A new approach to the 2 -regularity of the ℓ-abelian complexity of 2 -automatic sequences (extended abstract)

Aline Parreau, Michel Rigo, Eric Rowland ${ }^{\ddagger}$, and Élise Vandomme ${ }^{\S}$

3 June 2014

Abstract

We show that a sequence satisfying a certain symmetry property is 2 -regular in the sense of Allouche and Shallit. We apply this theorem to develop a general approach for studying the ℓ-abelian complexity of 2 -automatic sequences. In particular, we prove that the period-doubling word and the Thue-Morse word have 2 -abelian complexity sequences that are 2 -regular. Along the way, we also prove that the 2 -block codings of these two words have 1 -abelian complexity sequences that are 2 -regular.

1 Introduction

This extended abstract 1 is about some structural properties of integer sequences that occur naturally in combinatorics on words. Since the fundamental work of Cobham [6, the so-called automatic sequences have been extensively studied. We refer the reader to [3] for basic definitions and properties. These infinite words over a finite alphabet can be obtained by iterating a prolongable morphism of constant length to get an infinite word (and then, an extra letter-to-letter morphism, also called coding, may be applied once). As a fundamental example, the Thue-Morse word $\mathbf{t}=\sigma^{\omega}(0)=0110100110010110 \cdots$ is a fixed point of the morphism σ over the free monoid $\{0,1\}^{*}$ defined by $\sigma(0)=01, \sigma(1)=10$. Similarly, the period-doubling word $\mathbf{p}=\psi^{\omega}(0)=01000101010001000100 \cdots$ is a fixed point of the morphism ψ over $\{0,1\}^{*}$ defined by $\psi(0)=01, \psi(1)=00$.
Let $k \geq 2$ be an integer. One characterization of k-automatic sequences is that their k-kernels are finite; see [7] or [3, Section 6.6].

Definition 1. The k-kernel of a sequence $\mathbf{s}=s(n)_{n \geq 0}$ is the set

$$
\mathcal{K}_{k}(\mathbf{s})=\left\{s\left(k^{i} n+j\right)_{n \geq 0}: i \geq 0 \text { and } 0 \leq j<k^{i}\right\} .
$$

For instance, the 2 -kernel $\mathcal{K}_{2}(\mathbf{t})$ of the Thue-Morse word contains exactly two elements, namely t and $\sigma^{\omega}(1)$.

A natural generalization of automatic sequences to sequences on an infinite alphabet is given by the notion of k-regular sequences. We will restrict ourselves to sequences taking integer values only.

[^0]Definition 2. Let $k \geq 2$ be an integer. A sequence $\mathbf{s}=s(n)_{n \geq 0} \in \mathbb{Z}^{\mathbb{N}}$ is k-regular if $\left\langle\mathcal{K}_{k}(\mathbf{s})\right\rangle$ is a finitely-generated \mathbb{Z}-module, i.e., there exist a finite number of sequences $s_{1}(n)_{n \geq 0}, \ldots, s_{\ell}(n)_{n \geq 0}$ such that every sequence in the k-kernel $\mathcal{K}_{k}(\mathbf{s})$ is a \mathbb{Z}-linear combination of the s_{r} 's. Otherwise stated, for all $i \geq 0$ and for all $j \in\left\{0, \ldots, k^{i}-1\right\}$, there exist integers c_{1}, \ldots, c_{ℓ} such that

$$
\forall n \geq 0, \quad s\left(k^{i} n+j\right)=\sum_{r=1}^{\ell} c_{r} t_{r}(n)
$$

Allouche and Shallit give many natural examples of k-regular sequences and classical results [1], [2]. The k-regularity of a sequence provides us with structural information about how the different terms are related to each other.
We will often make use of the following composition theorem for a function F defined piecewise on several k-automatic sets.

