
Decision Making from Confidence Measurement on
the Reward Growth using Supervised Learning

A Study Intended for Large-Scale Video Games

D. Taralla, Z. Qiu, A. Sutera, R. Fonteneau and D. Ernst
Department of Electrical Engineering and Computer Science, University of Liège, Belgium

{dtaralla, zqiu, a.sutera, raphael.fonteneau, dernst}@ulg.ac.be

Keywords: Artificial Intelligence, Decision Making, Video Games, Hearthstone, Supervised Learning, ExtraTrees.

Abstract: Video games have become more and more complex over the past decades. Today, players wander in visually-
and option- rich environments, and each choice they make, at any given time, can have a combinatorial number
of consequences. However, modern artificial intelligence is still usually hard-coded, and as the game environ-
ments become increasingly complex, this hard-coding becomes exponentially difficult. Recent research works
started to let video game autonomous agents learn instead of being taught, which makes them more intelligent.
This contribution falls under this very perspective, as it aims to develop a framework for the generic design
of autonomous agents for large-scale video games. We consider a class of games for which expert knowledge
is available to define a state quality function that gives how close an agent is from its objective. The decision
making policy is based on a confidence measurement on the growth of the state quality function, computed
by a supervised learning classification model. Additionally, no stratagems aiming to reduce the action space
are used. As a proof of concept, we tested this simple approach on the collectible card game Hearthstone and
obtained encouraging results.

1 INTRODUCTION

The vast majority of computer games feature a mode
where the player can play against artificial intelli-
gence (AI). Back in the eighties with Pac-Man for in-
stance, the avatar was already chased by little ghosts.
Building an AI for them was not very complicated
given their restrained environment and goal. How-
ever, many papers (see e.g. (Safadi et al., 2015)) have
underlined the fact that as games continue to feature
richer and more complex environments, designing ro-
bust AI – an AI capable to adapt its behavior to any
possible game situation – becomes increasingly diffi-
cult.

Traditionally, game agents are built in a scripted
way, meaning that the developers hard-code the way
these agents recognize and react to different situa-
tions. This old-fashioned approach is no longer rel-
evant for modern games as it is often too compli-
cated to be applied to them in relation to the time
and resources developers are given for developing a
game. Unfortunately, many video game companies
continue to stick to this approach. As a result, the
games’ agents have started to fall behind compared to
the complexity of the games’ environments, and the

players are left empty-handed when it comes to mea-
suring themselves against a challenging autonomous
agent.

Indeed, the common way to solve the problem of
the scripted AI – too overwhelming to be applied –
is to reduce the number of strategies an autonomous
agent can exhibit. Moreover, as every game state
cannot be considered in advance, numerous variables
specific to the game have to be discarded for the quan-
tity of predefined situations a scripted agent can rec-
ognize to remain tractable. Altogether, these short-
cuts make the designed agent redundant where deci-
sion making is concerned. It means that the average
player is quickly able to recognize the agent’s strate-
gies when it plays, removing all the fun and chal-
lenges the player could experience by being surprised
by the moves of the AI.

Fortunately, with the advent of the machine learn-
ing era, we could be at the dawn of finding techniques
where AI in games is no longer coded by humans, but
rather where the AI has learned to play the game in
the same way any human player would, through ex-
perience. This modern approach, nevertheless, does
not come without its challenges, as for example large-
scale video games feature complex relations between



the entities they manage, leading to difficulties for
simulating side-trajectories in the course of a game.
The number of variables necessary to fully describe
the game state is another example of such challenges.

In this context, this paper proposes a few advances
for the generic design of autonomous agents in large-
scale video games. This approach is based on learning
classification with extremely randomized trees (or Ex-
traTrees). In our setting, the quality of the next state
is incomputable because the system dynamics is un-
available (see Section 3.1). However, we are given
a dataset composed of noised realizations of this dy-
namics. An ExtraTrees model is trained on this data
to predict the evolution of the quality of the next state
based solely on the current state and an available ac-
tion. Finally, the agent’s policy is greedily defined in
the confidence the ExtraTrees model has in predict-
ing a positive quality growth for the available actions
given the current state.

