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Abstract—This paper presents an efficient method for the finite
element assembly of high order Whitney elements. We start by
reviewing the classical assembly technique and by highlighting
the most time consuming part. This classical approach can be
reformulated into a computationally efficient matrix — matrix
product. We conclude by presenting numerical results on a wave
guide problem.
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I. INTRODUCTION

There is a growing consensus that state of the art finite
element technology requires, and will continue to require, too
extensive computational resources to provide the necessary
resolution for complex high-frequency electromagnetic com-
patibility simulations, even at the rate of computational power
increase. This leads us to consider methods with a higher order
of grid convergence than the classical second order.

II. CLASSIC FINITE ELEMENT ASSEMBLY

By applying the classical Galerkin finite element (FE)
scheme with a curl-conforming basis, the solution of the time
harmonic propagation of an electrical wave is computed using
elementary integrals ’Te , as developed in [1]. Each ’Te
giving the contribution’ of the degrees of freedom (DOF) 1
and j of the mesh element e.

The classical finite element assembly algorithm consists in
iterating on every element. For a given element, the 7;%; terms
are computed for every pair of DOF ¢ and j. These values are
assembled in the FE linear system matrix.

It is worth noticing that increasing the basis order will
have two impacts on the computation time: a) each element
will have more DOFs, thus increasing the number of 7;8] to
compute; b) the numerical quadrature will require more points,
thus slowing down the computation of each 7. These two
phenomena will substantially increase the assembly time, as
shown in Figure 1.

III. EFFICIENT ASSEMBLY

The key idea of a fast assembly procedure is to compute
all the 7% terms with matrix — matrix products, as proposed
by [2], [3] for standard nodal Lagrange finite elements. Indeed,
this operation exhibits an excellent cache reuse, and is stan-
dardized in the Basic Linear Algebra Subprograms (BLAS)
library, which can be highly optimized for modern multi-core
architectures.

The 7, terms can be computed by the product of two
matrices. The first matrix will be composed of the Jacobian
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matrices and potentially non linear terms. The second matrix
will be composed only of the basis functions defined over the
reference element, and is thus geometrically invariant.

It is worth noticing that depending on the mesh elements
orientation, the curl-conforming basis functions cannot simply
be reordered, as for classical H' Lagrange bases. This situa-
tion may be overcome by considering more than one reference
element, as proposed by [4], and by taking transformations into
account in the Jacobian matrices.

IV. NUMERICAL RESULTS

Figure 1 presents the assembly times of the classical and ef-
ficient assembly procedures for an increasing basis order. The
FE matrix is assembled for a propagation problem into a wave
guide, meshed with 5585 curved tetrahedra. The tests were
done on a Intel Core i7 960 using OpenBLAS with 4 threads.
It is worth mentioning that the classical implementation also
uses 4 threads for the assembly.
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Fig. 1. Assembly time for the classical and fast procedures

It can be seen from Figure 1 that the matrix procedure is
much faster than the classical one for high order interpolations.
For instance, the speedup on an order 5 problem, with around
500000 unknowns, is around 11.
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