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Summary 

 

Irrigated agriculture is an important strategic sector in Morocco, it 

accounts for about 45%, on average, of the agricultural Gross Domestic 

Product, contributing thus to food security and employment. It occupies 

15% (about 1.5 million ha) of the total cultivated area in the country. 

Irrigation scheme managers need to ensure that water is optimally used in 

the irrigated perimeters and that water shortages are avoided. For large 

areas under irrigation, this can be achieved through water monitoring at 

plot level using modeling and satellite-based methodologies. The main 

objective of this research was to assess the use of optical and radar remote 

sensing and of crop modeling in the irrigation monitoring and 

management of wheat in the irrigated perimeter of Tadla. The potential of 

spectral indices derived from SPOT-5 images was explored for 

comparing, quantifying and mapping surface water content changes at 

regional and local levels. Indices were computed using the reflectance in 

red, near infrared and shortwave infrared bands. Our findings show that 

the normalized difference water index (NDWIRog) could be used to 

estimate and map the surface water content of wheat plots, from bare soil 

to fully covered soil. Backscatter threshold values derived from SAR 

images were used to detect irrigation water supplies in wheat plots and 

the optimal acquisition frequency of SAR images was determined in 

order to ensure continuous monitoring. A field crop model (AquaCrop) 

was adjusted to simulate durum wheat yields and the temporal evolution 

of soil moisture status in order to manage and schedule irrigation water 

supplies and assess their impact on yield. Currently, the approaches 

described in this paper are being applied independently. This research 

was intended, therefore, to provide tools to help policy-makers and 
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stakeholders improve irrigation monitoring and mitigate wheat water 

stress at the field and irrigation perimeter levels in semi-arid areas.   

 

Keywords: irrigation management, spectral index, wheat, backscattering, 

SAR, semi-arid, Morocco. 
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Résumé 

L'agriculture irriguée est un secteur stratégique au niveau des régions 

semi-arides et l'un des principaux contributeurs à la sécurité alimentaire et 

à l’emploi. Elle occupe 15% de la superficie totale cultivée au Maroc 

(environ 1,5 millions d'hectares), et contribue à hauteur de 45% en 

moyenne de la valeur ajoutée en agriculture. Actuellement, les 

gestionnaires de périmètres veillent à ce que l’utilisation de l'eau 

d’irrigation soit optimale et ainsi éviter une pénurie d’eau au niveau des 

périmètres irrigués. Ceci peut être accompli, sur de grands périmètres, à 

travers un suivi de l'eau d'irrigation à l’échelle de chaque parcelle en 

utilisant des méthodologies basées sur le satellite et la modélisation. La 

présente recherche a été positionnée par rapport à cette problématique, 

avec un objectif principal de soutenir le suivi et la gestion de l'irrigation 

du blé à travers les outils de la télédétection optique et radar et de la 

modélisation. Le potentiel des indices spectraux a été examiné pour 

comparer, quantifier et cartographier le changement de teneur en eau de 

surface à l’échelle d’un périmètre et au sein des parcelles. Les indices 

spectraux, dérivés des images SPOT-5, ont été déterminés à partir de la 

réflectance des bandes moyenne infrarouge, proche infrarouge et rouge. 

D'après nos travaux de recherche, le NDWIRog est approprié pour estimer 

et cartographier la teneur en eau de surface des parcelles de blé. A partir 

des valeurs du coefficient de rétrodiffusion dérivées des images SAR, la 

valeur de seuil de rétrodiffusion a été établie pour détecter les apports en 

eau d'irrigation au niveau des parcelles de blé. En outre, la fréquence 

d'acquisition optimale des images SAR a été déterminée afin d'assurer 

une surveillance continue. Le modèle de cultures (AquaCrop) a été ajusté 

et testé pour simuler les rendements de blé dur aussi bien que l'évolution 

temporelle de l'état de l'humidité du sol. AquaCrop a été utilisé aussi pour 

établir une planification des apports en eau d'irrigation et estimer leur 
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impact sur les rendements. Actuellement, les approches présentées 

laissent entrevoir une valorisation opérationnelle et elles sont appliquées 

indépendamment. Cette recherche fournit des méthodes pour la gestion et 

la planification afin d’aider les décideurs et les parties prenantes à 

améliorer la surveillance d’irrigation et atténuer le stress hydrique de la 

culture du blé à l’échelle de grands périmètres irrigués dans les régions 

semi-arides. 

 

Keywords: irrigation, indice spectral, blé, rétrodiffusion, SAR, semi-aride, 

Maroc. 
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1. Context 

Irrigated areas produce more than half of all foodstuffs in the world and therefore 

contribute significantly to food security. This activity, however, consumes about 

72% of available water resources (Geerts and Raes, 2009; Seckler et al., 1999). In 

Morocco, water availability is one of the main limiting factors in achieving good 

yields. Irrigated agriculture occupies only 15% of the cultivated area (about 1.5 

million ha) in the country, but accounts for about 45% of the agricultural Gross 

Domestic Product and 75% of agricultural exports, depending on the season. This 

contribution is greater during dry seasons when production in rainfed areas is 

severely affected (MAPM, 2012). The challenge for stakeholders and managers in 

the irrigated perimeter is to increase production, control water management and 

rationalize irrigation. In order to save water and help farmers meet this challenge, 

they are given technical supervision and coaching, as well as subsidies for 

irrigation equipment, and legislation governing the mobilization and rational use 

of water resources has been enacted (Conseil Supérieur de l’Eau et du Climat, 

Law No. 10-95). 

2. Water resources in the study area 

Created in the 1940s, the Tadla irrigated perimeter was among the first large 

irrigation schemes in the country. It is on a plain in central Morocco (32°23΄ N 

latitude; 6°31΄ W longitude; 445 m above sea level) that covers about 100,000 

hectares (ha) and is characterized by a flat topography. The plain has a semi-arid 

climate, with about 300 mm average annual precipitation over the 1970-2010 

period and a high inter-annual variation, ranging from 130 to 600 mm over the 

same period.  

The Tadla irrigated perimeter is divided into two sub-schemes by the Oum-Er-

Rbia river, which flows from the Middle-Atlas Mountains (east) to the Atlantic 

Ocean (west) (Figure 1).  
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The irrigation water used in the Tadla perimeter comes mainly from surface water 

(87.1% of the total amount of irrigation water consumed in 2009/2010). Two 

dams, Ahmed-Al-Hansali (capacity of 750 million m³) and Bin-El-Ouidane (1.5 

billion m³), supply irrigation water to the Tadla perimeter, in addition to 

groundwater pumping.  

The over-exploitation of groundwater has led to reduced piezometric levels 

(FAO, 2011). The proportion of groundwater, however, has increased in recent 

years due to frequent droughts. Groundwater used for agricultural purposes in the 

Tadla comes from Beni-Moussa and Beni Amir groundwater and the Turonian 

deep water table. The total amount groundwater used by the Tadla perimeter was 

12.9% (120 million m3 per year) of the total amount of irrigated water used in the 

2009-2010 cropping season. 

The irrigation scheduling program is based on the amount of water reserves in 

dams at the beginning of the cropping season and the estimated need for irrigation 

water. In drought years, restrictions on the water allocation to the Tadla perimeter 

are set by the Agence du Bassin Hydraulique d'Oum Er Rbia (ABHOER), which 

is responsible for the assessment and management of water resources in the Oum 

Er Rbia watershed area. 
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Figure 1: Location of the Tadla irrigated perimeter. 

The Tadla irrigated perimeter is managed by the Regional Office for Agricultural 

Development of Tadla (ORMVAT), a public sector institution within the Ministry 

of Agriculture that is responsible for organizing the distribution of the water in 

the perimeter to more than 27,000 farmers.  

The Département de la Gestion du Réseau d’irrigation et de drainage (DGRID), 

which is responsible for managing the irrigation and drainage network, 

establishes the provisional distribution program in the irrigated perimeter, 

covering 100,000 ha. This program is sent to the district-level network 

management agency, Arrondissement de Gestion du Réseau (AGR), for 

implementation. The AGR receives applications from farmers for their weekly 

water requirements per block and, based on these applications and within the 

context of the provisional DGRID program, sets the water rotational turns for 

irrigation blocks of 25-40 ha and then releases the water.  

The irrigation water is supplied via a canal system consisting of a network of 

main canals (212 km), primary and secondary canals (742 km) and tertiary canals 

(2,166 km). Distribution agents and valve guards are responsible for 
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implementing and controlling the distribution of the irrigation water. This system 

involves many field staff and agents at the local level, but lacks the ability to 

monitor and optimize control of the entire irrigated area.  

Since the 1980s, several studies of the Tadla perimeter (Table 1) have been 

carried out by national and regional stakeholders in partnership with international 

institutions and development bodies. They have focused on identifying periods of 

likely water scarcity and improving irrigation management across the perimeter, 

but have not provided a spatio-temporal approach for the monitoring and control 

of the main production parameters. Such an approach, however, is essential for 

decision-making on large-scale schemes, such as Tadla. Our research sought to 

contribute to improving the spatio-temporal monitoring and control of irrigation 

in the Tadla irrigated perimeter.  

