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Abstract – A progressive modeling of transformers is performed via a subproblem finite element method. A 
complete problem is split into subproblems with different adapted overlapping meshes. Model refinements 
are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, per-
fect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores 
and coils, with any coupling of these changes. The proposed unified procedure efficiently feeds each sub-
problem via interface conditions, which lightens mesh-to-mesh sources transfers, and quantifies the gain 
given by each refinement on both local fields and global quantities. 

Introduction 

For efficient and accurate numerical modeling of transformers, an innovative step-by-step method-
ology is developed. It is based on a finite element (FE) subproblem (SP) method (SPM) with mag-
netostatic and magnetodynamic problems solved in a sequence on different adapted meshes [1]-[5], 
from simple 1-D models up to accurate 3-D models, in a large frequency range, of the magnetic 
circuits and their windings (stranded or massive coils). Each step of the SPM aims at improving the 
solution obtained at previous steps via any coupling of the following changes, defining model re-
finements: change from ideal to real (with leakage flux) flux tubes [1], change from 1-D to 2-D to 
3-D [2], change of material properties [1]-[3] (e.g., from linear to nonlinear), change from perfect 
to real materials [4], change from single wire to volume conductor windings [4], [5], and newly 
developed change from homogenized [6] to fine models (cores as lamination stacks and coils as 
wire or foil windings, with the details affecting their high frequency behaviors). The methodology 
involves and couples numerous techniques that have been developed by the authors and, up to now, 
only applied for simplified test problems [1]-[5]. It can also help in education with a progressive 
understanding of the various aspects of transformer design. 

Progressive Magnetostatic and Magnetodynamic Models 

Methodology 

Transformers are made of magnetic regions, defining magnetic circuits, and active (connected to 
external electric circuits, i.e., windings or coils) and passive (not fed by circuit, e.g., tank) conduct-
ing regions. Such systems are planned to be studied with the following methodology, defining se-
quences of adequate changes/corrections as these listed in the introduction. 
Magnetic circuits – For magnetic cores with possible air gaps, the analysis is first focused on ideal 
flux tubes neglecting the leakage fluxes and core losses, before considering the coil conductors 
with their details. A preliminary equivalent magnetic circuit can define a 0-D model. Some of its 
branches can then be progressively refined via the consideration of their actual geometries, in 1-D, 
2-D and 3-D, via SPs of associated dimensions [2]. Such SPs consider changes of boundaries of 
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domains that can be either extended or connected together. Each dimension fixes some boundaries 
through which some assumptions on magnetic flux are considered via some boundary conditions 
(BCs). A higher dimension modifies such BCs via interface condition (IC) surface sources (SSs) 
[2]. Changes of material properties can be considered via volume sources (VSs) or SSs when add-
ing, removing, changing or moving some regions [1]-[3]. Nonlinear behaviors of materials can 
naturally be taken into account as a change from linear to nonlinear material properties. 
Stranded and massive conductors – Once the real flux tubes are tackled, the actual geometry of 
the windings has to be considered, instead of magnetomotive force (MMF) or flux sources. Simul-
taneously with the IC sources allowing the ideal flux tubes to become permeable [2], the windings 
are progressively defined at various levels of precision for their geometry and the distribution of 
the current they carry. They can progress from 1-D to 2-D to 3-D, from single wire to volume FE 
geometries, and from stranded (uniform current density distributions in their cross sections) to mas-
sive conductors, to improve the local field distributions and to accurately render skin and proximity 
effects [3]-[5]. The global inductive and resistive behaviors are improved as well. Passive conduc-
tors (e.g., transformer tank, magnetic shield) can similarly be added and their models improved. 
Juxtaposition of thin or wired regions – Lamination stacks in magnetic cores, and wire and foil 
windings are first classically considered via homogenization models [6] before being locally cor-
rected (in critical regions of interest; in particular for accurate eddy current losses), with an FE 
SPM derived from [5] and applied in certain thin or wired regions separately with their details (e.g., 
single conductors with rectangular cross-section and possible oil ducts for cooling; which is usually 
unfeasible in a direct 3-D approach), coupled to the remaining regions kept homogenized. 
Any change that gives a significant effect on the previously solved SPs has to be considered as a 
source for these. This defines series of corrections on both magnetic circuits and conductor models.  

