(Wn) = 1
n

∑n
i=1E [τi(Xi) |Wn]

is a Stein matrix for Wn. Hence, by (7), Jst(W
(t)
n )

is less than or equal to

t2

1− t
tr
(
E
[
(Id− τWn

(Wn))(Id− τWn
(Wn))T

])
≤ 1

n2
t2

1− t
tr

(
E

[(
n∑

i=1

(Id− τi(Xi))

)

×

(
n∑

i=1

(Id− τi(Xi))
T

)])
.

Independence of the Xi as well as the fact that
E [Id− τi(Xi)] = 0 allow to conclude.

In particular, if the Xi are i.i.d.
copies of X then Jst(W

(1/2)
n ) ≤

1
2n tr

(
E
[
(Id− τX(X)) (Id− τX(X))

T
])
. By

Cramer’s theorem (see, e.g., [11]), convergence of
Wn to the Gaussian is equivalent to convergence
of W

(1/2)
n , and Theorem V.1 provides rates

of convergence (of order 1/n) of the Fisher
information under the assumption that X
has a well-defined Stein matrix τX(X). A
straightforward extension of [8, Lemma 1.21] to
the multivariate setting shows that standardised
information decreases along convolutions.

Lemma V.2. If X and Y are independent isotropic
(i.e. identity covariance matrix) real-valued d-
random vectors then Jst(

√
tX +

√
1− tY ) ≤

tJst(X) + (1− t)Jst(Y ).

Proof. Let Wt =
√
tX +

√
1− tY . From def-

inition (1) it is easy to see that ρt(w) =
E
[√
tρX(X) +

√
1− tρY (Y ) |Wt = w

]
. By def-

inition J(Wt) =
d∑

j=1

E
[
(ρt(Wt))

2
j

]
which,

by Jensen’s inequality, is smaller or equal to

tE

[
d∑

j=1

(ρX(X))2j

]
+ (1− t)E

[
d∑

j=1

(ρY (Y ))2j

]
=

tJ(X) + (1 − t)J(Y ), and the claim is proved
for Fisher information. The extension to Jst is
immediate.

In particular, from Lemma V.2, if Z is stan-
dard Gaussian independent of X , then Jst(Xt) ≤

tJst(X) + (1 − t)Jst(Z) = tJst(X) for all 0 ≤
t ≤ 1 with Xt =

√
tX +

√
1− tZ, so that

D(X ‖Z) ≤ 1

2
Jst(X) (8)

by Lemma II.4. Hence bounds on the standardised
Fisher information translate directly into bounds on
the relative entropy hereby providing, via Pinsker’s
inequality

2dTV (X,Z) ≤
√

2D(X ‖Z), (9)

bounds on the total variation distance between the
law of X and the law of Z. From (8) we thus
obtain rates of convergence in total variation which
have the correct order (see e.g. [9], [2] for similar
rates of convergence under the assumption of finite
Poincaré constant).

Remark V.3. It is still largely an open question
how the assumption of existence of a Stein matrix
relates with more standard assumptions such as
finiteness of the Poincaré constant. See e.g. [1],
[19], [12] for discussions.

VI. STEIN REPRESENTATIONS FOR FISHER
INFORMATION

Our next lemma provides a new handle on con-
ditional expectations which is also of independent
interest.

Lemma VI.1 (Poly’s lemma). Let X and
Y be square-integrable random variables with
mean E[X] = 0. Then E

[
(E [X |Y ])

2
]

=

supϕ∈H(Y ) (E [Xϕ(Y )])
2, where the supremum is

taken over the collection H(Y ) of functions ϕ such
that E[ϕ(Y )] = 0 and E

[
ϕ(Y )2

]
≤ 1.

Proof. First, by Cauchy-Schwarz,

sup
ϕ∈H(Y )

(E [Xϕ(Y )])
2

= sup
ϕ∈H(Y )

(E [E[X|Y ]ϕ(Y )])
2

≤ sup
ϕ∈H(Y )

E
[
E[X|Y ]2

]
E
[
ϕ(Y )2

]
≤E

[
E[X|Y ]2

]
.

To prove the reverse inequality define
ϕ(y) = E [X|Y = y] /

√
E [E[X|Y ]2]. Clearly

E[ϕ(Y )] = 0 and E[ϕ(Y )2] ≤ 1 so that
ϕ ∈ H(Y ) and supϕ∈H(Y ) (E [Xϕ(Y )])

2 is
bigger than or equal to(

E

[
X

E [X|Y ]√
E [E[X|Y ]2]

])2

=
(E [XE [X|Y ]])2

E [E[X|Y ]2]
= E

[
E [X|Y ]

2
]
.

Equality ensues.



We immediately deduce an original proof (not
relying on Stein’s method!) of a recently discov-
ered fact (see e.g. [4], [14], [15]) that the Fisher
information distance is dominated by expressions
which appear naturally within the context of Stein’s
method.

Theorem VI.2 (Stein representation for rela-
tive Fisher information, d = 1). Let Wn =
1√
n

∑n
i=1Xi where the Xi are independent

random variables with Stein factor τi(Xi)
and score function ρi(Xi). Then J (Wn) =
supϕ∈H(Wn) (E [ϕ′(Wn)−Wnϕ(Wn)])

2
.

Proof. We combine Lemma III.2 (in the special
case t1 = t2 = . . . = tn = 1/n) and Lemma VI.1
to deduce that nJ (Wn) is given by

nE
[
(ρn(Wn) +Wn)2

]
= E

[(
E[

n∑
i=1

(1− τi(Xi))ρi+1(Xi+1)|Wn]
)2]

= sup
ϕ∈H(Wn)

( n∑
i=1

E[(1− τi(Xi))ρi+1(Xi+1)ϕ(Wn)]
)2

= sup
ϕ∈H(Wn)

E

[
√
nϕ′(Wn)−

n∑
i=1

Xiϕ(Wn)

]2
,

and the conclusion follows.

Corollary VI.3 (Stein representation
for relative Fisher information). Let
Wn = 1√

n

∑n
i=1Xi = ((Wn)1, . . . , (Wn)d)T

where the Xi are independent d-random
vectors with Stein matrix τi(Xi) and
score function ρi(Xi). Then Jst(Wn) =
d∑

j=1

supϕ∈H(Wn)

(
E
[
∂jϕ(Wn)− (Wn)jϕ(Wn)

])2
.
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