Table 1: Studies and projects on the Tadla irrigated perimeter 

 

3. Wheat production 

Wheat is the main crop in the Tadla irrigated perimeter, covering more than 36% 

(40,000 ha) of the total irrigated area. Despite the large amounts of irrigation 

water used, wheat yields remain low, with high inter-seasonal variations due to 

fluctuating water availability and poor management practices. The average yield 

in the 1994-2010 period was 32 quintals/ha, with a coefficient of variation of 

9.84% (ORMVAT, 2009). Water is one of the main factors limiting wheat 

production in the Tadla perimeter, and good management of irrigation water on a 

large-scale is required in order to address this challenge. 
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The volume of irrigation water used by wheat in the 1994-2002 period in Tadla 

rose to 136 million m3/year, on average. This is equivalent to 18% of all irrigation 

water used across the irrigated perimeter (ORMVAT, 2009).  

The wheat-growing cycle in the region runs from November-December to June. 

During this period, wheat is irrigated following traditional flood irrigation 

practice, from two to five times, depending on rainfall availability in the autumn 

and the volume of water accumulated in dams during winter and spring. 

Traditional flood irrigation practice (Robta) involves compartmentalizing land 

into elementary basins with an average size of 50-60 m² and supplying water to 

these basins, one by one. This technique results in irrigation efficiency losses of 

about 50% (ORMVAT, 2002).  

The spatio-temporal monitoring of wheat development, irrigation supplies and 

surface water content could be an interesting basis for improving irrigation 

scheduling and preventing water stress from adversely affecting yield (Duchemin 

et al., 2006). 

4.  Thesis outline 

The objective of the research described here was to improve irrigation 

management and plot surface water content monitoring for wheat crop throughout 

a large perimeter, based on remote sensing and crop modeling in the semi-arid 

area of Morocco (figure 2). The research was aimed primarily at decision-makers 

and managers of large-scale irrigated perimeters. The development and 

application of decision-support tools are presented. The chapters (2-4) are based 

on scientific papers published in, or submitted to, peer-reviewed international 

journals.  
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Figure 2: Schematic diagram illustrating the thesis outline 

Chapter 2 aims to evaluate the potential of two spectral indices, Roger’s 

normalized difference water index (NDWIRog) and the moisture stress index 

(MSI), to assess surface water content in wheat fields in order to detect irrigation 

water supplies in the irrigated perimeter. The indices were computed using red, 

near infrared (NIR) and shortwave infrared (SWIR) spectral bands from SPOT-5 

high-resolution visible (HRV) images. These satellite images covered the main 

growth stages of wheat.  

These indices were compared with corresponding in situ measurements of soil 

moisture and vegetation water content in 30 wheat fields in the Tadla irrigated 

perimeter in the 2012-2013 and 2013-2014 cropping seasons.  

The results obtained were validated using a k-fold cross validation method. 

NDWIRog was identified as an operative index for monitoring irrigation and 

estimating and mapping surface water content changes at the main crop growth 

stages. 

Chapter 3 assesses the potential of synthetic aperture radar (SAR) satellite 

images for detecting irrigation supplies and analyzes the radar backscattering 

coefficient as a function of the changes of wheat water content and soil moisture 

Chapter 2 : Optical 
remote sensing data 

(SPOT-5 high-
resolution visible 

images)

Chapter 3: Radar 
remote sensing data  

(SAR satellite 
images) 

Chapter 4: Crop 
simulation model 

(AquaCrop).

Chapter 5: Synthesis of 
perspectives to develop a system 
integrating satellite data and crop 

modeling.

Chapter 1 : Introduction 
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throughout the cropping season in irrigated semi-arid areas. The analysis was 

performed using SAR images acquired between 31 March and 12 April 2011 and 

the irrigation water invoices database (invoices submitted to farmers for irrigated 

water use). A reference level of 1 dB was set for differentiating between irrigated 

(recently, up to 2 days) and non-irrigated plots. SAR backscattering signal 

analysis showed the potential for improving irrigation monitoring and detecting 

irrigation supplies at the field and perimeter levels.  

Chapter 4 addresses the management of irrigation water in plots throughout the 

cropping season using a soil-plant-atmosphere model (i.e., the AquaCrop model 

developed by the Land and Water Division of Food and Agriculture Organization 

of the United Nations, FAO). The experiment was conducted on 15 fields 

between 2009 and 2012. AquaCrop v. 4.0 was adjusted and tested for durum 

wheat plots under semi-arid conditions. Grain yield, biomass and the evolution of 

soil water content (0-90 cm layer) in an irrigated perimeter were simulated.  

Chapter 4 also describes the analysis of irrigation scenarios used to test the ability 

of the model to schedule irrigation water and identify the relationship between 

grain yield and irrigation water scheduling in order to improve grain yield and 

increase water-use efficiency. 
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Monitoring surface water 

content using visible and 

shortwave infrared SPOT-5 

data of wheat plots in 

irrigated semi-arid regions 1 

 

  

II. Chapter 2: Monitoring surface water content using visible 

and shortwave infrared SPOT-5 data of wheat plots in 

irrigated semi-arid regions 

 

                                                           
1
 Adapted from: Benabdelouahab T, Balaghi R, Hadria R, Lionboui H, Minet J, 

Tychon B. 2015. Monitoring surface water content using visible and short-wave 
infrared SPOT-5 data of wheat plots in irrigated semi-arid regions. International 
Journal of Remote Sensing 36: 4018-4036. DOI:10.1080/01431161.2015.1072650. 
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Irrigated agriculture is an important component of the agricultural sector, in arid 

and semi-arid regions. Given the large spatial coverage of irrigated areas, 

operational tools based on satellite remote sensing can contribute to optimal 

irrigation management. The objective of this study consisted in detecting 

irrigation supplies and in estimating surface water content of cereal fields using 

two spectral indices, the normalized difference water index (NDWI) and the 

moisture stress index (MSI) derived from SPOT-5 high-resolution visible (HRV) 

data. , These two indices were correlated to observed soil moisture and vegetation 

water content in 30 wheat fields located in an irrigated area of Morocco, for two 

consecutive seasons, in 2012-2013 and 2013-2014. NDWIRog and MSI were 

highly correlated with in situ measurements at both the beginning of the growing 

season (sowing) and at full vegetation cover (grain filling). From sowing to grain 

filling, the best correlation (R²=0.86; p<0.01) was found for the relationship 

between NDWIRog values and observed soil moisture values. NDWIRog can be 

used operationally for monitoring irrigation, such as detecting irrigation supplies 

and mitigating wheat water stress at field and regional levels in semi-arid areas.  

1. Introduction 

Half of the world’s food supply comes from irrigated areas that use about 72% of 

the available water resources (Geerts and Raes, 2009; Seckler et al., 1999). In 

Morocco, water availability is the main limiting factor for crop production, and it 

is becoming a national priority for the agricultural sector (Lionboui et al., 2014). 

This situation has led to work on developing optimum strategies for planning and 

managing available water resources. Cereal (wheat and barley) production is 

strongly linked to the amount and distribution of rainfall in rainfed areas (Balaghi 

et al., 2013b) and to the amount of groundwater and water stored in dams for 

irrigated areas. A set of irrigated areas in the country was equipped with the 

means to improve and secure crop production. Despite the large amounts of 

consumed irrigation water, wheat yields in irrigated areas remain low and 

fluctuate from one season to another due to fluctuating water availability and non-
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optimal management practices (Balaghi et al., 2010). In the current context of 

climate change, water scarcity and population growth, managing irrigation water 

has become a critical issue.  

In Morocco, the Tadla irrigated area is managed by the Regional Office for 

Agricultural Development of Tadla (ORMVAT). The main cultivated crop in this 

area is wheat, covering more than 40,000 hectares (ha), which represent more 

than 36% of the total irrigated area (ORMVAT, 2009). ORMVAT is seeking a 

spatio-temporal methodology for monitoring surface water content in order to 

improve irrigation scheduling and preventing agricultural water stress (Er-Raki et 

al., 2010; Ozdogan et al., 2010). In addition, this could also be profitable for 

detecting uncontrolled irrigation and illegal water pumping.   

Remotely sensed reflectance has been used to estimate soil and vegetation water 

content for various crops and to monitor water irrigation per surface unit (Ben-

Gal et al., 2010; Ceccato et al., 2002a; Cheng et al., 2012; Hadria et al., 2010; 

Penuelas et al., 1997; Tian et al., 2001; Trombetti et al., 2008), drawing on the 

high temporal and spatial resolution of satellite images. Several indices based on 

wavelengths ranging between 400 and 2,500 nm have been developed to describe 

land-surface moisture conditions (Kogan, 2000). Estimation of surface water 

content values from remote sensing data is usually based on reflectance in the red 

(R; 610-680 nm), Near Infrared (NIR; 780-890 nm) and Shortwave Infrared 

(SWIR; 1,580-1,750 nm) regions of the spectrum (Lobell et al., 2003; Moreno et 

al., 2014; Muller and Décamps, 2000; Skidmore et al., 1975).  