Subproblem Method – Sequence of Subproblems 

A canonical magnetodynamic problem p, to be solved at step p of the SPM, is defined in a domain 
Ωp, with boundary ∂Ωp = Γp = Γh,p ∪ Γb,p. The eddy current conducting part of Ωp is denoted Ωc,p 
and the non-conducting one Ωc,pC (superscript C means “complementary to Ωc,p in Ωp”), with 
Ωp = Ωc,p ∪ Ωc,pC. Stranded conductors, when homogenized, belong to Ωs,p ⊂ Ωc,pC. 
Magnetic field hp and electric current density jp traces are subject to BCs on surfaces Γh,p, whereas 
magnetic flux density bp and electric field ep traces are subject to BCs on surfaces Γb,p, i.e., 

 n × hp|Γh,p
 = hs,p ,    n ⋅ jp|Γb,p

 = js,p ,       n ⋅ bp|Γb,p
 = bs,p ,    n × ep|Γe,p ⊂ Γb,p

 = es,p ,   (1a-b-c-d) 

with n the unit normal exterior to Ωp and hs,p, js,p, bs,p and es,p some given SSs; note that the mag-
netodynamic problem only defines ep in Ωc,p, with Γe,p ≡ ∂Ωc,p ∩ Γh,p. When zero, the SSs define 
homogeneous BCs, in particular usually applied on symmetry planes. Some BCs can result in ICs, 
i.e., fixed discontinuities [ ⋅ ]γp

 = ⋅ |γp
+ – ⋅ |γp

–, when applied on some double layer surfaces γp+ and γp– 
that are geometrically defined as a single surface γp ⊂ Γh,p ∪ Γb,p, with the thin region in between 
exterior to Ωp [3]-[5], i.e., 

 [n × hp]γp
= [hs,p]γp

 ,    [n ⋅ jp]γp
= [js,p]γp

 ,       [n ⋅ bp]γp
= [bs,p]γp

 ,    [n × ep]γp
= [es,p]γp

 . (2a-b-c) 

The fields are related via the material relations 

 hp = µp–1 bp   in Ωp ,       jp = σp ep   in Ωc,p ,       jp = js,p   in Ωs,p ⊂ Ωc,pC, (3a-b-c) 

where µp is the magnetic permeability and σp is the electric conductivity, both region-wise defined, 
and js,p is a given source current density in Ωs,p. 
With the magnetic vector potential ap and electric scalar potential vp defined via  

 bp = curl ap ,  ep = – ∂t ap – grad vp = – ∂t ap – up, (4a-b) 



the Gauss and Faraday equations are strongly satisfied. The ap weak formulation of the magneto-
dynamic problem is then obtained from the weak form of the Ampère equation, i.e. [3], 

 (µ p
−1curlap ,curla ')Ωp −( js,p ,a ')Ωs,p +(σ p ∂t ap ,a ')Ωc,p +(σ p up ,a ')Ωc,p  

 +< n×hp ,a ' >Γh,p \γ p +< [n×hp ]γ p ,a ' >γ p =0 ,  ∀a '∈ Fp
1(Ωp ),  (5) 

where Fp1(Ωp) is a curl-conform function space defined on Ωp, gauged in Ωc,pC, and containing the 
basis functions for ap and for the test function a' (at the discrete level, this space is defined by edge 
FEs; the gauge can be based on the tree-co-tree technique); ( · , · )Ω and < · , · >Γ denote a volume 
integral in Ω and a surface integral on Γ, respectively, of the product of their field arguments. 
A complete problem is aimed at being solved as a sequence of SPs, involving models for magnetic 
and conducting regions of progressive accuracy and calculating successive additive corrections. A 
particular studied domain with an adapted FE mesh is defined for each SP. In the following, region 
names with no SP index p are regions of the complete problem, to be involved in particular SPs. 

