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Wolfgang Steiner
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The complexity of a dynamical system is usually measured by its entropy. For sym-
bolic dynamical systems, the (topological) entropy is the logarithm of the exponential
growth rate of the number of distinct patterns of length n. Bandt, Keller and Pompe [3]
proved for piecewise monotonic maps that the entropy is also given by the number of per-
mutations defined by consecutive elements in the trajectory of a point. Amigo, Elizalde
and Kennel [1, 4] studied realizable permutations in full shifts in detail. Elizalde [5] ex-
tended this study to β-shifts (with β > 1), and he determined for each permutation the
infimum of those bases β where successive elements of the β-shift are ordered according to
the permutation. Archer and Elizalde [2] considered periodic patterns for full shifts with
different orderings. We are interested in β-shifts with β < −1, which are ordered natu-
rally by the alternating lexicographical order. Similarly to [5], we determine the set of
(−β)-shifts allowing a given permutation. Our main results were obtained independently
by Elizalde and Moore [6].

For an ordered space X, a map f : X → X, a positive integer n, a point x ∈ X such
that f i(x) 6= f j(x) for all 0 ≤ i < j < n, and a permutation π ∈ Sn, let

Pat(x, f, n) = π if π(i) < π(j) for all 1 ≤ i, j ≤ n with f i−1(x) < f j−1(x).

The set of allowed patterns of f is

A(f) =
{

Pat(x, f, n) : x ∈ X,n > 0
}
.

Here, we are interested in the (−β)-transformation for β > 1, which was defined by
Ito and Sadahiro [7] as x 7→ b β

β+1
− βxc − βx on the interval [ −β

β+1
, 1
β+1

). It is more
convenient to consider the map

T−β : (0, 1]→ (0, 1], x 7→ bβxc+ 1− βx,

which is easily seen to be topologically conjugate to Ito and Sadahiro’s one, via x 7→
1

β+1
− x (which reverses the order). Theorem 1 below gives a formula for

B(π) = inf
{
β > 1 : π ∈ A(T−β)

}
.

To π ∈ Sn, associate the circular permutation

π̂ =
(
π(1)π(2) · · · π(n)

)
∈ Sn,
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i.e., π̂(π(j)) = π(j + 1) for 1 ≤ j < n, π̂(π(n)) = π(1), and the sequence of digits z[1,n)
defined by

zj = #{1 ≤ i < π(j) : i 6= π(n) 6= i+ 1 and π̂(i) < π̂(i+ 1),

or i = π(n)− 1 and π̂(i) < π̂(i+ 2)}.

Moreover, let

m = π−1(n), ` = π−1(π(n)− 1) if π(n) 6= 1, r = π−1(π(n) + 1) if π(n) 6= n.

We use the abbreviation z[i,j) = zizi+1 · · · zj−1 for i ≤ j. When

z[`,n) = z[r,n)z[r,n) or z[r,n) = z[`,n)z[`,n), if π(n) /∈ {1, n}, (1)

we also use the following digits, for 0 ≤ i < |r − `|, 1 ≤ j < n,

z
(i)
j = zj +

{
1 if π(j) ≥ π(r + i) and i is even, or π(j) ≥ π(`+ i) and i is odd,

0 otherwise.

Now, we can define a sequence a = a1a2 · · · associated to the permuation π by

a =



z[m,n) z[`,n) if n−m is even, π(n) 6= 1, and (1) does not hold,

min0≤i<|r−`| z
(i)
[m,n) z

(i)
[`,n) if n−m is even, π(n) 6= 1, and (1) holds,

z[m,n)0 if n−m is even and π(n) = 1,

z[m,n) z[r,n) if n−m is odd and (1) does not hold,

min0≤i<|r−`| z
(i)
[m,n) z

(i)
[r,n) if n−m is odd and (1) holds.

Here and in the following, w denotes the periodic sequence with period w, and sequences
are ordered by the alternating lexicographical order, i.e., v1v2 · · · < w1w2 · · · if v1 · · · vk =
w1 · · ·wk and (−1)kvk+1 < (−1)kwk+1, k ≥ 0. (Ito and Sadahiro [7] used an “alternate
order”, which is the inverse of our order.)

Theorem 1. Let π ∈ Sn. Then B(π) is the largest positive root of 1 +
∑∞

k=1
ak+1
(−x)k = 0.

Note that B(π) is the largest positive solution of the equation

(−x)p+q +

p+q∑
k=1

(ak + 1) (−x)p+q−k = (−x)q +

q∑
k=1

(ak + 1) (−x)q−k

when a is eventually periodic with preperiod of length q and period of length p.
Let ϕ be the substitution defined by ϕ(0) = 1, ϕ(1) = 100, with the unique fixed

point u = ϕ(u), i.e.,

u = 100111001001001110011 · · · .

