
Constructing Automata from
Temporal Logic Formulas :

A Tutorial?

Pierre Wolper

Université de Liège,
Institut Montefiore, B28,

4000 Liège, Belgium
pw@montefiore.ulg.ac.be,

http://www.montefiore.ulg.ac.be/~pw/

Abstract. This paper presents a tutorial introduction to the construc-
tion of finite-automata on infinite words from linear-time temporal logic
formulas. After defining the source and target formalisms, it describes
a first construction whose correctness is quite direct to establish, but
whose behavior is always equal to the worst-case upper bound. It then
turns to the techniques that can be used to improve this algorithm in
order to obtain the quite effective algorithms that are now in use.

1 Introduction

Model checking [CES86,QS81,VW86] is a widespread technique for verifying
temporal properties of reactive programs. There are several ways to develop
the theory of model checking, a particularly attractive one being through the
construction of automata from temporal logic formulas [VW86,BVW94]. As a
result, there has been a fair amount of interest in the construction of automata
from temporal logical formulas, the history of which is actually fairly interesting.

The starting point is clearly the work of Büchi on the decidability of the
first and second-order monadic theories of one successor [Büc62]. These decid-
ability results were obtained through a translation to infinite-word automata,
for which Büchi had to prove a very nontrivial complementation lemma. The
translation is nonelementary, but this is the best that can be done. It is quite
obvious that linear-time temporal logic can be translated to the first-order the-
ory of one successor and hence to infinite-word automata. From a logician’s
point of view, this could be seen as settling the question, but an interest in
using temporal logic for computer science applications, in particular program
synthesis [MW84,EC82] triggered a second look at the problem. Indeed, it was
rather obvious that a nonelementary construction was not necessary to build an
automaton from a temporal logic formula; it could be done within a single ex-
ponential by a direct construction [WVS83,VW94]. As originally presented, this
? This work was partially funded by a grant of the “Communauté française de Belgique

- Direction de la recherche scientifique - Actions de recherche concertées”.



construction was worst and best case exponential. Though it was fairly clear
that it could be modified to operate more effectively on many instances, nothing
was written about this, probably because the topic was thought to be rather
trivial and had no bearing on general complexity results.

Nevertheless, the idea of doing model checking through the construction of
automata was taken seriously, at least by some, and attempts were made to
incorporate automata-theoretic model checking into tools, notably into SPIN
[Hol91,Hol97]. Of course, this required an effective implementation of the logic
to automaton translation algorithm and the pragmatics of doing this are not en-
tirely obvious. A description of such an implementation was given in [GPVW95]
and improved algorithms have been proposed since [DGV99,SB00]. Note that
there are some questions about how to measure such improvements since the
worst-case complexity of the algorithms stays the same. Nevertheless, experi-
ments show that, for the temporal logic formulas most frequently used in ver-
ification, the automata can be kept quite small. Thus, even though it is an
intrinsically exponential process, building an automaton from a temporal logic
formula appears to be perfectly feasible in practice. What is surprising is that
it took quite a long time for the details of a usable algorithmic solution to be
developed and codified.

The goal of this paper is to provide a tutorial introduction to the construction
of Büchi infinite-word automata from linear temporal logic formulas. After an
introduction to temporal logic and a presentation of infinite-word automata that
stresses their kinship to logic, a first simple, but always exponential, construction
is presented. This construction is similar to the one of [WVS83,VW94], but
is more streamlined since it does not deal with the extended temporal logic
considered in the earlier work. Thereafter, it is shown how this construction
can be adapted to obtain a more effective construction that only builds the
needed states of the automaton, as described in [GPVW95] and further improved
in [DGV99,SB00].

2 Linear-Time Temporal Logic

Linear-time temporal logic is an extension of propositional logic geared to reason-
ing about infinite sequences of states. The sequences considered are isomorphic
to the natural numbers and each state is a propositional interpretation. The
formulas of the logic are built from atomic propositions using Boolean connec-
tives and temporal operators. Purely propositional formulas are interpreted in
a single state and the temporal operators indicate in which states of a sequence
their arguments must be evaluated.

Formally, the formulas of linear-time temporal logic (LTL) built from a set
of atomic propositions P are the following:

– true, false, p, and ¬p, for all p ∈ P ;
– ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas;
– ©ϕ1, ϕ1 U ϕ2, and ϕ1 Ũ ϕ2, where ϕ1 and ϕ2 are LTL formulas.



The operator © is read “next” and means in the next state. The operator
U is read “until” and requires that its first argument be true until its second
argument is true, which is required to happen. The operator Ũ is the dual of U
and is best read as “releases”, since it requires that its second argument always
be true, a requirement that is released as soon as its first argument becomes
true. Two derived operators are in very common use. They are

– 3ϕ = trueU ϕ, which is read “eventually” and requires that its argument
be true eventually, i.e. at some point in the future; and

– 2ϕ = false Ũ ϕ, which is read “always” and requires that its argument be
true always, i.e. at all future points.