Sequenced Models 

Magnetic Circuits – Ideal Flux Tubes 

The magnetic (conducting or not) core regions Ωm ⊂ Ωp, possibly extended with air gaps Ωg ⊂ Ωm, 
can first be considered as ideal flux tubes (IFTs), i.e., with no leakage flux (Fig. 1). Their bounda-
ries Γm = ∂Ωm are then considered as perfect magnetic walls (usually made of non-connected por-
tions Γm,i in 2-D, with i the portion index). The actual current source regions Ωs exterior to Ωm are 
thus idealized as perfectly wounded current sheets around Ωm. 
For the so-defined SP p ≡ IFT, the studied domain is limited to Ωp ≡ Ωm, with a BC on Γm ⊂ Γb,p 
fixing a zero normal trace of the magnetic flux density bp (its zero trace is also fixed on the possible 
remaining zero-flux symmetry planes Γb,p \ Γm, together with n × ep = 0 on portions of Γm also in 
∂Ωc,p). In terms of ap, one has the equivalent essential BCs 

 n ⋅ bp|Γm
 = 0   ⇔    n × ap|Γm

 = n × grad wp|Γm
 , (6a-b) 

where wp is a multivalued surface scalar potential defined on Γm. In 3-D, this scalar potential un-
dergoes a constant jump through each of the cut lines making Γm simply connected [2]. This can be 
defined via discontinuous components wdisc,cl,p acting only on one side of each cut line cl (at the 
discrete level, in a surface layer of surface FEs on one side of each cut line, with wdisc,cl,p varying 
from a constant on cut line cl to zero on the other boundary of the layer), to be added to the contin-
uous component wcont,p to give wp. In 2-D, such constant jumps come down to the definition of a 
constant ap (a kind of floating potential when unknown) on each non-connected portion Γm,i of Γm 
(Fig. 1). The constant jumps are directly (strongly) related to the unknown magnetic fluxes flowing 
in Ωm and are weakly related to the MMFs Fcl along each cut line cl via the weak formulation (5). 
Indeed, when tested with the non-local jump test functions a'surf,cl = grads w'disc,cl,p (grads is the sur-
face gradient) [2], [3], it gives, if Ωp ⊂ Ωc,pC for simplification, 

    (µ p
−1curlap ,curla 'surf,cl )Ωp +< n×hp ,a 'surf,cl >Γm= 0 ,  with  < n×hp ,a 'surf,cl >Γm≡ Fcl . (7a-b) 

If domain Ωp is not a massive conductor, i.e., Ωp ⊂ Ωc,pC, the required gauge condition on ap in 
Ωc,pC, thus also on Γb,p, allows to fix potential wcont,p to zero on Γm ⊂ Γb,p. However, if Ωp ⊂ Ωc,p, 
potential wcont,p must be kept unknown on Γm, because ap is not gauged there. 



Each Γm,i can be considered as the boundary of a slot in a device. The related MMF gathers all the 
current sources in the slot, for all coils, e.g., primary and secondary coils in a transformer. A slot 
can be generalized to represent the exterior region, including coils as well (Fig. 1, right). 
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Fig. 1. Shell type transformer: example of a magnetic region Ωm, including a possible air gap Ωg, first consid-
ered without leakage flux via perfect magnetic walls BCs on Γm,1 and Γm,2 (left); three symmetry planes allow 
to reduce the studied domain (right); the end windings need to be considered in 3-D (bottom right). 

Stranded and Massive Conductors – Real Flux Tubes with Leakage Fluxes 

Volume FE models of the windings are necessary for the accurate determination of their character-
istics (e.g., impedances, losses, forces, leakage flux). These can define additional SPs aiming at 
correcting IFT models, with associated progressive geometrical or physical models. 
An IFT solution q is by construction discontinuous through the considered flux walls Γm, with a 
non-zero trace n × hq|Γm

+ on Ωm-side Γm+ and a zero trace n × hq|Γm
– on the other side Γm– (or non-

zero too in case ΩmC ⊂ Ωp, which can be a useful extension) (Fig. 2); trace n ⋅ bq is however contin-
uous because zero on both sides. Its correction via an SP p ≡ RFT (real flux tube), that consists in 
changing the flux wall to a permeable surface allowing leakage flux, can be done by suppressing 
the discontinuity of n × hq through the considered flux walls Γm and by simultaneously adding the 
actual windings (or some simplified models to be further corrected). The opposite of this disconti-
nuity thus serves as an IC-SS [5] for [n × hp]Γm

 weakly defined in (5), whereas n ⋅ bp and thus n × ap 
remain continuous, i.e., 

 [n × hp]Γm
 = – [n × hq]Γm

 = – n × hq|Γm
+ ,   [n × ap]Γm

 = 0 . (8a-b) 

