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RWhen remembering the past or envisioning the future, events often come to mind in organized sequences or
stories rather than in isolation from one another. The aim of the present fMRI study was to investigate the neural
correlates of such event clusters. Participants were asked to consider pairs of specific past or future events: in one
condition, the two eventswere part of the same event cluster (i.e., theywere thematically and/or causally related
to each other), whereas in another condition the two events only shared a surface feature (i.e., their location); a
third conditionwas also included, inwhich the two eventswere unrelated to each other. The results showed that
the processing of past and future events that were part of a same cluster was associatedwith higher activation in
the medial prefrontal cortex (PFC), rostrolateral PFC, and left lateral temporal and parietal regions, compared to
the two other conditions. Furthermore, functional connectivity analyses revealed an increased coupling between
these cortical regions. These findings suggest that largely similar processes are involved in organizing events in
clusters for the past and the future. The medial and rostrolateral PFC might play a pivotal role in mediating the
integration of specific events with conceptual autobiographical knowledge ‘stored’ in more posterior regions.
Through this integrative process, this set of brain regions might contribute to the attribution of an overarching
meaning to representations of specific past and future events, by contextualizing them with respect to personal
goals and general knowledge about one's life story.

© 2015 Published by Elsevier Inc.
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The capacity to envision events that could happen in the future has
attracted a growing interest in the past few years, probably due to the
increasing recognition of its importance in the regulation of human be-
havior (Schacter et al., 2012; Seligman et al., 2013; Suddendorf and
Corballis, 2007; Szpunar, 2010). Findings from cognitive, neuropsycho-
logical, and neuroimaging research have accumulated rapidly, such that
we now have a reasonably clear understanding of the cognitive and
neural processes that support the mental representation of individual
future events (Schacter et al., 2012; D'Argembeau, 2012; Mullaly and
Maguire, 2014). Recent research suggests, however, that future-
oriented thinking involves more than imagining isolated events and
often consists in considering a set of related events (D'Argembeau and
Demblon, 2012; Demblon and D'Argembeau, 2014, in press). The pro-
cesses involved in linking and organizing imagined events in coherent
themes and sequences are not fully understood, and our aim here is to
explore the neural bases of knowledge structures that contribute to
these event clusters.
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Neural correlates of event cl
NeuroImage (2015), http://dx
Neuroimaging studies have revealed that the recall of past events
and the imagination of future events involve a common set of frontal,
temporal, and parietal regions (for a recent meta-analysis, see Benoit
and Schacter, 2015). Within this core network, regions such as the me-
dial temporal lobe and retrosplenial cortex are thought to support the
construction of specific event representations based on episodic details
(Schacter and Addis, 2007; Hassabis andMaguire, 2007), whereas other
regions (such as the lateral temporal cortex)may store semantic knowl-
edge that provides a coherent scaffolding for constructing such repre-
sentations (Irish et al., 2012; Irish and Piguet, 2013; Duval et al.,
2012). In addition to these brain regions involved in the representation
of individual events, other regions within the core network might sup-
port the processing of higher-order autobiographical knowledge,
whichprovides a framework for linking imagined events and organizing
them in personal themes and stories.

Conway (Conway and Pleydell-Pearce, 2000; Conway, 2005; Con-
way et al., 2004) has proposed that autobiographical memory is orga-
nized in a hierarchy in which specific event representations are part of
“general event” representations, which bind a set of specific events on
the basis of their thematic similarity and causal relations (see also
Barsalou, 1988; Thomsen, 2015). Research has shown that this kind of
general autobiographical knowledge is frequently accessed both when
recalling specific past events (Haque and Conway, 2001) and when
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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1 In the present study, the term ‘general event’ as used during the pre-scan and scan-
ning sessions referred to events extended in time (or short ‘autobiographical periods’;
Thomsen, 2015), and not to repeated events (for further discussion of the various types
of general events, see e.g. Conway and Pleydell-Pearce, 2000). Indeed, our aimwas to col-
lect specific events that are not only part of higher-order clusters, but also that are clearly
distinct from each other, which would be difficult to produce on the basis of repeated
events.
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imagining specific future events (D'Argembeau and Mathy, 2011). Fur-
thermore, there is evidence that general autobiographical knowledge
contributes to organize specificmemories and future thoughts in coher-
ent themes and causal sequences, referred to as event clusters (Brown
and Schopflocher, 1998; Burt et al., 2003; D'Argembeau and Demblon,
2012; Demblon and D'Argembeau, 2014, in press).

The present research aims to investigate the neural basis of such
higher-order autobiographical knowledge that contributes to organize
specific events in thematic clusters. Previous neuroimaging studies
have shown that the representation of general personal information
and events involvesmedial and lateral prefrontal, lateral temporal, poste-
rior cingulate, and inferior parietal cortices (Addis et al., 2004a; Holland
et al., 2011; for a meta-analysis, see Martinelli et al., 2013). However,
the brain regions that contribute to the organizational function of general
autobiographical knowledge (i.e., to link a set of specific events together)
have not been investigated. Furthermore, these previous studies focused
only on the retrieval of past events, and thus it remains unknownwheth-
er the activation of higher-order autobiographical knowledge is support-
ed by the same brain regions during remembering and future thinking.

To investigate these questions, we devised a new task that required
participants to simultaneously consider two specific past or future
events, and we manipulated the involvement of higher-order autobio-
graphical knowledge by varying the types of relational dimensions
linking these two events. Specifically, in one condition the two events
were thematically and/or causally related to each other (i.e., they
were part of the same event cluster), whereas in another condition
the two events shared a surface feature (i.e., their location); a third con-
dition was also included, in which the two events were unrelated to
each other. For each pair of events, the participants' task was to deter-
mine what relational dimension (if any) links the two events together
(i.e., thematic, location, or no relation).

