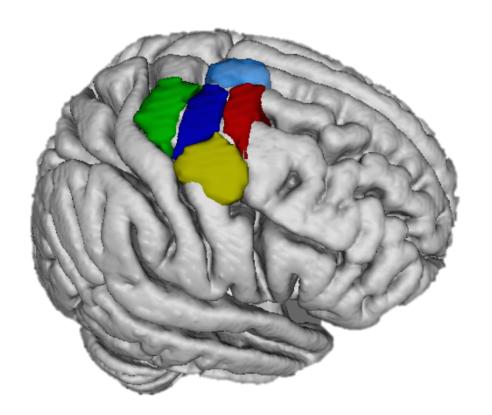

Cross-modal identification of six subregions within the left PMd and their functional characterization

Sarah Genon^{a,b}, Hai Li^{e,f}, Lingzhong Fan^{e,f}, Veronika I. Müller^{a,b}, Edna C. Cieslik^{a,b}, Felix Hoffstaedter^a, Andrew T. Reid^a, Robert Langner^{a,b}, Christian Grefkes^{d,g}, Peter T. Fox^c, Tianzi Jiang^{e,f}, Angela R. Laird^h, Katrin Amunts^{a,i} and Simon B. Eickhoff^{a,b}

^{a/g}Institute of Neuroscience and Medicine ^a(INM-1)/^g(INM-3), Research Centre Jülich, Germany ^{b/i}Institute of Clinical Neuroscience and Medical Psychology/C. & o. Vogt Institute for Brain Research, Heinrich Heine University, Düsseldorf, Germany ^cResearch Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA. ^dDepartment of Neurology, Cologne University Hospital, Cologne, Germany ^eBrainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China ^fNational Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China ^hNeuroinformatics and Brain Connectivity Lab. Miami, Florida, USA,


Introduction

Background:

UNIVERSITAT DUSSELDORF

Connectivity Based Parcellation (CBP) based on Meta-analytic connectivity modeling (MACM) of right dorsal premotor (right PMd)¹:

5 functional subregions

Functional characterization:

> Rostral: high-level cognition

Methods

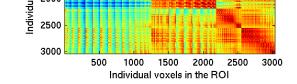
1) MACM-based CBP^{1,2}

- CBP: *k*-means clustering (k range: 2 -> 8)
- Criteria to select stable cluster solutions:
 - information-theoretic characteristics
 - consistency criterion

• MACM¹ using BrainMap

separation characteristics

- > Caudal: motor system.
- > Ventral: premotor eye field
- > Dorsal: hand-movement.
- **Central**: spatio-visuo-motor integrator.


Topographical organization shows correspondence with CBP based on structural connectivity measured by probabilistic diffusion tractography (PDT)

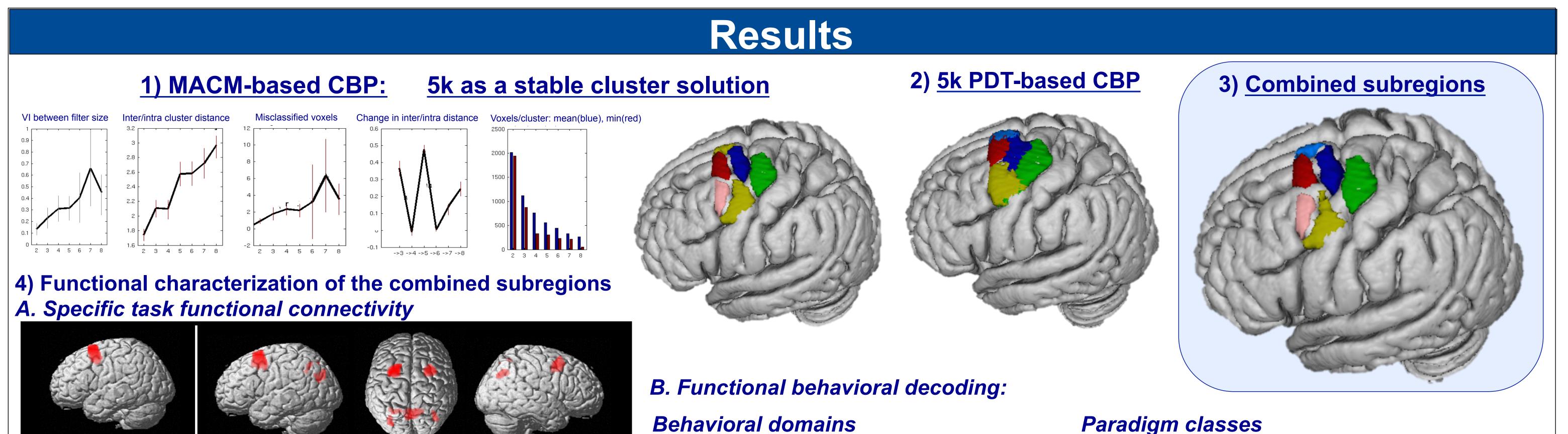
→ Aim of the present study:

Examine whether similar functional subregions/modules may be identified in the <u>left PMd</u> by - crossing MACM-based CBP and DPT-based CBP

