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Abstract. In [14], S. Ferenczi proved that the language of any uniformly
recurrent sequence with an at most linear complexity is S-adic. In this
paper we adapt his proof in a more structured way and improve this
result stating that any such sequence is itself S-adic. We also give some
properties on the constructed morphisms.

1 Introduction

A usual tool in the study of sequences (or infinite words) over a finite alphabet
A is the complexity function p that counts the number of factors of each length
n occurring in the sequence. This function is clearly bounded by dn, n ∈ N,
where d is the number of letters in A but not all functions bounded by dn are
complexity functions. As an example, it is well known (see [17]) that either
the sequence is ultimately periodic (and then p(n) is ultimately constant), or
its complexity function grows at least like n + 1. Non-periodic sequences with
minimal complexity p(n) = n+1 for all n exist and are called Sturmian sequences
(see [17]). These words are binary sequences (because p(1) = 2) and admit
several equivalent definitions: aperiodic balanced sequences, codings of rotations,
mechanical words of irrational slope,... See Chapter 2 of [16] and Chapter 6 of [15]
for surveys on these sequences. In particular, it is proved in [4] that all these
sequences can be generated with only four morphisms.

Many other known sequences have a low complexity. By "low complexity" we
usually mean "complexity bounded by a linear function". Fixed points of prim-
itive substitutions, automatic sequences, linearly recurrent sequences (see [11])
and Arnoux-Rauzy sequences are examples of sequences with an at most lin-
ear complexity. For any such sequence w, there exists a finite set S of mor-
phisms over an alphabet A, a letter a and a sequence (σn)n∈N ∈ SN such that
w = limn→∞ σ0 · · ·σn(a

ω). Indeed, automatic sequences can be seen as im-
ages under a letter-to-letter morphisms of fixed points of uniform substitutions
(see [1]), F. Durand proved it in [9] and [10] for linearly recurrent sequences
and P. Arnoux and G. Rauzy proved it in [2] for the so-called Arnoux-Rauzy
sequences. Following [15], a sequence w with previous property is said to be
S-adic (where S refers to the set of morphisms).



As mentioned in [15], the S-adic conjecture is the existence of a condition
C such that "a sequence has an at most linear complexity if and only if it is a
S-adic sequence verifying C". It is not possible to avoid considering a partic-
ular condition since, for instance, there exist fixed points of morphisms with a
quadratic complexity (see [18]) and moreover, J. Cassaigne recently showed that
there exists a set of morphisms S over an alphabet A ∪ {l} (where l is a special
letter that does not belong to the alphabet A) such that any sequence over A is
S-adic (see [6]).

In [14], before Cassaigne’s constructions, S. Ferenczi used some other tech-
niques to prove a kind of "only if" part of the conjecture for a weaker version of
S-adicity. Indeed, he proved that the language of a uniformly recurrent sequence
w with an at most linear complexity is S-adic in the sense that for any factor u
of w, there is a non-negative integer n such that u is a factor of σ0σ1 · · ·σn(a)
with σ0σ1 · · ·σn ∈ S∗. Theorem 2 states precisely this result which was origi-
nally expressed in terms of symbolic dynamical systems. In this paper, we avoid
the language of dynamical systems and try to highlight all the key points of
the proof of Theorem 2. Then, adapting his methods, we improve this result by
proving Theorem 1 and give some properties on the S-adic representation that
could help stating the condition C.

Theorem 1. Let w be a sequence over an alphabet A. If w has an at most
linear complexity then w is a S-adic sequence satisfying Properties 1 to 4 (see
Section 5.2) for a finite set S of non-erasing morphisms such that for all letters
a in A, the length of σ0σ1 · · ·σn(a) tends to infinity with n (this property will be
called the ω-growth Property).

Theorem 2 (Ferenczi [14]). Let w be a uniformly recurrent sequence over
an alphabet A with an at most linear complexity. There exist a finite number
of morphisms σi, 1 ≤ i ≤ c, over an alphabet D = {0, . . . , d − 1}, an appli-
cation α from D to A and an infinite sequence (in)n∈N ∈ {1, . . . , c}N such that
inf0≤r≤d−1 |σi0σi1 · · ·σin(r)| tends to infinity if n tends to infinity and any factor
of w is a factor of ασi0σi1 · · ·σin(0) for some n.

This paper is organized as follows. In Section 2, we recall the definition of
S-adicity and present some results and examples about the conjecture and about
the complexity of some particular S-adic sequences. In particular, using a similar
technique as in [12] we give an upper bound for the complexity of some S-adic
sequences. Section 3 talks about Rauzy graphs. We recall their definition and
explain how they evolve. Section 4 presents Ferenczi’s methods in a general
case and we present a sketch or the proof of Theorem 1 in Section 5. Section 6
concludes the paper with some remarks. Observe that due to lack of space, most
of the proves are not included to the paper.

2 S-adicity and factor complexity

For basic notions about combinatorics on words, we refer to books like [1], [5],
[15], [16] or [19]. In this paper, sequences (or infinite words) are denoted by bold
letters and finite words by normal letters.



The notion of S-adic sequence generalizes the notion of fixed point of mor-
phism. Let w be a sequence over a finite alphabet A. An adic representation of
w is given by a sequence (σn : An+1 → A∗

n)n∈N of morphisms and a sequence
(an)n∈N of letters, ai ∈ Ai for all i such that A0 = A and

w = lim
n→+∞

σ0σ1 · · ·σn(a
ω
n+1).