We hypothesized that processing events that are part of the same
cluster (compared to events that share a surface feature or that are un-
related to each other) would activate higher-order autobiographical
knowledge and recruit brain areas involved in integrating events with
such knowledge. A prominent candidate region for this process is the
medial prefrontal cortex (mPFC), a region that is activated when pro-
cessing general autobiographical knowledge (such as general represen-
tations of personal information and goals; for recent meta-analyses, see
Martinelli et al., 2013; Stawarczyk and D'Argembeau, 2015) and might
support the integration of specific experiences with such conceptual
knowledge (Brod et al., 2013; Kroes and Fernandez, 2012; Preston and
Eichenbaum, 2013; van Kesteren et al., 2012). In addition to the mPFC,
rostrolateral regions of the PFC that have been shown to support rela-
tional integration and causal reasoning (Barbey and Patterson, 2011;
Christoff et al., 2001; Wendelken et al., 2011) could also participate in
the processing of event clusters. Finally, given that event clusters rely
on higher-order (i.e., more abstract) autobiographical knowledge, we
predicted that areas in the temporal and inferior parietal lobes that sup-
port semantic processing (Binder and Desai, 2011; Binder et al., 2009;
Jefferies, 2013) would also be recruited to a greater extent when partic-
ipants consider events that are part of the same cluster.

In summary, we expected that, relative to the control tasks
(i.e., considering events that share a surface feature or that are unrelated
to each other), thinking about past and future events that are part of the
same cluster would activate higher-order autobiographical information
that provides personal meaning beyond the meaning conveyed by each
event taken in isolation, andwe predicted that this processwould recruit
the mPFC, rostrolateral PFC, and lateral temporal and parietal cortices.

Material and methods

Participants

Twenty-eight healthy young adults with no history of neurological
or psychiatric disorders took part in the study. Data from five
Please cite this article as: Demblon, J., et al., Neural correlates of event cl
episodes with autobiographical knowledge, NeuroImage (2015), http://dx
participants were excluded because they did not follow instructions
correctly (four participants) or because of poor performance (leaving
an insufficient number of correct trials for the analyses; one partici-
pant); thus, the analyses were conducted on data from the remaining
twenty-three participants (11 females). All of them were native French
speakers and ranged in age from 19 to 27 years (M = 22.5 years, SD=
2.4 years). All participants provided a written informed consent to take
part in the study, which was approved by the Ethics Committee of the
Medical School of the University of Liège.
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Tasks and procedure

Pre-scan session
The day before the scan session, participants took part in a pre-scan

interview, the purpose of which was to collect the descriptions of auto-
biographical past and future specific events which were then used as
stimuli during the fMRI session. Participants first received a definition
of the notion of ‘general event’ (i.e., an event extended in timewhich in-
cludesmore specific events that are organized in sequences, are causally
related to each other, and/or involve the same themeor goal)1 and some
examples of general events were provided (e.g., a vacation in Egypt; the
last exam period;moving in a new apartment; learning to drive). Based
on this definition, participants were asked to report five general events
that might likely happen to them in the next year. For each general
event, participants were then asked to imagine three specific events
that might likely happen in the context of this general event but
would not occur in the same location (i.e., in the same room or area).
A definition of specific event (i.e., a particular event occurring in a spe-
cific place at a specific time, and lasting a few minutes or hours) and
some examples (e.g., passing my driving license test; packing my suit-
case to go in Egypt) were provided. The experimenter wrote a short de-
scription of each general and specific event that was produced.

Participants were also asked to report five particular locations (i.e., a
particular room or area) where they would likely be in the next year.
Then, for each location, they imagined three specific events that might
occur in this place but that are not part of the same general event (i.e.
events that have no relation with each other except that they occur in
the same location). Once again, the experimenter wrote a description
of each location and specific event that was produced.

The three specific future events that were part of a same general
event were used by the experimenter to form three event pairs (i.e.
formed by events 1 and 2; events 2 and 3; events 1 and 3), leading to
the formation of fifteen pairs of events (3 pairs for each of the five gen-
eral events reported) that are part of a same event cluster but that occur
in different locations. Similarly, the specific future events occurring in
the same location were used to form three event pairs, leading to the
formation of fifteen pairs of events that occur in the same location but
that are not part of a same event cluster. Finally, participants were
asked to use the descriptions of the same specific events to assemble fif-
teen pairs of unrelated events (events that are not part of a same event
cluster and do not happen in the same location).

Participants then reproduced exactly the same taskwith past instead
of future events. Thus, they had to recall five general (extended) events
that occurred in the past year, five familiar locations where they were
regularly in the past year, and three specific memories for each general
event and each location. This resulted in the constitution of fifteen pairs
of past events that were part of a same event cluster but did not happen
in the same location, fifteen pairs of past events that happened in the
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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same location but are not part of the same event cluster, and fifteen
pairs of unrelated past events.

In total, ninety event pairswere thus obtained: fifteen event pairs for
each of the six conditions (i.e., future event cluster; future location; fu-
ture unrelated; past event cluster; past location; past unrelated). The
order of presentation of temporal orientation (past versus future) and
conditions (event cluster versus location) in the pre-scan interview
was counterbalanced across participants.
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Scanning session
Stimuli were presented using Cogent 2000 (Wellcome Department

of Imaging Neuroscience, University College London, London, UK)
software implemented in MATLAB (www.mathworks.com). They
were displayed on a screen positioned at the rear of the scanner, and
reflected on a mirror located on the head coil in front of the eyes of
participants. Before starting the task, participantswere shown examples
offictive (but coherent) event pairs to familiarize themwith the display,
the presentation delay and the response pad. During the scan session,
the 90 event pairs were presented in a pseudo-random order to
ensure that two event pairs of a same condition were not too far from
one another (no more than 7 trials) and did not immediately follow
each other.

Each trial began with the display of the time period (i.e., past or
future),written in yellowon a black backgroundon the top of the screen
and presented during 1 s. Then, the description of the event pair
appeared in the center of the screen for 6 s, written in white on a
black background. In response to each event pair, participants had to
identify the type of relation that links the two specific events. Three pos-
sible responses were provided: the two events could be linked because
they are part of the same general event (i.e., they share the same theme
or goal, and/or are causal linked to each other); the two events could be
linked because they occur in the same location; or the two events are
unrelated to each other. Participants were asked to press the key corre-
sponding to their answer on a pad (i.e. 1 for the same general event; 2
for the same location; 3 for no relation) and to continue to think about
the two events and about how they are related to each other (i.e., to
the shared theme or common location) during the rest of the display.
When there was no relation between the two specific events, partici-
pants were only asked to think about these events. Between each trial,
a fixation cross was presented with a duration jittered between 2 and
6 s. The whole task lasted approximately 20 min.
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fMRI data acquisition