Lemma 3. Let $k \geq 2$. Let $P_{1}, \ldots, P_{\ell}: \mathbb{N} \rightarrow\{0,1\}$ be unary predicates that are k-automatic. Let f_{1}, \ldots, f_{ℓ} be k-regular functions. The function $F: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
F(n)=\sum_{i=1}^{\ell} f_{i}(n) P_{i}(n)
$$

is k-regular.
A classical measure of complexity of an infinite word \mathbf{x} is its factor complexity $\mathcal{P}_{\mathbf{x}}^{(\infty)}: \mathbb{N} \rightarrow \mathbb{N}$ which maps n to the number of distinct factors of length n occurring in \mathbf{x}. It is well known that a k-automatic sequence \mathbf{x} has a k-regular factor complexity function [13, 5]. As an example, again for the Thue-Morse word, we have

$$
\mathcal{P}_{\mathbf{t}}^{(\infty)}(2 n+1)=2 \mathcal{P}_{\mathbf{t}}^{(\infty)}(n+1) \text { and } \mathcal{P}_{\mathbf{t}}^{(\infty)}(2 n)=\mathcal{P}_{\mathbf{t}}^{(\infty)}(n+1)+\mathcal{P}_{\mathbf{t}}^{(\infty)}(n)
$$

for all $n \geq 2$.
Recently there has been a renewal of interest in abelian notions arising in combinatorics on words (e.g., avoiding abelian or ℓ-abelian patterns, abelian bordered words, etc.). For instance, two finite words u and v are abelian equivalent if one is obtained by permuting the letters of the other one. Since the Thue-Morse word is an infinite concatenation of factors 01 and 10 , this word is abelian periodic of period 2. The abelian complexity of an infinite word \mathbf{x} is a function $\mathcal{P}_{\mathbf{x}}^{(1)}: \mathbb{N} \rightarrow \mathbb{N}$ which maps n to the number of distinct factors of length n occurring in \mathbf{x}, counted up to abelian equivalence. Madill and Rampersad [12] provided the first example of regularity in this setting: the abelian complexity of the paper-folding word (which is another typical example of an automatic sequence) is unbounded and 2-regular.
Let $\ell \geq 1$ be an integer. Based on [9] the notions of abelian equivalence and thus abelian complexity were recently extended to ℓ-abelian equivalence and ℓ-abelian complexity [10].

Definition 4. Let u, v be two finite words. We let $|u|_{v}$ denote the number of occurrences of the factor v in u. Two finite words x and y are ℓ-abelian equivalent if $|x|_{v}=|y|_{v}$ for all words v of length $|v| \leq \ell$.

As an example, the words 011010011 and 001101101 are 2-abelian equivalent but not 3-abelian equivalent (the factor 010 occurs in the first word but not in the second one). Hence one can define the function $\mathcal{P}_{\mathbf{x}}^{(\ell)}: \mathbb{N} \rightarrow \mathbb{N}$ which maps n to the number of distinct factors of length n occurring in the infinite word \mathbf{x}, counted up to ℓ-abelian equivalence. In particular, for any infinite word \mathbf{x}, we have for all $n \geq 0$

$$
\mathcal{P}_{\mathbf{x}}^{(1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{x}}^{(\ell)}(n) \leq \mathcal{P}_{\mathbf{x}}^{(\ell+1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{x}}^{(\infty)}(n) .
$$

Since we are interested in ℓ-abelian complexity, it is natural to consider the following operation that permits us to compare factors of length ℓ occurring in an infinite word.

Definition 5. Let $\ell \geq 1$. The ℓ-block coding of the word $\mathbf{w}=w_{0} w_{1} w_{2} \cdots$ over the alphabet A is the word

$$
\operatorname{block}(\mathbf{w}, \ell)=\left(w_{0} \cdots w_{\ell-1}\right)\left(w_{1} \cdots w_{\ell}\right)\left(w_{2} \cdots w_{\ell+1}\right) \cdots\left(w_{j} \cdots w_{j+\ell-1}\right) \cdots
$$

over the alphabet A^{ℓ}. If $A=\{0, \ldots, r-1\}$, then it is convenient to identify A^{ℓ} with the set $\left\{0, \ldots, r^{\ell}-1\right\}$ and each word $w_{0} \cdots w_{\ell-1}$ of length ℓ is thus replaced with the integer obtained by reading the word in base r, i.e., $\sum_{i=0}^{\ell-1} w_{i} r^{\ell-1-i}$. It is well known that the ℓ-block coding of a k-automatic sequence is again a k-automatic sequence [6]. One can also define accordingly the ℓ-block coding of a finite word u of length at least ℓ. For example, the 2 -block codings of 011010011 and 001101101 are respectively 13212013 and 01321321 , which are abelian equivalent.
Lemma 6. [10, Lemma 2.3] Let $\ell \geq 1$. Two finite words u and v of length at least $\ell-1$ are ℓ-abelian equivalent if and only if they share the same prefix (resp. suffix) of length $\ell-1$ and the words block (u, ℓ) and $\operatorname{block}(v, \ell)$ are abelian equivalent.