The sequence (σn)n∈N is the directive word of the representation. Let S be a finite
set of morphisms. We say that w is S-adic (or that w is directed by (σn)n∈N) if
(σn)n∈N ∈ SN. In the sequel, we will say that a sequence w is S-adic if there is
a finite set S of morphisms such that w is directed by (σn)n∈N ∈ SN.

Proposition 1 (Cassaigne). Every sequence admits an adic representation.

Proof. Let w = w0w1 · · · be a sequence over a finite alphabet A and let l be a
letter that does not belong to A. For each letter a in A we define the morphism
σa from (A ∪ {l})∗ to itself that maps l to la and maps every other letter b
to itself. We also define the morphism ϕ from A ∪ {l} to A by ϕ(l) = w0 and
ϕ(b) = b for all b in A. Then we have w = limn→+∞ ϕσw1

σw2
· · ·σwn

(lω). ⊓⊔

A word u has an occurrence at position i in a (finite or infinite) word w (or
occurs in w) if wiwi+1 · · ·wi+|u|−1 = u. The factor wiwi+1 · · ·wj of a word w,
i ≥ 1, j ≤ |w|, is denoted by w[i, j]. The language of a sequence w is the set of
factors of w; it is denoted by L(w). For each n ∈ N, we note Ln(w) the set of
factors of length n in w, i.e., Ln(w) = L(w) ∩ An.

The complexity function of a sequence w is the function pw (or simply p)
that counts the number of factors of a given length in w, i.e., pw(n) = #Ln(w).
See Chapter 4 of [5] for a survey on this function.

2.1 Some examples of sub-linear S-adic sequences

A sequence is said to have an at most linear complexity (or sub-linear complexity)
if there is a constant C such that p(n) ≤ Cn for all n. In [7], Cassaigne proved
Theorem 3 which is a key point in the proof of Theorem 1.

Theorem 3 (Cassaigne). A sequence w has an at most linear complexity if
and only if the first difference of its complexity (pw(n+ 1)− pw(n)) is bounded.

Note that the first difference of complexity is closely related to special factors
(see [8]). A factor u of w is right special (resp. left special) if there are two letters
a and b in A such that ua and ub (resp. au and bu) belong to L(w). It is bispecial
if it is right and left special. For a word u in L(w), if δ+u (resp. δ−u) denotes
the number of letters a in A such that ua (resp. au) is in L(w), we have

pw(n+ 1)− pw(n) =
∑

u∈Ln, u right special

(δ+u− 1)
︸ ︷︷ ︸

≥1

(1)

=
∑

u∈Ln, u left special

(δ−u− 1)
︸ ︷︷ ︸

≥1

(2)



G. A. Hedlund and M. Morse proved in ([17]) that either p(n) is ultimately
constant (and corresponds to ultimately periodic sequences) or grows at least
like n + 1. We could easily show that ultimately periodic sequences are S-adic
with #S = 2. Sturmian sequences are binary infinite aperiodic sequences with
minimal complexity p(n) = n + 1 for all n. Let τa, τ

′
a, τb and τ ′b be morphisms

over the alphabet {a, b} defined by τa(a) = a, τa(b) = ab, τb(a) = ba, τb(b) = b,
τ ′a(a) = a, τ ′a(b) = ba, τ ′b(a) = ab and τ ′b(b) = b. It is proved in [4] that all
Sturmian sequences are {τa, τ

′
a, τb, τ

′
b}-adic such that if w is a Sturmian sequence

coding the line y = αx+ ρ, then its directive word is completely determined by
the coefficients of the continued fraction of α and by the Ostrowski expansion of
ρ (see [3] for more details about the Ostrowski expansions).

Proposition 2 is a generalization of a result due to Durand (Proposition 2.1
in [10] states it for d(n) = D ∈ N for all n).

Proposition 2. Let w be a S-adic sequence over an alphabet A such that all
morphisms in S are non-erasing. Suppose that infc∈An+1

|σ0σ1 · · ·σn(c)| tends to
infinity and there exists a function d : N → R

+ such that

|σ0σ1 · · ·σn+1(b)| ≤ d(n)|σ0σ1 · · ·σn(c)|

for all b ∈ An+2, c ∈ An+1 and n ∈ N. Then py(n) ≤ (#A)2nd(n).

The proof is similar to the proof of Proposition 2.1 in [10].
If all morphisms σ in S are uniform (that is |σ(a)| = k for all letters a), then

Proposition 2 holds for d(n) = D = maxσ∈S |σ(a)| and it is a corollary of it that
automatic sequences (that are images under letter-to-letter morphisms of fixed
points of uniform morphisms) have an at most linear complexity.

Recall that a S-adic sequence is primitive if there is an integer s0 such that
for all integers r and all letters b in Ar and c in Ar+s0+1, the letter b occurs
in σrσr+1 · · ·σr+s0(c). Using Proposition 2, Durand proved that any primitive
S-adic sequence has an at most linear complexity. He also gave a S-adic char-
acterization of linearly recurrent sequences stating that a sequence is linearly
recurrent if and only if it is a primitive and proper S-adic sequence.. Recall that
a linearly recurrent sequence is a uniformly recurrent sequences for which there
is a constantK such that the gaps between two successive occurrences of a factor
u is bounded by K|u| and a S-adic sequence is proper if for all morphisms σn in
(σn)n∈N ∈ SN, there are two letters a and b in An such that σ(c) ∈ aA∗

nb for all
letters c in An+1.