We study the case of Hearthstone because it ex-
hibits the large-scale challenges we mentioned ear-
lier, namely the intractability of simulating side-
trajectories – the complexity of dependencies be-
tween the game entities makes this an awkward task
– and the difficulty of working with game states fea-
turing numerous complex variables.

The paper is structured as follows: Section 2
briefly reviews related work on artificial intelligence
for video games. Section 3 states the learning prob-
lem and Section 4 describes the proposed solution,
along with one application to the game Hearthstone.
Section 5 presents and discusses experimental results.
Finally, Section 6 concludes and gives paths to follow
for future work.

2 RELATED WORK

2.1 Research on Video Games

For several years now, the video game field has been
the center of many research works. This research is
motivated by the development of new technologies to
increase entertainment values, but also by the fact that
video games present themselves as alternate, low-cost
yet rich environments to assess the performance of
machine learning algorithms.

As mentioned by (Gemine et al., 2012), one or two
principal objectives are usually pursued in video game
AI research. The first is to create agents that exhibit
properties making them more amusing to play with,
where the second is about patching complex games
for which challenging agents do not yet exist. For

those complicated games, the goal of course is to in-
crease the performance of the AI. In both cases, the
general idea can be summarized as obtaining an AI
whose performance is similar to that of humans.

Human-like behavior in video games has already
been approached in several studies, often under the
name Imitative Learning. Such studies include, for
example, improvements in more natural movement
behavior and handling weapon switching, aiming and
firing in FPS (First Person Shooter) games (Bauck-
hage et al., 2003; Gorman and Humphrys, 2007).

2.2 Machine Learning and Video
Games

In recent years, MCTS has been seen as the method
of choice for creating AI agents for games (van den
Herik, 2010). In particular, it was successfully ap-
plied to Go (Lee et al., 2009; Rimmel et al., 2010) and
a wide variety of other game environments (Browne
et al., 2012). Attempts to apply MCTS and other
simulation-based techniques to games that are diffi-
cult to simulate also exist, for example in the RTS
genre (Soemers, 2014; Sailer et al., 2007) or Magic:
The Gathering (Ward and Cowling, 2009; Cowl-
ing et al., 2012), a card game similar to Hearth-
stone. These approaches however usually solve sub-
problems of the game they are applied to, and not
the game itself, through the abstraction of many vari-
ables.

Alternatively, by using neural network-based clas-
sifiers, Bayesian networks and action trees assisted
by quality threshold clustering, some researchers con-
cerned about AI performance issues in large-scale
video games were able to successfully predict enemy
strategies in StarCraft (Frandsen et al., 2010).

Machine learning techniques are, however, not re-
stricted to game agent application. With the emer-
gence of massively multiplayer games for instance,
game editors have begun to integrate those techniques
into their matchmaking and player toxicity detection
algorithms (see e.g. League of Legends (Riot Games,
2006)).

3 PROBLEM STATEMENT

3.1 Hypothesis

Games usually feature numerous objectives, like win-
ning the game, minimizing the damage taken by a cer-
tain character, kill another agent, etc. For some of
these objectives, state quality functions can be defined



in every state from expert knowledge, such that they
measure how close an agent is from the corresponding
objective. These objectives constitute the problems to
which this approach is applicable.

Additionally, modern games have large and di-
versified action spaces, and it is difficult to simulate
side-trajectories in the course of a game. Thus, given
any game, we place ourselves in the context where
(1) on-line action simulations are not possible to es-
tablish what consequences these have on the game
(i.e. the system dynamics are unavailable) and (2) no
stratagems aiming to reduce the action space are used.

3.2 State Vector

We define by S the set of all state vectors. A state
vector s ∈ S contains data describing the state of the
game at a given time.

The game state is modified when an action is ex-
ecuted. This action might be taken explicitly by an
agent, or triggered by an event. The next section de-
scribes how we represent such actions.

3.3 Action Vector

The set of actions that could occur in the targeted
game is considered to be unknown. In this way, the
framework we develop does not depend on the kind
of actions at hand by any means, nor in fact on a class
of game in particular.

Formally, we define by A the set of actions that
can be taken in a game. Note that, in some games, not
all actions can be taken in a given state s ∈ S . We will
thus further define

As := {a ∈ A |a can be taken in state s}.

