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Abstract. We introduce specular sets. These are subsets of groups which7

form a natural generalization of free groups. These sets are an abstract8

generalization of the natural codings of interval exchanges and of linear9

involutions. We prove several results concerning the subgroups generated10

by return words and by maximal bifix codes in these sets.11

1 Introduction12

We have studied in a series of papers initiated in [3] the links between minimal13

sets, subgroups of free groups and bifix codes. In this paper, we continue this14

investigation in a situation which involves groups which are not free anymore.15

These groups, named here specular, are free products of a free group and of a16

finite number of cyclic groups of order two. These groups are close to free groups17

and, in particular, the notion of a basis in such groups is clearly defined. It18

follows from Kurosh’s theorem that any subgroup of a specular group is specular.19

A specular set is a subset of such a group which generalizes the natural codings20

of linear involutions studied in [9].21

The main results of this paper are Theorem 5.1, referred to as the Return22

Theorem and Theorem 5.2, referred to as the Finite Index Basis Theorem. The23

first one asserts that the set of return words to a given word in a uniformly24

recurrent specular set is a basis of a subgroup of index 2 called the even subgroup.25

The second one characterizes the monoidal bases of subgroups of finite index of26

specular groups contained in a specular set S as the finite S-maximal symmetric27

bifix codes contained in S. This generalizes the analogous results proved initially28

in [3] for Sturmian sets and extended in [7] to the class of tree sets (this class29

contains both Sturmian sets and interval exchange sets).30

There are two interesting features of the subject of this paper.31

In the first place, some of the statements concerning the natural codings of32

interval exchanges and of linear involutions can be proved using geometric meth-33

ods, as shown in a separate paper [9]. This provides an interesting interpretation34

of the groups playing a role in these natural codings (these groups are generated35

either by return words or by maximal bifix codes) as fundamental groups of some36

surfaces. The methods used here are purely combinatorial.37

In the second place, the abstract notion of a specular set gives rise to groups38

called here specular. These groups are natural generalizations of free groups, and39



are free products of Z and Z/2Z. They are called free-like in [2] and appear at40

several places in [12].41

The idea of considering recurrent sets of reduced words invariant by taking42

inverses is connected, as we shall see, with the notion of G-rich words of [18].43

The paper is organized as follows. In Section 2, we recall some notions con-44

cerning words, extension graphs and bifix codes. In Section 3, we introduce spec-45

ular groups, which form a family with properties very close to free groups. We46

prove properties of these groups extending those of free groups, like a Schreier’s47

Formula (Formula (3.1)). In Section 4, we introduce specular sets. This family48

contains the natural codings of linear involutions without connection studied49

in [5]. We prove a result connecting specular sets with the family of tree sets50

introduced in [6] (Theorem 4.6). In Section 5, we prove several results concern-51

ing subgroups generated by subsets of specular groups. We first prove that the52

set of return words to a given word forms a basis of the even subgroup (Theo-53

rem 5.1 referred to as the Return Theorem). This is a subgroup defined in terms54

of particular letters, called even letters, that play a special role with respect to55

the extension graph of the empty word. We next prove the Finite Index Basis56

Theorem (Theorem 5.2).57
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2 Preliminaries61

A set of words on the alphabet A and containing A is said to be factorial if it62

contains the factors of its elements. An internal factor of a word x is a word v63

such that x = uvw with u,w nonempty.64

Let S be a set of words on the alphabet A. For w ∈ S, we denote LS(w) =65

{a ∈ A | aw ∈ S}, RS(w) = {a ∈ A | wa ∈ S} and ES(w) = {(a, b) ∈ A × A |66

awb ∈ S}. Further ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) =67

Card(ES(w)). We omit the subscript S when it is clear from the context. A word68

w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if69

e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.70

biextendable) if every word in S is right-extendable (resp. left-extendable, resp.71

biextendable).72

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2.73

It is called bispecial if it is both left-special and right-special.74

For w ∈ S, we denote75

mS(w) = eS(w) − ℓS(w)− rS(w) + 1.