fMRI time series were acquired on a 3 T head-only scanner
(Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany)
operated with the standard transmit–receive quadrature head coil.
Multislice T2*-weighted functional images were acquired with a
gradient-echo EPI sequence using axial slice orientation and covering
the whole brain (34 slices, field of view [FoV] = 192 × 192 mm2,
voxel size 3 × 3 × 3 mm3, 25% interslice gap, matrix size 64 × 64 × 34,
repetition time [TR] = 2040 msec, echo time [TE] = 30 msec, flip
angle = 90°). On average, 500 functional volumes were acquired per
participants (SD = 3.50; range: 492-504) and the three first volumes
were discarded to avoid T1 saturation effects. After the EPI acquisition,
a gradient-recalled sequence was applied to acquire two complex im-
ages with different TEs (TE = 4.92 and 7.38 msec, respectively; TR =
367 msec, FoV = 230 × 230 mm2, 64 × 64 matrix, 34 transverse slices
with 3 mm thickness and 25% interslice gap, flip angle = 90°,
bandwidth= 260 Hz/pixel) and generate field maps for distortion cor-
rection of the EPI images. A structural MRI scan was obtained at the end
of the session (T1-weighted 3-D MP-RAGE sequence, TR = 1960 msec,
TE = 4.4 msec, FoV = 230 × 173 mm2, matrix size 256 × 192 × 176,
voxel size 0.9 × 0.9 × 0.9 mm3).
Please cite this article as: Demblon, J., et al., Neural correlates of event cl
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fMRI data analysis

Data preprocessing
Data were preprocessed using the SPM 8 software (Wellcome De-

partment of Imaging Neuroscience, http//www.fil.ion.ucl.ac.uk/spm)
implemented in MATLAB R2010a. EPI time series were corrected for
motion and distortion using Realign and Unwarp (Andersson et al.,
2001) together with the Fieldmap Toolbox (Hutton et al., 2002). The
mean realigned EPI image was coregistered to the structural T1 image,
and the coregistration parameters were applied to the realigned EPI
time series. The T1 image was segmented into gray matter, white mat-
ter, and cerebrospinal fluid, using the unified segmentation approach
(Ashburner and Friston, 2005), and the coregistered functional images
were normalized to MNI space (voxel size: 2 × 2 × 2 mm3) using the
normalization parameters obtained from the segmentation procedure.
Finally, the functional images were smoothed with a Gaussian kernel
with FWHM of 8 mm.

Partial least squares analyses
Task-related brain activation was investigated using the PLS Soft-

ware (http://www.rotman-baycrest.on.ca/pls). PLS uses a multivariate
approach (McIntosh et al., 1996; McIntosh and Lobaugh, 2004) that de-
tectswhole brain patterns of activity (BOLD signal) related to the exper-
imental design (i.e., tasks). This analysis technique has been widely
used in previous neuroimaging studies of autobiographical memory
and future-oriented thinking (e.g., Addis et al., 2004a, 2009, 2012;
Burianova and Grady, 2007; Burianova et al., 2010; Spreng and Grady,
2010; Gerlach et al., 2014; Robin et al., 2014).

When applied on blocked data, PLS identifies spatial patterns of
whole brain activity in the form of orthogonal latent variables (LVs) –
based on the covariance matrix of the mean BOLD signal for each
block, and amatrix of vectors coding for the design (i.e., the experimen-
tal conditions) – that optimally explain the differences between the
tasks (Gerlach et al., 2014; Spreng et al., 2010; McIntosh et al., 1996).
In other words, each LV emerging from the analysis defines a pattern
distributed across thewhole brain, and contrasts the experimental con-
ditions depending on their relation (positive or negative) with this pat-
tern. The significance of LVs is determined via permutations tests, and
the reliability of the salience (i.e., weight) of brain voxels characterizing
latent variables is assessed by a bootstrap estimation of the standard
error (BSR) (Efron and Tibshirani, 1986). The salience of each brain
voxel is proportional to its contribution to the pattern of covariation
identified by the LV, and can have positive or negative values depending
on the positive or negative relation existing between this voxel and the
repartition of conditions characterizing the LV. There is no need to cor-
rect for multiple comparisons in PLS because the salience for each voxel
is calculated in one analytic step, contrary to univariate analyses which
examine the activation of single voxels independently (Addis et al.,
2004a, 2009; Gerlach et al., 2014; McIntosh et al., 1996). In the present
study, blocks were defined with a duration of 6 s corresponding to the
trial duration (onset=display of the event pair). Only correct responses
were included in the analyses, resulting in a mean of 13.87 trials (SD=
1.01) for the past cluster condition, 13.78 trials (SD = 1.31) for the fu-
ture cluster condition, 14.17 trials (SD=1.23) for the past location con-
dition, 13.74 trials (SD = 1.21) for the future location condition, 14.70
trials (SD = 0.56) for the past unrelated condition, and 14.65 trials
(SD = 0.65) for the future unrelated condition.

Mean-centered PLS analysis. We first conducted a mean-centered PLS
analysis (e.g., Addis et al., 2004a, 2009), a data-driven approach in
which no a priori contrast is specified. This analysis identifies a set of
LVs that best explain the covariation between the dataset and the exper-
imental design. Each LV accounts for a certain portion of the covariance
(i.e., between the BOLD signal and the experimental conditions)
expressed by its singular value (Addis et al., 2009; McIntosh et al.,
1996). In the present study, the statistical significance of each LV was
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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calculated using a permutation test with 800 permutations, and the sa-
lience of brain voxels characterizing the LVs was assessed using 200
bootstraps.We considered voxels as reliable if they survived to a thresh-
old of ±3.0, corresponding to p= .0027 – consistently with thresholds
used in previous studies of autobiographical memory and future think-
ing that used PLS analyses (e.g., Addis et al, 2009, 2012; Sheldon and
Levine, 2013; Robin et al., 2014) – with a cluster size of minimum 20
voxels and a gap of minimum 10 voxels between two peaks. Each con-
ditionwas considered as contributing reliably to the overall pattern if its
confidence interval (CI) did not cross 0, and two conditions were con-
sidered as significantly different from each other if their CIs did not
cross each other. Each BSR was computed with a 95% CI.