During wheat development cycle, crop water stress can be deduced from both 

vegetation and soil water content (Feng et al., 2013; Ghulam et al., 2007; Ning et 

al., 2013). Water stress indices used for crop management should therefore be 

based on the spectral bands that are sensitive to both soil moisture and vegetation 

water content.  

Many indices for the simultaneous estimation of vegetation water content and soil 

moisture have been proposed for different land surfaces, from bare soils to 
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vegetated areas, among which are the visible and shortwave infrared drought 

index (VSDI) (Ning et al., 2013), the modified shortwave infrared perpendicular 

water stress index (MSPSI) (Feng et al., 2013), the modified perpendicular 

drought index (MPDI) (Ghulam et al., 2007), the normalized difference water 

index (NDWIRog) (Rogers and Kearney, 2004) and the moisture stress index 

(MSI) (Hunt Jr and Rock, 1989). 

Indices specifically designed for vegetation water content monitoring have been 

developed using NIR and SWIR bands, including the normalized difference 

infrared index (NDII) (Hardisky et al., 1983), the global vegetation moisture 

index (GVMI) (Ceccato et al., 2002a; Ceccato et al., 2002b) and the normalized 

difference water index (NDWIGao) (Gao, 1996). Although this last index has been 

given the same name as the NDWIRog developed by Rogers and Kearney (2004), 

it is based on a different formula. Gao’s NDWIGao is calculated as the normalized 

difference of NIR and SWIR bands, whereas Rogers and Kearney (2004) use red 

and SWIR bands to compute the NDWIRog (Lei et al., 2009). In our study, we 

used the NDWIRog definition given by Rogers and Kearney (2004). 

In the literature, many indices based on NIR spectral reflectance have been 

developed to monitor soil moisture, such as the perpendicular drought index 

(PDI) (Ghulam et al., 2007), the distance drought index (DDI) (Yang et al., 2008), 

the surface water content index (SWCI) (Zhang et al., 2008) and the surface water 

capacity index (SWCI) (Du et al., 2013). These indices have proved to be 

efficient over bare soil surfaces (Ghulam et al., 2008; Qin et al., 2008; Zhang et 

al., 2008).  

An operational index for simultaneously measuring surface water content of bare 

soil, mixed bare and covered soil has become crucial for irrigation management, 

especially in arid and semi-arid regions. This is required, especially for large 

irrigated areas and throughout the cropping season, when the vegetation cover is 

continuously changing. An operational tool adapted to this context, and that 

combines simplicity and robustness still deserves to be explored. 
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The main objective of this study was to explore the potential of NDWIRog and 

MSI for comparing, quantifying and mapping the surface water content of wheat 

plots, from bare soil to completely covered soil. This index could lead to an 

operational tool for monitoring surface water content and managing irrigation, at 

least for the study area. 

2. Materials and methods 

2.1  Study area 

The study area is located in central Morocco (32°23΄ north ; 6°31΄ 

west; 445 m above sea level), within the irrigation perimeter of the Tadla region. 

The area is characterized by a semi-arid climate: the annual average temperature 

is about 19°C, with large inter-seasonal variation. The average cropping season 

precipitation is about 300 mm (average over the 1970-2010 period), with 

significant inter-annual variation ranging from 130 to 600 mm. The area covers 

about 100,000 (ha) and is characterized by a flat topography. The groundwater 

depth varies from 31 to 117 m (Bouchaou et al., 2009; Najine et al., 2006). Wheat 

is one of the main cultivated crops, covering 36% of the total cultivated land. As 

in the rest of Morocco, traditional flood irrigation is the dominant practice used in 

cereal plots. Generally, the wheat-growing cycle in the region starts in November 

and ends in June of the following calendar year, overlapping the rainy season. 

Wheat is irrigated from two to five times, depending on water availability in 

autumn and winter and on amount of stored water in dams during the rainy 

season.  

The area is divided into several hundred irrigation plots. For this study, 30 wheat 

plots were selected, with size varying from 1.7 to 24.5 ha (total area 117 ha). The 

diversity of crop management and irrigation schedules in these plots was 

representative of the general agricultural practices in the area.  

Figure 3 shows the location of studied area and illustrates the location of the 

selected plots. The plots were labeled from P1 to P26 and divided into 348 sub-
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plots of about 0.5 ha each. The plots P8, P9, P11 and P16 were monitored for two 

successive cropping seasons (2012-2013 and 2013-2014). The irrigation was 

managed by farmers. The irrigation duration ranged from 1 to 2 days per ha. 

 

Figure 3: Location of the irrigated area (upper left inset shows a map of Morocco; 

the study area is indicated by diagonal lines and the experimental plots are in grey) 

2.2  Soil data 

At the study area, soil physics analyses were performed from 30 soil 

samples (Table 2) (Benabdelouahab, 2009). These samples were collected from 

several sites providing coverage of the entire study area. Water content at 

permanent wilting point (PWP) and field capacity (FC) were measured using a 

pressure plate extractor. Soil reached PWP and FC when the water potential was 

at -1.5 MPa and -0.033 MPa, respectively (Kirkham, 2005).  

On the basis of these analyses (Table 2), the soils are mainly homogeneous with 

fine texture which is characterized by a high water holding capacity. The 

proportions of clay, silt and sand, which determine together the soil textural class, 

present a high homogeneity, with a standard deviation of 3.40%, 2.69% and 

1.27%, respectively. The bulk density value is 1.21 (g.cm-3), with a standard 
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deviation of 0.14. The small variability of the bulk density permits us to consider 

this parameter as constant value. This result justifies the use of the gravimetric 

soil moisture.  

Table 2: Soil physics properties in Tadla, Morocco 

 

2.3  Field data 

The experiments were conducted during the 2012-2013 and 2013-

2014 wheat cropping seasons to assess changes in soil moisture and vegetation. 

Dates and amounts of irrigation water supply and physiological crop data were 

collected.   

Soil moisture was measured weekly for all 30 plots during the two cropping 

seasons, starting from sowing until grain filling, at 0-10 cm depth, with three 

random replications per plot. Soil moisture was measured using gravimetric 

methodology (dried in an oven at 105°C for 24 hours). Vegetation water content 

was also measured weekly, starting from tillering until wheat grain filling 

(January to May 2013). In each plot, the vegetation water content was measured 

in four randomly selected quadrats (i.e., an area of 0.5 * 0.5 m). From each 

quadrat, sub-samples were used to measure the weight of the fresh and dry above-

ground biomass in order to quantify vegetation water content (dried in an oven at 

Value STD DEV Value STD DEV Value STD DEV

Sand (%) 25.4 2.7 24.5 1.9 24 0.3

Silt (%) 41 1.3 35.5 1.65 39.7 1.3

Clay (%) 33.6 3.4 40 1.3 36.3 1.5

Bulk density (g.cm-3) 1.2 0.1 1.5 0.1 1.5 0.1

Field capacity (mm) 78.7 11.6 95.2 8.2 96 12.1

Saturation (mm) 106 4.2 118 4.8 125 5.5

Permanent wilting 
point (mm)

36.2 3.1 39.4 6.2 39.7 8.8

Hydraulic conductivity 
(cm.h-1)

5.1 1.9 3.5 1.7 3.5 1.9

Soil properties
Depth 0-30 Depth 30-60 Depth 60-90
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65°C for 48 h). Soil and vegetation water content were quantified on a 

gravimetric basis (i.e., grams water/grams soil or biomass), expressed as a 

percentage (%). These measurements were used to establish a relationship 

between vegetation water content and covered soil moisture. 

The collected field data (soil moisture and vegetation water content) were 

vectorized as points and the experimental plots as polygons, in a Geographical 

Information System. Polygons were drawn so as to remove pixels falling along 

plots boundaries. The experimental plots were subdivided into sub-plot units of 

identical size (0.5 ha) and an identifier code was assigned to each of these units. 

Polygons of these sub-plot units served as a way of extracting pixel images that 

were close and directly linked to ground measurements.  

As far as possible, field data were collected in a regular and timely manner to 

ensure that ground measurements were acquired synchronously with satellite 

passes so as to obtain a good comparison between field measurements and remote 

sensing data. Field measurements collected within a maximum of 3 days before or 

after a satellite pass were used for the analysis. We also ensured that during this 

period (between the field observation and the image acquisition date) there was 

no precipitation event or irrigation water supply.  

2.4  Satellite images and their processing 

Ten SPOT-5 HRV satellite images were acquired between December 

(at wheat emergence) and April (at grain filling) for the 2012-2013 and 2013-

2014 cropping seasons (Table 3). They covered temporal changes in surface water 

content during the main wheat growth stages, except for the final senescent stage. 