In this paper, we show that both the period-doubling word \mathbf{p} and the Thue-Morse word \mathbf{t} have 2 -abelian complexity sequences which are 2 -regular. In [11, the authors studied the asymptotic behavior of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ and also derived some recurrence relations showing that the abelian complexity $\mathcal{P}_{\mathbf{p}}^{(1)}(n)_{n \geq 0}$ of the period-doubling word \mathbf{p} is 2-regular. From [4], one can deduce some other relations about the abelian complexity of \mathbf{p}.
Given the first few terms of a sequence, the second and last authors conjectured the 2-regularity of the sequence $\mathcal{P}_{\mathbf{t}}^{(2)}(n)_{n \geq 0}$ by exhibiting relations that should be satisfied (and proved some recurrence relations for this sequence) [16]. See [2, Section 6] for such a "predictive" algorithm that recognizes regularity. Recently, Greinecker proved the recurrence relations needed to prove the 2 -regularity of this sequence [8]. Hopefully, the two approaches are complementary: in this paper, we prove 2 -regularity without exhibiting the explicit recurrence relations.
Our approach is based on Theorem 7, which establishes the 2-regularity of a large family of sequences satisfying a recurrence relation with a parameter c and $2^{\ell_{0}}$ initial conditions. Computer experiments suggest that many 2 -abelian complexity functions satisfy such a reflection property.
Theorem 7. Let $\ell_{0} \geq 0$ and $c \in \mathbb{Z}$. Suppose $s(n)_{n \geq 0}$ is a sequence such that, for all $\ell \geq \ell_{0}$ and $0 \leq r \leq 2^{\ell}-1$, we have

$$
s\left(2^{\ell}+r\right)= \begin{cases}s(r)+c & \text { if } r \leq 2^{\ell-1} \tag{1}\\ s\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1} .\end{cases}
$$

Then $s(n)_{n \geq 0}$ is 2 -regular.
It turns out that the general solution of Equation (1) can be expressed naturally in terms of the sequence $A(n)_{n \geq 0}$ satisfying the recurrence for $\ell_{0}=0$ and $c=1$ with $A(0)=0$. The sequence $A(n)_{n \geq 0}$ appears as [14, A007302. Allouche and Shallit [2] identified this sequence as an example of a regular sequence.
From Equation (11) one can get some information about the asymptotic behavior of the sequence $s(n)_{n \geq 0}$. We have $s(n)=O(\log n)$, and moreover

$$
s\left(\frac{4^{\ell+1}-1}{3}\right)=s\left(4^{\ell}+\cdots+4^{1}+4^{0}\right)=\left(\ell-\left\lfloor\frac{\ell_{0}-1}{2}\right\rfloor\right) c+s\left(\frac{4^{\left.\left\lfloor\ell \ell_{0}+1\right) / 2\right\rfloor}-1}{3}\right)
$$

for $\ell \geq\left\lfloor\frac{\ell_{0}-1}{2}\right\rfloor$. At the same time, there are many subsequences of $s(n)_{n \geq 0}$ which are constant; for example, $s\left(2^{\ell}\right)=c$ for $\ell \geq \ell_{0}$.
Example 8. As an illustration of the reflection property described in Theorem [7 we consider in Figure 1 the abelian complexity of the 2 -block coding of the period-doubling word \mathbf{p}.

Figure 1: The abelian complexity of $\operatorname{block}(\mathbf{p}, 2)$ on the intervals $[32,64]$ and $[64,128]$.