Formally, the semantics of LTL is defined with respect to sequences σ : N→
2P . For a sequence σ, σi represents the suffix of σ obtained by removing its i
first states, i.e. σi(j) = σ(i+ j). The truth value of a formula on a sequence σ,
which is taken to be the truth value obtained by starting the interpretation of
the formula in the first state of the sequence, is given by the following rules:

– For all σ, we have σ |= true and σ 6|= false;
– σ |= p for p ∈ P iff p ∈ σ(0);
– σ |= ¬p for p ∈ P iff p 6∈ σ(0);
– σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2;
– σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2;
– σ |= ©ϕ1 iff σ1 |= ϕ1;
– σ |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that σi |= ϕ2 and for all 0 ≤ j < i,

we have σj |= ϕ1;
– σ |= ϕ1 Ũ ϕ2 iff for all i ≥ 0 such that σi 6|= ϕ2, there exists 0 ≤ j < i such

that σj |= ϕ1.

In the logic we have defined, negation is only applied to atomic propositions.
This restriction can be lifted with the help of the following relations, which are
direct consequences of the semantics we have just given:

σ 6|= ϕ1 U ϕ2 iff σ |= (¬ϕ1) Ũ(¬ϕ2)

σ 6|= ϕ1 Ũ ϕ2 iff σ |= (¬ϕ1)U(¬ϕ2)

σ 6|= ©ϕ1 iff σ |= ©¬ϕ1.

To easily understand the link between temporal logic formulas and automata,
it is useful to think of a temporal formula as being a description of a set of infinite
sequences: those that satisfy it. Note that to check that a sequence satisfies a
temporal logic formula ϕ, a rather natural way to proceed is to attempt to
label each state of the sequence with the subformulas of ϕ that are true there.
One would proceed outwards, starting with the propositional subformulas, and
adding exactly those subformulas that are compatible with the semantic rules.
Of course, for an infinite sequence, this cannot be done effectively. However, this
abstract procedure will turn out to be conceptually very useful.



3 Automata on Infinite Words

Infinite words (or ω-words) are sequences of symbols isomorphic to the natural
numbers. Precisely, an infinite word over an alphabet Σ is a mapping w : N→ Σ.

An automaton on infinite words is a structure that defines a set of infinite
words. Even though infinite word automata look just like traditional automata,
one gets a better understanding of them by not considering them as operational
objects but, rather, by seeing them as descriptions of sets of infinite sequences,
and hence as a particular type of logical formula.

We will consider Büchi and generalized Büchi automata on infinite words. A
Büchi infinite word automaton has exactly the same structure as a traditional
finite word automaton. It is a tuple A = {Σ,S, δ, S0, F} where

– Σ is an alphabet,
– S is a set of states,
– δ : S × Σ → S (deterministic) or δ : S × Σ → 2S (nondeterministic) is a

transition function,
– S0 ⊆ S is a set of initial states (a singleton for deterministic automata), and
– F ⊆ S is a set of accepting states.

What distinguishes a Büchi infinite-word automaton from a finite word au-
tomaton is that its semantics are defined over infinite words. Let us now examine
these semantics using a somewhat logical point of view. A word w is accepted by
an automaton A = {Σ,S, δ, S0, F} (the word satisfies the automaton) if there is
a labeling

ρ : N→ S

of the word by states such that

– ρ(0) ∈ S0 (the initial label is an initial state),
– ∀0 ≤ i, ρ(i+1) ∈ δ(ρ(i), w(i)) (the labeling is compatible with the transition

relation),
– inf(ρ) ∩ F 6= ∅ where inf(ρ) is the set of states that appear infinitely often

in ρ (the set of repeating states intersects F ).

Example 1. The automaton of Figure 1 accepts all words over the alphabet
Σ = {a, b} that contain b infinitely often.

Generalized Büchi automata differ from Büchi automata by their acceptance
condition. The acceptance condition of a generalized Büchi automaton is a set
of sets of states F ⊆ 2S , and the requirement is that some state of each of
the sets Fi ∈ F appears infinitely often. More formally, a generalized Büchi
A = {Σ,S, δ, S0,F} accepts a word w if there is a labeling ρ of w by states of
A that satisfies the same first two conditions as given for Büchi automata, the
third being replaced by:

– For each Fi ∈ F , inf(ρ) ∩ Fi 6= ∅.



s0��
��

>



a

s1��
�����
b

q

b

i

a

Fig. 1. An automaton accepting all words over Σ = {a, b} containing b infinitely often

As the following lemma shows, generalized Büchi automata accept exactly
the same languages as Büchi automata.