2.2 On the importance of directive words for some S-adic sequences

As we have seen in Section 2.1, for some set S of morphisms, any S-adic sequence
has an at most linear complexity. Examples of such sets are those containing only
uniform morphisms or only strongly primitive morphisms (that is every letter a
occurs in every image σ(b)). We could also prove that any {ϕ, µ}-adic sequence
is linearly recurrent, with ϕ and µ being respectively the Fibonacci morphism
and the Thue-Morse morphism defined by ϕ(a) = ab, ϕ(b) = a, µ(a) = ab and



µ(b) = ba. However this is not true for any set S. There are some sets for which
the directive words are important (think to Proposition 1) and even some sets
for which any S-adic sequence does not have an at most linear complexity (for
example the sets S = {σ} such that σ has fixed points with quadratic complexity
(see [18])).

Next example presents a set S of morphisms such that the S-adic sequences
have or not an at most linear complexity depending on their directive words.

Example 1. Consider S = {α, µ} with α defined by α(a) = aab and α(b) = b and
τ which is the Thue-Morse morphism. Let (kn)n∈N be a sequence of non-negative
integers and let w be the S-adic sequence

w = lim
n→+∞

αk0µαk1µ · · ·αkn(aω). (3)

Lemma 1. The S-adic sequence w defined in (3) has an at most linear complex-
ity if and only if the sequence (kn)n∈N is bounded. However, even for unbounded
sequences (kn)n∈N, there is an increasing sequence (mn)n∈N of non-negative in-
tegers such that p(mn) ≤ 4mn for all n.

2.3 An interesting condition

As mentioned in the introduction, the S-adic conjecture is the existence of a
condition C such that w has an at most linear complexity if and only if w is a
S-adic sequence satisfying condition C.

In the case of fixed points of morphisms σω(a), it is proved in [18] that
the complexity function can only have five asymptotic behaviors: O(1), O(n),
O(n log n) O(n log logn) and O(n2) and that the class of highest complexity
O(n2) can be reached only by morphisms σ admitting bounded letters, i.e.,
letters c such that the sequence (|σn(c)|)n∈N

is bounded (as for the morphism α
in Example 1).

In Theorem 1 (and it was already the case in Ferenczi’s paper [14]), we show
that a sequence with an at most linear complexity is a S-adic sequence such that
the length of σ0σ1 · · ·σn(an+1) tends to infinity as n increases for all sequences
(an)n∈N of letters an ∈ An. Moreover, observe that almost all examples treated
in previous sections satisfy this property: the only constructions that do not
satisfy it are Cassaigne’s constructions (Proposition 1).

Although this property is not necessary to have a low complexity (for exam-
ple, the fixed point γω(0) with γ defined by γ(0) = 0010 and γ(1) = 1 has an
at most linear complexity (see [13])), the growth of letters seems to be an im-
portant condition to have a reasonably low complexity. Let us call the ω-growth
Property the fact that the length of σ0σ1 · · ·σn(an+1) tends to infinity with n
for all sequences (an)n∈N of letters an ∈ An. Note that it is clear from Lemma 1
that the ω-growth Property is not sufficient and that we have to take care not
only of the set S but also of the directive words of S-adic sequences.



2.4 Beyond linearity

A consequence of Proposition 1 is that we cannot have an upper bound on the
complexity of S-adic sequences like the one we have for fixed points of morphisms
(see [18]). However we can still hope to have such a bound for S-adic sequences
satisfying the ω-growth Property. This question seems to be a new non-trivial
problem. Although its study is not the purpose of this paper, we give an upper
bound for S-adic sequences such that |σ(a)| ≥ 2 for all morphisms σ in S and all
letters a in An (see Proposition 3 below). Techniques are similar to those used
in [12] for D0L systems.

Proposition 3. Let w be a S-adic sequence over an alphabet A. Suppose that
|σ(a)| ≥ 2 for all σ in S and all letters a. Then there is a constant C such that
p(n) ≤ Cn logn for all integers n.

Example 2 shows that this bound is the best one we can obtain.

Example 2. Let β be the morphism on A = {a, b, c} defined by β(a) = abca,
β(b) = bb and β(c) = ccc and consider its fixed point w = βω(a). It can be seen
as a {β}-adic sequence satisfying the condition in Proposition 3 and we know
from [18] that its complexity function satisfies C1n log(n) ≤ pw(n) ≤ C2n log(n),
with C1, C2 > 0.

3 Rauzy graphs

Proof of Theorem 1 is based on the evolution of Rauzy graphs. In this section,
we recall this notion and explain how they evolve. First let us introduce some
notation.

Let p be a path in a directed graph G = (V,E) (V is the set of vertices and
E the set of edges). We denote the starting vertex by o(p) and the ending vertex
by i(p). These vertices are called the extremities of p and the other vertices are
called interior vertices. The length of p is the number of edges composing it.

Let w be a sequence over an alphabet A. For each non negative integer n,
we define the Rauzy graph of order n of w (also called graph of words of length
n), denoted by Gn(w) (or simply Gn) is the directed graph (V (n), E(n)), where

- the set V (n) of vertices is the set Ln(w) of factors of length n of w and
- there is an edge from u to v if there are two letters a and b in A such that

ub = av ∈ Ln+1.
In the literature, there are different ways of labeling the edges. Indeed, the edges
are sometimes labeled by the letter a, by the letter b, by the couple (a, b) or by
the word av, i.e., the four following notation exist:

u
b
−→ v u −→

a
v u

b
−→
a
v u

av
−→ v.