The processing level of the acquired images was 1B, which included radiometric 

and geometric corrections. Atmospheric corrections were performed from 

radiance images, using the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) model available in the ENVI software. FLAASH is an 

atmospheric correction tool that corrects the wavelengths between 400 and 2,500 

nm by eliminating the effects of water vapor and aerosols in the atmosphere. This 
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model is considered to be more accurate for SPOT-5 images than other models 

(Guo and Zeng, 2012).  

The NDVI threshold method (Momeni and Saradjian, 2007; Ning et al., 2013) 

was used to classify the land surface into three land cover categories (Tables 5 

and 6): bare soil (beginning of cropping season) with NDVI < 0.2; partly 

vegetated soil (mixed cover) with 0.2 ≤ NDVI ≤ 0.5; and full vegetation cover 

with NDVI > 0.5.  

The 12 December 2012 and 2 December 2013 images were acquired at the 

beginning of the growing season, when the soil was bare, whereas the 21 March 

2013, 26 March 2013, 11 April 2013, 26 March 2014 and 15 April 2014 images 

were acquired when the soil was completely covered. The 2 February 2013, 6 

January 2014 and 1 February 2014 images were acquired in the middle of the 

cropping season when the surface was partly covered by vegetation. 

Table 3: List of acquired SPOT-5 HRV images and their characteristics 

 

The visible spectrum (400-740 nm) is sensitive to vegetation water stress (Jensen, 

2005), with a more significant reflectance change in the red band (580-680 nm). 

The NIR band serves as a moisture-reference band, whereas the SWIR band is 

used as the moisture-measuring band. Reflectance in the NIR spectrum (740-

Acquisition 

date

Cropping 

season
Sensor

Wavelength 

(nm)

Resolution 

(meters)

12 December 2012

02 February 2013

21 March 2013

26 March 2013

11 April 2013

02 December 2013

06 January 2014

01 February 2014

26 March 2014

15 April 2014

SPOT-5

HRV

Green: 500-590

Red: 610-680

NIR: 780-890

SWIR:1580-1750

Red: 10

Green: 10

NIR: 10 

SWIR: 20

2012/2013

2013/2014
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1,300 nm) is most sensitive to leaf internal structure changes (Jacquemoud and 

Baret, 1990) and is insensitive to moisture variation (Elvidge and Lyon, 1985), 

except in conditions leading to leaf dehydration which therefore affects leaf 

structure (Girard and Girard, 2010; Jensen, 2007). Recent studies confirmed the 

high sensitivity of the SWIR band to moisture variation in vegetation and soil 

(Ceccato et al., 2001; Cheng et al., 2013; Cheng et al., 2011; Hunt Jr et al., 2011; 

Hunt Jr and Rock, 1989; Liu et al., 2012; Yilmaz et al., 2008a; Yilmaz et al., 

2008b).   

The first step of images post-processing involved computing two spectral indices, 

the NDWIRog (Lasaponara and Masini, 2012; Rogers and Kearney, 2004) and the 

MSI (Ceccato et al., 2001; Ceccato et al., 2002b; Hunt Jr and Rock, 1989) (Table 

4), using the spectral reflectance in the Red, NIR and SWIR bands for each 

SPOT-5 HRV image.  

Table 4: Spectral indices derived from the SPOT-5 sensor (Red, NIR and SWIR refer 
to the spectral reflectance bands of SPOT-5 image) 

 

The second step involved delineating the region of interest (ROI) used as a mask of 

wheat sub-plots. The average values of the NDWIRog and MSI spectral indices were 

then computed for each corresponding sub-plot (7×7 pixels) where field 

measurements were conducted (Figure 4). 

 

Indices Equation Properties References

Normalised 
Difference 

Water Index
(NDWI Rog)

(Red – 
SWIR)/(Red 

+ SWIR)

Vegetation 
water content 

and soil 
moisture 
content

Rogers and Kearney, 2004; 
Lei, Li, and Bruce 2009; 
Lasaponara and Masini, 

2012

Moisture 
Stress 

Index (MSI)
(SWIR/NIR)

Vegetation 
water content 

Ceccato et al. 2001; Ceccato 
et al. 2002; Hunt Jr and 

Rock 1989
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Figure 4: Schematic diagram illustrating field data and satellite image processing 

2.5  Model calibration and evaluation 

The average MSI and NDWIRog values of the sub-plots and the 

corresponding ground measurements were compared using linear regression 

analysis. The regression coefficients a and b, reported in Tables 5 and 7, stand for 

the slope and intercept of the regression line, respectively.  

The statistics used for evaluating the regression models were: the coefficient of 

determination (R²), the root mean square error (RMSE) which is one of the most 

widely used as error assessment indices), and the normalized RMSE (nRMSE) 

expressed as a percentage of the RMSE divided by the mean of observed values 

(Richter et al., 2012): 

RMSE = [∑n
i=1 (Si-Oi) ²/n] 0.5  (1) 

nRMSE = [∑n
i=1 (Si-Oi) ²/n]0.5×100/M  (2) 

where Si and Oi refer to simulated and observed values of the studied variable, 

respectively; n is the number of observations; and M is the mean of the observed 

variable. 
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nRMSE indicates the accuracy of the model and the dispersion around the mean 

of the observed values.  

The accuracy of the regression models was evaluated using the k-fold cross 

validation (k-fold CV) approach (Cassel, 2007). Cross validation is a resampling 

method that offers a different approach to model evaluation. It uses k replicate 

samples of observation data, builds models with (k-1)/k of data and tests with the 

remaining 1/k. The random k-fold CV takes k independent samples of size N*(k-

1)/k (Cassel, 2007). In our study, it involved 33.3% of the observations as the 

validation data, with the remaining 66.6% of the observations being the training 

data, with 10 repetitions (N = 10).  

2.6  Mapping soil moisture  

Soil moisture was mapped using relationships of the validated linear 

regression models between satellite indices and ground measurements. The 

maps display surface soil moisture at plot level for each acquired satellite 

image. The same approach could be used to map vegetation water content (see 

the Appendix 1). 

3. Results and discussion 

3.1  Soil moisture assessment at the beginning of wheat 

cropping season 

The relationship between observed soil moisture and the MSI and 

NDWIRog values was assessed in 47 sub-plots at the beginning of the wheat 

cropping season (NDVI<0.2), using images acquired on 12 December 2012 and 2 

December 2013. 

The reduced number of data used for this analysis is explained by the infrequent 

measurements collected with a lag time of maximum 3 days between field 

measurements and dates of satellite pass. 
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As shown in Table 5, the R² and RMSE were 0.84 (p<0.01) and 1.03% for the 

NDWIRog and 0.79 (p<0.01) and 1.18% for the MSI, respectively. 

We compared the soil moisture values predicted using the k-fold CV method and 

those measured in situ (Table 6). The statistical indicators obtained from this 

comparison were R² = 0.81 (p<0.01) and RMSE = 1.09% for NDWIRog and R² = 

0.76 (p<0.01) and RMSE = 1.24% for MSI. This comparison showed that errors 

were acceptable for both the MSI and NDWIRog, confirming the ability of these 

indices to accurately explain soil moisture variability for bare soil. Ghulam et al. 

(2007) reported similar results using the PDI and MPDI, with an R² of 0.56 and 

0.55, respectively, over bare surfaces.  

Table 5: Linear regression analysis of the relationship between observed soil 
moisture and selected spectral indices 

 

 

 

Samples R² a b RMSE nRMSE

Bare soil 

(NDVI<0,3)
47 0.84 -22.74 1.18 1.03 10.69

Mixed Cover 

(0,3<NDVI<0,7) 
65 0.75 -13.9 8.3 1.38 7.22

Covered Soil 

(NDVI>0,7)
100 0.83 -20.1 4.57 1.05 6.17

All types of cover 212 0.86 -20.5 3.42 1.62 10.1

Bare soil 

(NDVI<0,3)
47 0.79 -2.04 1.26 1.18 12.23

Mixed Cover 

(0,3<NDVI<0,7)
65 0.38 2.4 21.75 - -

Covered Soil 

(NDVI>0,7)
100 0.68 -20.4 31.9 1.44 8.48

All types of cover 212 0.49 -0.32 6.97 10.19 64.11

NDWI Rog

 MSI

Statistical indicators
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Table 6: The k-fold CV of the linear regression analysis of the relationship between 
observed soil moisture and selected spectral indices 

 

 

3.2  Vegetation water content and soil moisture assessment at 

full vegetation cover 

The relationship between observed vegetation water content and MSI 

and NDWIRog was assessed in 62 sub-plots, when the soil was completely covered 

by vegetation (NDVI > 0.5). The statistical indicators obtained are presented in 

Table 7. The two spectral indices were strongly related to vegetation water 

content. The statistical indicators R² and RMSE were 0.77 (p<0.01), 2.49% for 

NDWIRog and 0.55 (p<0.01), 3.47% for MSI, respectively. 