Lemma 1. Given a generalized Büchi automaton, one can construct an equiv-
alent Büchi automaton.

Proof. Given a generalized Büchi automaton A = (Σ,S, δ, S0,F), where F =
{F1, . . . , Fk}, the Büchi automaton A′ = (Σ,S′, δ′, S′0, F

′) defined as follows
accepts the same language as A.

– S′ = S × {1, . . . , k}.
– S′0 = S0 × {1}.
– δ′ is defined by (t, i) ∈ δ′((s, j), a) if

t ∈ δ(s, a) and
{
i = j if s 6∈ Fj ,
i = (j mod k) + 1 if s ∈ Fj .

– F ′ = F1 × {1}.

The idea of the construction is that the states of A′ are the states of A
marked by an integer in the range [1, k]. The mark is unchanged unless one goes
through a state in Fj , where j is the current value of the mark. In that case the
mark is incremented (reset to 1 if it is k). If one repeatedly cycles through all
the marks, which is necessary for F ′ to be reached infinitely often, then all sets
in F are visited infinitely often. Conversely, if it is possible to visit all sets in F
infinitely often in A, it is possible to do so in the order F1, F2, . . .Fk and hence
to infinitely often go through F ′ in A′.

Example 2. Figure 3 shows the Büchi automaton equivalent to the generalized
Büchi automaton of Figure 2 whose acceptance condition is F = {{s0}, {s1}}.

Nondeterministic1 Büchi automata have many interesting properties. In par-
ticular they are closed under all Boolean operations as well as under projec-
tion. Closure under union, projection are immediate given that we are dealing
1 Deterministic Büchi automata are less powerful and do not enjoy the same properties

(see for instance [Tho90]).



s0��
�����>



a

s1��
�����
b

q

b

i

a
Fig. 2. A generalized Büchi automaton

s0,1��
�����> s1,1��

��
b

)

a

s0,2��
��
M

a

s1,2��
��
1

b

?

a

6

b

HH
HH

HH
H
HH

H
HH

HY

a
HHH

HHHH
HHH

HHHj

b

Fig. 3. From generalized Büchi to Büchi

with nondeterministic automata; closure under intersection is obtained using a
product construction similar to the one employed for finite-word automata. Clo-
sure under complementation is much more tricky and has been the subject of
an extensive literature [Büc62,SVW87,Saf88,KV97]. Checking that a (general-
ized) Büchi automaton is nonempty (accepts at least one word) can be done by
computing its strongly connected components, and checking that there exists a
reachable strongly connected component that has a non empty intersection with
each set in F .

4 From Temporal Logic to Automata

4.1 Problem Statement

We now consider the following problem: given an LTL formula ϕ built from a
set of atomic propositions P , construct an automaton on infinite words over the
alphabet 2P that accepts exactly the infinite sequences satisfying ϕ.

To get an intuitive idea of what we are aiming at, let us first look at an
example.

Example 3. Consider the formula 3 p. This formula describes the sequences over
{∅, {p}} in which {p} occurs at least once. These sequences are accepted by the
automaton of Figure 4.



s0��
��

>



∅

s1��
�����
∅, {p}

q

{p}

Fig. 4. An automaton for 3 p

4.2 The Closure of a Formula

In order to develop a procedure for building automata from LTL formulas, we
first look at the problem of determining if a sequence σ : N → 2P satisfies a
formula ϕ defined over the set of propositions P . This can, at least conceptually,
be done by labeling the sequence with subformulas of ϕ in a way that respects
LTL semantics. First, let us define the set of subformulas of a formula ϕ that
are needed. This set is called the closure of ϕ (cl(ϕ)) and is defined as follows:

– ϕ ∈ cl(ϕ),
– ϕ1 ∧ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 ∨ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ©ϕ1 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ),
– ϕ1 U ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 Ũ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ).

Example 4.

cl(3¬p) = cl(trueU ¬p) = {3¬p,¬p, true}

4.3 Rules for Labeling Sequences

The next step is to define the set of rules that a valid closure labeling τ : N →
2cl(ϕ) of a sequence σ : N → 2P has to satisfy. The validity criterion is that, if
a formula ϕ1 ∈ cl(ϕ) labels a position i (i.e. ϕ1 ∈ τ(i)), then the sequence σi

satisfies it (σi |= ϕ1)2. For this to hold, our labeling rules have to mirror the
semantic rules for LTL. A first set of rules deals with the purely propositional
part of LTL.