The word w is called weak if mS(w) < 0, neutral if mS(w) = 0 and strong if76

mS(w) > 0.77

We say that a factorial set S is neutral if every nonempty word in S is78

neutral. The characteristic of S is the integer 1 −mS(ε). Thus a neutral set of79



characteristic 1 is such that all words (including the empty word) are neutral.80

This is what is called a neutral set in [6].81

A set of words S 6= {ε} is recurrent if it is factorial and if for any u,w ∈ S,82

there is a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be83

uniformly recurrent if for any word u ∈ S there is an integer n ≥ 1 such that u84

is a factor of any word of S of length n. A uniformly recurrent set is recurrent.85

The factor complexity of a factorial set S of words on an alphabet A is the86

sequence pn = Card(S ∩ An). Let sn = pn+1 − pn and bn = sn+1 − sn be87

respectively the first and second order differences sequences of the sequence pn.88

The following result is from [11] (see also [10], Theorem 4.5.4).89

Proposition 2.1 Let S be a factorial set on the alphabet A. One has bn =90 ∑
w∈S∩An m(w) and sn =

∑
w∈S∩An(r(w) − 1) for all n ≥ 0.91

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w)92

as an undirected graph on the set of vertices which is the disjoint union of L(w)93

and R(w) with edges the pairs (a, b) ∈ E(w). This graph is called the extension94

graph of w. We sometimes denote 1⊗L(w) and R(w)⊗ 1 the copies of L(w) and95

R(w) used to define the set of vertices of E(w).96

If the extension graph E(w) is acyclic, then m(w) = 1 − c, where c is the97

number of connected components of the graph E(w). Thus w is weak or neutral.98

A biextendable set S is called acyclic if for every w ∈ S, the graph E(w)99

is acyclic. A biextendable set S is called a tree set of characteristic c if for any100

nonempty w ∈ S, the graph E(w) is a tree and if E(ε) is a union of c trees (the101

definition of tree set in [6] corresponds to a tree set of characteristic 1). Note102

that a tree set of characteristic c is a neutral set of characteristic c.103

As an example, a Sturmian set is a tree set of characteristic 1 (by a Sturmian104

set, we mean the set of factors of a strict episturmian word, see [3]).105

Let S be a factorial set of words and x ∈ S. A return word to x in S is a106

nonempty word u such that the word xu is in S and ends with x, but has no107

internal factor equal to x. We denote by RS(x) the set of return words to x in108

S. The set of complete return words to x ∈ S is the set xRS(x).109

Bifix codes. A prefix code is a set of nonempty words which does not contain110

any proper prefix of its elements. A suffix code is defined symmetrically. A bifix111

code is a set which is both a prefix code and a suffix code (see [4] for a more112

detailed introduction).113

Let S be a recurrent set. A prefix (resp. bifix) code X ⊂ S is S-maximal114

if it is not properly contained in a prefix (resp. bifix) code Y ⊂ S. Since S is115

recurrent, a finite S-maximal bifix code is also an S-maximal prefix code (see [3],116

Theorem 4.2.2). For example, for any n ≥ 1, the set X = S∩An is an S-maximal117

bifix code.118

Let X be a bifix code. Let Q be the set of words without any suffix in X and119

let P be the set of words without any prefix in X . A parse of a word w with120

respect to a bifix code X is a triple (q, x, p) ∈ Q ×X∗ × P such that w = qxp.121

We denote by dX(w) the number of parses of a word w with respect to X . The122



S-degree of X , denoted dX(S), is the maximal number of parses with respect to123

X of a word of S. For example, the set X = S ∩ An has S-degree n.124

Let S be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8125

in [3], X is S-maximal if and only if its S-degree is finite. Moreover, in this case,126

a word w ∈ S is such that dX(w) < dX(S) if and only if it is an internal factor127

of a word of X .128

3 Specular groups129

We consider an alphabet A with an involution θ : A → A, possibly with some130

fixed points. We also consider the group Gθ generated by A with the relations131

aθ(a) = 1 for every a ∈ A. Thus θ(a) = a−1 for a ∈ A. The set A is called a132

natural set of generators of Gθ.133

When θ has no fixed point, we can set A = B ∪ B−1 by choosing a set of134

representatives of the orbits of θ for the set B. The group Gθ is then the free135

group on B. In general, the group Gθ is a free product of a free group and a136

finite number of copies of Z/2Z, that is, Gθ = Z
∗i ∗ (Z/2Z)∗j where i is the137

number of orbits of θ with two elements and j the number of its fixed points.138

Such a group will be called a specular group of type (i, j). These groups are139

very close to free groups, as we will see. The integer Card(A) = 2i + j is called140

the symmetric rank of the specular group Z
∗i ∗ (Z/2Z)∗j . Two specular groups141

are isomorphic if and only if they have the same type. Indeed, the commutative142

image of a group of type (i, j) is Zi × (Z/2Z)j and the uniqueness of i, j follows143

from the fundamental theorem of finitely generated Abelian groups.144

Example 3.1. Let A = {a, b, c, d} and let θ be the involution which exchanges145

b, d and fixes a, c. Then Gθ = Z ∗ (Z/2Z)2 is a specular group of symmetric rank146