3.4 State Quality Function

We assume that we know a bounded function

ρ : S → R

associating to a given state s ∈ S a score representing
the quality of s with respect to the agent’s objective in
this state, whatever this objective is. For Hearthstone
for example, some expert players helped us design a
ρ function indicating how much good a position an
agent is in to win given current state information.

It should be noted that the value of ρ(s) could ad-
ditionally depend on information memorized in pre-
vious states.

3.5 Problem Formalization

We can see games as discrete-time, stochastic systems
whose dynamics can be formalized as follows:

τ : (s,a,s′) 7→ P(s′ | s,a), t = 0,1, ...

with s,s′ ∈ S and a ∈ As.
As highlighted in Section 3.1, we make the as-

sumption in this paper that the system dynamics are
not available. Instead, we are given a dataset D of
noised realizations of these dynamics.

From D , a two-class classification model is
trained to predict, for a given (state, action) pair (s,a),
whether the expected difference

E
s′

[
ρ(s′)−ρ(s)

]
= ∑

s′

[
τ(s,a,s′)ρ(s′)

]
−ρ(s)

is positive or not. Moreover, this classification model
comes with a confidence function on the affiliation of
an object (s,a) to the positive class, written Cρ,D(s,a).
From this confidence function, we define our decision
making strategy as

h(s) = argmax
a∈As

Cρ,D(s,a).

The policy h defined hereinabove is thus greedy in
Cρ,D .

4 LEARNING ARCHITECTURE

4.1 Obtaining a Dataset

The process of generating the database can be as sim-
ple as letting random players play the game for some
time, and making them explore the space of available
state-action combinations. Indeed, when a random
player chooses to take action a in state s, it can save
the value of ρ(s), execute a to arrive in s′ and com-
pute ρ(s′). The tuple (s,a,sgn[ρ(s′)−ρ(s)]) can then
be inserted into D . How to deal with samples whose
ρ(s′)−ρ(s) evaluates to zero is specific to the targeted
application – They can either be included in one of the
two classes, or simply not included in D at all.

4.2 ExtraTrees Classification

Considering the targeted application, which is pre-
dicting the soundness of taking a certain action based
on a large number of features, there was a require-
ment to use a robust learning algorithm able to deal
with the possible idiosyncrasies of ρ while ensuring it
handled the numerous features correctly. To this end,



the decision to use random tree-based ensemble meth-
ods was taken. Decision trees are inherently suited
for ensemble methods (Sutera, 2013), and in partic-
ular ExtraTrees are quite efficient compared to other
tree methods (Geurts et al., 2006).

Nevertheless, the main caveat of using this kind
of classifier is the memory it requires. Indeed, be-
cause the games’ complexity is not bounded in our
theory, it may not be assumed that the learned models
will always fit in the computer memory as the trees
might become arbitrarily complex. One should there-
fore take care to limit the tree growing by tuning the
algorithm parameters correctly and to include a tree-
pruning pass.

4.3 Assessing the Classifier
Performance

When it comes to classifiers, it is well-known that the
accuracy (i.e., the fraction of successfully classified
samples in a given test set) is not a good measure to
assess a model generalization performance (Provost
et al., 1998). It is recommended when evaluating
binary decision problems to use the Receiver Op-
erating Characteristic (ROC) curve, describing how
the fraction of correctly classified positive samples
varies with the fraction of incorrectly classified nega-
tive samples. Nonetheless, ROC curve analysis might
overestimate the performance of a binary classifier if
there is a large skew in the class distribution (Davis
and Goadrich, 2006). Because no constraints were
put on the given dataset D , one cannot rely on the
fact that it provides a balanced number of positive and
negative samples.

This is why along ROC curves analysis we vali-
date our binary classifier with the help of Precision-
Recall (PR) curves. PR curves have been mentioned
as an alternative to ROC curves for tasks with a large
skew in the class distribution (Craven, 2005; Bunescu
et al., 2005; Goadrich et al., 2004). Indeed, when the
proportion of negative samples is much greater than
that of the positive ones, a large change in the frac-
tion of false positives can lead to a minimal change
in the false positive rate of the ROC analysis, because
they are underrepresented in the test set. Precision
analysis on the other hand relates false positives to
true positives rather than true negatives, and therefore
does not present the same flaw as ROC analysis in
the case where negative samples are overrepresented
in the test set. Therefore, analyzing both graphs to
assess the quality of the model is necessary.