Consider a closure labeling τ : N → 2cl(ϕ) of a sequence σ : N → 2P for
a formula ϕ defined over a set of atomic propositions P . For τ to be a valid
labeling, it has to satisfy the following rules for every i ≥ 0:

1. false 6∈ τ(i);
2. for p ∈ P , if p ∈ τ(i) then p ∈ σ(i), and if ¬p ∈ τ(i) then p 6∈ σ(i);
3. if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i);
2 Such a validly labeled structure is often called a Hintikka structure in the modal

logic literature



4. if ϕ1 ∨ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i).

Note that the labeling rules are “if” rules and not “if and only if” rules.
They give the requirements that a valid closure labeling must satisfy, but they
do not require that labelings be maximal: there can be formulas of the closure
that are satisfied at a given position, but that are not included in the label of
that position.

Let us now turn to elements of the closure whose main operator is temporal.
For the operator ©, the rule is quite immediate. We have that for all i ≥ 0,

5. if ©ϕ1 ∈ τ(i) then ϕ1 ∈ τ(i+ 1).

For the U and Ũ operators, the semantic rules refer to a possibly infinite set
of points of the sequence, which we would like to avoid in our labeling rules.
Fortunately, this is mostly possible. Indeed, one can fairly easily show from the
semantic rules that the following identities hold:

ϕ1 U ϕ2 ≡ (ϕ2 ∨ (ϕ1 ∧©(ϕ1 U ϕ2)))
ϕ1 Ũ ϕ2 ≡ (ϕ2 ∧ (ϕ1 ∨©(ϕ1 Ũ ϕ2))).

These identities then suggest the following labeling rules for all positions
i ≥ 0:

6. if ϕ1 U ϕ2 ∈ τ(i) then either ϕ2 ∈ τ(i), or ϕ1 ∈ τ(i) and ϕ1 U ϕ2 ∈ τ(i+ 1);
7. if ϕ1 Ũ ϕ2 ∈ τ(i) then ϕ2 ∈ τ(i), and either ϕ1 ∈ τ(i) or ϕ1 Ũ ϕ2 ∈ τ(i+ 1).

The rule for Ũ is sufficient to ensure that the labeling is valid. Unfortunately,
the same is not true for the operator U . Indeed, rule 6 does not force the existence
of a point at which ϕ2 appears: such a point can be postponed forever. We thus
need to add one more labeling rule, which unfortunately does not only refer to
consecutive points. For every position i ≥ 0, we must have that

8. if ϕ1 U ϕ2 ∈ τ(i) then there is a j ≥ i such that ϕ2 ∈ τ(j).

As a hint at the requirement expressed by rule 8, a formula of the form
ϕ1 U ϕ2 is often referred to as an eventuality since it requires that the formula
ϕ2 be eventually true. Rule 8 is then said to require that the eventualities are
fulfilled.

We can now formalize the fact that the labeling rules we have given charac-
terize the valid labelings. First we show that the labeling rules only allow valid
labelings.

Lemma 2. Consider a formula ϕ defined over a set of propositions P , a se-
quence σ : N → 2P , and a closure labeling τ : N → 2cl(ϕ) satisfying rules 1–8.
For every formula ϕ′ ∈ cl(ϕ) and i ≥ 0, one has that if ϕ′ ∈ τ(i) then σi |= ϕ′.

Proof. The proof proceeds by structural induction on the formulas of cl(ϕ). Let
us consider the most interesting case, which is that of a formula ϕ′ of the form
ϕ1 U ϕ2. By rule 8, one has that there is a j ≥ i such that ϕ2 ∈ τ(j) and, by



inductive hypothesis, such that σj |= ϕ2. Consider the smallest such j and a
k such that i ≤ k < j. Since ϕ1 U ϕ2 ∈ τ(i), and since for all i ≤ k′ ≤ k,
ϕ2 6∈ τ(k′), rule 6 implies that ϕ1 U ϕ2 ∈ τ(k) and also that ϕ1 ∈ τ(k). Hence,
by inductive hypothesis, σk |= ϕ1.

Next we need to establish that when a sequence satisfies a formula, a closure
labeling satisfying rules 1–8 exists.

Lemma 3. Consider a formula ϕ defined over a set of propositions P and a
sequence σ : N → 2P . If σ |= ϕ, there exists a closure labeling τ : N → 2cl(ϕ)

satisfying rules 1–8 and such that ϕ ∈ τ(0).

Proof. Consider the closure labeling defined by ϕ′ ∈ τ(i) iff σi |= ϕ′ for all
ϕ′ ∈ cl(ϕ). Given that σ |= ϕ, one immediately has that ϕ ∈ τ(0). Furthermore,
that fact that rules 1–8 are satisfied is a direct consequence of the semantics of
LTL.

The following theorem is then a direct consequence of Lemmas 2 and 3.