Seed PLS analyses. We also sought to investigate the functional connec-
tivity of regions hypothesized to support the processing of event
clusters. More specifically, we hypothesized that the medial and
rostrolateral prefrontal cortexwould be functionally coupled to posteri-
or cortical regions supporting semantic processing (i.e., lateral temporal
and inferior parietal regions) during the processing of event clusters.
This hypothesis was tested using seed PLS analyses (McIntosh, 1999).
Seed PLS assesses the covariation between activity in one (or a few)
region(s) of interest and the rest of the brain, and determines how
this covariation varies across tasks (see e.g., Spreng et al., 2010;
Spreng and Grady, 2010; McClelland et al., 2014; Gerlach et al., 2014;
Addis et al., 2004a; Robin et al., 2014). In the present study, two seeds
were selected, which corresponded to the main regions of the mPFC
and rostrolateral PFC that were associated with the processing of
event clusters in our previous mean-centered PLS analysis (see Results,
subsection 3.2.1). The BOLD signal from each seed was extracted using
the multiple voxel extraction tool, centered on the peak coordinates
(mPFC: x, y, z = 2, 44, 16; rostrolateral PFC: x, y, z = −22, 54, 16)
and averaging signal intensity across the three nearest neighboring
U
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Fig. 1.Mean brain scores per condition for LV1 and LV2 in the mean-centered PLS analysis. (a)
(b) LV 2 explains 27.21% of the cross-block covariance (singular value = 16.06; p= .03). Error
future location; Unr F = future unrelated; Clu P = past cluster; Loc P = past location; Unr P =
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voxels. These signal intensity values were entered in two separate
non-rotated seed PLS analyses, which investigated whether the func-
tional connectivity of each seed with the rest of the brain differs be-
tween the event clusters conditions and the other control conditions.
For each seed PLS analysis, permutations test and bootstraps estima-
tions of the standard errors were performed as described above with
800 permutations tests, and 200 BSR computed with a 95% CI. As for
the previous mean-centered PLS analysis, we considered voxels as reli-
able if they survived a threshold of ±3.0 (p= .0027), with a cluster size
of minimum20 voxels and a gap of minimum 10 voxels between peaks.

Results

Behavioral results

A2 (temporal orientation) by 3 (type of relation) repeatedmeasures
analysis of variance (ANOVA) conducted on correct responses yielded a
significant effect of the type of relation, F(2, 44) = 9.70, p b .001; ηp2 =
0.31. Linear contrasts showed no significant difference between propor-
tions of correct responses for general events (M = .92, SE = .01) and
common locations (M= .93, SE= .01), F(1,22)=0.27, p= .61, but per-
formance in these two conditions was lower than for unrelated pairs
(M = .98, SE = .01), F(1,22) = 28.60, p b .001 and F(1,22) = 12.45,
p=.002, respectively. Therewas nomain effect of temporal orientation,
F(1, 22)=1.37, p= .25, ηp2=0.06, and no interaction between the type
of relation and temporal orientation, F(2, 44)=0.69, p= .51, ηp2=0.03.

A 2 (temporal orientation) by 3 (type of relation) repeatedmeasures
ANOVA conducted on response times (RTs) also yielded a significant ef-
fect of the type of relation linking specific events, F(2, 44) = 32.32,
p b .001, ηp2=0.60. Linear contrasts showed that RTs were faster for un-
related pairs (M=2896ms, SE=115ms) than for both general events
(M = 3485 ms, SE = 93 ms), F(1, 22) = 48.35, p b .001, and common
LV 1 explains 27.28% of the cross-block covariance (singular value = 16.08; p= .03) and
bars represent the 95% bootstrapped confidence intervals. Clu F = future cluster; Loc F =
past unrelated.

usters in past and future thoughts: How the brain integrates specific
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t1:1 Table 1
t1:2 Brain regions associated with LV1 in the mean-centered PLS analysis.

t1:3 Region MNI coordinates BSR Cluster size

t1:4 x y z

t1:5 Future unrelated N future related
t1:6 L inferior frontal sulcus −34 22 28 4.30 34
t1:7 R middle frontal gyrus 40 52 12 3.99 52
t1:8 R supplementary motor cortex 14 4 66 4.62 34
t1:9 L precentral sulcus −56 10 28 4.31 32
t1:10 R precentral sulcus 46 12 44 3.62 20
t1:11 L postcentral gyrus −54 −12 36 5.37 77
t1:12 L postcentral sulcus −44 −24 36 4.76 68
t1:13 R inferior temporal gyrus 34 0 −40 3.90 46
t1:14 R supramarginal gyrus 42 −46 30 4.56 47
t1:15 L supramarginal gyrus −62 −50 34 3.72 49
t1:16 L hippocampus −34 −24 −16 3.92 27
t1:17 L thalamus −18 −18 18 4.76 38
t1:18 L caudate −18 10 12 4.60 24
t1:19 R precuneus 8 −50 38 4.52 196
t1:20 R cuneus 8 −70 14 4.20 73
t1:21 L lingual gyrus −22 −70 −4 5.76 60
t1:22 L middle occipital gyrus −28 −66 28 4.02 52
t1:23
t1:24 Future related N future unrelated
t1:25 L orbitofrontal cortex −20 38 −12 −4.01 22
t1:26 B subgenual cingulate cortex 0 30 −6 −3.86 23
t1:27 L Cerebellum −16 −42 −42 −4.25 23

t1:28 Note: threshold=±3 (p= .0027) andminimum cluster size= 20 voxels. B: bilateral; R:
t1:29 right; L: left.

t2:1Table 2
t2:2Brain regions associated with LV2 in the mean-centered PLS analysis.