2 2-Abelian complexity of the period-doubling word

To show the 2 -regularity of the 2 -abelian complexity of \mathbf{p}, we consider first the abelian complexity of the 2 -block coding \mathbf{x} of \mathbf{p} and then we compare $\mathcal{P}_{\mathbf{x}}^{(1)}(n)$ with $\mathcal{P}_{\mathbf{p}}^{(2)}(n+1)$. The 2 -block coding of \mathbf{p} is given by

$$
\mathbf{x}:=\operatorname{block}(\mathbf{p}, 2)=\phi^{\omega}(1)=12001212120012001200121212001212 \ldots
$$

where ϕ is the morphism defined by $\phi: 0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$.
We introduce functions related to the number of 0 's in the factors of \mathbf{x} of length n. Let $n \in \mathbb{N}$. We let $\max _{0}(n)\left(\right.$ resp. $\left.\min _{0}(n)\right)$ denote the maximum (resp. minimum) number of 0 's in a factor of \mathbf{x} of length n. Let $\Delta_{0}(n):=\max _{0}(n)-\min _{0}(n)$ be the difference between these two values. To prove the 2-regularity of the sequence $\mathcal{P}_{\mathbf{x}}^{(1)}(n)_{n \geq 0}$, we first express $\mathcal{P}_{\mathbf{x}}^{(1)}(n)$ in terms of $\Delta_{0}(n)$.
Proposition 9. For $n \in \mathbb{N}$,

$$
\mathcal{P}_{\mathbf{x}}^{(1)}(n)= \begin{cases}\frac{3}{2} \Delta_{0}(n)+\frac{3}{2} & \text { if } \Delta_{0}(n) \text { is odd } \\ \frac{3}{2} \Delta_{0}(n)+1 & \text { if } \Delta_{0}(n) \text { and } n-\min _{0}(n) \text { are even } \\ \frac{3}{2} \Delta_{0}(n)+2 & \text { if } \Delta_{0}(n) \text { and } n-\min _{0}(n)+1 \text { are even. }\end{cases}
$$

To be able to apply the composition result given by Lemma 3 to the expression of $\mathcal{P}_{\mathbf{x}}^{(1)}$, we have therefore to prove that the sequence $\Delta_{0}(n)_{n \geq 0}$ is 2 -regular (this is consequence of the following result) and that the predicates occurring in the previous statement are 2-automatic.

Proposition 10. Let $\ell \geq 2$ and $0 \leq r<2^{\ell}$. We have

$$
\Delta_{0}\left(2^{\ell}+r\right)= \begin{cases}\Delta_{0}(r)+2 & \text { if } r \leq 2^{\ell-1} \\ \Delta_{0}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

As a consequence of Propositions 9 and 10, $\mathcal{P}_{\mathbf{x}}^{(1)}(n)$ satisfies a reflection recurrence as in Theorem 7 with $\ell_{0}=2$ and $c=3$. This implies again that the sequence is 2 -regular.
Now consider the 2-abelian complexity $\mathcal{P}_{\mathbf{p}}^{(2)}$. To apply Lemma 3, we will express $\mathcal{P}_{\mathbf{p}}^{(2)}$ in terms of the abelian complexity $\mathcal{P}_{\mathbf{x}}^{(1)}$ and the following additional 2 -automatic functions.

Definition 11. We define the max-jump function $\operatorname{MJ}_{0}: \mathbb{N} \rightarrow\{0,1\}$ by $\operatorname{MJ}_{0}(n)=1$ when the function $\max _{0}$ increases. Similarly, let $\mathrm{mj}_{0}: \mathbb{N} \rightarrow\{0,1\}$ be the min-jump function defined by $\operatorname{mj}_{0}(n)=\min _{0}(n+1)-\min _{0}(n)$.

To compute $\mathcal{P}_{\mathbf{p}}^{(2)}$, we will study when an abelian equivalence class of \mathbf{x} splits into two 2 -abelian equivalence classes of \mathbf{p}. Let \mathcal{X} be an abelian equivalence class of factors of \mathbf{x} of length n with
n_{0} zeros. We can show that \mathcal{X} can possibly lead to two 2 -abelian equivalence classes of factors of length $n+1$ of \mathbf{p} only if n and n_{0} are both even. In most cases, \mathcal{X} will indeed leads to two distinct 2 -abelian equivalence classes. The exceptions can be identified using the max-jump and min-jump functions. The relationship between these two functions and $\mathcal{P}_{\mathbf{p}}^{(2)}$ and $\mathcal{P}_{\mathbf{x}}^{(1)}$ is stated in the following result.
Proposition 12. Let $n \geq 1$ be an integer. Then

$$
\mathcal{P}_{\mathbf{p}}^{(2)}(n+1)-\mathcal{P}_{\mathbf{x}}^{(1)}(n)= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{\Delta_{0}(n)}{2}+1-\operatorname{MJ}_{0}(n)-\operatorname{mj}_{0}(n) & \text { if } n \text { is even } .\end{cases}
$$

In particular, the sequence $\mathcal{P}_{\mathbf{p}}^{(2)}(n)_{n \geq 0}$ is 2 -regular.