Theorem 1. Consider a formula ϕ defined over a set of propositions P and a
sequence σ : N → 2P . One then has that σ |= ϕ iff there is a closure labeling
τ : N→ 2cl(ϕ) of σ satisfying rules 1–8 and such that ϕ ∈ τ(0).

4.4 Defining the Automaton

Given Theorem 1, the construction of an automaton accepting the sequences
satisfying a formula ϕ is almost immediate. Indeed, remember that an automa-
ton accepts an ω-sequence when this sequence can be labeled by states of the
automaton, while satisfying the constraints imposed by the transition relation
as well as by the initial and accepting state sets. The idea is simply to use 2cl(ϕ)

as state set and hence as set of possible labels. It then remains to express the
required properties of the labeling by an appropriate definition of the structure
of the automaton. We now show how this can be done.

Given a formula ϕ, a generalized Büchi automaton accepting exactly the
sequences σ : N→ 2P satisfying ϕ can be defined as follows. The automaton is
Aϕ = (Σ,S, δ, S0,F) where

– Σ = 2P ,
– The set of states S is the set of possible labels, i.e. the subsets s of 2cl(ϕ)

that satisfy
• false 6∈ s;
• if ϕ1 ∧ ϕ2 ∈ s then ϕ1 ∈ s and ϕ2 ∈ s;
• if ϕ1 ∨ ϕ2 ∈ s then ϕ1 ∈ s or ϕ2 ∈ s.

The states (and hence possible labels) are thus the subsets of 2cl(ϕ) that
satisfy rules 1 as well as rules 3 and 4.

– The transition function δ checks that the propositional labeling matches the
one in the sequence being considered (rule 2) and that the rules 5–7 for the
temporal operators are satisfied. Thus, t ∈ δ(s,a) iff



• For all p ∈ P , if p ∈ s then p ∈ a.
• For all p ∈ P , if ¬p ∈ s then p 6∈ a.
• if ©ϕ1 ∈ s then ϕ1 ∈ t.
• if ϕ1 U ϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1 U ϕ2 ∈ t.
• if ϕ1 Ũ ϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1 Ũ ϕ2 ∈ t.

– The set of initial states is defined in order to ensure that ϕ appears in the
label of the first position of the sequence. We thus have that S0 = {s ∈ S |
ϕ ∈ s}.

– The acceptance condition F is used to impose rule 8 on the fulfillment of
eventualities, but seeing how this can be done requires a slightly closer look
at this requirement.

What needs to be imposed to satisfy rule 8 is that, for every eventuality
formula ϕ1 U ϕ

′ ≡ e(ϕ′) ∈ cl(ϕ), any state that contains that formula is followed
by a state that contains ϕ′. The problem with the way this requirement is stated
is that it requires “remembering” that a state in which e(ϕ′) occurs has been
seen and hence extending the set of states of the automaton. Fortunately, this
can be avoided.

Rule 6 (and hence the transition relation of the automaton) requires that if
an eventuality e(ϕ′) appears, it keeps on appearing until the first state in which
ϕ′ appears. So, the only problematic situation would be one in which e(ϕ′)
appears indefinitely without ϕ′ ever appearing. So its is sufficient to require that
the automaton goes infinitely often through a state in which both e(ϕ′) and
ϕ′ appear or in which e(ϕ′) does not appear, the latter case allowing for the
eventuality no longer to be required after some point. The acceptance condition
of the automaton is thus the following generalized Büchi condition.

– If the eventualities appearing in cl(ϕ) are e1(ϕ1), . . . em(ϕm),
F = {Φ1, . . . , Φm} where Φi = {s ∈ S | ei, ϕi ∈ s ∨ ei 6∈ s}.

Given the way we have expressed the semantics of LTL in terms of label-
ing rules and given the semantics of Büchi automata, the correctness of the
construction we have just given is essentially immediate.

Example 5. The automaton for 3 p is given in Figure 5, where F = {{1, 3, 4}}.
Note that in this example we have already applied two optimizations to the

construction. First, we have identified states containing true with the states
defined by an otherwise identical set of formulas. Second, we have omitted the
transitions leaving from nodes 3 and 4 to nodes 1 and 2. It is intuitively obvious
that these transitions are not needed but, in the next section, we will generalize
these types of optimizations and justify them precisely.