To classify a sample (s,a), the model yields the
confidence Cρ,D(s,a) it has on classifying the sample
in the positive class. This confidence is computed as

the mean predicted positive class probability of the
trees in the forest. The predicted positive class proba-
bility of an input sample in a single tree is the fraction
of positive learning sample cases in the leaf the in-
put sample falls in. This way of classifying samples
means that the performance of the model will depend
on the probability threshold used to predict whether a
sample is positive or not. Each point on an ROC or
PR curve is the performance of the model for a given
threshold; thus, according to the needs of the targeted
application, one can select the confidence threshold c
for which is considered the best compromise between
the true positive rate, false positive rate and precision.
The best trade-off is defined by the targeted game and
goal as, for instance, missing an opportunity (predict
a false negative) is not necessarily worse than making
a mistake (predict a false positive) in all games.

4.4 Selecting a Good Action

Figure 1 is an activity diagram describing the action
selection process. From now on, when an agent in
state s ∈ S is presented the set of available actions
As = {a1, ...,an}, it simply has to use its classification
model to evaluate Cρ,D(s,ai), ∀i s.t. ai ∈ As. It then
extracts from As the actions ai such that Cρ,D(s,ai)≥
c, which produce a set of valuable actions to take.
The agent can then choose the one its classifier finds
the most probable to trigger a growth of ρ. In the
case where the extracted action set is empty, the agent
should decide to do nothing.

On a side note, for some objectives it might be
more relevant to obtain the order of the available ac-
tions and to execute them all in this order instead of
discriminating whether they are bad or good ones. In
this case, the value of parameter c can be set to zero.
However, the study of ROC and PR curves should still
be conducted to assess the quality of the classifier.

4.5 Application

4.5.1 Why Hearthstone

The framework developed above was chosen to be
applied to the turn by turn, 2-player collectible card
game Hearthstone: Heroes of WarCraft, (Blizzard
Entertainment, 2014). The objective of the agent is
to win the game by applying a well-known strategy of
the field (namely board control).

Hearthstone exhibits challenges that are com-
monly encountered in large-scale video games, such
as the impracticality of simulating side-trajectories
on-line – the complexity of dependencies between the



Figure 1: The action selection process.

game entities makes this a hard task – and the diffi-
culty of working with game states featuring numer-
ous, complex variables – card identifiers, characteris-
tics of the cards on the board,... This particular game
is thus a fair choice to assess the viability of the pre-
sented approach.

4.5.2 Hearthstone Basics

The game features a battle between two players, each
owning a deck of 30 cards. Each player has 30 health
points, and their goal is to reduce the enemy’s health
to zero. Every turn, a player draws a card from his
deck and can play some from his hand, which is hid-
den to his enemy. Playing a card reveals it to the oppo-
nent and costs some crystals, available in small quan-
tities each turn. We distinguish two kinds of cards: on
the one hand there are spells, with special effects, and
on the other there are creatures (or minions). A min-
ion brought into play is dropped on its owner’s side.
Minions can attack once per turn and remain in play
as long as they are alive. Minions can feature special
effects as well.

About the game configuration used in this work,
we restrained ourselves to a subset of cards from the
original game.

4.5.3 Three Binary Classifiers

Because of the diversity of the possible actions (or de-
cisions to take) in Hearthstone, action representation
is another challenge. Indeed, some need features that
are irrelevant for others, so unless dealing with miss-
ing values in feature vectors representing those deci-
sions, they cannot all be represented with the same
structure.

Consequently, we could not directly apply the
framework developed. A divide and conquer ap-

proach was taken, breaking this problem into sub-
problems for which the theory would be applicable.
The division would be made on the action space: we
separate it in disjoint subspaces where each subspace
contains actions of the same type. The key aspect is
that all actions belonging to the same subspace would
use the same vector representation.

