Quentin Wallemacq IFPA, AGO Dept., University of Liège

CosPa Meeting 19th of November 2014

Introduction

The status of direct-search experiments

• DAMA/LIBRA:

Annual modulation of the event rate at the 9.3 σ C.L. in the (2-6) keV energy interval

•CDMS-II/Si: 3 nuclear recoils at 8.2, 9.5 and 12.3 keV with a 5%-probability to be due to background

• CoGeNT:

Annual modulation of the bulk events at the 2.2σ C.L. in the (0.5-2) keV energy interval

• CDMS-II/Ge, superCDMS, XENON100, LUX: No signal that cannot be explained by background

Introduction

The status of direct-search experiments

<u>Rules of the game</u>: - DAMA/LIBRA annual modulation at the 9.3σ C.L. exists and is **due to DARK MATTER**!

- CoGeNT annual modulation does not exist Davis et al. (2014)

- CDMS-II/Si events are due to a fluctuation of the background

The model

• DAMA: no distinction between NUCLEAR RECOILS (neutrons, WIMPs)

and ELECTRON RECOILS (X/ γ -ray photons, charged particles,...)

The model

• DAMA: no distinction between NUCLEAR RECOILS (neutrons, WIMPs)

The model

• DAMA: no distinction between NUCLEAR RECOILS (neutrons, WIMPs)

• Thermal DM particles: formation of BOUND STATES with atoms in the detector

The model

• DAMA: no distinction between NUCLEAR RECOILS (neutrons, WIMPs)

• Thermal DM particles: formation of BOUND STATES with atoms in the detector

• Bound state: need for an attractive interaction — Dark anti-atoms

The model

Dark anti-hydrogen atom $e^{i} + a_0$ $\gamma \in \gamma$ p^{i} and e^{i} electric milli-charges of values $\pm \varepsilon e$ Holdom (1986), Foot (2000), Feldman et al. (2007), Cline (2012)

The model

Constraints on milli-charges

From cosmology, astrophysics:

- Cooling of red giants and white dwarfs *Raffelt (1996), Davidson et al. (2000)*
- Big Bang Nucleosynthesis Davidson et al. (2000)

$$\epsilon < 10^{-14} \text{ for } m_p, m_e < 1 \text{ MeV}$$

 $\longrightarrow \text{ OK since } m_p \sim 1 \text{ TeV}$
 $m_e \sim 1 \text{ GeV}$

From laboratory:

- Invisible decay of positronium: $\varepsilon < 3.4 \ 10^{-5}$ for m_p , $m_e < m_e \longrightarrow OK$ Badertscher et al. (2007)
- Accelerators: $\varepsilon < 0.1$ for m_{p} , $m_{e} > 1$ GeV \longrightarrow OK Prinz et al. (1998)

Constraints on self-interacting DM

Self-interacting dark matter:

Constraints from: Bullet cluster Halo shapes Formation of a dark disk *Randall et al. (2013)* SUBDOMINANT dark sector: at most 5% of total dark mass of halos $\rho_{dark atoms} = f \rho_{local}$

 0.3 GeV/cm^3

From space to underground detectors

Thermalization in terrestrial matter

• Energy loss per unit path length: $\frac{dE}{dx}$ • Penetration length: $x = \int_{E_{th}}^{E_0} \frac{dE}{|dE/dx|} < 1 \text{ km}$ Typical depth of underground detectors

Drift towards the center of the earth (~10 cm/s) — Reach underground detector with thermal energies

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$
- DAMA: NaI(Tl) crystal Binding to thallium (Z=81) dopant present at the 10⁻³ level

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$
- DAMA: NaI(Tl) crystal Binding to thallium (Z=81) dopant present at the 10⁻³ level
 Elastic collisions in crust (silicon Z=14)

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$
- DAMA: NaI(Tl) crystal Binding to thallium (Z=81) dopant present at the 10⁻³ level
 Elastic collisions in crust (silicon Z=14)
 Only pay attention to lead (Z=82) in crust and shieldings

DAMA/LIBRA annual modulation: R ~ 0.04 cpd/kg

- \rightarrow Requires small values of $\dot{a_0} \sim 30$ fm
- Strong screening
- → Binding only to high-Z elements $(Z > Z_{min})$
- DAMA: NaI(Tl) crystal Binding to thallium (Z=81) dopant
 present at the 10⁻³ level
- Elastic collisions in crust (silicon Z=14)
 - Only pay attention to lead (Z=82) in crust and shieldings

• No bound state with germanium, xenon

 Consistent with CDMS-II/Ge, superCDMS, XENON100, LUX (CoGeNT, CDMS-II/Si)

Results

DAMA modulation + constraints/requirements

Conclusions

- Sub-dominant dark sector made of dark anti-atoms interacting with standard sector through electric milli-charges
- Thermalization in terrestrial crust before 1 km deep
- Formation of bound states with atoms of the active medium
- Binding only to heavy elements (Z > 74)
- Explains: DAMA, CDMS-II/Ge, superCDMS, XENON100, LUX
- Does not explain (if signals actually present): CoGeNT, CDMS-II/Si
- <u>Predictions</u>: one photon emitted below keV
 - emission of spectral lines
 - addition of high-Z material (thallium, lead,...) will enhance the signal

Thank you!