5 Improving the Construction

5.1 Omitting Redundant Transitions

The states of the automaton we build for a formula are subsets of the closure of
that formula. The subset ordering thus naturally defines a partial order on the



3 p
p ��
��

1 < 3 p��
��

2>

p, ∅



i
p, ∅

p 3��
��

p

M

∅��
��

4

p, ∅

M
i

p, ∅

-
p

?

p

HH
HHHH

HHH
HHHHj

p

Fig. 5. The automaton constructed for 3 p

automaton states. Furthermore, given the way the transition relation is defined,
any transition possible from a state s1 is also possible from any state s2 ⊂ s1.
This seems to imply that if, from a given state, two transitions lead to states s1

and s2 such that s2 ⊂ s1, then it is sufficient to keep the transition leading to
the state s2. Almost so. Indeed, the way the transition relation of the automaton
is defined guarantees that if there is a computation of the automaton on a given
word from s1, there is also one from s2. The problem is with accepting states: if
s1 contains an eventuality formula e(ϕ′) as well as its argument ϕ′, but that s2

only contains e(ϕ′), s2 might be outside an accepting set in which s1 is included.
The simplification rule we will use is thus the following.

Omit transitions. Assume that from a state s two identically labeled tran-
sitions lead to states s1 and s2 such that s2 ⊂ s1 and such that, for all
eventuality formulas e(ϕ′) ∈ s1, if e(ϕ′) ∈ s2 and ϕ′ ∈ s1 then also ϕ′ ∈ s2.
The transition from s to s1 can then be omitted.

Example 6. Applying the omit transitions rule to the automaton of Figure 5
and eliminating unreachable states, one obtains the automaton of Figure 6.

To see that the omit transitions rule is sound, we establish that for every
state of the automaton, the language accepted from that state after applying the
omit transitions rule is unchanged. First notice that we are removing transi-
tions. So, after applying the rule, the language accepted cannot contain more
words. We show that it also cannot contain less words. Assume that there exists
an accepting computation from a state s before applying the omit transitions
rule. Such a computation still exists after applying the rule. Indeed, if the com-
putation from s starts with an omitted transition leading to a state s1, there
remains an identically labeled transition to a state s2 ⊂ s1 that is accepting
whenever s1 is accepting. Now, since s2 ⊂ s1, before the transition omission pro-
cedure, all transitions possible from s1 are also possible from s2, so there also is
an accepting computation from s2. Of course, some transitions from s2, may also



3 p
p ��
��

1 < 3 p��
��

2>

p, ∅



i
p, ∅

∅��
��

4

p, ∅

M

HH
HHHH

HHH
HHHHj

p

Fig. 6. A simplified automaton for 3 p

have been omitted, but the same argument can be repeated for the computation
starting at s2. By induction, one can then conclude the existence of the required
accepting computation in the simplified automaton.

5.2 Building the Automaton by Need

The most obviously wasteful aspect of the construction we have shown is that it
defines the set of states to be all subsets of the closure that satisfy the rules 1, 3,
and 4. Indeed, many of these states might not be reachable from initial states,
especially if the omit transitions simplification rule is applied. To avoid this,
we are going to construct the states of the automaton as needed, starting with
the initial states and adding the states that must appear as targets of transitions.

Preparing to do this, notice that all the rules embodied in the transitions
of the automaton require that, if some formula of the closure occurs in the
current state, then some other formula also occurs in the current or next state.
Furthermore, the omit transitions simplification allows us to only consider the
minimal states satisfying these conditions. This leads us to defining an operation
that adds to a subset of the closure all formulas that must be true in the current
and in the immediately next state. For ease of definition, we define this operation
(saturate) not on subsets of the closure, but on sets of subsets of the closure.

Let Q = {q1,q2, . . . ,qk} ⊆ 2cl(ϕ), then we define saturate (Q) as follows.

1. Repeat until stabilization: for each qi ∈ Q,
(a) If ϕ1 ∧ ϕ2 ∈ qi, then

Q := Q \ {qi} ∪ {qi ∪ {ϕ1, ϕ2}};
(b) If ϕ1 ∨ ϕ2 ∈ qi, then

Q := Q \ {qi} ∪ {qi ∪ {ϕ1}} ∪ {qi ∪ {ϕ2}};
(c) If ϕ1 U ϕ2 ∈ qi, then

Q := Q \ {qi} ∪ {qi ∪ {ϕ2}} ∪ {qi ∪ {ϕ1,©(ϕ1 U ϕ2)}};



(d) If ϕ1 Ũ ϕ2 ∈ qi, then
Q := Q \ {qi} ∪ {qi ∪ {ϕ1, ϕ2}} ∪ {qi ∪ {ϕ2,©(ϕ1 Ũ ϕ2)}}

2. Remove all qi ∈ Q such that false ∈ qi

If the operation saturate is applied to a singleton q, then the result is a set
of sets of formulas3 that represent possible ways of satisfying the requirements
expressed by the formulas in q. Among such sets of formulas, we will be especially
interested in the propositional formulas and in the formulas having © as their
main connective, which constrain the next state. We thus define the following
filters on a set of LTL formulas q:

1. X(q) = {ϕi | ©ϕi ∈ q} (the “next” formulas in q with their © operator
stripped),

2. P (q) = {pi | pi ∈ q ∧ pi ∈ P} (the atomic propositions in q),
3. nP (q) = {pi | ¬pi ∈ q ∧ pi ∈ P} (the negated atomic propositions in q).