t2:3Region MNI coordinates BSR Cluster size

t2:4x y z

t2:5Cluster N controls
t2:6L rostrolateral prefrontal cortex −22 54 16 −3.95 29
t2:7B medial prefrontal cortex 2 44 16 −4.73 91
t2:8L medial prefrontal cortex −6 54 16 −3.87 31
t2:9R anterior cingulate cortex 10 36 24 −4.18 46
t2:10L temporal pole −32 10 −22 −4.61 38
t2:11L inferior temporal gyrus −50 −60 −8 −3.77 21
t2:12L middle temporal gyrus −48 −48 2 −4.37 28
t2:13L supramarginal/angular gyrus −44 −46 24 −5.63 192
t2:14R frontoparietal operculum 48 −10 16 −4.44 127
t2:15R insula 38 26 6 −4.28 34
t2:16L insula −40 2 −16 −4.09 35
t2:17R thalamus 20 −18 −2 −3.81 25
t2:18L globus pallidus −12 0 −4 −4.31 54
t2:19L caudate −6 12 12 −3.85 35
t2:20R caudate 18 28 2 −3.45 36
t2:21L putamen −24 −10 10 −3.56 27
t2:22L parahippocampal gyrus −22 −38 −10 −3.85 49
t2:23B retrosplenial cortex 6 −46 2 −4.62 184
t2:24L fusiform gyrus −24 −36 −20 −3.67 38
t2:25R cuneus/lingual gyrus 8 −78 20 −4.94 356
t2:26L lingual gyrus −16 −76 −8 −4.26 93
t2:27R cerebellum 12 −72 −48 −4.30 21
t2:28R cerebellum 40 −66 −42 −4.22 37
t2:29L cerebellum −6 −66 −28 −3.75 30
t2:30
t2:31Controls N cluster
t2:32L orbitofrontal cortex −42 36 −10 4.10 25
t2:33R superior frontal gyrus 14 14 52 6.47 73
t2:34R superior frontal gyrus 18 −2 50 5.18 214
t2:35R supramarginal gyrus 62 −36 40 5.10 104
t2:36R intraparietal sulcus 38 −36 50 4.73 71
t2:37R thalamus 18 −18 12 5.49 56
t2:38R precuneus 10 −62 60 4.45 36

t2:39Note: threshold=±3 (p= .0027) andminimum cluster size= 20 voxels. B: bilateral; R:
t2:40right; L: left.

2 We also performed a non-rotated PLS analysis in which the contrast between event
clusters and the other conditionswas specified a priori. The results of this additional anal-
ysis were consistent with the mean-centered analysis.
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location (M = 3343 ms, SE = 95 ms), F(1, 22) = 24.90, p b .001,
and faster for common locations than for general events, F(1, 22) =
8.61, p = .008. There was no main effect of temporal orientation,
F(1, 22) = 0.810, p = .0.38, ηp2 = 0.04, and no interaction between the
type of relation and temporal orientation, F(2, 44) = 1.14, p = .33,
ηp2 = 0.05.

fMRI results

Mean-centered PLS analysis
Themean-centered PLS analysis identified two significant latent var-

iables which accounted for a similar proportion of the covariance in the
data. The first LV (LV1: p = .03, singular value = 16.08) accounted for
27.28% of the cross-block covariance. The interpretation of this first LV
is not straightforward, but it appeared to mainly distinguish the future
unrelated condition from the future cluster and location conditions
(see Fig.1a). Brain regions showing increased activity for unrelated fu-
ture events included the bilateral lateral prefrontal cortex, premotor
and somatosensory cortices, inferior parietal cortex, right inferior tem-
poral gyrus, left hippocampus, precuneus, and occipital areas (see
Table 1 and Fig. S1). Regions that were more associated with the future
cluster and location conditions relative to the future unrelated condition
included left prefrontal areas (orbitofrontal cortex and middle frontal
gyrus), the subgenual cingulate cortex, and cerebellum (see Table 1
and Fig. S1).

The second latent variable (LV2: p = .03, singular value = 16.06)
accounted for 27.21% of the cross-block covariance and revealed distinct
patterns of brain activity for conditions involving past and future event
clusters relative to all the other conditions. The brain scores indicated
that all six conditions significantly contributed to the overall pattern
(see Fig. 1b). The pattern of brain activity associated with event clusters
versus the four control conditions are described in Table 2 and shown
on Fig. 2. In line with our predictions, thinking about past and future
events that were part the same event cluster was associated with
increased activity in a set of frontal, temporal, and parietal regions.
More specifically, the processing of event clusters was associated with
activity in the bilateral medial and left rostrolateral prefrontal cortex
(i.e., medial and lateral parts of Brodmann's area 10), left lateral tempo-
ral cortex (i.e., middle/inferior temporal gyrus and temporal pole), and
Please cite this article as: Demblon, J., et al., Neural correlates of event cl
episodes with autobiographical knowledge, NeuroImage (2015), http://dx
left inferior parietal cortex (i.e., supramarginal gyrus extending to the
angular gyrus). Increased activity was also detected in a number of
other (non-predicted) regions, including the retrosplenial cortex, left
parahippocampal gyrus, left fusiform gyrus, left lingual gyrus, right
cuneus (extending to the lingual gyrus), bilateral insula, anterior cingu-
late cortex, thalamus, striatum, and cerebellum.

Compared to the processing of event clusters, the four control condi-
tions (events occurring in a same location and unrelated events) were
associated with a different pattern of brain activity, including the left
orbitofrontal cortex, right superior frontal gyrus, right parietal regions
(precuneus, intraparietal sulcus, and supramarginal gyrus), and thala-
mus (see Table 2 and Fig. S2).2

Seed PLS analyses
We also sought to investigate the distributed patterns of functional

connectivity associated with the medial and rostrolateral prefrontal re-
gions identified as being related to the processing of event clusters in
the above analysis. The BOLD signal from the two main prefrontal re-
gions that were associated with the processing of event clusters in the
mean-centered PLS analysis were entered in two non-rotated seed PLS
analyses, which investigated whether the functional connectivity of
each of these regions with the rest of the brain differed between the
cluster conditions and the other conditions.

The analysis with themedial prefrontal seed did not reveal a reliable
pattern of functional connectivity when past and future events were
collapsed together in the specified contrast (Event clusters N Location/
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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Fig. 2. Brain regions showing higher activity for event clusters relative to control tasks. Threshold of the BSR = −3 (p= .0027). Activations are displayed on the mean structural MRI of
participants. Coordinates are reported in MNI space.

t3:1 Table 3
t3:2 Brain regions showing functional connectivity with the medial prefrontal cortex seed
t3:3 when processing past event clusters.