Samples R² RMSE nRMSE

Bare soil 

(NDVI<0,3)
150 0.81 1.09 10.82

Mixed Cover 

(0,3<NDVI<0,7) 
210 0.74 1.41 7.24

Covered Soil 

(NDVI>0,7)
330 0.84 1.08 6.34

All types of cover 700 0.87 1.61 10.01

Bare soil 

(NDVI<0,3)
150 0.76 1.238 12.3

Mixed Cover 

(0,3<NDVI<0,7)
210 0.37 - -

Covered Soil 

(NDVI>0,7)
330 0.68 1.51 8.88

All types of cover 700 0.40 3.27 20.61

MSI

 NDWI Rog

K-fold cross validation indicators
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Table 7: Linear regression analysis of the relationship between observed vegetation 
water content and selected spectral indices 

 

 

Table 8: The k-fold CV of the linear regression analysis of the relationship between 
observed vegetation water content and the spectral indices 

 

 

In order to validate these results, we compared observed vegetation water content 

values with those predicted using the k-fold CV method. As shown in Table 8, the 

errors were low for both NDWIRog and MSI. The evaluation model indicators 

obtained for predicted vegetation water content from NDWIRog were: 

RMSE=2.62% and R²=0.72 (p<0.01). For MSI, the values were RMSE=3.69% 

and R²=0.47 (p<0.01). These results confirmed the ability of NDWIRog to estimate 

the vegetation water content for wheat, whereas the MSI values were less in 

agreement with the observed values. Similar results were reported for MSI by 

QiuXiang et al. (2012) and Hunt Jr and Rock (1989). 

Ning et al. (2013) reported the ability of the VSDI to simulate both soil moisture 

and vegetation water content, obtaining an R²=0.51 and 0.42, respectively. 

Samples R² a b RMSE nRMSE

 NDWI Rog 0.77 -47.75 43.90 2.49 3.48

MSI 0.55 -34.98 97.57 3.47 4.85

Vegetation 62

Statistical indicators

Samples R² RMSE nRMSE

NDWI Rog 0.78 2.62 3.64

MSI 0.57 3.69 5.13

K-fold cross validation indicators

200Vegetation
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In areas with limited water availability, the critical period for wheat is during 

rapid growth, from the end of tillering to full stem elongation. In our study area, 

this corresponds to the period that usually begins in mid-March. Figure 5 

compares measured soil moisture and wheat vegetation water content during the 

critical tillering to grain filling period. The figure shows a strong relationship 

between these two variables, with an R²=0.82 (p<0.01). During the development 

stages of healthy wheat, from tillering to grain filling, and under the soil moisture 

conditions of the study area, the relationship was linear between FC (24.3%) and 

PWP (9.8%), which accorded with the findings reported by Girard and Girard 

(2010). This shows that surface soil moisture can be estimated using vegetation 

water content and vice-versa.  

NDWIRog and MSI performed well in assessing top 10 cm soil moisture, when the 

soil was completely covered by vegetation. As shown in Table 5, R² and RMSE 

were equal to 0.83 (p<0.01) and 1.05% for the NDWIRog and 0.68 (p<0.01) and 

1.44% for the MSI, respectively.  

These results show the capacity of both NDWIRog and MSI to simultaneously 

estimate both vegetation water content and soil moisture, even when the soil is 

completely covered by the canopy, as confirmed by the k-fold validation results 

in Table 6. 

Table 5 shows that change in land-cover type induced an MSI with opposing 

trends. As MSI uses NIR band that behave differently according to type of cover 

(Ning et al., 2013), this index is not suitable for comparing different land-cover 

types simultaneously. 
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Figure 5: Relationship between vegetation and soil moisture measurements (FC: Field 
capacity and PWP: Permanent wilting point). Data were acquired on 21 March 2013, 26 

March 2013, 11 April 2013, 26 March 2014 and 15 April 2014 

3.3  Soil moisture assessment during the main growth stages of 

wheat 

Following the strong ability of NDWIRog and MSI to estimate soil 

moisture separately for bare soil and full vegetation cover, we tested the capacity 

of these spectral indices to estimate this parameter throughout wheat cropping 

season, apart from the senescent stage which was not studied, since no irrigation 

is applied during this stage of wheat development. Figures 6 and 9 show the 

comparison between observed soil moisture values and those derived using the 

spectral indices for the 10 acquisition dates.  
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Figure 6: Relationship between soil moisture (at 10 cm depth) and the NDWIRog 
values derived from all the acquired images (cropping season 2012/2013 in blue and 
cropping season 2013/2014 in Red: squares = bare soil; cross = covered soil; circles 
= mixed cover). Error bars (based on standard deviation) show the range of NDWIRog 

values in each sub-plot 

 

 

Figure 7: Relationship between soil moisture (at 10 cm depth) and the NDWIRog 
values derived from all the acquired images (lag time of maximum 2 days between 

field measurements and dates of satellite pass) 
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Figure 8: Comparison between observed and predicted soil moisture using the k-fold 
CV of all acquired images 
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Figure 9: Relationship between soil moisture (at 10 cm depth) and the MSI values 

derived from all the acquired images: (A) covered soil; (B) mixed cover; and (C) bare 

soil. Error bars (based on standard deviation) show the range of MSI values in each 

sub-plot 



- 29 - 
 

The statistical indicators R² and RMSE were 0.86 (p<0.01) and 1.62 % for 

NDWIRog, respectively (Table 5). The point clouds for MSI, representing different 

kinds of cover, show opposite trends according to the main growth stages of 

wheat (Figure 9). This indicated that there was no unique linear relationship 

between MSI and surface soil moisture, for the entire wheat crop cycle (apart 

from the senescent stage). The standard deviation of this index varies between 

0.009 and 0.1 (Figure 9). The ratio between MSI values and the standard 

deviation expressed as a percentage varies between 0.23% and 11.88%. 

In contrast, there was good agreement between NDWIRog and soil moisture, 

whatever the wheat growth stage with a standard deviation values ranging 

between 0.007 and 0.087 (Figure 6). The ratio between NDWIRog values and the 

standard deviation as a percentage ranges between 1.12% and 12.87%. The 

relationship was maintained from one year to the other (cf. figure 6). The 

dispersion of the observed cloud points was mainly due to the spatial 

heterogeneity which characterized soil moisture at plot level (Bi et al., 2009; Song 

et al., 2009; Wang et al., 2013), and the variable time lags ranging from 0 to 3 

days between field measurement and satellite pass.  

With a two-day lag time, 75% of the overall observed points were discarded. In 

this case, the selected points corresponded to only five of the acquired images. As 

shown in Figure 7, R² and RMSE were 0.95 (p<0.01) and 1.16% for the 

NDWIRog, respectively. The observed point clouds dispersion was significantly 

reduced (figure 7).  

As shown in Table 5, the slope values (a) of the different types of cover for 

NDWIRog were relatively similar. For mixed cover, the slope was slightly steeper, 

indicating the stability of NDWIRog at different stages of crop cover (from 

emergence to grain filling) and its ability to quantify soil moisture throughout 

crop growth. 
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This finding was confirmed when comparing estimated and observed soil 

moisture using the k-fold CV approach (Figure 8). The statistics obtained for 

NDWIRog were RMSE = 1.61% and R² = 0.85 (p<0.01).  

In Figure 8, it is important to note that the model may overestimate the dry soil 

moisture (lower than 12%). Further analysis, with a larger dataset, should be 

performed to check a possible nonlinear relationship between NDWIRog and soil 

moisture. 

With regard to MSI, the statistical analysis showed that this index is not suitable 

for estimating soil moisture throughout crop growing period, although it can 

accurately estimate bare soil moisture and vegetation water content separately 

(Figure 9). The NIR reflectance of covered soil is significantly higher than that of 

bare soil (Ning et al., 2013). As MSI uses NIR as the reference band, the values of 

this index are much higher for bare soil than for covered soil, which means that 

MSI cannot be used to compare dissimilar land-cover types. 

Feng et al. (2013) simulated soil moisture using the MSPSI model and obtained 

an R² of 0.66. They also obtained R2 values of 0.54, 0.48 and 0.60 for the PDI, 

MPDI and SPSI models, respectively, for both bare and covered surfaces. 

Ning et al. (2013) proposed using the VSDI for monitoring soil and vegetation 

moisture simultaneously over different land-cover types. This index is based on 

exploiting the SWIR and red bands. In a comparison between VSDI and the 

fractional water index over different land-cover types, they obtained an R² of 

0.54. 

3.4  Mapping soil moisture 

Figures 10 and 11 show the soil moisture maps derived from the 10 

SPOT-5 dates based on NDWIRog for the first (2012-2013) and second (2013-

2014) cropping season, respectively. These maps were generated using a 

regression model (soil moisture = -20.51 * NDWIRog + 3.42) obtained by 

comparing the 10 available images and field measurements (see Figure 6). Soil 
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moisture ranged from 6% (red) to 24% (blue). Figures 10(f) and 11(f) show the 

location of the plots. 