For an edge (u, (a, b), v) = u
b
−→
a
v, let us call a its left label, b its right label and

ub = av its full label. Same definitions hold for labels of paths (left and right
labels being words of same length as the considered path). In this paper we will
mostly consider left labels.



Remark 1. A sequence is recurrent if and only if all its Rauzy graphs are strongly
connected (that is for all vertices u and v of Gn there is a path p from u to v).

We say that a vertex v is right special (resp. left special, bispecial) if it corre-
sponds to a right special (resp. left special, bispecial) factor.

By definition of Rauzy graphs, for all words u in L(w) and all integers n > |u|,
there is a path p in Gn(w) whose full label is u. The contrary is not true, i.e.,
the full label of a path in Gn(w) is not always a factor of w. Hence, a path in
a Rauzy graph is said to be allowed if its full label is a word in L(w). Observe
that any path p = (v0, (a1, b1), v1) · · · (vℓ−1, (aℓ, bℓ), vℓ) that does not contain any
subpath (vi, (ai+1, bi+1), vi+1) · · · (vj−1, (aj , bj), vj), i ≥ 1, j ≤ ℓ− 1 with vi left
special and vj right special is trivially allowed. Moreover, the following trivially
holds.

Proposition 4. Let Gn be a Rauzy graph of order n and let v be a vertex of
Gn. For all paths p and p′ of length ℓ ≤ n such that o(p) = i(p′) = v, the left
label of p and the right label of p′ are respectively prefix and suffix of v.

Proof of Theorem 1 is based on the evolution of Rauzy graphs (i.e., going
from Gn to Gn+1). As edges of Gn are exactly the words of Ln+1, we can write
Gn as the directed graph (Ln, Ln+1). Then to get the Rauzy graph of order

n + 1, it suffices to replace each edge of Gn by a vertex and to replace −→
a
v

b
−→

by av
b
−→
a
vb whenever avb ∈ L(w).

4 Segments, circuits and morphisms

Let w be an aperiodic and uniformly recurrent sequence over an alphabet A. In
this section, we explain Ferenczi’s methods to construct an adic representation
of any factor of w. In his paper [14], Ferenczi defined the notion of n-segments
(that we will call right n-segment ; see below for the definition). For our result we
need to define the notion of left n-segment that is a little bit different. However
constructions are mostly the same as described in [14].

For each n ∈ N, a left (reps. right) n-segment is a non empty path p in
Gn(w) whose only left (resp. right) special vertices are its extremities o(p) and
i(p). When it is not explicitly stated, n-segment means left n-segment. Observe
that any n-segment is trivially allowed.

As the Rauzy graphs of recurrent sequences are strongly connected, the set
of n-segments is a covering of the set of edges of Gn in the sense that each edge
belongs to at least one n-segment. Moreover, for each n, as there exists only a
finite number of left special vertices in Gn, there exists only a finite number of
n-segments.

For sequences with a "reasonably low" complexity, the number of left special
factors increases much slower than the complexity. Consequently, we expect that
the maximal length of n-segments will grow to infinity. Then, as the left labels
fo n-segments are factors of the sequence, all factors of w of length smaller than



some ℓ will be factors of the label of the longest nℓ-segment for some nℓ large
enough (due to the uniform recurrence). So now, let us study the behavior of
n-segments as n increases. To this aim, we define a map ψn on the set of paths
of Gn(w) in the following way. For each path p with left label u, ψn(p) is the set
of paths p′ in Gn+1(w) whose left label is u and such that o(p′) and i(p′) admit
respectively o(p) and i(p) as a prefix. Roughly speaking, for a path p in Gn(w),
ψn(p) is the set of paths in Gn+1(w) corresponding to p.

Lemma 2 here below — and also Lemmas 3, 4, 5 and 6 in next sections —
were already proved in [14]. However, all these lemmas were parts of the proof
of Theorem 2. In this paper, we decided to structure the proof to smarten it up.

Lemma 2 (Ferenczi). Let w be a sequence over an alphabet A. Any (n + 1)-
segment of w is in the image under ψn of a concatenation of n-segments of
w.

Lemma 2 defines some morphisms σn on the alphabets of n-segments. In-
deed consider the set of n-segments as an alphabet An. We can construct some
morphisms σn : An+1 → A∗

n that code the (n + 1)-segments as concatenations
of n-segments.

Remark 2. If a Rauzy graph Gn(w) does not contain any bispecial vertex, it
determines exactly the graph Gn+1(w). In this case, for all n-segments p in
Gn(w), #ψn(p) = 1 and the (n + 1)-segments are exactly the elements of
⋃
{ψn(p) | p = n-segment}. Consequently the morphism σn as defined previ-

ously is simply a bijective and letter-to-letter morphism. Also note that if the
alphabet of w is A = {a1, . . . , ak}, the Rauzy graph G0 is as in Figure 1 so the
left labels of the 0-segments are letters of A. In other words, we have A0 = A.

ε

a1

a2ak

. . .. . .

Fig. 1. Rauzy graph G0 of any sequence over {a1, . . . ak}

Remark 3. This type of constructions may be uninteresting. Indeed consider the
case of sequences with maximal complexity (like the Champernowne sequence
for example). As L(w) = A∗ for these sequences, all factors are left special and
so all edges in Gn are n-segments. The morphisms coding the (n+1)-segments as
concatenations of n-segments are therefore uniform of length 1. However we can
prove that for sequences with an at most polynomial complexity, the maximal
length of n-segments tends to infinity so these constructions make sense.