4.147

By Kurosh’s Theorem, any subgroup of a free product G1 ∗ G2 ∗ · · · ∗ Gn148

is itself a free product of a free group and of groups conjugate to subgroups of149

the Gi (see [17]). Thus, we have, replacing the Nielsen-Schreier Theorem of free150

groups, the following result.151

Theorem 3.1. Any subgroup of a specular group is specular.152

It also follows from Kurosh’s theorem that the elements of order 2 in a specular153

group Gθ are the conjugates of the j fixed points of θ and this number is thus154

the number of conjugacy classes of elements of order 2.155

A word on the alphabet A is θ-reduced (or simply reduced) if it has no factor156

of the form aθ(a) for a ∈ A. It is clear that any element of a specular group is157

represented by a unique reduced word.158

A subset of a group G is called symmetric if it is closed under taking inverses.159

A set X in a specular group G is called a monoidal basis of G if it is symmetric,160

if the monoid that it generates is G and if any product x1x2 · · ·xm of elements161

of X such that xkxk+1 6= 1 for 1 ≤ k ≤ m − 1 is distinct of 1. The alphabet162

A is a monoidal basis of Gθ and the symmetric rank of a specular group is the163



cardinality of any monoidal basis (two monoidal bases have the same cardinality164

since the type is invariant by isomorphism).165

If H is a subgroup of index n of a specular group G of symmetric rank r, the166

symmetric rank s of H is167

s = n(r − 2) + 2. (3.1)

This formula replaces Schreier’s Formula (which corresponds to the case j = 0).168

It can be proved as follows. Let Q be a Schreier transversal for H , that is, a169

set of reduced words which is a prefix-closed set of representatives of the right170

cosets Hg of H . Let X be the corresponding Schreier basis, formed of the paq−1
171

for a ∈ A, p, q ∈ Q with pa 6∈ Q and pa ∈ Hq. The number of elements of X172

is nr − 2(n − 1). Indeed, this is the number of pairs (p, a) ∈ Q × A minus the173

2(n − 1) pairs (p, a) such that pa ∈ Q with pa reduced or pa ∈ Q with pa not174

reduced. This gives Formula (3.1).175

Any specular group G = Gθ has a free subgroup of index 2. Indeed, let H be176

the subgroup formed of the reduced words of even length. It has clearly index 2.177

It is free because it does not contain any element of order 2 (such an element is178

conjugate to a fixed point of θ and thus is of odd length).179

A group G is called residually finite if for every element g 6= 1 of G, there is180

a morphism ϕ from G onto a finite group such that ϕ(g) 6= 1.181

It follows easily by considering a free subgroup of index 2 of a specular group182

that any specular group is residually finite. A group G is said to be Hopfian if183

any surjective morphism from G onto G is also injective. By a result of Malcev,184

any finitely generated residually finite group is Hopfian (see [16], p. 197). Thus185

any specular group is Hopfian.186

As a consequence, one has the following result, which can be obtained by187

considering the commutative image of a specular group.188

Proposition 3.2 Let G be a specular group of type (i, j) and let X ⊂ G be a189

symmetric set with 2i+ j elements. If X generates G, it is a monoidal basis of190

G.191

4 Specular sets192

We assume given an involution θ on the alphabet A generating the specular193

group Gθ. A specular set on A is a biextendable symmetric set of θ-reduced194

words on A which is a tree set of characteristic 2. Thus, in a specular set, the195

extension graph of every nonempty word is a tree and the extension graph of196

the empty word is a union of two disjoint trees.197

The following is a very simple example of a specular set.198

Example 4.1. Let A = {a, b} and let θ be the identity on A. Then the set of199

factors of (ab)ω is a specular set (we denote by xω the word x infinitely repeated).200

The following result shows in particular that in a specular set the two trees201

forming E(ε) are isomorphic since they are exchanged by the bijection (a, b) 7→202