In practice, at the discrete level, the studied domain Ωp for SP p ≡ RFT includes the windings with 
their neighborhood, thus also comprising the magnetic cores previously considered via an IFT 
model (Fig. 2). At this step, if a adequately fine mesh is required for the windings and their vicini-
ty, a coarse mesh can usually be considered for the magnetic core, in which the main flux has al-
ready been taken into account with SP q ≡ IFT with a mesh allowing a good accuracy level. Indeed, 
the leakage flux, flowing in some parts of the magnetic cores, usually slightly modifies the IFT 
flux. If it is not the case, an additional SP can correct the flux distribution in the cores. 
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Fig. 2. From IFT model (left) to RFT model (right) with leakage flux via an IC-SS. 



The core could even be considered as a perfect magnetic material (PMM) in a prior SP r ≡ CORE-
PMM, defined in Ωr ≡ Ω \ Ωm with BC n × hr|Γm

– = 0, the solution of which giving a non-zero trace 
n × ar|Γm

–. SP p ≡ RFT would then combine the solutions of SPs q and r, in complementary domains 
Ωq and Ωr, as SSs for ICs, with no need to include the windings already considered in SP r, i.e., 

                       [n × hp]Γm
 = – [n × (hq+hr)]Γm

 = – (n × hq|Γm
+ – n × hr|Γm

–) = – n × hq|Γm
+ , (9a) 

                       [n × ap]Γm
 = – [n × (aq+ar)]Γm

 = – (n × aq|Γm
+ – n × ar|Γm

–) . (9b) 

A correction from one dimension (SP q) to the next one (1-D to 2-D or 2-D to 3-D) in an SP p uses 
again SS-ICs (8a-b) or (9a-b). Indeed, a lower dimension model actually defines some perfect 
magnetic walls that are made permeable when increasing the dimension [2]. 

Volume Regions – Changes of Geometrical and/or Physical Properties 

When progressive geometrical models or changes of physical properties are considered for a re-
gion, e.g., from a simplified winding geometry in a SP q (via a Biot-Savart or FE model) to the 
actual FE volume one Ωvol,p in an SP p, or when changing a portion of a flux tube to an air gap, 
each change can be done via the following SP p ≡ VOL-REGION-FE. 
The general key is to consider such an SP p as the superposition of two SPs, pa and pb, actually 
simultaneously solved (Fig. 3). SP pa aims at removing the approximate solution q in the newly 
defined region Ωvol,p while keeping it unchanged outside, simultaneously, in FE SP pb, with the 
consideration of the actual properties µp and σp in Ωvol,p. SP pa exactly cancels out, with no need of 
any solving, the VSs that would be needed [1]-[3]. It rather leads to trace discontinuities of its di-
rect solution through Γvol,p given by the corresponding traces of solution q on Γvol,p as IC-SSs, i.e. 
(inner minus outer field traces; normal n exterior to Ωvol,p), 

 [n × hpa]Γvol,p
 = – n × hq|Γvol,p

+ ,   [n × apa]Γvol,p
 =  = – n × aq|Γvol,p

+ . (10a-b) 

Because SP pb defines a continuous solution through Γvol,p, the trace discontinuities (10a-b) remain 
valid for the resulting SP p, i.e., 

 [n × hp]Γvol,p
 = – n × hq|Γvol,p

+ ,   [n × ap]Γvol,p
 =  = – n × aq|Γvol,p

+ . (11a-b) 
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Fig. 3. FE correction (SP p) of an approximate solution (SP q): SP p is split into SPs pa and pb, simultane-
ously solved, SP pa removing the approximate solution q inside the region Ωvol,p ⊂ Ωp to be geometrically 
improved and SP pb considering the improved model with its actual geometry and properties. 