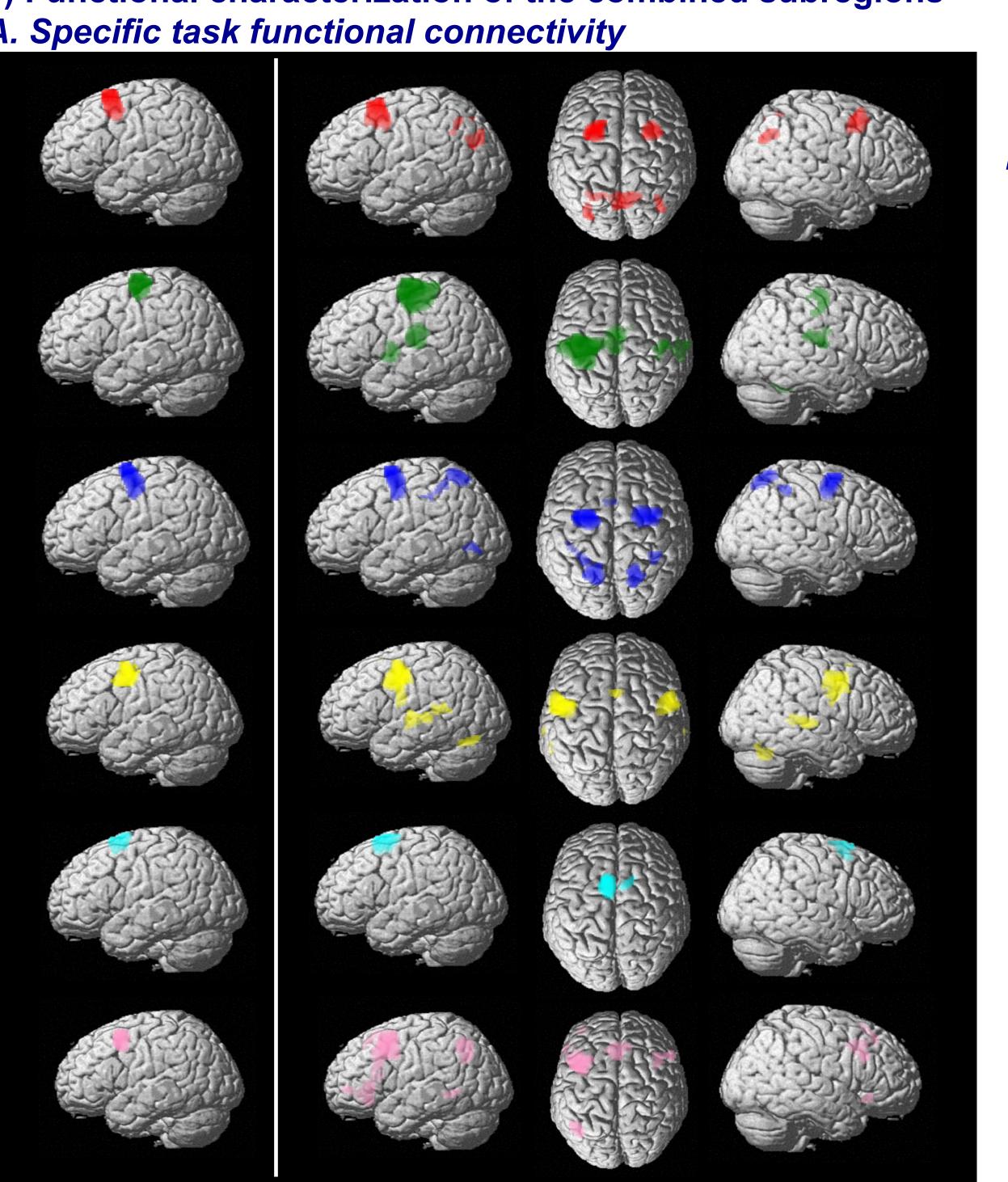
- functionally characterize the derived subregions

2) PDT-based CBP²:

ounting/calculat


Reordered similarity i

- Diffusion weighted imaging (DWI) data of 20 healthy subjects
- Probabilistic Diffusion Tractography
- Spectral clustering
- K solution suggested by functional data (MACM-based CBP)
- 3) Parcellation combination²:


k solution MACM-based \bigcap k solution PDT-based

4) Functional characterization of the derived subregions^{1,2}

- **A. Functional connectivity:** MACM
- **B. Functional Behavioral decoding**: forward and reverse inferences across Brainmap metacategories

Dusse or

Behavioral domains

Explicit **Noti** Spe

šraspino ointinc Vritino Finge

No significant association

No significant association

Conclusions

Parcellation of left PMd combining MACM and PDT -based CBP: topographical organization along both a rostro-caudal and a ventro-dorsal axes -> partly mirrors the topographical organization found in the right PMd.

Functional profile of the left PMd subregions mirror those found in the right PMd Rostral: high-level cognition Caudal: motor system Dorsal: hand-movement Central: spatio-visuo-motor integrator Ventral: premotor eye field

However, functional hemispheric differences:

left ventral PMd contains a posterior functional module related to both basic eye movements and speech and an anterior one engaged in long-term memory.

=> combining MACM-based and PDT-based CBP provided a new insight of the organization of the left PMd into six subregions.

References:

[1] Genon, S., Müller, V.I., Cieslik, E., Hoffstaedter, F., Langner, R., Fox, P.T., Eickhoff, S.B. (2014). 'Examining the right dorsal premotor mosaic: a connectivity-based parcellation approach'. OHBM Annual Meeting [2] Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T. (2015). Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Human brain mapping 36:238-257.

Acknowledgment: This study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/4-1; S.B.E. and LA 3071/3-1; R.L. and S.B.E.), the National Institute of Mental Health (R01-MH074457; S.B.E.), the Helmholtz Initiative on systems biology (The Human Brain Model; S.B.E.) and the Universitätsklinikum Düsseldorf.