We are now ready to give a “by need” algorithm for generating the automa-
ton. For a formula ϕ, the algorithm generates an automatonAϕ = (Σ,S, δ, S0,F).
The alphabet and accepting condition are defined as before. The states and tran-
sitions are progressively generated by the algorithm. For ease of notation, we will
represent the transition function δ as a set of triples (s,a, s′) where s, s′ ∈ S and
a ∈ Σ.

The algorithm works with a list of unprocessed states for which successors
still have to be generated. For these unprocessed states, additional information
in the form of “next requirements”, i.e. the formulas that have to be true in all
the immediate successors of the unprocessed state, is maintained. Unprocessed
states thus take the form of a pair of sets of formulas (s,x), where s is the state
and x the “next requirements”. The unprocessed states are stored in a list unp.
The automaton building procedure is then the following.

build-auto (ϕ)
1. S := ∅ ; δ := ∅ ; S0 := {q ∩ cl(ϕ) | q ∈ saturate ({{ϕ}})}
2. unp := {(q ∩ cl(ϕ), X(q)) | q ∈ saturate ({{ϕ}})}
3. while unp 6= ∅ do

Choose and remove (s,x) from unp;
S := S ∪ {s};
For each q ∈ saturate ({x}) do

For each a ∈ Σ such that P (s) ⊆ a ∧ nP (s) ∩ a = ∅
δ := δ ∪ {(s,a,q ∩ cl(ϕ))}

if (q ∩ cl(ϕ), X(q)) 6∈ unp ∧ q ∩ cl(ϕ) 6∈ S
then unp := unp ∪ {(q ∩ cl(ϕ), X(q))}

Note that states are restricted to be subsets of the closure of the initial for-
mula. This is not essential, but guarantees that the automaton built by the
procedure above is a subset of the one built by the abstract construction of Sec-
tion 4. Thus, it only accepts words also accepted by this automaton. That it
3 These sets are not strictly subsets of the closure since rules 1c and 1d can generate

formulas that are elements of the closure preceded by the © operator.



accepts all words accepted by this automaton is a direct consequence of the fact
that the saturate operation generates minimal sets (it only includes formulas
that must be present) and of the argument used to justify the omit transitions
simplification rule. The only somewhat delicate point concerns the special re-
quirement on eventuality formulas imposed by the omit transitions rule. But,
starting with a set containing an eventuality e(ϕ′), the saturate procedure al-
ways generates a set containing ϕ′, the presence of suitable accepting states is
thus guaranteed.

Example 7. Applying the build-auto algorithm to 3 p, will produce the automa-
ton in the following stages.

1. First, the initial states {3 p, p} and {3 p} are produced, with unp set to
{({3 p, p}, ∅), ({3 p}, {3 p})}.

2. ({3 p}, {3 p}) is removed from unp and transitions labeled by p and ∅ are
created from the states{3 p} to itself and to the state {3 p, p}.

3. ({3 p, p}, ∅) is removed from unp and a transition labeled p from the {3 p, p}
state to the state ∅ is added; (∅, ∅) is added to unp.

4. (∅, ∅) is removed from unp and transitions labeled by p and ∅ are created
from the state ∅ to itself.

5.3 Identifying equivalent states

One rather obvious limit of the “by need” procedure we have outlined, is that
it only identifies states that are syntactically identical, i.e. consist of exactly the
same set of formulas. A further reduction in the size of the automaton can thus
be obtained by attempting to identify states that are semantically identical, i.e.
that define identical sets of temporal sequences. Of course, deciding semantical
equivalence in general is as hard as building an automaton from a temporal logic
formula, and cannot be usefully used during the construction. However, one can
identify some common semantical equivalences that can substantially reduce the
size of the automaton. The following have, for instance, been used successfully
[GPVW95,DGV99,SB00].

– {ϕ1, ϕ2, ϕ1 ∧ ϕ2} ⇔ {ϕ1, ϕ2}
– {ϕ1, ϕ1 ∨ ϕ2} ⇔ {ϕ1}
– {ϕ2, ϕ1 ∨ ϕ2} ⇔ {ϕ2}
– {ϕ2, ϕ1 U ϕ2} ⇔ {ϕ2}

The only caveat while using such semantical equivalences, is that they might
change the definition of accepting states. One easy way around this is to disallow
using such semantical equivalences involving formulas that are the argument of
eventualities.