Note that in all cases with ICs, the studied domain covers both sides of the involved interface, that 
are therefore naturally coupled. Especially for Γvol,p, this is absolutely different than limiting Ωp to 
Ωvol,p with a classical BC on Γvol,p, fixing either n × hp or n × ap equal to the corresponding trace of 
the solution of SP q. This solution should then be more or less the true solution on Γvol,p, which is 
in general not true. The corrections, supported by different adapted meshes, are usually of local 



nature, which allows some simplifications of the outer regions, possibly replaced by equivalent 
circuits extracted from previous SPs. 
Each volume correction gives the total field in Ωvol,p, is discontinuous through Γvol,p and usually 
quickly decreases outside, which allows the use of a coarse mesh in the outer region. A volume 
correction can also be applied in the proposed unified form for a change from a linear to a nonline-
ar property, and for a newly added region (e.g., tank or shield) in a field solution of an SP q, thus 
acting as a source field in an SP p. 

Juxtaposition of Thin or Wired Regions – Homogenization to Fine Models 

A homogenization model of core lamination stacks or windings is usually based on assumptions 
that neglect fringing effects at lamination or winding borders [6]. Some local corrections can be 
done via SPs for a certain number of laminations or winding turns (Fig. 4), at some particular posi-
tions, e.g., where significant edge effects occur. For each correction SP p ≡ VOL-FINE-FE, the 
studied domain Ωp comprises the candidate thin or wired regions for correction, now defined with 
their actual volumes Ωc,p surrounded by their insulating layers Ωnc,p, defining Ωvol,p = Ωc,p ∪ Ωnc,p, 
that can be finely meshed, and the other thin or wired regions kept homogenized, so coarsely 
meshed, together with a well chosen neighborhood. 
Because SP p ≡ VOL-FINE-FE implies changes of both geometrical and physical properties, it can 
directly be defined via the method previously developed for SP p ≡ VOL-REGION-FE. Each cor-
rection SP is thus again defined via IC-SSs, with the interesting advantage to correct the solution in 
the actual laminations or windings in Ωvol,p while keeping a coupling with the still homogenized 
region exterior to Ωvol,p. Here also, using classical BCs on Γvol,p instead of ICs would generally 
lead to inaccurate corrections. From the newly calculated total field in Ωvol,p, a more accurate de-
termination of losses can be obtained. 
Corrections of other additional regions can use, as IC-SSs, the updated outer solutions from previ-
ous corrections, i.e., the homogenized solution plus the results of these corrections. This is of im-
portance when significant proximity effects occur between laminations or windings. 
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Fig. 4. Local corrections (SP p) of an homogenized solution (SP q) for some laminations (e.g., 2 outer lami-
nations) (left) or winding turns (from uniform to non-uniform current density; right). 

Weak and Strong SS-ICs – Common Tools 

The sources of the developed correction SPs are all defined via ICs of similar forms (8a-b), (9a-b) 
or (11a-b). These use parts of SP solutions at previous steps (step q, step r; a step can gather the 
updated results of a sequence of previous corrections) as SSs in a new SP p. Each chosen pair (a-b) 
of ICs defines constraints of weak and strong natures. 
ICs of type (a) are of weak nature, being involved in a surface integral term in weak formulation 
(5), defined on a double layer surface γp. In all cases, this term becomes 

 < [n×hp ]γ p ,a ' >γ p =< −n×hq ,a ' >γ p+
 ,   with γp ≡ Γm or Γvol,p , (12) 



and is non-zero only for test functions a' with a non-zero trace on γp. The right hand side of (12) is 
to be weakly expressed from (5) now applied to SP q, i.e., from volume integrals usually limited to 

 < −n×hq ,a ' >γ p+
= (µq

−1curlaq ,curla ')Ωp=Ωq . (13) 

At the discrete level, the volume integral in (13) is limited to the single layer ETL,p of FEs touching 
γp, on side Ωm or Ωvol,p, because it involves only the associated trace n × a'|γp

+ having a contribution 
only in ETL,p. The source aq, initially in the mesh of SP q, has to be projected in the mesh of SP p 
only in ETL,p. This significantly decreases the computational effort of the projection process. An L2-
projection is used [1]-[3]. 
ICs of type (b) are of strong nature, in the sense that they are to be directly defined in function 
space Fp1(Ωp) via a fixed discontinuity of the tangential component of ap, obtained from the previ-
ous solution(s). This can be done via a discontinuous component adisc,p of ap, with support only on 
one side of the interface, added to the classical continuous component. At the discrete level, this 
consists in using for adisc,p additional edge basis functions only on γp that are by definition non-zero 
only in the previously defined FEs layer ETL,p. The result of the projection of aq in ETL,p can also be 
used to fix adisc,p. The discontinuity can simply be zero, like in (8b). 