t3:4 Region MNI coordinates BSR Cluster
size

t3:5 x y z

t3:6 R rostrolateral prefrontal cortex 36 54 −2 4.06 52
t3:7 L rostrolateral prefrontal cortex −28 58 −6 4.30 80
t3:8 B ventromedial prefrontal cortex 2 30 −14 5.24 135
t3:9 R medial prefrontal cortex 14 54 10 5.30 30
t3:10 L medial prefrontal/anterior cingulate cortex −6 44 0 5.65 276
t3:11 B dorsomedial prefrontal cortex −4 30 56 4.25 100
t3:12 B anterior cingulate cortex 4 26 16 5.67 103
t3:13 R inferior frontal gyrus 56 24 16 4.70 54
t3:14 R inferior frontal gyrus 52 24 −4 4.81 159
t3:15 R inferior frontal gyrus 48 12 30 6.21 76
t3:16 L inferior frontal gyrus −50 28 8 5.53 320
t3:17 L middle frontal gyrus −36 14 46 5.04 36
t3:18 L superior frontal gyrus −16 18 68 4.17 42
t3:19 B cingulate gyrus −2 −2 34 4.44 118
t3:20 L. precentral gyrus −26 −22 62 5.07 108
t3:21 L precentral gyrus −12 −26 76 5.26 71
t3:22 R postcentral gyrus 66 −12 18 4.06 21
t3:23 L postcentral gyrus −20 −38 58 3.93 60
t3:24 L middle temporal gyrus −54 2 −18 8.74 161
t3:25 L middle temporal gyrus −48 −20 −12 4.86 41
t3:26 L middle temporal gyrus −60 −60 8 4.51 27
t3:27 R superior temporal sulcus 46 −30 −4 3.90 21
t3:28 L superior temporal gyrus −64 −52 22 5.63 114
t3:29 R superior temporal gyrus 62 −8 −2 3.72 20
t3:30 L superior temporal gyrus −48 −4 −2 3.87 30
t3:31 R frontoparietal operculum 38 −24 22 5.48 90
t3:32 R frontoparietal operculum/insula 48 4 12 4.39 75
t3:33 R angular gyrus 46 −66 28 4.81 40
t3:34 L thalamus −8 −22 18 3.69 41
t3:35 R caudate 12 12 0 6.32 77
t3:36 L fusiform/parahippocampal gyrus −28 −28 −22 4.39 24
t3:37 L lingual/parahippocampal/fusiform gyrus −18 −44 −4 5.12 232
t3:38 L posterior cingulate/retrosplenial cortex −8 −56 14 5.17 22
t3:39 R calcarine sulcus 2 −94 8 4.80 40
t3:40 L cuneus −6 −86 20 4.48 32
t3:41 R cuneus 18 −58 22 3.54 23
t3:42 L cerebellum −50 −56 −36 4.07 20
t3:43 B cerebellum 0 −44 −10 3.68 26

t3:44 Note: threshold = 3 (p = .0027) and minimum cluster size = 20 voxels. B: bilateral; R:
t3:45 right; L: left.
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trasting event clusters with the location and unrelated conditions, sep-
arately for past and future events. This showed that the functional
connectivity of themPFCwas significantly modulated by the processing
of event clusters for past events (p = .036), but not for future events
(p = .155). When processing past event clusters, the mPFC showed
increased functional coupling with a network including medial and
lateral prefrontal regions bilaterally, the lateral temporal cortex bilater-
ally, the left posterior cingulate/retrosplenial cortex and fusiform/
parahippocampal gyri, and the occipital cortex (see Table 3 and Fig. 3).
Activity in this network strongly correlated with activity in the mPFC
seed during the processing of past event clusters (r = .88), but not in
the past location (r = .01) and past unrelated (r = .14) conditions.

The analysis with the rostrolateral prefrontal seed revealed that the
functional connectivity of this region was significantly modulated dur-
ing the processing of past and future event clusters (p = .004). More
specifically, the rostrolateral PFC showed increased functional coupling
with a network including lateral prefrontal regions bilaterally, the later-
al temporal cortex bilaterally, left hippocampus, retrosplenial cortex, in-
ferior parietal cortex bilaterally, precuneus, and occipital cortex (see
Table 4 and Fig. 4). Activity in this network strongly correlated with ac-
tivity in the rostrolateral PFC seed during the processing of both past
(r = .82) and future (r = .72) event clusters, but not in the location
(r = − .04 and r = − .001, for past and future events, respectively)
and unrelated (r= − .05 and r= − .003, for past and future events, re-
spectively) conditions.

Discussion

The present study aimed to investigate the neural bases of the auto-
biographical framework used to organize sets of specific events in coher-
ent themes and causal sequences—referred to as event clusters—when
remembering the past and envisioning the future. As predicted, in-
creased activitywas found in a set of brain regions supporting conceptu-
al and integrative processing (i.e., mPFC, rostrolateral PFC, lateral
temporal, and inferior parietal cortices) when participants considered
pairs of events that were thematically and/or causally related to each
other (i.e., events embedded in the same event cluster), compared to
events that only shared a surface feature (i.e., their location) or that
were unrelated to each other. Importantly, these regions were not only
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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Fig. 3.Brain regions showing functional connectivitywith themPFC seedwhenprocessing past event clusters. Threshold of the BSR=3 (p=.0027). Activations are displayed on themean
structural MRI of participants. Coordinates are reported in MNI space.
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recruited for clusters of past events, but also for clusters of envisioned
future events. Functional connectivity analyses further revealed that
prefrontal regions (mPFC and rostrolateral PFC) showed increased cou-
pling with more posterior regions (temporal, parietal, and occipital cor-
tices) when processing event clusters. Overall, these findings suggest
that largely similar mechanisms are involved in organizing events in
thematic clusterswhen remembering the past and imagining the future.

In line with our prediction, the processing of past and future events
that were members of the same cluster was associated with increased
activity in the medial part of the prefrontal cortex. The mPFC is one of
themost commonly activated regions in studies of autobiographical re-
membering and prospective thinking (for meta-analyses, see Benoit
and Schacter, 2015; Kim, 2012; Martinelli et al., 2013; McDermott
et al., 2009; Spreng et al., 2009; Stawarczyk and D'Argembeau, 2015;
Svoboda et al., 2006), but its exact function is not yet fully understood.
This region is not only activatedwhen representing specific past and fu-
ture events, but also when processing more abstract self-related infor-
mation, such as traits (van der Meer et al., 2010), goals (Stawarczyk
and D'Argembeau, 2015), and knowledge of personal facts and general
events (Martinelli et al., 2013). In addition, the mPFC is involved in cre-
ating abstract knowledge derived from regularities across multiple epi-
sodic experiences, and in relating and integrating incoming information
to these existing knowledge structures (Brod et al., 2013; Kroes and
Fernandez, 2012; Preston and Eichenbaum, 2013; van Kesteren et al.,
2012), an integrative process that may notably contribute to determin-
ing the personal/affective value of stimuli and mental contents (Benoit
et al., 2014; D'Argembeau, 2013; Roy et al., 2012). On the basis of
these previous studies and the presentfinding that themPFC ismore ac-
tivated when processing events that are part of the same cluster, we
suggest that an important function of the mPFC in autobiographical re-
membering and future thinking might be to link and integrate specific
event representations to higher-order conceptual autobiographical
knowledge (e.g., to personal goals and general knowledge about the
events and periods that constitute a person's life). Through this integra-
tive process, the mPFC might contribute to contextualize specific event
representationswithin one's life story, thus renderingmemories and fu-
ture thoughts truly autobiographical (Conway, 2005; D'Argembeau,
2015; Fivush, 2011; Habermas and Bluck, 2000).