The maps display change and variability of soil moisture between and within the 

plots, showing in particular differences between dry and wet plots. Such results 

could be very useful for monitoring water stress on a large scale for wheat, and 

for detecting irrigation supplies.  

In Figure 10(a), plots P1, P2, P3, P4 and P5 have a higher moisture contents than 

other plots. This variation is caused by the first irrigation being applied before 12 

December 2012, the date when satellite image was acquired.  

Some plots (P6, P7, P8 and P9) in Figure 10(b) show internal heterogeneity of the 

surface water content. The drying process is apparent in these plots, indicating the 

onset of water stress in the crop. This figure also shows heterogeneity among 

different plots, mainly due to irrigation supplies not being provided at the same 

time. 

Figure 10(b) shows high soil moisture values, exceeding 16%, for plots P1, P2, 

P3, P4 and P15 in the red square and P10 in the blue square. These plots were 

irrigated during the last 10 days of January 2013. This was the second irrigation 

applied by farmers in the study area. Plot P4 did not appear to be completely 

irrigated at this time, indicating that irrigation was in progress on the image 

acquisition date. The other plots were irrigated in January or after 2 February 

2013, the date of the satellite pass.  

Figures 10(c) and 10(d) show significant homogeneity and a dominance of blue, 

indicating that soil moisture was high (20-24%). This is explained by rainfall that 

occurred between 14 and 18 March 2013 (31.3 mm) and on 24 March 2013 (14 

mm). These dates correspond to the dates when images were acquired (i.e., 21 

and 26 March 2013). Figure 10(e) shows that after 2 weeks of rainfall, there was a 

homogeneous drying of the plots, with soil moisture ranging from 14 to 16%. The 

drying process was somewhat attenuated for plots (P4 and P5) which were 

irrigated by the end of March. 
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Figure 10: Soil moisture maps derived from the NDWIRog data: (a) 12 December 
2012; (b) 2 February 2013; (c) 21 March 2013; (d) 26 March 2013; (e) 11 April 

2013; and (f) codes for the experimental plots 

 

In Figure 11(a), some pixels in P24 displayed quite a high surface water content 

level (16-18%), explained by the first irrigation. In wheat fields, irrigation water 

is supplied straight after sowing. Thus, the detection of the first irrigation can 

generally indicate the sowing date. 

In Figure 11(b), it is interesting to note that plot P17 appears to be partly irrigated, 

indicating that irrigation was in progress. Plots P8, P9, P11, P16, P18, P19, P20, 
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P24 and P25 were irrigated a few days before acquisition of the satellite image on 

6 January 2014.  

Figure 11(c), derived from the satellite image acquired on 1 February 2014, 

shows high and homogeneous surface water content (20-24%). This is explained 

by significant rainfall that occurred between 30 and 31 January 2014 (36.5 mm). 

 

 

Figure 11: Soil moisture maps derived from the NDWIRog data: (a) 2 December 2013; 
(b) 6 January 2014; (c) 1 February 2014; (d) 26 March 2014; (e) 15 April 2014; and 

(f) codes for the experimental plots 
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Both Figures 11(d) and 11(e), derived from images acquired on 26 March 2014 

and 15 April 2014, show relatively low humidity, ranging from 12 to 15%. This 

can be explained by irrigation that was scheduled at the beginning of March and 

after mid-April, in addition to lack of rainfall for the period of 12 days before the 

date of image acquisition. These figures portray the process of drying and the start 

of water stress of wheat crop. 

The developed method can be used as an operational tool for managing irrigation 

and crops and monitoring the evolution of surface water content at the plot scale, 

as well as on a larger scale across the irrigated area.  

The practical aspects of this method that could improve irrigation water 

management in an irrigated perimeter include the following: 

- The method combined to a calibrated crop model can be used for triggering 

irrigation supplies in water stress situations and otherwise prevent contributions in 

excess of irrigation water. Such information could be valuable for decision-

makers in charge of irrigation and crop management in irrigated areas.  

- It could also be useful for detecting illegal irrigation and pumping. This is 

relevant in irrigated areas where irrigation has not been scheduled and 

uncontrolled water pumping is prohibited. 

- It could also be used for detecting the date of sowing, which is usually 

concomitant with the first irrigation. 

4.  Conclusions 

This study sought to assess the ability of two spectral indices, NDWIRog and MSI 

derived from SPOT-5 HRV satellite images, to estimate surface water content 

from bare soil to completely covered soil throughout the cropping season in 

irrigated semi-arid areas.  

The comparison between NDWIRog, using the Red and SWIR bands, and soil 

moisture measurements at a depth of 0-10 cm throughout the cropping season 

showed good agreement, with an R² of 0.86. MSI appeared to be less suitable for 

quantifying and comparing soil moisture content at different stages during wheat 
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cycle. This index could be used, however, to estimate bare soil moisture, covered 

soil moisture and vegetation water content separately. The derived soil moisture 

maps showed interesting spatial patterns that could be related to the dates of 

irrigation and rainfall events in the irrigated perimeter of Tadla.  

NDWIRog can be used to compare, quantify and map surface water content, at 

different stages of crop cover (from sowing to grain filling) over years. It shows 

potential for improving irrigation monitoring, detecting irrigation supplies, wheat 

stress management and our understanding of surface water content changes at 

field and regional levels in the study area. The performance of the methodology 

should be checked in other contexts before judging its suitability for application 

in other areas.  
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The objective of this study was to use SAR data to detect the supply of irrigation 

water during the anthesis and grain-filling phenological stages of wheat in the 

irrigated Tadla perimeter of Morocco. Backscattering coefficients were derived 

from four ERS-1 images acquired between 31 March and 12 April 2011 and were 

compared with the irrigation water invoices database in order to assess their 

sensitivity to surface moisture (vegetation water content and soil moisture). The 

analysis showed that there were significant changes in backscattering values 

caused by irrigation, with values ranging between 0.11 and 3.11 dB. A reference 

level of 1 dB was established for differentiating between (recently; up to 2 days) 

irrigated and non-irrigated plots. We also select available images with an interval 

of 3 days for the acquisition of SAR images in order to ensure continuous 

monitoring of the irrigated wheat plots over time. The study showed that radar 

data contain important information for the assessment of irrigation supplies 

during the cropping season, which could help regional decision-support systems 

to monitor and control irrigation supplies over large areas. 

1.  Introduction: 

Irrigated areas throughout the world are facing increasing pressure due mainly to 

erratic precipitation regimes (Dore, 2005), long dry periods and rapidly growing 

population demands. In this context, the effective management and monitoring of 

irrigated areas require a good understanding of the spatial and temporal processes 

governing agricultural systems.  

Managing and monitoring an irrigated area effectively can be done by analyzing 

these processes over an entire crop cycle and a large agricultural area where the 

surface is heterogeneous (various types of crops, classes of soil and management 

approaches) in order to assess the overall impact of crop management practices. 

In Morocco, cereals are one of the major grain crops grown and they hold an 

important place in the agricultural production systems, occupying 75% of the 

cultivated area and accounting for 10-20% of the agricultural Gross Domestic 

Product (GDP). Nevertheless, yields remain low and fluctuate from one area to 
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another and one season to another because of varying water management, field 

management and weather conditions (Balaghi et al., 2010).  

Given the importance of wheat production in semi-arid areas where water is the 

main limiting factor, large-scale irrigation of wheat is common practice. There is 

therefore a need for good management of irrigation supplies in order to improve 

irrigation scheduling and prevent water stress from adversely affecting yield. 

Remote sensing satellites can be used for monitoring land surface changes 

because of their extensive coverage capacity and frequent revisits (Fieuzal et al., 

2011; Kalluri et al., 2003; Moran et al., 1997; Ozdogan et al., 2010).  

Several studies have investigated the sensitivity of Synthetic Aperture Radar 

(SAR) imagery to surface parameters (soil cover, surface water content and 

roughness) (Baghdadi et al., 2009; Dabrowska-Zielinska et al., 2007; Feng et al., 

2013; Moran et al., 1997; Ulaby et al., 1986; Zribi et al., 2005). SAR sensitivity is 

linked to the sensor characteristics (frequency, incidence and polarization). Many 

authors (Beriaux, 2012; Hadria et al., 2009; Mattia et al., 2003; McNairn et al., 

2012) have demonstrated the potential of SAR for monitoring agricultural factors 

that have a significant influence on backscatter coefficients.  

The recent launch of Sentinel-1, which offers both good spatial resolution and 

high revisit time, could be interesting (Aulard-Macler, 2011; Snoeij et al., 2008). 

It is still difficult, however, to acquire synchronous multi-sensor time series in 

order to analyze satellite data sensitivity over comparable surface conditions. C-

band data are available from the ERS-1/2, EnviSat, Radarsat-1/2 and Sentinel-1 

systems. 

For wheat canopies and topsoil moisture, the sensitivity of radar backscattering 

coefficients was demonstrated by Mattia et al. (2003) and Picard et al. (2003). 