There are three kinds of decisions an agent in
Hearthstone might have to make at any time.

Play a card. This decision needs features describing
the card to play.

Select a target. When playing a card, typically a
spell, it is sometimes necessary to select a target.
This decision requires features describing the tar-
get character and the effect to be applied to it.

Attack with a minion. This decision requires fea-
tures describing the minion that performs the at-
tack and the target character of this attack.

This divide and conquer approach means that not
one but three binary classifiers will be required for the
supervised learning architecture.

4.5.4 Practical Application

Algorithms. We used the Scikit-Learn library
(Pedregosa et al., 2011) for the supervised learning
algorithms. We also used this library to get the ROC
curves of our models. A C++ library was developed to
simulate Hearthstone, with a companion program re-
sponsible of testing the agent against random, scripted
and human players.

Another multi-threaded program dynamically
linked to the Hearthstone Simulator library is able to
simulate a large number of games simultaneously and
uses the logging capability of the library to generate
training and test sets.



We made the codes of these programs and library
publicly available.

Datasets. We generated vast datasets by simu-
lating 640,000 games with random players playing
with random decks. The card set however was fixed
and contained 56 different cards, among which 40
minions and 16 spells.

The sample sets used to train the classifiers were
built with exactly 400,000 positive samples and the
same amount of negative ones. Samples for which
ρ(s′)− ρ(s) would evaluate to zero were excluded
from the training sets.

ROC/PR Analysis To assess the quality of the
trained models, an ROC/PR study was conducted.
These curves can be obtained from a trained classifier
by using a representative test set. The test set we used
was distributed exactly as the training set, with the
same size, but with different random seeds to the ones
used for generating the training set. With a ROC/PR
analysis, the objective is to maximize the Area Under
the Curve (AUC) for both the PR and ROC curves
(Hanley and McNeil, 1982). Because the training
and test sets are distributed perfectly evenly between
positive and negative samples, the PR curve pro-
vides the same information as the ROC curve (the PR
study generally highlights that the accuracy is overes-
timated because of an unbalanced test set (Davis and
Goadrich, 2006)); this is why we only conducted an
ROC analysis.

The objective has been already well achieved: the
AUCs of the ROCs obtained for the play, target and
attack classifiers were 94.48%, 99.07% and 94.15%
respectively, which is an excellent result for a proto-
type. Indeed, let us underline that these curves were
obtained with a minimal amount of work done on
the vector representation of states and actions and on
the state quality function design. The same holds for
the extremely randomized trees classifiers’ parame-
ters, which were simply set to the default values rec-
ommended by (Geurts et al., 2006). Only a hundred
trees were used for each classifier.

Thresholding. Remember that the classifier
outputs class affiliation probabilities, or in other
words its confidence in classifying a sample in the
positive class. Thresholding can be used to discrimi-
nate between what is considered positive and what is
not.

At first, one could use the ROC curves to deter-
mine the best confidence threshold such that most of
the judgment errors can be avoided. However, when

using thresholding, results were mediocre. Neverthe-
less, the lower the threshold the higher the perfor-
mance of the agent, up to the maximum when the
threshold was set to zero. Indeed, usually in Hearth-
stone, it is better to miss an opportunity than to mis-
takenly do something. This explains why the win
rate grows with the reduction of the threshold: with a
smaller threshold, the precision (fraction of true pos-
itives that are not missed) is bigger at the expense of
a higher false positive rate. The number of missed
opportunities thus decreases.

Memory Usage. Because extremely random-
ized trees classifiers’ parameters were the default
ones, those classifiers were built unnecessarily large
– approximately 14 gigabytes of RAM are required to
hold the three classifiers in memory. However, this
flaw should be considered in light of the fact that this
application is just a proof of concept; a proper tuning
of the algorithms should increase the performance and
resource usage.

5 EXPERIMENTAL RESULTS

5.1 Methodology

The resulting agent was up against:

1. a random player which plays cards and makes its
minions attack randomly, choosing to end its turn
only when no other actions are available;

2. a scripted player which implements a medium-
level strategy.

