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The complexity of a dynamical system is usually measured by its entropy. For sym-
bolic dynamical systems, the (topological) entropy is the logarithm of the exponential
growth rate of the number of distinct patterns of length n. Bandt, Keller and Pompe [3]
proved for piecewise monotonic maps that the entropy is also given by the number of per-
mutations defined by consecutive elements in the trajectory of a point. Amigo, Elizalde
and Kennel [1, 4] studied realizable permutations in full shifts in detail. Elizalde [5] ex-
tended this study to [-shifts (with 8 > 1), and he determined for each permutation the
infimum of those bases 5 where successive elements of the g-shift are ordered according to
the permutation. Archer and Elizalde [2] considered periodic patterns for full shifts with
different orderings. We are interested in [-shifts with § < —1, which are ordered natu-
rally by the alternating lexicographical order. Similarly to [5], we determine the set of
(—B)-shifts allowing a given permutation. Our main results were obtained independently
by Elizalde and Moore [6].

For an ordered space X, a map f: X — X, a positive integer n, a point x € X such
that f'(x) # f/(x) for all 0 <i < j < n, and a permutation m € S,,, let

Pat(z, f,n) =7 if (i) < 7(j) for all 1 < 4,5 < n with f©(z) < fF1().
The set of allowed patterns of f is
A(f) = {Pat(z, f,n) : x € X,n > 0}.

Here, we are interested in the (—f)-transformation for § > 1, which was defined by
Ito and Sadahiro [7] as x L% — fx] — Bz on the interval [g—fv ﬁ) It is more
convenient to consider the map

T 5:(0,1] —-(0,1], =z~ |Bz]+1— P,

which is easily seen to be topologically conjugate to Ito and Sadahiro’s one, via z
— x (which reverses the order). Theorem 1 below gives a formula for

g
B(r)=inf{#>1: 1€ A(T_5)}.

To m € §,,, associate the circular permutation

7= (r()7w(2)---7w(n)) €Sy,



ie, n(m(j)) = m(j+ 1) for 1 < j < n, 7(n(n)) = n(1), and the sequence of digits 21 )
defined by

zi=#{1<i<n(j):i#n(n)#i+1and 7(i) < 7(i + 1),
ori=m(n)—1and 7(i) < 7(i + 2)}.

Moreover, let
m=m"'(n), L=7(n(n)—=1)ifr(n)#1, r=r"(x(n)+1)if 7(n)#n.
We use the abbreviation zj; jy = 2;zi41 - - - zj—1 for ¢ < 7. When
2em) = Zrm)Zrm)  OF  Zrm) = Zem)Zem),  if m(n) & {1,n}, (1)
we also use the following digits, for 0 <i < |[r—/¢], 1 < j <n,

O _ {1 ifr(j) > m(r+¢)and i is even, orm(j) > 7(¢ + i) and ¢ is odd,
=7

0 otherwise.

Now, we can define a sequence a = ajas - - - associated to the permuation 7 by

(

Z[m.n) Zltn) if n —m is even, m(n) # 1, and (1) does not hold,

Ming<i<|r—¢| z[(;rzn) Z[(ei,)n) if n —m is even, m(n) # 1, and (1) holds,

a = q Zmn)0 if n —m is even and 7(n) =1,

Zfmn) Zrm) if n —m is odd and (1) does not hold,

(| MiNg<icpr—g z[(;rz n) z[(;)n) if n —m is odd and (1) holds.
Here and in the following, w denotes the periodic sequence with period w, and sequences
are ordered by the alternating lexicographical order, i.e., vjvg - -+ < wywg - -+ if vy - v =
wy - wy, and (=1)*v < (=1)*wpyq, £ > 0. (Ito and Sadahiro [7] used an “alternate
order”, which is the inverse of our order.)

Theorem 1. Let m € S,,. Then B(m) is the largest positive root of 1+ > 7~ (a_’“;)}c = 0.

Note that B(m) is the largest positive solution of the equation

p+q

(=2 Y (an +1) (—2)" " = (=) ) (ap 1) (=)

when a is eventually periodic with preperiod of length ¢ and period of length p.
Let ¢ be the substitution defined by ¢(0) = 1, ¢(1) = 100, with the unique fixed
point u = p(u), i.e.,
u=100111001001001110011 - - - .