Some attempts have been made to use simplified relationships between SAR 

backscattering coefficients and wheat canopy characteristics (Dente et al., 2008; 

Mattia et al., 2003). Few authors, however, have tried to apply the radar on a large 

scale and in a representative context (Fieuzal et al., 2013).  
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At C-band frequency, the temporal behavior of wheat in different studies (Mattia 

et al., 2003; Saich and Borgeaud, 2000) shows similar global trends for the same 

study site. Recent studies have proposed multi-sensor approaches for irrigation 

management purposes by combining optical and radar images (Fieuzal et al., 

2011; Hadria et al., 2009; Hadria et al., 2010). 

In irrigation monitoring, it is Clearly expected that the backscattering signal 

generated from SAR images and interferometric coherence reacts to changes in 

surface moisture (Hadria et al., 2009), which could be important indicator to 

detect irrigation inputs and monitoring surface moisture on a large scale and in a 

realistic context during the anthesis and grain-filling phenological stages of 

wheat. In this case study, the change in backscattering values and coherence is 

expected to be related primarily to changes in water content of the cover and the 

ground since the roughness parameter is assumed to be constant, since it is wheat 

at the same development stage for all parcels. This information could be very 

useful in improving national grain yield forecast models that currently do not take 

into account production from irrigated areas, despite the fact that they occupy 

over 1million ha. Irrigation water supply data (time, duration and irrigated area) 

could be integrated into yield forecast models in order to improve their accuracy. 

In this context, we conducted an analysis of a large number of agricultural plots 

using time series of SAR images in order to assess their sensitivity to surface 

moisture. This was done by evaluating the values of the backscatter signal 

compared with the variability of the surface moisture that is closely related to the 

irrigation supply program at wheat plot level (databases of irrigation dates). With 

respect to the use of temporal coherence as an indicator, no conclusive results 

were derived due to the lack of adequate SAR data.  

2.  Methodology 

Previous studies using SAR images have shown the potential of using 

backscattering signals to monitor vegetation water content and surface soil 

moisture via a simple linear relationship and one incidence-angle data (De Zan et 
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al., 2014; Fieuzal et al., 2011; Le Hegarat-Mascle et al., 2002; Mattia et al., 2003; 

Ulaby et al., 1986; Zribi et al., 2005; Zwieback et al., 2015). Drawing on these 

studies, the methodology adopted in our study sought to detect irrigation water 

supplies to the wheat crop using SAR data. 

2.1  Study Site 

The irrigated Tadla perimeter (Figure 12) is in central Morocco, between the 

Atlantic coast in the north-west and the Atlas Mountains in the south-east 

(32°23́N latitude; 6°31΄W longitude; 445 m above sea level). The studied area is 

characterized by a semi-arid climate; the annual average temperature is about 

19°C, with a large inter-seasonal variation (max = 38°C in August and min = 

3.5°C in January). The average annual precipitation is about 300 mm (average 

over the 1970-2010 period), with significant inter-annual variation (from 130 mm 

to 600 mm).  
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Figure 12: Location of the irrigated area (upper left inset shows a map of Morocco; 
the plot plan is indicated by black lines and the studied irrigated plots are 

multicolored according to the date the irrigation was completed) 

 

The irrigated Tadla perimeter is managed by the Regional Office for the 

Agricultural Development of Tadla (ORMVAT). The studied area is in Beni-

Moussa East, covers 40,000 ha and is characterized by flat topography.  

Cereal crops are one of the main crops in the study area. In the 2010-2011 

cropping season, wheat occupied about 17% (6,730 ha) of the total cultivated area 

of Beni-Moussa East. It is usually sown between mid-November and December, 

depending on when the first significant precipitation occurs, and is harvested 

between May and June.  

We studied those wheat plots that were irrigated between 29/03/2011 and 

12/04/2011. The studied plots represented 3.5% (235.5 ha) of the total area under 

wheat in Beni-Moussa East. Irrigation is applied here using the traditional surface 
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flood method. During the growing season, wheat is irrigated between two and five 

times, depending on rainfall conditions. 

2.2  Ground and Satellite Data 

2.2.1  Ground Data 

We used the available invoices of irrigation water database intended 

for farmers for the period between 28/03/2011 and 15/04/2011 corresponding to 

the period when images were acquired in the 2010/2011 cropping season. This 

database is organized and managed by ORMVAT, which is in charge of irrigation 

water management in the area. The database holds data on periods of irrigation 

(start and end), plots and the amount of water used by farmers across the studied 

area. During the crop development stages of anthesis and grain filling, plot 

conditions (phenological stages, irrigation techniques) were fairly homogeneous. 

2.2.2  Climate Data 

Daily meteorological data was obtained from the Affourer station, 

which is part of the Moroccan National Weather network and is located in the 

study area (Figure 13). Rainfall was measured with tipping bucket rain gauges. 

The collected data showed that there was no precipitation between 16/03/2011 

and 21/04/2011. The change in backscattering values of SAR images was 

therefore due only to irrigation water supplies to the wheat crop in the study area. 
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Figure 13: Daily meteorological data for the study area 

2.2.3  Radar Data: Time Series of SAR Images 

We selected all ERS images available in the archives. The ERS-1 

ERS-2 satellite are SAR instruments operating at C-band (f = 5.3 GHz, λ ≈ 5.6 

cm). SAR images were acquired, all in the descending pass. The images were 

acquired in VV polarizations at medium incidence angles (23.3°) (Table 9). 

Figure 12 gives an example of a SAR image of the study area. 

Between 1995 and 1996, ERS-1 and ERS-2 were flying in Tandem, i.e. ERS-2 

was following ERS-1 with a one day delay. The Tandem ERS images were used 

to evaluate the Tandem coherence on the area. But, no ground data were available 

for this period. Four ERS2 acquired in 2008 were also made available. They were 

acquired with a 35-day repeated cycle. 

In 2011, at end of its life, ERS2 orbit was adapted to offer a 3-day repeat interval. 

Four images of our zone were acquired during this period allowing us to have a 

short but good time series of SAR data for which ground data were available.  
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Table 9: SAR images selected covering the study area 

 

2.2.4  Amplitude Images 

Time series of backscattering amplitude images were generated over 

the study area based on Single-Look Complex images from the ERS-1/2 archives. 

Using the CSL InSAR Suite (CIS) developed by the Centre Spatial de Liège 

(Derauw, 1999), an amplitude image and coherence image were computed and 

geoprojected with a final ground sampling of 30*30 m (Grandchamp and 

Cavassilas, 1997). The step-by-step process was as follows: 

 

- Amplitude image reduction: Amplitude was computed before geoprojection 

using box averaging to reduce the speckle noise by the incoherent summation of 

backscattering values. 

- Coregistration: In order to generate usable time series, we performed coarse 

and then fine coregistration in relation to a global master acquisition. The chosen 

global master acquisition was the one from 31 March 2011. Coarse coregistration 

Sensor
Date d'acquisition 

d'image
Polarisation

ERS 11/08/2008 VV

ERS 15/09/2008 VV

ERS 24/11/2008 VV

ERS 29/12/2008 VV

ERS 31/03/2011 VV

ERS 03/04/2011 VV

ERS 06/04/2011 VV

ERS 12/04/2011 VV

ERS1 01/01/1996 VV

ERS2 02/01/1996 VV

ERS1 03/09/1995 VV

ERS2 04/09/1995 VV

ERS1 17/12/1995 VV

ERS2 18/12/1995 VV
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(about 2.5 pixels) is performed by correlating the amplitude windows centered on 

target anchor points regularly distributed on the master image. Fine coregistration 

(about 0.5 pixel), when applicable, is performed through local coherence 

maximization. 

- Interpolation: Slave images were interpolated with regard to the computed 

transform in order to superimpose them on the master one and allow the SAR 

products to be computed. After these steps, the CIS tool computed the amplitude 

images, the interferogram and the coherence image, in addition to the 

geoprojection of these products. 

Once amplitude images and tandem coherence time series were generated, 

temporal evolution of coherence and amplitude were analyzed to detect irrigation 

water supplies to the wheat crop. Then indicators of irrigation evidences were 

sought crossing with available archives data provided from irrigation water 

management services. 

2.2.5  Backscatter Coefficient Calculation and 
Georeferencing 

Amplitude images are not calibrated and do not provide information 

on the backscattering coefficient. Image calibration was performed using 

equations 1 and 2, below (Laur et al., 2002). This step allows the amplitude 

digital number (DN) to be converted into the backscattering coefficient in 

decibels (dB) for each pixel. 

Following radiometric calibration, all images are then georeferenced using ENVI 

5 software. 
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In equation 1, backscattering coefficients (σ0) are derived from the digital number 

(DN) of the pixels (i, j) and from the parameters of the images, such as the local 

incidence angle (α i,j), the slant range position (Ri,j) and the look angle 

corresponding to pixel ‘i,j’ (θi,j), and the constant parameters come from the ERS 

SAR calibration document (the calibration factor) [K], the gain [G(θi,j)²)] (Laur et 

al., 2002). 