Besides themPFC, the pattern of activations associatedwith the pro-
cessing of event clusters also included the left rostrolateral PFC. This re-
gion is thought to support themost complex aspects of cognitive control
(Koechlin and Hyafil, 2007; Ramnani and Owen, 2004) and, in particu-
lar, to enable the joint consideration, comparison, and integration of
several mental representations or relations (Christoff et al., 2001;
Please cite this article as: Demblon, J., et al., Neural correlates of event cl
episodes with autobiographical knowledge, NeuroImage (2015), http://dx
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RWendelken et al., 2011). The activation of the rostrolateral PFC in the
present study might reflect the operation of such controlled processes
in determining or evaluating the relational dimensions that link events
in higher-order clusters. In particular, causal relations are one of the
key relational dimensions that characterize event clusters, for both
past and future events (Brown and Schopflocher, 1998; D'Argembeau
and Demblon, 2012; Demblon and D'Argembeau, 2014), and the
rostrolateral PFC might contribute to making these causal connections
between represented events (Barbey and Patterson, 2011).

While the medial and rostrolateral PFC might contribute to linking
specific events together and integrating them with higher-order auto-
biographical knowledge, such knowledge is likely not stored in the pre-
frontal cortex, but rather in more posterior regions that support the
representation of semantic information. Indeed, we found that process-
ing events that were part of the same event cluster engaged regions of
the left temporal and parietal cortices that have been previously associ-
ated with semantic representations (Binder and Desai, 2011; Binder
et al., 2009; Jefferies, 2013). The lateral temporal cortex might store ab-
stract autobiographical knowledge (e.g., general personal information,
knowledge about the facts and events of one's life, and personal goals;
Renoult et al., 2012; Stawarczyk and D'Argembeau, 2015; Svoboda
et al., 2006) that is used for linking and organizing events in clusters.
The exact function of the inferior parietal cortex remains debated, but
it might contribute to the control (Jefferies, 2013) or integration
(Binder et al., 2009) of semantic information, ormight indicate an atten-
tional capture by retrieved knowledge (Cabeza et al., 2012).

Functional connectivity analyses further showed that these prefron-
tal and more posterior regions were coupled together during the pro-
cessing of event clusters. More specifically, the rostrolateral PFC was
functionally connected to regions that have been associated with the
controlled activation/selection and representation of semantic informa-
tion (inferior frontal gyrus, lateral temporal cortex, inferior parietal
cortex; Binder et al., 2009; Jefferies, 2013), as well as regions that
might represent episodic details of specific events (hippocampus,
retrosplenial cortex, precuneus, and visual cortex; Addis et al., 2004b;
Daselaar et al., 2008; Martinelli et al., 2013). This functional coupling
is consistent with the view that the rostrolateral PFC might support
the joint consideration and integration of multiple sources of informa-
tion to determine the relational dimensions that link events in clusters.

The mPFC also showed increased functional connectivity with
regions supporting semantic and episodic representations when pro-
cessing event clusters but, interestingly, this coupling was only signifi-
cant for past events. As discussed above, the mPFC is thought to play a
role in evaluating and integrating incoming information with prior
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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t4:1 Table 4
t4:2 Brain regions showing functional connectivity with the left rostrolateral prefrontal cortex
t4:3 seed when processing past and future event clusters.

t4:4 Region MNI coordinates BSR Cluster
size

t4:5 x y z

t4:6 L orbitofrontal cortex −24 28 −8 5.29 41
t4:7 L rostrolateral prefrontal cortex −14 60 2 5.24 41
t4:8 L rostrolateral prefrontal cortex −26 50 −2 4.10 35
t4:9 R rostrolateral prefrontal cortex 28 54 12 4.44 32
t4:10 L inferior frontal gyrus −58 16 26 5.99 562
t4:11 L inferior frontal gyrus −48 20 −2 4.42 179
t4:12 R inferior frontal gyrus 60 26 12 4.57 54
t4:13 R inferior frontal gyrus 46 12 30 4.50 30
t4:14 L middle/superior frontal gyrus −22 24 48 4.42 143
t4:15 L middle frontal gyrus −42 12 48 4.90 133
t4:16 B dorsomedial prefrontal cortex 0 32 56 4.96 41
t4:17 R anterior cingulate cortex 12 28 34 4.81 29
t4:18 L anterior cingulate cortex −10 12 40 3.94 26
t4:19 B anterior cingulate cortex 0 16 26 5.51 48
t4:20 R cingulate cortex 12 −2 40 3.74 23
t4:21 R precentral sulcus 44 6 16 4.35 28
t4:22 L precentral gyrus/frontoparietal operculum −48 −2 18 5.82 130
t4:23 L precentral gyrus −32 −16 62 4.95 58
t4:24 R precentral gyrus 20 −20 58 4.81 26
t4:25 L paracentral lobule −6 −38 68 6.76 132
t4:26 L postcentral gyrus −38 −28 46 5.30 104
t4:27 R inferior temporal gyrus 46 −50 −10 4.77 43
t4:28 L inferior/middle temporal gyrus −56 −20 −24 4.82 77
t4:29 L inferior temporal gyrus −44 −66 −8 4.62 57
t4:30 L middle temporal gyrus −64 −46 −4 4.22 48
t4:31 R superior temporal sulcus 48 −22 −10 4.69 85
t4:32 L supramarginal gyrus −40 −50 44 4.33 165
t4:33 L supramarginal gyrus −50 −32 46 5.66 98
t4:34 R angular gyrus 54 −58 28 4.02 56
t4:35 L hippocampus −26 −28 −8 4.21 31
t4:36 L amygdala −26 2 −16 5.00 30
t4:37 B retrosplenial cortex −10 −46 0 4.85 308
t4:38 L precuneus −8 −74 36 4.65 116
t4:39 L precuneus −8 −58 28 4.48 99
t4:40 L cuneus −6 −86 22 4.51 30
t4:41 R lingual gyrus 8 −68 −10 4.45 38
t4:42 L calcarine sulcus −4 −98 −6 5.00 148
t4:43 L fusiform/inferior occipital gyrus −26 −72 −12 5.01 118
t4:44 R fusiform/inferior occipital gyrus 42 −74 −14 5.35 192
t4:45 R inferior occipital gyrus 28 −94 −12 3.99 48
t4:46 L middle/superior occipital gyrus −22 −82 22 4.60 38
t4:47 L middle/inferior occipital gyrus −34 −96 −4 4.41 111
t4:48 R cerebellum 26 −82 −30 6.47 559
t4:49 R cerebellum 36 −40 −32 5.57 51
t4:50 R cerebellum 8 −78 −38 4.35 49
t4:51 L cerebellum −26 −70 −24 4.96 389