Lemma 3 below is a key point of Theorem 1 but holds for any uniformly
recurrent sequence (not only for those with an at most linear complexity). It is a
consequence of Proposition 4 but first we need to recall the notions of n-circuit
and of short and long segments or circuits introduced in [14].

By Lemma 2, the minimal length of n-segments is non-decreasing. If it is
bounded, there is an integer N and a N -segment s such that for all integers
n ≥ N , there is a n-segment in ψnψn−1 · · ·ψN (s). Such a segment is said to
be short. Non-short n-segments are said to be long. Roughly speaking, a short
n-segment will be a m-segment for all m greater then n while a long n-segment
will only appear as a proper subpath of m-segments for m larger enough. Note
that if p is a short n-segment and if for all integers k, we code a corresponding
(n+ k)-segment by ξk in An+k, we have σn+k(ξk+1) = ξk for all k.

A n-circuit is a non-empty path p in Gn(w) such that o(p) = i(p) is a left
special vertex and any interior vertex of p is not o(p). It is easy to be convinced
that Lemma 2 can be adapted to n-circuits. Hence we can define short and long
n-circuits similarly to short and long n-segments.

Lemma 3 (Ferenczi). Let w be a uniformly recurrent sequence over an alpha-
bet A. For any non-negative integers n, there is no short n-circuit in Gn(w).

Remark 4. A consequence of Lemma 3 is that for all integers ℓ, there is an integer
nℓ such that any nℓ-circuit has length greater than ℓ.

5 Proof of Theorem 1

Let us recall Theorem 1 (properties will be stated in Section 5.2).

Theorem 1. Let w be an aperiodic and uniformly recurrent sequence over an
alphabet A. If w has an at most linear complexity then it is a S-adic sequence
satisfying the ω-growth Property and Properties 1 to 4 for a set S of non-erasing
morphisms.

5.1 S-adicity and ω-growth Property

The next two Lemmas allow us to bound the cardinality of the set of morphisms.
First consider that the n-segments are indexed such that we can write An =
{0, 1, . . . , s(n)− 1}.

Lemma 4 (Ferenczi). Let w be a sequence over an alphabet A. If w has an at
most linear complexity, then there is constant C such that s(n) ≤ C for all n.

Remark 5. A consequence of Lemma 4 is that the maximal length of n-segments
tends to infinity as n increases. In other words, there is at least a long n-segment
for each length n. Moreover, as two different n-segments p and q give rise to
disjoint sets ψn(p) and ψn(q), there are at most K#A − 1 shorts segments (all
order n included) so we can bound the length of short segments by some constant
ℓ.



Now let us improve Lemma 2 stating that the number of n-segments occurring
in a (n+1)-segment is bounded. In this case we will construct only a finite number
of morphisms because this only gives rise to morphisms of bounded length over
a bounded alphabet.

Lemma 5 (Ferenczi). Let w be an aperiodic sequence over an alphabet A. If
w is uniformly recurrent and has an at most linear complexity, then any (n+1)-
segment of w is the image under ψn of a concatenation of a bounded number of
n-segments of w.

We need one more lemma to prove the S-adicity Property in Theorem 1. This
last one is a consequence of Lemma 3 and it allow us to prove that the S-adic
representation satisfies the ω-growth Property.

Lemma 6 (Ferenczi). Let w be a uniformly recurrent sequence over an alpha-
bet A. If w has an at most linear complexity, then in any path in Gn(w), the
number of consecutive short n-segments is bounded.

Now we can present a sketch of the proof the S-adicity property in Theorem 1.

Sketch of Proof. We consider the sequence w
′ = ♯w over A ∪ {♯} with ♯ /∈ A.

For all non-negative integers n, let A′
n be the set of allowed paths p = pspl in

Gn(w
′) where pl is a long n-segment and ps is composed of consecutive short

n-segments.
Lemma 2 can be adapted to paths in A′

n+1. Hence we can define some mor-
phisms τn : A′

n+1 → A′∗
n that code the paths in A′

n+1 with the paths in A′
n. Let

S be the set of morphisms {τn | n ∈ N}. Using Lemmas 4, 5 and 6, we prove
that #S < +∞

As w is recurrent, all prefixes w[0, n] are left special vertices in Gn(w
′). Let

Bn denotes the set of paths p in A′
n with o(p) = w[0, n− 1]. For all n there is a

paths p in Bn whose left label is a prefix of w and we have τn(Bn+1) ∈ B+
nA

′∗
n .

We conclude by stating the ω-growth Property. ⊓⊔

5.2 Properties of the morphisms

In this section we consider notation introduced in the proof of Theorem 1: w is
an aperiodic and uniformly recurrent sequence over an alphabet A with an at
most linear complexity, w′ is ♯w and τn denotes the morphism from A′

n+1 to
A′∗

n . We also write A′ =
⋃

n∈N
A′

n = {1, . . . , D − 1} with D < +∞ and for all

integers n and all words u in A′+
n , p(u) denotes the path of Gn(w

′) coded by u.
Finally, N is the smallest integer such that all the short segments already exist
in GN . More precisely, N is such that if p is a short m-segment for m > N then
there is a short N -segment q such that p ∈ ψm−1ψm−2 · · ·ψN (q).

Lemma 7. Let
(
(τn)n∈N ∈ SN, (bn)n∈N ∈ A′N

)
be the adic representation of w

given by Theorem 1. Let a be a letter in A′
n that codes a path pspl in Gn such



that the path ps composed of consecutive short n-segments is non-empty. If there
is a letter b in A′

n+1 and a word u in A′+
n such that τn(b) = ua, then the subpath

of p(b) that belongs to ψn(p
(u)) is a concatenation of short (n+ 1)-segment.