3 2-Abelian complexity of the Thue-Morse word

In this section, we turn our attention to the Thue-Morse word \mathbf{t}. The approach here is similar to the one of the period-doubling word: we consider the abelian complexity of $\mathbf{y}=\operatorname{block}(\mathbf{t}, 2)$, and then we compare $\mathcal{P}_{\mathbf{y}}^{(1)}(n)$ with $\mathcal{P}_{\mathbf{t}}^{(2)}(n+1)$. The 2-block coding of \mathbf{t} is given by

$$
\mathbf{y}:=\operatorname{block}(\mathbf{t}, 2)=\nu^{\omega}(1)=132120132012132120121320 \cdots
$$

where ν is the morphism defined by $\nu: 0 \mapsto 12,1 \mapsto 13,2 \mapsto 20,3 \mapsto 21$.
For the Thue-Morse word, the appropriate statistic for factors of \mathbf{y} is the total number of 1 's and 2's (or, equivalently, the total number of 0 's and 3 's). Therefore, for $n \in \mathbb{N}$ we set $\Delta_{12}(n):=\max _{12}(n)-\min _{12}(n)$ where $\max _{12}(n)\left(\right.$ resp. $\left.\min _{12}(n)\right)$ denote the maximum (resp. minimum) of $\left\{|u|_{1}+|u|_{2}: u\right.$ is a factor of \mathbf{y} with $\left.|u|=n\right\}$.
In particular, $\Delta_{12}(n)+1$ is the abelian complexity function $\mathcal{P}_{\mathbf{p}}^{(1)}(n)$ of the period-doubling word. This function was also studied in [4, 11]. Here we can obtain relations for Δ_{12} of the same type as in Theorem 7
As in the previous section, the fact that $\mathcal{P}_{\mathbf{y}}^{(1)}(n)_{n \geq 0}$ is 2-regular will follow from Lemma 3 applied to the next statement.
Proposition 13. Let $n \in \mathbb{N}$. We have

$$
\mathcal{P}_{\mathbf{y}}^{(1)}(n)= \begin{cases}2 \Delta_{12}(n)+2 & \text { if } n \text { is odd } \tag{2}\\ \frac{5}{2} \Delta_{12}(n)+\frac{5}{2} & \text { if } n \text { and } \Delta_{12}(n)+1 \text { are even } \\ \frac{5}{2} \Delta_{12}(n)+4 & \text { if } n, \Delta_{12}(n) \text { and } \min _{12}(n)+1 \text { are even } \\ \frac{5}{2} \Delta_{12}(n)+1 & \text { if } n, \Delta_{12}(n) \text { and } \min _{12}(n) \text { are even. }\end{cases}
$$

As in Section 2, we define two new functions $\operatorname{MJ}_{03}(n)$ and $\operatorname{mj}_{03}(n)$ analogously to Definition 11 , This permits us to compute the difference $\mathcal{P}_{\mathbf{t}}^{(2)}(n+1)-\mathcal{P}_{\mathbf{y}}^{(1)}(n)$.
Theorem 14. Let $n \in \mathbb{N}$. The difference $\mathcal{P}_{\mathbf{t}}^{(2)}(n+1)-\mathcal{P}_{\mathbf{y}}^{(1)}(n)$ is equal to

$$
\begin{cases}\Delta_{12}(n)+2-2 \mathrm{MJ}_{03}(n)-2 \mathrm{mj}_{03}(n) & \text { if } n, \min _{12}(n)+1 \text { and } \Delta_{12}(n)+1 \text { are odd } \\ \Delta_{12}(n)+1-2 \mathrm{MJ}_{03}(n) & \text { if } n, \min _{12}(n)+1 \text { and } \Delta_{12}(n) \text { are odd } \\ \Delta_{12}(n)+1-2 \operatorname{mj}_{03}(n) & \text { if } n, \min _{12}(n) \text { and } \Delta_{12}(n) \text { are odd } \\ \Delta_{12}(n) & \text { if } n, \min _{12}(n) \text { and } \Delta_{12}(n)+1 \text { are odd } \\ \frac{1}{2} \Delta_{12}(n)+1 & \text { if } n, \min _{12}(n) \text { and } \Delta_{12}(n) \text { are even } \\ \frac{1}{2} \Delta_{12}(n) & \text { if } n, \min _{12}(n)+1 \text { and } \Delta_{12}(n) \text { are even } \\ \frac{1}{2} \Delta_{12}(n)+\frac{1}{2} & \text { if } n \text { and } \Delta_{12}(n)+1 \text { are even. }\end{cases}
$$

In particular, the sequence $\mathcal{P}_{\mathbf{t}}^{(2)}(n)_{n \geq 0}$ is 2 -regular.