(b−1, a−1).203



Proposition 4.1 Let S be a specular set. Let T0, T1 be the two trees such that204

E(ε) = T0 ∪ T1. For any a, b ∈ A and i = 0, 1, one has (1 ⊗ a, b⊗ 1) ∈ Ti if and205

only if (1⊗ b−1, a−1 ⊗ 1) ∈ T1−i206

Proof. Assume that (1 ⊗ a, b ⊗ 1) and (1 ⊗ b−1, a−1 ⊗ 1) are both in T0. Since207

T0 is a tree, there is a path from 1 ⊗ a to a−1 ⊗ 1. We may assume that this208

path is reduced, that is, does not use consecutively twice the same edge. Since209

this path is of odd length, it has the form (u0, v0, u1, . . . , up, vp) with u0 =210

1 ⊗ a and vp = a−1 ⊗ 1. Since S is symmetric, we also have a reduced path211

(v−1
p , u−1

p , · · · , u−1
1 , v−1

0 , u−1
0 ) which is in T0 (for ui = 1 ⊗ ai, we denote u−1

i =212

a−1

i ⊗ 1 and similarly for v−1

i ). Since v−1
p = u0, these two paths have the same213

origin and end. But if a path of odd length is its own inverse, its central edge214

has the form (x, y) with x = y−1 a contradiction with the fact that the words215

of S are reduced. Thus the two paths are distinct. This implies that E(ε) has a216

cycle, a contradiction.217

The next result follows easily from Proposition 2.1.218

Proposition 4.2 The factor complexity of a specular set on the alphabet A is219

pn = n(k − 2) + 2 for n ≥ 1 with k = Card(A).220

Doubling maps. We now introduce a construction which allows one to build221

specular sets.222

A transducer is a graph on a set Q of vertices with edges labeled in Σ × A.223

The set Q is called the set of states, the set Σ is called the input alphabet and224

A is called the output alphabet. The graph obtained by erasing the ouput letters225

is called the input automaton (with an unspecified initial state). Similarly, the226

ouput automaton is obtained by erasing the input letters.227

Let A be a transducer with set of states Q = {0, 1} on the input alphabet Σ228

and the output alphabet A. We assume that229

1. the input automaton is a group automaton, that is, every letter of Σ acts230

on Q as a permutation,231

2. the output labels of the edges are all distinct.232

We define two maps δ0, δ1 : Σ∗ → A∗ corresponding to initial states 0 and 1233

respectively. Thus δ0(u) = v (resp. δ1(u) = v) if the path starting at state 0234

(resp. 1) with input label u has output label v. The pair δ = (δ0, δ1) is called a235

doubling map on Σ ×A and the transducer A a doubling transducer. The image236

of a set T on the alphabet Σ by the doubling map δ is the set S = δ0(T )∪δ1(T ).237

If A is a doubling transducer, we define an involution θA as follows. For any238

a ∈ A, let (i, α, a, j) be the edge with input label α and output label a. We define239

θA(a) as the output label of the edge starting at 1− j with input label α. Thus,240

θA(a) = δi(α) = a if i+ j = 1 and θA(a) = δ1−i(α) 6= a if i = j.241

The reversal of a word w = a1a2 · · ·an is the word w̃ = an · · ·a2a1. A set S242

of words is closed under reversal if w ∈ S implies w̃ ∈ S for every w ∈ S. As is243

well known, any Sturmian set is closed under reversal (see [3]). The proof of the244

following result can found in [5].245



Proposition 4.3 For any tree set T of characteristic 1 on the alphabet Σ, closed246

under reversal and for any doubling map δ, the image of T by δ is a specular set247

relative to the involution θA.248

We now give an example of a specular set obtained by a doubling map.249

Example 4.2. Let Σ = {α, β} and let T be the Fibonacci set, which is the250

Sturmian set formed of the factors of the fixed point of the morphism α 7→251

αβ, β 7→ α. Let δ be the doubling map given by the transducer A of Figure 4.1252

on the left.253

0 1β | d

α | a

α | c

β | b

b

a

c

b

d

c

a

d

Fig. 4.1. A doubling transducer and the extension graph ES(ε).