Property 1 is a consequence of Lemma 7 and of the definition of N .

Property 1. Let
(
(τn)n∈N ∈ SN, (bn)n∈N ∈ A′N

)
be the adic representation of w

given by Theorem 1. For all integers n ≥ N , if a is a letter in A′
n that codes a

path pspl in Gn such that the path ps composed of consecutive short n-segments
is non-empty, then for all letters b in A′

n+1, τn(b) /∈ A′+
n a.

Properties 2 and 2 are consequence of Property 1 and of the uniform recurrence.

Property 2. Let
(
(τn)n∈N ∈ SN, (bn)n∈N ∈ A′N

)
be the adic representation of w

given by Theorem 1. For all integers n ≥ N and all letters a ∈ A′
n+1 and b in

A′
n, τn(a) /∈ A′∗

n bA
′∗
n bA

′∗
n .

Property 3. Let
(
(τn)n∈N ∈ SN, (bn)n∈N ∈ A′N

)
be the adic representation of w

given by Theorem 1. For all integers n ≥ N , all letters b and c in A′
n and all

letters a and d in A′
n+1, (τn(a), τn(d)) /∈ A′∗

n bA
′∗
n cA

′∗
n ×A′∗

n cA
′∗
n bA

′∗
n .

Property 4 is a consequence of the uniform recurrence and of the ω-growth
Property.

Property 4. Let
(
(τn)n∈N ∈ SN, (bn)n∈N ∈ A′N

)
be the adic representation of w

given by Theorem 1. For any non-negative integer r there is an integer s > r
such that all letters b in A′

r occurs in τrτr+1 · · · τs(c) for all letters c in A′
s+1.

As a corollary of Property 4, for all non-negative integers r, the sequence

wr = lim
n→+∞

τrτr+1 · · · τn(bn)

is uniformly recurrent (see Lemma 7 in [9]), where the letters bn are defined at
the end of the proof of Theorem 1.

6 Conclusions

First it is easy to see that Theorem 2 is a consequence of Theorem 1.
Now let us explain how this last result can easily be extended to bi-infinite

sequences (i.e., to elements of AZ). For any uniformly recurrent sequence w in AZ

with an at most linear complexity, we consider the sequences wl = w[−∞,−1]♯ ∈
(A∪{♯})−N and wr = ♯w[0,+∞] ∈ (A∪{♯})N. Then we can construct some adic
representations

(
(τn)n∈N, (bn)n∈N ∈ B′N

)
and

(
(σn)n∈N, (cn)n∈N ∈ C′N

)
respec-

tively for wr and wl. Indeed, the adic representation of wr is given by Theorem 1
and for the adic representation of wl, it suffices to replace the left n-segments by
the right n-segments (with right labels). Then for all non-negative integers n, we
extend the morphisms τn and σn to B′ ∪C′ by fixing the new letters and we get
the following adic representation of w:

(
(σnτn)n∈N, (cn.bn)n∈N ∈ (C′ ×B′)N

)
.
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Annexe pour les rapporteurs

Proof (of Lemma 1). First suppose kn ≤ K for all integers n. For all integers
0 ≤ i ≤ K, we define the morphism µ(i) = αiµ. Each such morphism µ(i) is
strongly primitive. Moreover, we can rewrite the sequence w as a primitive S′-
adic sequence with S′ = {µ(i) | 0 ≤ i ≤ K} hence its complexity is at most
linear.

Now consider that the sequence (kn)n∈N is unbounded and let us show that
the complexity is not at most linear. We know from [18] that the fixed point
αω(a) has a quadratic complexity. From Theorem 3 and (1) we deduce that
the number of right special factors of αω(a) of a given length is unbounded.
Moreover we can show that all the right special factors of length n of αω(a)
occurs in αn+1(a). Now let us show that if u is a right special factor of length
n in αkn(a), then αk0µαk1µ · · ·αkn−1µ(u) is a right special factor of w of length

n2q with q =
∑n−1

i=0 (ki +1). Indeed, as µ(a) and α(a) start with a and µ(b) and
α(b) start with b, the image of u is still a right special factor. Moreover, µ(u)
contains exactly n letters a and n letters b, and both α and µ map a word with
the same number of a and b to a word of double length with the same number
of a and b. Hence |αk0µαk1µ · · ·αkn−1µ(u)| = |u|2q with q defined as previously.
Now we can conclude: if u and v are two different right special factors of length
n of αω(a), then αk0µαk1µ · · ·αkn−1µ(u) and αk0µαk1µ · · ·αkn−1µ(v) are two
different special factors of length n2q(n) of w. As the number of right special
factors of a given length of αω(a) is unbounded, the number of right special
factors of a given length of w is also unbounded. Using Theorem 3, we conclude
that the complexity is not at most linear.