4 Conclusions

The two examples treated in this paper suggest that a general framework to study the ℓ-abelian complexity of k-automatic sequences may exist. Indeed, one conjectures that any k-automatic sequence has an ℓ-abelian complexity function that is k-regular. As an example, if we consider the 3 -block coding of the period-doubling word,

$$
\mathbf{z}=\operatorname{block}(\mathbf{p}, 3)=240125252401240124 \cdots
$$

The abelian complexity $\mathcal{P}_{\mathbf{z}}^{(1)}(n)_{n \geq 0}=(1,5,5,8,6,10,19,11, \ldots)$ seems to satisfy, for $\ell \geq 4$, the following relations (which are quite similar to what we have discussed so far)

$$
\mathcal{P}_{\mathbf{z}}^{(1)}\left(2^{\ell}+r\right)= \begin{cases}\mathcal{P}_{\mathbf{z}}^{(1)}(r)+5 & \text { if } r \leq 2^{\ell-1} \text { and } r \text { even } \\ \mathcal{P}_{\mathbf{z}}^{(1)}(r)+7 & \text { if } r \leq 2^{\ell-1} \text { and } r \text { odd } \\ \mathcal{P}_{\mathbf{z}}^{(1)}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1} .\end{cases}
$$

Then, the second step would be to relate $\mathcal{P}_{\mathbf{p}}^{(3)}$ with $\mathcal{P}_{\mathbf{z}}^{(1)}$.

References

[1] Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Science 98 (1992) 163-197.
[2] Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences II, Theoretical Computer Science 307 (2003) 3-29.
[3] Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge University Press, Cambridge, 2003.
[4] Francine Blanchet-Sadri and James D. Currie and Narad Rampersad and Nathan Fox, Abelian complexity of fixed point of morphism $0 \mapsto 012,1 \mapsto 02,2 \mapsto 1$, INTEGERS 14 (2014) \#A11.
[5] Émilie Charlier and Narad Rampersad and Jeffrey Shallit, Enumeration and decidable properties of automatic sequences, Internat. J. Found. Comput. Sci. 23 (2012), no. 5, 1035-1066.
[6] Alan Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 186-192.
[7] Samuel Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
[8] Florian Greinecker, On the 2-abelian complexity of Thue-Morse subwords, arXiv:1404.3906.
[9] Juhani Karhumäki, Generalized Parikh mappings and homomorphisms, Information and Control 47 (1980), 155-165.
[10] Juhani Karhumäki and Aleksi Saarela and Luca Q. Zamboni, On a generalization of Abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A 120 (2013), no. 8, 2189-2206.
[11] Juhani Karhumäki and Aleksi Saarela and Luca Q. Zamboni, Variations of the MorseHedlund theorem for k-abelian equivalence, arXiv:1302.3783v1.
[12] Blake Madill and Narad Rampersad, The abelian complexity of the paperfolding word Discrete Math. 313 (2013), no. 7, 831-838.
[13] Brigitte Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France 124 (1996), 329-346.
[14] The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[15] Aline Parreau, Michel Rigo, Eric Rowland and Élise Vandomme, A new approach to the 2 -regularity of the ℓ-abelian complexity of 2 -automatic sequences, arXiv:1405.3532.
[16] Michel Rigo and Élise Vandomme, 2-abelian complexity of the Thue-Morse sequence, http://hdl.handle.net/2268/135841, December 2012.

[^0]: *FNRS post-doctoral fellow at the University of Liege
 ${ }^{\dagger}$ University of Liege
 ${ }^{\ddagger}$ BeIPD-COFUND post-doctoral fellow at the University of Liege
 ${ }^{\S}$ Corresponding author, University of Liege, University of Grenoble
 ${ }^{1}$ For the full version of this paper, see [15].