Then θA is the involution θ of Example 3.1 and the image of T by δ is a254

specular set S on the alphabet A = {a, b, c, d}. The graph ES(ε) is represented255

in Figure 4.1 on the right.256

Note that S is the set of factors of the fixed point gω(a) of the morphism257

g : a 7→ abcab, b 7→ cda, c 7→ cdacd, d 7→ abc. The morphism g is obtained by258

applying the doubling map to the cube f3 of the Fibonacci morphism f in such259

a way that gω(a) = δ0(f
ω(α)).260

Odd and even words. We introduce a notion which plays, as we shall see, an261

important role in the study of specular sets. Let S be a specular set. Since a262

specular set is biextendable, any letter a ∈ A occurs exactly twice as a vertex of263

E(ε), one as an element of L(ε) and one as an element of R(ε). A letter a ∈ A264

is said to be even if its two occurrences appear in the same tree. Otherwise, it265

is said to be odd. Observe that if S is recurrent, there is at least one odd letter.266

Example 4.3. Let S be the specular set of Example 4.2. The letters a, c are odd267

and b, d are even.268

A word w ∈ S is said to be even if it has an even number of odd letters. Otherwise269

it is said to be odd. The set of even words has the form X∗ ∩ S where X ⊂ S is270

a bifix code, called the even code. The set X is the set of even words without a271

nonempty even prefix (or suffix).272

Proposition 4.4 Let S be a recurrent specular set. The even code is an S-273

maximal bifix code of S-degree 2.274

Proof. Let us verify that any w ∈ S is comparable for the prefix order with275

an element of the even code X . If w is even, it is in X∗. Otherwise, since S is276

recurrent, there is a word u such that wuw ∈ S. If u is even, then wuw is even277

and thus wuw ∈ X∗. Otherwise wu is even and thus wu ∈ X∗. This shows that278



X is S-maximal. The fact that it has S-degree 2 follows from the fact that any279

product of two odd letters is a word of X which is not an internal factor of X280

and has two parses.281

Example 4.4. Let S be the specular set of Example 4.2. The even code is X =282

{abc, ac, b, ca, cda, d}.283

Denote by T0, T1 the two trees such that E(ε) = T0 ∪ T1. We consider the284

directed graph G with vertices 0, 1 and edges all the triples (i, a, j) for 0 ≤ i, j ≤ 1285

and a ∈ A such that (1⊗ b, a⊗ 1) ∈ Ti and (1⊗ a, c⊗ 1) ∈ Tj for some b, c ∈ A.286

The graph G is called the parity graph of S. Observe that for every letter a ∈ A287

there is exactly one edge labeled a because a appears exactly once as a left (resp.288

right) vertex in E(ε).289

Note that, when S is a specular set obtained by a doubling map using a290

transducer A, the parity graph of S is the output automaton of A.291

Example 4.5. The parity graph of the specular set of Example 4.2 is the output292

automaton of the doubling transducer of Figure 4.1.293

The proof of the following result can be found in [5].294

Proposition 4.5 Let S be a specular set and let G be its parity graph. Let Si,j295

be the set of words in S which are the label of a path from i to j in the graph296

G.297

(1) The family (Si,j \ {ε})0≤i,j≤1 is a partition of S \ {ε}.298

(2) For u ∈ Si,j \ {ε} and v ∈ Sk,ℓ \ {ε}, if uv ∈ S, then j = k.299

(3) S0,0 ∪ S1,1 is the set of even words.300

(4) S−1

i,j = S1−j,1−i.301

A coding morphism for a prefix code X on the alphabet A is a morphism302

f : B∗ → A∗ which maps bijectively B onto X . Let S be a recurrent set and let303

f be a coding morphism for an S-maximal bifix code. The set f−1(S) is called304

a maximal bifix decoding of S.305

The following result is the counterpart for uniformly recurrent specular sets306

of the main result of [8, Theorem 6.1] asserting that the family of uniformly307

recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.308

The proof can be found in [5].309

Theorem 4.6. The decoding of a uniformly recurrent specular set by the even310

code is a union of two uniformly recurrent tree sets of characteristic 1.311

Palindromes. The notion of palindromic complexity originates in [14] where it312

is proved that a word of length n has at most n+ 1 palindrome factors. A word313

of length n is full if it has n + 1 palindrome factors and a factorial set is full314

(or rich) if all its elements are full. By a result of [15], a recurrent set S closed315

under reversal is full if and only if every complete return word to a palindrome316

in S is a palindrome. It is known that all Sturmian sets are full [14] and also317



all natural codings of interval exchange defined by a symmetric permutation [1].318