The agent and its opponents shared the same deck
composition to prevent decks differences from bias-
ing the results. For each opponent, 10,000 games
were simulated. For the sake of comparison, a random
player also faced the scripted player using the same
protocol. We chose to have a simulation of 10,000
games because we empirically showed that the win
rate had converged past this value. Figures 2 and 3
confirm this behavior, for the agent against both the
random and scripted players respectively.

Additionally, the ExtraTree classifiers depend on
a random seed given at the beginning of their train-
ing. To check the influence of the random seed on
the quality of the results, we trained four more clas-
sifier sets on the same database with distinct random
seeds. These four classifier sets were then subjected
to the same experiment as the original agent and dis-
played differences that were not significant (less than
1%, absolute error).



0 2000 4000 6000 8000 10000
Number of games already simulated

92

93

94

95

96

97

98

99

100

W
in

 r
a
te

 (
%

)

Convergence of the simulations win rate
Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

Figure 2: Convergence of the simulation win rates of the
agent against the random player. Each curve represents the
win rate at the different moments of the simulation. Suffi-
cient convergence is attained near 10,000 games

0 2000 4000 6000 8000 10000
Number of games already simulated

0

5

10

15

20

W
in

 r
a
te

 (
%

)

Convergence of the simulations win rate
Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

Figure 3: Convergence of the simulation win rates of the
agent against the scripted player. Each curve represents the
win rate at the different moments of the simulation. Suffi-
cient convergence is attained near 10,000 games

5.2 Win Rate

The details of the win and loss rates are presented
in Table 1. As a comparison, this table also shows
the win and loss rates of a random player playing
against the scripted player: the agent has 92.8%-win
rate against the random player and 10.5% against the
scripted one, whereas the random player only ob-
tained a 0.934%-win rate against this same scripted
player. This last result proves that the agent learned to
develop some reasoning the random player did not. In
particular, we measured the participation of the clas-
sifier responsible for target selection by replacing it
with random target selection. Notably, the agent win
rate against the random player dropped to about 60%.
This last result highlights what was already indicated
above: the agent learned to make valuable decisions.

Table 1: Average win rates observed over five simulations
with distinct random seeds, on 10,000 games each. “A”
stands for the agent, “R” for the random player and “S” for
the scripted one. The remainder of each line is the average
tie rate.

Win rate Loss rate
A vs. R 92.8% 7.034%
A vs. S 10.5% 89.36%
R vs. S 0.934% 99.0%

6 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a generic approach
to design prototypes of intelligent agents for com-
plex video games. This approach has been applied to
Hearthstone, a popular two-player and partially ob-
servable card game. The results were quite encourag-
ing considering the simplicity and naivety of the pro-
vided solution. They clearly showed that the agent de-
signed following our framework had learned to apply
some strategies a random player did not, even though
the action and state space were huge. However, in
absolute terms, the resulting agent performs pretty
badly, so this agent would not be of any use in a real
setting. Indeed, the agent wins approximately 93%
of the games against a random player, but only 10%
of the games played against a medium-level scripted
player. Even though the latter result is poor in ab-
solute terms, it has to be compared to the win rate
a random player obtains against the same opponent,
which is less than 1%. With this in mind, it is clear
that the trained agent succeeded in extracting at least
a few valuable moves in a wide variety of states from
a dataset composed of thousands of random moves.
From a data mining perspective, this result is by itself
encouraging: it confirms that it is possible to learn
strategies from complex datasets, even with simple
and naive techniques like move classification. Fur-
thermore, we draw the attention of the reader to the
fact that for two players playing with the same decks,
the reference point for assessing the performance of
an agent is 50% and not 100%: the agent is stronger
than its opponent above this value, weaker below, and
of comparable skill when equal.

However, this proof of concept might not be eas-
ily applicable to all games, thus future work will at-
tempt to make our approach of defining the represen-
tation of actions, states and the ρ state score function
more generic regarding other large-scale video games.
ExtraTrees for example, besides being efficient al-
gorithms, also bring a lot of information about fea-
ture importance and thus feature selection (Breiman,
2001), that can be extremely valuable when designing



the state and action vectors. It would also be of inter-
est to assess the suitability of other algorithms such as
deep neural networks in place of extremely random-
ized trees.