Application 

The validation and quantification of various SP steps are done on a shell type transformer problem, 
with a magnetic core Ωm (6 cm × 5 cm × 2 cm, leg width 1 cm, relative permeability 500), a possible 
air gap (0 to 3 mm), and primary (thickness 4 mm, height 2.7 cm, gap with core center leg 1 mm, 
240 turns, fixed voltage at phase 0 at 50 Hz) and secondary coils (thickness 3 mm, height 2.7 cm, 
gap with core primary coil 1 mm, 24 turns, open or short-circuit tests) in Ωs. Symmetry conditions 
allow to reduce the studied domain for 1-D, 2-D and 3-D analyses (Fig. 5). 
The magnetic core with a possible air gap is first considered as an IFT in 1-D, 2-D and 3-D in an 
open-circuit test, before some correction RFT SPs, applying in various ways some developed SP 
tools for dimension and model changes; also for material property changes when introducing an air 
gap; various other correction SPs are possible as theoretically presented and will be further present-
ed. The transformer is also considered in a short-circuit test, in 1-D, 2-D and 3-D. Studied domains 
and some significant results are illustrated in Fig. 5, with comparisons of the relative corrections on 
a particular global quantity, the inductance of the primary coil, that are summarized in table 1. 
If the field distribution is already accurate for some simplified 1-D and/or 2-D models, e.g., in the 
open-circuit test, it is not the case in the short-circuit test, in particular with relative corrections 
from 2-D to 3-D (significant 3-D effects) that can reach hundreds of percents for impedances if no 
care is given. Also, the accuracy improvement with a higher dimension model is clear (e.g., up to 
35%) when increasing the air gap. 

Conclusion 

A methodology for the progressive FE modeling of transformers has been developed. Models of 
different accuracy levels (IFT to RFT, 1-D to 3-D, addition of geometrical details, etc.), possibly 
coupled, are sequenced in the frame of the SPM, with successive additive corrections supported by 
different adapted meshes. The way the sources act at each correction step, up to the full models 
with their actual geometries, has been given a particular care and generalized. For all the consid-
ered corrections, the sources are always applied via IC-SSs, thus only needed in layers of FEs along 
boundaries, which strongly lightens the required mesh-to-mesh projections between SPs. Correc-
tions of fields and global quantities can be obtained step by step with a clear view on their signifi-
cance, to justify their usefulness or not. 
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Fig. 5. Shell type transformer with a sequence of 1-D, 2-D and 3-D models with IFT and RFT open and 
short-circuit tests (arrows: current density, pyramids: magnetic flux density, black lines: field lines (2-D); 2-
D and 3-D edge effects are progressively corrected). 

TABLE 1. CORRECTIONS OF GLOBAL QUANTITIES: INDUCTANCE OF PRIMARY COIL (CORRECTED VALUES AND 
RELATIVE CORRECTIONS IN % WITH RESPECT TO PREVIOUS DIMENSION AND RFT MODEL AFTER IFT MODEL) 

Air gap 
(mm) 

Dim. IFT open-circuit test 
Inductance (mH) 

RFT open-circuit test 
Inductance (mH) 

RFT short-circuit test 
Inductance (mH) 

0 1-D 120.6 121.1 0.1629 
 2-D 140.7 (+16.6%) 141.2 (+16.6%, IFT+0.36%) 0.3452 (+212%) 
 3-D 140.7 (+0.0%) 141.6 (+0.23%, IFT+0.36%) 0.9664 (+280%) 

1 1-D 23.39 23.47  – 
 2-D 24.05 (+2.8%) 25.79 (+9.9%, IFT+7.2%) 0.4104 
 3-D 24.05 (+0.0%) 27.58 (+6.9%, IFT+14.7%) 1.521 (+371%) 

3 1-D 8.953 8.986  – 
 2-D 9.048 (+1.1%) 10.62 (+18.2%, IFT+17.4%) 0.5086 
 3-D 9.048 (+0.0%) 12.26 (+15.4%, IFT+35.5%) 2.058 (+404%) 
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