In [18], this notion was extended to that of H-fullness, where H is a finite group319

of morphisms and antimorphisms of A∗ (an antimorphism is the composition320

of a morphism and reversal) containing at least one antimorphism. As one of321

the equivalent definitions of H-full, a set S closed under H is H-full if for every322

x ∈ S, every complete return word to the H-orbit of x is fixed by a nontrivial323

element ofH (a complete return word to a set X is a word of S which has exactly324

two factors in X , one as a proper prefix and one as a proper suffix).325

The following result connects these notions with ours. If δ is a doubling map,326

we denote by H the group generated by the antimorphism u 7→ u−1 for u ∈ Gθ327

and the morphism obtained by replacing each letter a ∈ A by τ(a) if there are328

edges (i, b, a, j) and (1− i, b, τ(a), 1− j) in the doubling transducer. Actually, we329

have H = Z/2Z × Z/2Z. The proof of the following result can be found in [5].330

The fact that T is full generalizes the results of [14, 1].331

Proposition 4.7 Let T be a recurrent tree set of characteristic 1 on the alphabet332

Σ, closed under reversal and let S be the image of T under a doubling map. Then333

T is full and S is H-full.334

Example 4.6. Let S be the specular set of Example 4.2. Since it is a doubling335

of the Fibonacci set (which is Sturmian and thus full), it is H-full with respect336

to the group H generated by the map σ taking the inverse and the morphism337

τ which exchanges a, c and b, d respectively. The H-orbit of x = a is the set338

X = {a, c} and CRS(X) = {ac, abc, ca, cda}.339

All four words are fixed by στ . As another example, consider x = ab. Then340

X = {ab, bc, cd, da} and CRS(X) = {abc, bcab, bcd, cda, dab, dacd}. Each of them341

is fixed by some nontrivial element of H .342

5 Subgroup Theorems343

In this section, we prove several results concerning the subgroups generated by344

subsets of a specular set.345

The Return Theorem. By [6, Theorem 4.5], the set of return words to a given346

word in a uniformly recurrent tree set of characteristic 1 containing the alphabet347

A is a basis of the free group on A. We will see a counterpart of this result for348

uniformly recurrent specular sets.349

Let S be a specular set. The even subgroup is the group generated by the350

even code. It is a subgroup of index 2 of Gθ with symmetric rank 2(Card(A)−1)351

by (3.1). Since no even word is its own inverse (see Proposition 4.5), it is a free352

group. Thus its rank is Card(A)− 1. The proof can be found in [5].353

Theorem 5.1. Let S be a uniformly recurrent specular set on the alphabet A.354

For any w ∈ S, the set of return words to w is a basis of the even subgroup.355

Note that this implies that Card(RS(x)) = Card(A)− 1.356



Example 5.1. Let S be the specular set of Example 4.2. The set of return words357

to a is RS(a) = {bca, bcda, cda}. It is a basis of the even subgroup.358

Finite Index Basis Theorem. The following result is the counterpart for specular359

sets of the result holding for uniformly recurrent tree sets of characteristic 1360

(see [7, Theorem 4.4]). The proof can be found in [5].361

Theorem 5.2. Let S be a uniformly recurrent specular set and let X ⊂ S be a362

finite symmetric bifix code. Then X is an S-maximal bifix code of S-degree d if363

and only if it is a monoidal basis of a subgroup of index d.364

Note that when X is not symmetric, the index of the subgroup generated by365

X may be different of dX(S).366

Note also that Theorem 5.2 implies that for any uniformly recurrent specular367

set and for any finite symmetric S-maximal bifix code X , one has Card(X) =368

dX(S)(Card(A)−2)+2. This follows actually also (under more general hypothe-369

ses) from Theorem 2 in [13].370

The proof of the Finite Index Basis Theorem needs preliminary results which371

involve concepts like that of incidence graph which are interesting in themselves.372

Saturation Theorem. The incidence graph of a set X , is the undirected graph373

GX defined as follows. Let P be the set of proper prefixes of X and let Q be the374

set of its proper suffixes. Set P ′ = P \ {1} and Q′ = Q \ {1}. The set of vertices375

of GX is the disjoint union of P ′ and Q′. The edges of GX are the pairs (p, q) for376

p ∈ P ′ and q ∈ Q′ such that pq ∈ X . As for the extension graph, we sometimes377

denote 1⊗P ′, Q′⊗ 1 the copies of P ′, Q′ used to define the set of vertices of GX .378