5.4 Further improvements

There are a number of further improvements that can be made to the construc-
tion of an automaton from a temporal logic formula. We briefly describe a few.



Simplifying the formula. Before applying the construction, it can be useful
to rewrite the formula using some equivalence preserving transformation. For
instance, one can use ©2 3ϕ ≡ 2 3ϕ to remove a “next” operator from a
formula.

Early detection of inconsistencies. With the procedure we have outlined so
far, inconsistencies are only detected after being propagated to the proposi-
tional level. Clearly, if a state contains both the formulas ϕ1 and ¬ϕ1 it is
inconsistent and no transitions need leave that state.

Moving propositions from states to transitions. Propositional constraints
are included in the states and uniformly applied to all transitions leaving a
given state. In many cases this is wasteful and leads to excessively nonde-
terministic automata. An alternative is to let the choice of next state be
determined by the propositions that are actually received as input. This al-
lows propositional requirements to be removed from, and moved exclusively
to, the transitions. However, special attention must be paid to the case in
which propositions are the argument of eventualities. Indeed, removing them
from states will then impact the definition of acceptance conditions.

Simplifying the acceptance condition. It is not uncommon for the struc-
ture of the strongly connected components of the automaton to allow a
simplifying of the acceptance condition. This can lead to improved efficiency
in the use of the automaton.

6 Conclusions

The intrinsically exponential complexity of building automata from temporal
logic formulas, has long been seen as a limiting factor to the use of linear-time
model checking. However, this conclusion ignores two important facts. First the
formulas used in specifications are almost always very short. Second, the worst-
case complexity bounds on building automata from temporal logic formulas are
just that: worst-case bounds. The work surveyed in this paper shows that in
the very large majority of cases, it is possible to build automata of very reason-
able size for any temporal formula one would care to write in a specification.
Of course, it is possible to produce pathological cases. For instance, using n
propositions, one can polynomially encode an n bit counter in temporal logic,
the corresponding automaton necessarily being exponential in n.

However, if one fixes the number of propositions, it is much less obvious to
build a family of formulas for which the size of the corresponding automaton
unavoidably exhibits exponential growth. In the opinion of this author, it is
even highly unlikely that one would come upon such formulas when specifying
program properties. The doubtful reader is invited to attempt to construct such
a family of formulas.

So, in conclusion, it can be said that the work on improving the practical
behavior of algorithms for generating automata from temporal logic formulas
[GPVW95], [DGV99], [SB00] has been successful to the point of showing that
the inherently exponential nature of the problem is of little practical significance.



This can be viewed as meaning that the lower bound proofs rely on using the
expressive power of temporal logic in a way that is too unnatural to occur in
many applications.

References

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12,
Stanford, 1962. Stanford University Press.

[BVW94] Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. In Computer Aided
Verification, Proc. 6th Int. Workshop, volume 818 of Lecture Notes in Com-
puter Science, pages 142–155, Stanford, California, June 1994. Springer-
Verlag.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, Jan-
uary 1986.

[DGV99] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata genera-
tion for linear temporal logic. In Computer-Aided Verification, Proc. 11th
Int. Conference, volume 1633, pages 249–260, July 1999.

[EC82] E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241–266,
1982.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Proc. 15th
Work. Protocol Specification, Testing, and Verification, Warsaw, June 1995.
North-Holland.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
International Editions, 1991.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997. Special Issue: Formal Methods
in Software Practice.

[KV97] O. Kupferman and M. Vardi. Weak alternating automata are not that weak.
In Proc. 5th Israeli Symposium on Theory of Computing and Systems, pages
147–158. IEEE Computer Society Press, 1997.

[MW84] Zohar Manna and Pierre Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 6(1):68–93, January 1984.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in Cesar. In Proc. 5th Int’l Symp. on Programming, volume 137,
pages 337–351. Springer-Verlag, Lecture Notes in Computer Science, 1981.

[Saf88] S. Safra. On the complexity of omega-automata. In Proceedings of the
29th IEEE Symposium on Foundations of Computer Science, White Plains,
October 1988.

[SB00] F. Somenzi and R. Bloem. Efficient büchi automata from ltl formulae.
In Computer-Aided Verification, Proc. 12th Int. Conference, volume 1633,
pages 247–263, 2000.



[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complemen-
tation problem for Büchi automata with applications to temporal logic.
Theoretical Computer Science, 49:217–237, 1987.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science – Volume B: Formal Models and
Semantics, chapter 4, pages 133–191. Elsevier, Amsterdam, 1990.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331, Cambridge, June 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, November 1994.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Proc. 24th IEEE Symposium on Foundations
of Computer Science, pages 185–194, Tucson, 1983.