The last step is to show that, for infinitely many integers mn, the com-
plexity is at most linear. For all non-negative integers n, we already know that
|αk0µαk1µ · · ·αkn−1µ(a)| = |αk0µαk1µ · · ·αkn−1µ(b)| = mn = 2q with q as de-

fined previoulsy by
∑n−1

i=0 (ki + 1). Consequently, for all factors u of length mn

is a factor of |αk0µαk1µ · · ·αkn−1µ(v)| where v is a word of length 2. As there
are only 4 possible binary words of length 2 and there are less that mn different
factors of length mn is a word of length 2mn, we can conclude. ⊓⊔

Proof (of Lemma 2). Let p be a (n+1)-segment in Gn+1(w). We note u = o(p),
u′ = i(p) and v its left label. Then v is a return word to LSw(n+1) such that u
and u′ are the two left special factors of length n+1 in w occurring in vu′. It is
clear that the respective prefixes u[1, n] and u′[1, n] of length n of u and u′ are
left special factors of length n of w. As there might be some left special factors
of length n that have an occurrence at position 2 ≤ i ≤ |v| − 1 in vu′[1, n], v
is a concatenation of return words to LSw(n). Moreover, v is the left label of
a path p′ in Gn(w) such that o(p′) = u[1, n] and i(p′) = u′[1, n]. Consequently
p′ is a concatenation of n-segments and we conclude the proof by noting that
p ∈ ψn(p

′). ⊓⊔

Proof (of Proposition 3). Recall the definition of the radix order �∗. Let � be
an order on the alphabet A and let u and v be in A∗, u 6= v. We have u ≺∗ v if



either |u| < |v| or |u| = |v| and there is a smallest integer 0 < i ≤ |u| such that
ui ≺ vi.

Let ℓ denotes the maximal length of σ(a) for σ in S and a in A. Consider
an integer n strictly greater than 2ℓ. For all words u in Ln(w), we construct a
sequence (uk)k∈N of words in the following way:

◮ u0 = u;
◮ for all integers k, uk+1 is the smallest word in L(w) (with respect to the

radix order) such that uk ∈ L(σk(uk+1)).
We can easily see that the sequence (|uk|)k∈N is ultimately decreasing. Let r be
the smallest integer such that |ur| ≤ 2. We have 2 ≤ r ≤ 1 + C logn. Indeed,
the first inequality is trivial from the choice of n and for the second one, we can
see notice that |ur−1| is at least 3. Writing ur−1 = avr−1b with a, b ∈ A, we
see that σ0σ1 · · ·σr−2(vr−1) is a factor of u and |σ0σ1 · · ·σr−2(vr−1)| is at least
2r−1. Therefore we have n > 2r−1 and then r < C logn+ 1.

Now for all words u in A∗ of length smaller or equal to 2, we define Wn(u)
as the set of words of length n in L(w) such that ur = u. Obviously, we
have

⋃

u∈L≤2(w)Wn(u) = Ln(w). To conclude with the proof, it suffices to

check that there are no more than n words in σ0σ1 · · ·σr−1(ur) that admit
σ0σ1 · · ·σr−2(vr−1) as a factor. ⊓⊔

Proof (of Lemma 3). As the sequence w is uniformly recurrent, if it is ultimately
periodic, it is periodic. Hence in this case there is no left special factor of length
greater than some N and so no n-circuit for n > N . Now suppose w aperiodic
and let p be a short n-circuit of left label u in Gn(w). By definition, for all
positive integers k, there is a (n + k)-circuit in Gn+k with left label u. Now
let vk denotes the extremity of the (n + k)-circuit in ψn+k−1ψn+k−2 · · ·ψn(p)

and ek =
⌊
n+k
|u|

⌋

. The word uek is the left label of a path of length smaller or

equal to n + k in Gn+k starting in vk. From Proposition 4 it is a prefix of vk
and consequently a factor of w. As ek tends to infinity as k increases, there are
arbitrary large powers of u in L(w) and this contradicts the uniform recurrence.

⊓⊔

Proof (of Lemma 4). By Theorem 3, there exists a constant K such that p(n+
1)−p(n) ≤ K for all n. From (2) we deduce that the number of left special factors
of length n is also bounded by K and as a n-segment is completely determined
by its last edge, the number of n-segments is bounded by K#A. ⊓⊔

Proof (of Lemma 5). Consider a (n + 1)-segment p in Gn+1(w). The number
of n-segments composing it is equal to 1 plus the number of vertices va in p,
a ∈ A, such that v is a left special factor of length n of w and va not. Moreover,
the path p cannot pass through one of these vertices more than once. Indeed,
as none of these vertices is left special, it would create a loop in Gn+1(w) that
would be inaccessible from vertices that are not in this loop and the graph would
not be strongly connected (we know that there are some vertices that are not
in the loop since the sequence is aperiodic). Finally, as there exist at most K
left special vertices v in Gn(w) (where K is given by p(n + 1) − p(n) ≤ K),



there exist at most K#A vertices va as considered just above. Consequently,
the number of n-segments in p is bounded by 1 +K#A. ⊓⊔

Proof (of Lemma 6). Let K be such that p(n + 1) − p(n) ≤ K. As any edge
of Gn(w) appears in at least one n-segment, any finite path in Gn(w) can be
decomposed in a finite number of n-segments, the first one and the last one
being possibly truncated. In this decomposition, some segments may be short
and so have length bounded by ℓ (see Remark 5). Now if a path p composed of
consecutive short n-segments has length greater than Kℓ, the path contains at
least K + 1 occurrences of left special vertices. Consequently some vertices vi
and vj of p are equal and the graph contains a n-circuit whose length is smaller
than Kℓ. Remark 4 states that this can not happen for n large enough. ⊓⊔

Proof (of Theorem 1). Let w be a uniformly recurrent sequence over an alphabet
A. Let ♯ be a symbol that is not in A and consider the sequence w

′ = ♯w over
A∪{♯}. For all non-negative integers n, let A′

n be the set of allowed paths p = pspl
in Gn(w

′) where pl is a long n-segment and ps is composed of consecutive short
n-segments. Suppose that these paths are indexed such that we can write A′

n =
{0, . . . , P (n)− 1}. Remark that w

′ is not uniformly recurrent and so its Rauzy
graphs are not strongly connected. However, if we have Gn(w) = (V (n), E(n)),
the graph Gn(w