Example 5.2. Let S be a factorial set and let X = S ∩ A2 be the bifix code379

formed of the words of S of length 2. The incidence graph of X is identical with380

the extension graph E(ε).381

LetX be a symmetric set. We use the incidence graph to define an equivalence382

relation γX on the set P of proper prefixes of X , called the coset equivalence of383

X , as follows. It is the relation defined by p ≡ q mod γX if there is a path (of384

even length) from 1⊗ p to 1⊗ q or a path (of odd length) from 1⊗ p to q−1 ⊗ 1385

in the incidence graph GX . It is easy to verify that, since X is symmetric, γX is386

indeed an equivalence. The class of the empty word ε is reduced to ε.387

The following statement is the generalization to symmetric bifix codes of388

Proposition 6.3.5 in [3]. We denote by 〈X〉 the subgroup generated by X .389

Proposition 5.3 Let X be a symmetric bifix code and let P be the set of its390

proper prefixes. Let γX be the coset equivalence of X and let H = 〈X〉. For any391

p, q ∈ P , if p ≡ q mod γX , then Hp = Hq.392

We now use the coset equivalence γX to define the coset automaton CX of a393

symmetric bifix code X as follows. The vertices of CX are the equivalence classes394

of γX . We denote by p̂ the class of p. There is an edge labeled a ∈ A from s to395

t if for some p ∈ s and q ∈ t (that is s = p̂ and t = q̂), one of the following cases396

occurs (see Figure 5.1):397



(i) pa ∈ P and pa ≡ q mod γX398

(ii) or pa ∈ X and q = ε.399

ε̂ p̂ p̂a
p a

(i)

p̂ ε̂
a

(ii)

Fig. 5.1. The edges of the coset automaton.

The proof of the following statement can be found in [5].400

Proposition 5.4 Let X be a symmetric bifix code, let P be its set of proper401

prefixes and let H = 〈X〉. If for p, q ∈ P and a word w ∈ A∗ there is a path402

labeled w from the class p̂ to the class q̂, then Hpw = Hq.403

Let A be an alphabet with an involution θ. A directed graph with edges404

labeled in A is called symmetric if there is an edge from p to q labeled a if and405

only if there is an edge from q to p labeled a−1. If G is a symmetric graph and406

v is a vertex of G, the set of reductions of the labels of paths from v to v is a407

subgroup of Gθ called the subgroup described by G with respect to v.408

A symmetric graph is called reversible if for every pair of edges of the form409

(v, a, w), (v, a, w′), one has w = w′ (and the symmetric implication since the410

graph is symmetric).411

Proposition 5.5 Let S be a specular set and let X ⊂ S be a finite symmetric412

bifix code. The coset automaton CX is reversible. Moreover the subgroup described413

by CX with respect to the class of the empty word is the group generated by X.414

Prime words with respect to a subgroup. Let H be a subgroup of the specular415

group Gθ and let S be a specular set on A relative to θ. The set of prime words416

in S with respect to H is the set of nonempty words in H ∩ S without a proper417

nonempty prefix in H ∩S. Note that the set of prime words with respect to H is418

a symmetric bifix code. One may verify that it is actually the unique bifix code419

X such that X ⊂ S ∩H ⊂ X∗.420

The following statement is a generalization of Theorem 5.2 in [6] (Saturation421

Theorem). The proof can be found in [5].422

Theorem 5.6. Let S be a specular set. Any finite symmetric bifix code X ⊂423

S is the set of prime words in S with respect to the subgroup 〈X〉. Moreover424

〈X〉 ∩ S = X∗ ∩ S.425

A converse of the Finite Index Basis Theorem. The following is a converse of426

Theorem 5.2. For the proof, see [5].427

Theorem 5.7. Let S be a recurrent and symmetric set of reduced words of factor428

complexity pn = n(Card(A)−2)+2. If S∩An is a monoidal basis of the subgroup429

〈An〉 for all n ≥ 1, then S is a specular set.430
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5. Valérie Berthé, , Clelia De Felice, Vincent Delecroix, Francesco Dolce, Dominique441

Perrin, Christophe Reutenauer, and Giuseppina Rindone. Specular sets. 2015.442

https://arXiv.org/abs/1505.00707.443
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