Theorem 2. Let π ∈ Sn. We have B(π) = 1 if and only if a = ϕk(0) for some k ≥ 0.
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If B(π) > 1, i.e., a > u, then B(π) is a Perron number by [8, 9].
Instead of numbers x ∈ (0, 1], we can also consider their (−β)-expansions

x = −
∞∑
k=1

d−β,k(x) + 1

(−β)k
with d−β,k(x) =

⌊
β T k−1−β (x)

⌋
.

Set d−β(x) = d−β,1(x)d−β,2(x) · · · . By [7], have x < y if d−β(x) < d−β(y) (w.r.t. the
alternating lexicographical order), thus

Pat(x, T−β, n) = Pat(d−β(x),Σ, n),

where Σ denotes the shift map. For the proof of Theorem 1, infinite words w satisfying
Pat(w,Σ, n) = π and lying in the (−β)-shift for all β > B(π) are constructed. Note that,
for an integer N ≥ 2, the (−N)-shift is close to the full shift on N letters.

Theorem 3. Let π ∈ Sn. The minimal number of letters of an infinite word w satisfying
Pat(w,Σ, n) = π (w.r.t. the alternating lexicographical order) is

N(π) = 1 + bB(π)c = 1 + asc(π̂) +

{
1 if (1) holds or a = asc(π̂)0,

0 otherwise,

where asc(π̂) denotes the number of ascents in π̂ with π̂(π(n)) = π(1) removed. We have
N(π) ≤ n− 1 for all π ∈ Sn, n ≥ 3, with equality for n ≥ 4 if and only if

π ∈ {12 · · ·n, 12 · · · (n−2)n(n−1), n(n− 1) · · · 1, n(n− 1) · · · 312}.
In Table 1, we give the values of B(π) for all permutations of length up to 4, and

we compare them with the values obtained by [5] for the (positive) beta-shift. We see
that much more permutations satisfy B(π) = 1 for the negative beta-shift than for the
positive one. Some other examples, together with corresponding infinite words are below.

1. Let π = 3421. Then π̂ = 3142, z[1,4) = 110, m = 2, π(n) = 1, r = 3. We obtain

that a = z[2,4)0 = 100 = ϕ2(0), thus B(π) = 1. Indeed, Pat(0100 10011,Σ, n) = π.

2. Let π = 892364157. Then π̂ = 536174892, z[1,9) = 33012102, m = 2, ` = 5, r = 1,
thus a = z[2,9) z[1,9) = 30121023, and B(π) is the unique root x > 1 of

x8 − 4x7 + x6 − 2x5 + 3x4 − 2x3 + x2 − 3x+ 4 = 1.

We get B(π) ≈ 3.831, and we have Pat(330121023 301210220,Σ, n) = π.

3. Let π = 453261. Then π̂ = 462531, z[1,6) = 11001, m = 5, π(n) = 1, r = 4, thus
a = z5 z4z5 = 10, and B(π) = 2. We have Pat(110010 2,Σ, n) = π and N(π) = 3.

4. Let π = 7325416. Then π̂ = 6521473, z[1,7) = 100100, m = r = 1, ` = 4. Hence (1)

holds, z
(0)
[1,7) = 200100, z

(1)
[1,7) = 200210, z

(2)
[1,7) = 211210. Since n−m is even, we have

a = min
i∈{0,1,2}

z
(i)
[1,7) z

(i)
[4,7) = min{200 100, 200 210, 211 210} = 211 210.

Therefore, B(π) ≈ 2.343 is the largest positive root of

0 = (x6 − 3x5 + 2x4 − 2x3 + 3x2 − 2x+ 1)− (−x3 + 3x2 − 2x+ 2)

= x6 − 3x5 + 2x4 − x3 − 1.

We have Pat(211210(210)2k+12,Σ, n) = π for k ≥ 0.
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B(π) root of π, negative beta-shift π, positive beta-shift
1 β − 1 12, 21 12, 21

123, 132, 213, 231, 321 123, 231, 312
1324, 1342, 1432, 2134 1234, 2341, 3412, 4123
2143, 2314, 2431, 3142
3214, 3241, 3421, 4213

1.465 β3 − β2 − 1 1342, 2413, 3124, 4231
1.618 β2 − β − 1 312 132, 213, 321

1423, 3412, 4231 1243, 1324, 2431, 3142, 4312
1.755 β3 − 2β2 + β − 1 2341, 2413, 3124, 4123
1.802 β3 − 2β2 − 2β + 1 4213
1.839 β3 − β2 − β − 1 4132 1432, 2143, 3214, 4321

2 β − 2 1234, 1243 2134, 3241
2.247 β3 − 2β2 − β + 1 4321 4132
2.414 β2 − 2β − 1 2314, 3421
2.618 β2 − 3β + 1 1423
2.732 β2 − 2β − 2 4312

Table 1: B(π) for the (−β)-shift and the β-shift, permutations of length up to 4.
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