′) is simply the graph (V ′(n), E′(n)) with

V ′(n) = V (n) ∪ {♯w[0, n− 2]} and

E′(n) = E(n) ∪ (♯w[0, n− 2], (♯,wn−1),w[0, n− 1])

and the edge (♯w[0, n− 2], (♯,wn−1),w[0, n− 1]) of Gn(w
′) does not appear in

any n-segment.
Lemma 2 can be adapted to paths in A′

n+1. Hence we can define some mor-
phisms τn : A′

n+1 → A′∗
n that code the paths in A′

n+1 with the paths in A′
n. Let

S be the set of morphisms {τn | n ∈ N} and let us show that w is S-adic.
First, we have to proved that #S < +∞. It is a consequence of Lemmas 4

and 6 that there is a constant D such that P (n) ≤ D for all n. Moreover, the
number of n-segments composing a path in A′

n is bounded by Lemma 6 hence
Lemma 5 implies that the number of paths of A′

n occurring in a path of A′
n+1

is bounded.
Now let us show that w admits a S-adic representation. First, as w is

recurrent, all prefixes w[0, n] are left special factors of w
′. Consequently for

all n there are some n-segments p of w
′ such that o(p) = w[0, n − 1] and

some of these n-segments have a left label that is a prefix of w. Let Bn de-
notes the set of paths p in A′

n such that o(p) = w[0, n − 1]. For all non-
negative integers n, τn(Bn+1) ∈ B+

nA
′∗
n . Let (bn)n∈N be a sequence of letters

bn ∈ Bn such that the path corresponding to bn has a left label that is a pre-
fix of w and τn(bn+1) ∈ bnA

′∗
n (it is clear from the constructions that such

a sequence exists). As any letter an in A′
n corresponds to a path containing

a long n-segment, the length of τ0τ1 · · · τn(an+1) tends to infinity with n for
all sequences (an)n∈N of letters an ∈ A′

n (that is the ω-growth-Property). In



particular, infb∈Bn+1
|τ0τ1 · · · τn(b)| tends to infinity as n increases so we have

w = limn→+∞ τ0τ1 · · · τn(bn+1) and this ends the proof of the S-adicity. ⊓⊔

Proof (of Lemma 7). Indeed, as ps is non-empty, the interior vertex of p(b) that
admits o(ps) as prefix is left special. Hence the subpath of p(b) that belongs to
ψn(p

(u)) has to be a concatenation of short (n+ 1)-segments ⊓⊔

Proof (of Property 1). It is a direct consequence of Lemma 7. Indeed, suppose
that τn(b) = ua with u 6= ε. By definition, there is at least one subpath p of
p(u) that is a long n-segment. However, by Lemma 7, the subpath of p(b) that
belongs to ψn(p

(u)) is a concatenation of short (n+ 1)-segment. Hence, there is
a path in ψn(p) that is a subpath of a short (n+ 1)-segment s such that for all
short n-segments r, s /∈ ψn(r) and this contradicts the definition of N . ⊓⊔

Proof (of Property 2). Suppose τn(a) = u1bu2bu3 with b ∈ A′
n and u1, u2, u3 ∈

A′
n. From Property 1, the path p(b) is a long n-segment. Moreover, from the way

the morphisms τn are constructed, we can deduce that the interior vertices of
p(a) that admit respectively o(p(b)) and i(p(b)) as prefixes are not left special.
Hence the subpath of p(a) that belongs to ψn

(
p(bu2b)

)
is a loop in Gn+1(w

′) that
is inaccessible from vertices that are not in it. As no n-segment of w′ contains the
"added edges" (♯w[0, n− 2], (♯,wn−1),w[0, n− 1]), this loop exists in Gn+1(w)
and this last graph is not strongly connected. ⊓⊔

Proof (of Property 3). Suppose that τn(a) = u1bu2cu3 and τn(d) = v1cv2bv3 with
a ∈ A′

n+1, b, c ∈ A′
n and u1, u2, u3, v1, v2, v3 ∈ A′∗

n . With the same reasoning as

in the proof of Property 2, the respective subpaths p and q of p(a) and p(d) that
respectively belong to ψn

(
p(bu2c)

)
and ψn

(
p(cv2b)

)
do not contain any left special

vertex. Consequently the path pq in Gn+1(w
′) is a loop which is inaccessible from

vertices that are not in it. With the same reasoning as at the end of the proof of
Property 2, the graph Gn+1(w) is not strongly connected and this contradicts
the uniform recurrence. ⊓⊔

Proof (of Property 4). Indeed, as the sequence w is uniformly recurrent, for all
integers ℓ there is an integer kℓ such that any factor of length ℓ occurs in any
factor of length kℓ. For all non-negative integers n, the paths coded by letters
in A′

n are allowed. Hence τ0τ1 · · · τn(a) is a factor of w for all letters a in A′
n+1.

For all non-negative integers n, let Mn and mn be respectively the maximal
and minimal lengths of a path in Gn coded by a letter of A′

n. Let i be a non-
negative integer. As the length of τ0τ1 · · · τn(an+1) tends to infinity with n for
all sequences (an)n∈N of letters an ∈ A′

n, there is a non-negative integer j such
that all factors of length at most Mi occurs in all factors of length at least mj

and this conclude the proof. ⊓⊔