Theorem 2. Let m € S,. We have B(m) = 1 if and only if a = ¢*(0) for some k > 0.



If B(w) > 1, i.e., a > u, then B(m) is a Perron number by [8, 9].
Instead of numbers x € (0, 1], we can also consider their (—f)-expansions

[e.e]

r=— Z % with d_g(z) = [ T’_“El(x)J

Set d_g(x) = d_g1(x)d_p2(x)---. By [7], have v < y if d_g(z) < d_p(y) (w.r.t. the
alternating lexicographical order), thus
Pat(x, T_s,n) = Pat(d_s(x), 5. n),

where Y denotes the shift map. For the proof of Theorem 1, infinite words w satisfying
Pat(w, ¥, n) = 7 and lying in the (—f)-shift for all 8 > B(w) are constructed. Note that,

for an integer N > 2, the (—NN)-shift is close to the full shift on N letters.

Theorem 3. Let w € S,,. The minimal number of letters of an infinite word w satisfying
Pat(w,¥,n) =7 (w.r.t. the alternating lexicographical order) is

1 if (1) holds or a = asc(7)0,

0 otherwise,

N(m) =1+ |B(m)| =1+ asc(n) + {

where asc(m) denotes the number of ascents in & with w(w(n)) = 7(1) removed. We have
N(m)<n—1 forall ™ € S,, n > 3, with equality for n > 4 if and only if
re{l2---n, 12--- (n—2)n(n—1), n(n—1)---1, n(n—1)---312}.
In Table 1, we give the values of B(r) for all permutations of length up to 4, and
we compare them with the values obtained by [5] for the (positive) beta-shift. We see

that much more permutations satisfy B(w) = 1 for the negative beta-shift than for the
positive one. Some other examples, together with corresponding infinite words are below.

1. Let 7 = 3421. Then 7t = 3142, 24y = 110, m = 2, 7(n) = 1, r = 3. We obtain

that a = 2,40 = 100 = ¢?(0), thus B(r) = 1. Indeed, Pat(010010011, X, n) = .
2. Let 7 = 892364157. Then # = 536174802, 21 g) = 33012102, m = 2, £ =5, r = 1,
thus a = 29y Z9) = 30121023, and B(r) is the unique root x > 1 of
o —dx" 425 —22° + 32" —22° + 2 —3x+4=1.
We get B(m) ~ 3.831, and we have Pat(330121023 301210220, ¥, n) = 7.

3. Let m = 453261. Then 7 = 462531, 26 = 11001, m =5, 7(n) = 1, r = 4, thus
a = 252,25 = 10, and B(w) = 2. We have Pat(1100102,%,n) = 7 and N(7) = 3.

4. Let m = 7325416. Then 7t = 6521473, 21,7y = 100100, m = r = 1, £ = 4. Hence (1)

holds, z[(lo’)ﬂ = 200100, z[(11)7) = 200210, Z[(12)7) = 211210. Since n —m is even, we have

a= min 21 21y = min{200 100, 200 210, 211 210} = 211 210.

Therefore, B(m) ~ 2.343 is the largest positive root of
0= (2% —32° +22* —22° + 32" — 22+ 1) — (—2° + 32% — 22+ 2)
=% - 32° + 22" — 2° — 1.

We have Pat(211210(210)**712, %, n) = 7 for k > 0.



B(n) root of 7, negative beta-shift m, positive beta-shift
1 B-1 12,21 12,21
123,132,213, 231, 321 123,231, 312

1324,1342,1432,2134 | 1234, 2341, 3412, 4123
2143,2314, 2431, 3142
3214,3241,3421,4213

1.465 BF_pT—1 1342, 2413, 3124, 4231

1.618 BT-B—-1 312 132,213, 321
1423,3412,4231 | 1243, 1324, 2431, 3142, 4312

1755 | B3 =282+ B—1 | 2341,2413,3124, 4123

1802 | B =237 — 28+ 1 4213

1839 | B—p—p—-1 4132 1432, 2143, 3214, 4321
2 B—2 1234, 1243 2134, 3241

2247 | B2 —B+1 4321 4132

2414 B —-28-1 2314, 3421

2.618 BT=33+1 1423

2.732 BE=23 -2 4312

Table 1: B(r) for the (—f)-shift and the [-shift, permutations of length up to 4.
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