ACKNOWLEDGEMENTS

Raphael Fonteneau is a postdoctoral fellow of the
F.R.S.-FNRS from which he acknowledges financial
support. Antonio Sutera is a PhD fellow of the FRIA
from which he acknowledges financial support.

REFERENCES

Bauckhage, C., Thurau, C., and Sagerer, G. (2003). Learn-
ing human-like opponent behavior for interactive
computer games. In Pattern Recognition, pages 148–
155. Springer.

Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A survey of
monte carlo tree search methods. Computational In-
telligence and AI in Games, IEEE Transactions on,
4(1):1–43.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney,
R. J., Ramani, A. K., and Wong, Y. W. (2005). Com-
parative experiments on learning information extrac-
tors for proteins and their interactions. Artificial intel-
ligence in medicine, 33(2):139–155.

Cowling, P. I., Ward, C. D., and Powley, E. J. (2012). En-
semble determinization in monte carlo tree search for
the imperfect information card game magic: The gath-
ering. Computational Intelligence and AI in Games,
IEEE Transactions on, 4(4):241–257.

Craven, J. B. M. (2005). Markov networks for detecting
overlapping elements in sequence data. Advances in
Neural Information Processing Systems, 17:193.

Davis, J. and Goadrich, M. (2006). The relationship be-
tween precision-recall and roc curves. In Proceed-
ings of the 23rd international conference on Machine
learning, pages 233–240. ACM.

Frandsen, F., Hansen, M., Sørensen, H., Sørensen, P.,
Nielsen, J. G., and Knudsen, J. S. (2010). Predict-
ing player strategies in real time strategy games. PhD
thesis, Masters thesis.

Gemine, Q., Safadi, F., Fonteneau, R., and Ernst, D. (2012).
Imitative learning for real-time strategy games. In
Computational Intelligence and Games (CIG), 2012
IEEE Conference on, pages 424–429. IEEE.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely
randomized trees. Machine learning, 63(1):3–42.

Goadrich, M., Oliphant, L., and Shavlik, J. (2004).
Learning ensembles of first-order clauses for recall-

precision curves: A case study in biomedical infor-
mation extraction. In Inductive logic programming,
pages 98–115. Springer.

Gorman, B. and Humphrys, M. (2007). Imitative learning
of combat behaviours in first-person computer games.
Proceedings of CGAMES.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and
use of the area under a receiver operating characteris-
tic (roc) curve. Radiology, 143(1):29–36.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rim-
mel, A., Teytaud, F., Tsai, S.-R., Hsu, S.-C., and
Hong, T.-P. (2009). The computational intelligence of
mogo revealed in taiwan’s computer go tournaments.
Computational Intelligence and AI in Games, IEEE
Transactions on, 1(1):73–89.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Provost, F. J., Fawcett, T., and Kohavi, R. (1998). The case
against accuracy estimation for comparing induction
algorithms. In ICML, volume 98, pages 445–453.

Rimmel, A., Teytaud, F., Lee, C.-S., Yen, S.-J., Wang,
M.-H., and Tsai, S.-R. (2010). Current frontiers in
computer go. Computational Intelligence and AI in
Games, IEEE Transactions on, 2(4):229–238.

Safadi, F., Fonteneau, R., and Ernst, D. (2015). Arti-
ficial intelligence in video games: Towards a uni-
fied framework. International Journal of Computer
Games Technology, 2015.

Sailer, F., Buro, M., and Lanctot, M. (2007). Adversarial
planning through strategy simulation. In Computa-
tional Intelligence and Games, 2007. CIG 2007. IEEE
Symposium on, pages 80–87. IEEE.

Soemers, D. (2014). Tactical planning using mcts in the
game of starcraft1. Master’s thesis, Maastricht Uni-
versity.

Sutera, A. (2013). Characterization of variable importance
measures derived from decision trees. Master’s thesis,
University of Liège.

van den Herik, H. J. (2010). The drosophila revisited. ICGA
journal, 33(2):65–66.

Ward, C. D. and Cowling, P. I. (2009). Monte carlo search
applied to card selection in magic: The gathering. In
Computational Intelligence and Games, 2009. CIG
2009. IEEE Symposium on, pages 9–16. IEEE.