t4:52 Note: threshold = 3 (p = .0027) and minimum cluster size = 20 voxels. B: bilateral; R:
t4:53 right; L: left.
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2013; Kroes and Fernandez, 2012; Preston and Eichenbaum, 2013; van
Kesteren et al., 2012). The present finding that the functional connectiv-
ity of the mPFC with posterior regions increased only for past events
might indicate differences between the past and future in terms of the
amount of information supporting event clusters. For example, al-
though people possess general autobiographical knowledge both
about their past and their anticipated future (e.g., Anderson and
Dewhurst, 2009; D'Argembeau and Mathy, 2011), such knowledge
may be less elaborated for the future than the past due to the inherent
uncertainty associated with prospective thought (see Suddendorf,
2010, for further discussion of differences between remembering and
future thinking). The level of functional connectivity of the mPFC
might thus reflect the amount of autobiographical knowledge available
for integrating events in clusters. In a related vein, lesion and neuroim-
aging studies have shown that the mPFC is involved in processing self-
related traits (e.g., Philippi et al., 2012; van der Meer et al., 2010) and
our functional connectivity results might thus indicate that past event
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clusters provided more information about an individual's traits than fu-
ture event clusters. These hypotheses could be tested in future studies
by assessing to what extent general autobiographical information and
other self-related knowledge (such as traits) is accessed when thinking
about past and future event clusters.

The finding that the cluster conditionwas associatedwith higher ac-
tivity in retrosplenial, parahippocampal, and occipital cortices relative
to the location condition was somewhat unexpected. These regions
are commonly involved in studies of autobiographical remembering
and future thinking (see e.g., Benoit and Schacter, 2015; Kim, 2012;
Martinelli et al., 2013; McDermott et al., 2009; Stawarczyk and
D'Argembeau, 2015), and their activity has been found to increase
with the amount of contextual information retrieved for constructing
event representations (Szpunar et al., 2009; Gilmore et al., 2014).
Retrosplenial and parahippocampal cortices have been shown to play
an important role in spatial processing (Epstein, 2008; Miller et al.,
2014; Vann et al., 2009), and the representation of a coherent spatial
context is indeed a key component of specific past and future thoughts
(Hassabis andMaguire, 2007). Therefore, one could have expected that,
in the present study, retrosplenial, parahippocampal, and occipital cor-
tices would have been more activated when processing events that
shared the same location rather than events that were part of the
same cluster, as visuo-spatial information was likely processed at a
deeper level in the former condition. However, the retrosplenial and
parahippocampal cortex could play a broader role in generating various
types of associations (Bar et al., 2007). Perhaps events that were part of
clusters tended to automatically elicit more associations (e.g., additional
events that were also part of the same cluster) than unclustered events,
and the increased activations observed here might in part reflect such
associative processes. This explanation is clearly tentative and addition-
al studies will be required to further investigate this possibility.

The mean-centered PLS analysis also revealed a latent variable that
seemed to mainly differentiate between pairs of related versus unrelat-
ed future events. The neural pattern associated with the future unrelat-
ed condition included lateral frontal, sensorimotor, and occipital
regions, aswell as the left hippocampus. The interpretation of this result
is not straightforward but the observed network could indicate an in-
creased representation of episodic details when participants imagined
unrelated future events. Indeed, participants were instructed to think
about individual events in case they did not detect any relation between
them,whichmight have favored the representation of event specific de-
tails to a greater extent than conditions inwhich participants also had to
focus on higher-order relations among events. This possibility could be
investigated in future studies by assessing the kinds of information
(e.g., episodic, semantic, and autobiographical) that are activated
when considering related versus unrelated future events.

Finally, it is worthmentioning that future eventswere not generated
for the first time during the scanning session, but had already been
thought about during the pre-scan interview and perhaps on other pre-
vious occasions; recent findings indeed suggest that many episodic fu-
ture thoughts do not refer to newly imagined events, but instead
represent “memories of the future” (Jeunehomme and D'Argembeau,
in press; Szpunar et al., 2013). The present findings might thus be re-
stricted to future event representations that have already been integrat-
ed with higher-order autobiographical knowledge, and it would be
interesting in future studies to investigate how newly imagined events
are initially linked to other anticipated events and pre-existing autobio-
graphical knowledge (and perhaps in turnmodify and adapt these prior
representations).

To conclude, the present findings provide evidence that a set of brain
regions within the core network involved in autobiographical remem-
bering and future thinking support the integration of single events in
a meaningful autobiographical framework. The medial PFC might play
a pivotal role in mediating the integration of specific events with con-
ceptual autobiographical knowledge ‘stored’ in more posterior regions,
and the rostrolateral PFC might support controlled processes involved
usters in past and future thoughts: How the brain integrates specific
.doi.org/10.1016/j.neuroimage.2015.11.062
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in this relational integration. Through this integrative process, this set of
brain regions might contribute to the attribution of an overarching
meaning to representations of specific past and future events, by con-
textualizing themwith respect to personal goals and general knowledge
about one's life.
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