2.3  Delimitation of the Cereal Area 

2.3.1.  Satellite Images and Their Processing 

One SPOT-5 HRV satellite image was acquired on 15 April 2011 

(Table 10), when the soil was completely covered by vegetation. It spanned the 

period between anthesis (March) and grain filling (April) in the 2010-2011 

cropping season.  

Table 10: List of acquired SPOT-5 HRV images and their characteristics 

 

The processing level of the acquired images was (1B), which included 

radiometric and geometric corrections. 

2.3.2  Supervised Classification 

In order to define the cereal area, we used a maximum likelihood 

classification method that is a widely used supervised pixel-based method 

(Ouyang et al., 2011). 

Acquisition 
date

Cropping 
season

Sensor
Wavelength 

(nm)
Resolution 
(meters)

15/04/2011
1

2010/2011
1

SPOT-5
HRV

1

Green: 500-590
Red: 610-680
NIR: 780-890

1

Red: 5
Green: 5
NIR: 5 

1
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Training areas representative of the land cover classes were selected in order to 

develop class signature files. For each image, training areas were defined based 

on a field survey, expert field knowledge and ancillary data (tree crops mask and 

irrigation canals). Two thirds of the training areas were used in the classification 

process, the remaining one third in the accuracy assessment. The main classes 

were: cereals; bare soil; industrial crops; perennial crops; and arboriculture.  

For the wheat class, we selected a sufficient number of pixels representing 1.08% 

of the total pixels (500,123 pixels) (Yang et al., 2011). We performed the 

separability analysis, using the Jeffries-Matusita distance, for training samples in 

the final classification scheme with values of separability between 1.99 and 2, 

indicating good class separation. 

The contingency matrix was used to evaluate the percentage of sampled pixels 

classified as expected. User accuracy and producer accuracy regarding the wheat 

class were 97.8% and 96.73%, respectively. The overall accuracy assessment and 

Kappa values were 95.7% and 0.94, respectively, indicating good classification. 

2.4  Integration and Intersection of Ground and Satellite Data 

From the SAR data we obtained an amplitude time series. We also analyzed 

archival data of the irrigation supply schedule used by farmers in the irrigated 

Tadla perimeter at the plot level. The archival data was provided by ORMVAT. 

The backscatter parameter from the ERS-2 images was averaged for each of the 

341 training plots. This was followed by crossing all the information layers to 

monitor and analyze the spatiotemporal evolution of backscattering intensity, 

depending on irrigation water supplies used by farmers for their wheat plots. 

Figure 14 summarizes these steps. 
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Figure 14: Schematic diagram illustrating field data and SAR data processing 

 

3.  Results and Discussion 

Amplitude and coherence images were derived from the ERS-2 acquired images. 

However, for images acquired on 2008 and 2011 a loss of coherence was 

observed. This general de-correlation is due to the prolonged lag time (about 1 

month) separating the acquired images on 2008, and to the attitude of ERS-2 that 

was badly controlled at the end of satellite life leading to the angular yaw 

instability for the images acquired on 2011 (Figure 15). Inversely a good 

coherence was found for ERS tandem images acquired in 1995 and 1996 (Figure 

16).  
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Figure 15: Coherence image (1) between acquired images on 31/03/11 and 03/04/11 
and (2) between acquired images on 31/03/11 and 12/04/11 

 

 

Figure 16: Coherence image between ERS 1 and ERS 2 acquired respectively on 
01/01/1996 and 02/01/1996 
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The available invoices of irrigation water database only covered the period 

between 28/03/2011 and 15/04/2011 corresponding to ERS-2 images acquired in 

the 2010/2011 cropping season. Amplitude images were derived from the ERS-2 

images acquired on 31/03/11, 03/04/11, 06/04/11 and 12/04/11. 

These data were used to assess the potential of SAR data for detecting irrigation 

and to analyze the radar backscattering as a function of changes in wheat water 

content and soil moisture.  

The lack of ground data during the Tandem acquisition period on one side and the 

lack of coherence due to the ERS2 aging in 2011 on the other side prevent us to 

perform the expected study using interferometric coherence as an indicator.  

Table 11 shows the measured backscattering values for all plots for which 

irrigation dates were made available. For each SAR acquisition date, 

backscattering values are ordered and classified according to the known date of 

irrigation completion. Clear changes and trends in backscattering values can be 

seen. These changes are subsequent to irrigation water applied to the plots and to 

the heterogeneity of their moisture condition. As shown in Table 11, the 

backscattering values for all plots varied between 0.11 to 3.11 dB. In this case, 

roughness is considered as constant, since all parcels were homogeneous in term 

of the cultivated crop and the development stage. 

As shown in Figure 17, the highest backscatter values occurred when the SAR 

acquisition date corresponded with the irrigation completion date. In this case, the 

average backscattering values of plots smaller than 1 ha (Figure 17-B) and plots 

larger than 1 ha (Figure 17-C) varied between 2.99 and 3.18 dB and between 1.97 

and 3.14, respectively. The average backscattering values for all plots, whatever 

their size, varied between 2.79 and 3.11 dB (Figure 17-A). It is important to note 

that the total number of plots was 341, of which 282 were smaller than 1 ha and 

59 were larger than 1 ha. 

The variation was more important for plots with an area between 1.01 and 4.42 

ha, exhibiting a standard deviation of 1.11 dB, unlike plots smaller than 1 ha 
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which had a small deviation of 0.19 dB. This large variation was due to the 

duration of irrigation and the timing of the start of irrigation, which affected the 

response of backscatter plots and the fall in backscattering values in already 

irrigated plots, given that the flood irrigation takes 1-2 days ha-1. 
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Table 11: The average backscattering values for irrigated wheat plots as a function of 

date of completion of irrigation and date of acquired images (no gap means that 

irrigation time is the date of satellite pass and a gap indicates the difference in days 

between irrigation and satellite pass (negative gap: irrigated plots; positive gap: non-

irrigated plots) 

 

31/3/11 3/4/11 6/4/11 12/4/11 31/3/11 3/4/11 6/4/11 12/4/11 31/3/11 3/4/11 6/4/11 12/4/11

σ° average (dB) 1.34 0.22 0.48 0.47 1.36 0.16 0.45 0.46 1.16 0.88 0.79 0.55
Std σ° (dB) 0.32 0.69 0.60 0.59 0.32 0.68 0.62 0.61 0.25 0.45 0.13 0.08
Gap (Days) -2 -5 -8 -11 -2 -5 -8 -11 -2 -5 -8 -11

Number of plots 24 24 24 24 22 22 22 22 2 2 2 2
σ° average (dB) 1.79 0.37 0.70 0.75 1.79 0.37 0.70 0.75 1.88 -0.12 0.50 0.97

Std σ° (dB) 0.56 0.59 0.57 0.55 0.56 0.59 0.57 0.55 0.86 1.29 0.39 0.47
Gap (Days) -1 -4 -7 -10 -1 -4 -7 -10 -1 -4 -7 -10

Number of plots 26 26 26 26 23 23 23 23 3 3 3 3
σ° average (dB) 2.86 0.68 0.59 0.91 3.12 0.84 0.65 0.98 2.46 0.45 0.48 0.78

Std σ° (dB) 0.75 0.64 0.50 0.71 0.73 0.39 0.33 0.80 0.62 0.88 0.67 0.59
Gap (Days) 0 -3 -6 -9 0 -3 -6 -9 0 -3 -6 -9

Number of plots 28 28 28 28 17 17 17 17 11 11 11 11
σ° average (dB) 0.23 1.68 0.78 0.62 0.29 1.72 0.82 0.71 -0.34 1.32 0.43 -0.15

Std σ° (dB) 0.70 0.28 0.55 0.63 0.71 0.23 0.56 0.60 0.15 0.55 0.34 0.28
Gap (Days) 1 -2 -5 -8 1 -2 -5 -8 1 -2 -5 -8

Number of plots 31 31 31 31 28 28 28 28 3 3 3 3
σ° average (dB) 0.51 2.14 0.94 0.88 0.52 2.15 0.98 0.93 0.35 1.89 0.35 0.13

Std σ° (dB) 0.65 0.49 0.63 0.50 0.65 0.50 0.61 0.42 0.75 0.12 0.80 1.20
Gap (Days) 2 -1 -4 -7 2 -1 -4 -7 2 -1 -4 -7

Number of plots 32 32 32 32 30 30 30 30 2 2 2 2
σ° average (dB) 0.44 3.11 1.10 0.95 0.48 3.11 1.14 0.95 0.16 3.14 0.77 0.90

Std σ° (dB) 0.72 0.73 0.48 0.52 0.69 0.72 0.43 0.53 1.08 0.98 0.83 0.47
Gap (Days) 3 0 -3 -6 3 0 -3 -6 3 0 -3 -6

Number of plots 27 27 27 27 24 24 24 24 3 3 3 3
σ° average (dB) -0.07 0.14 1.59 0.39 0.08 0.20 1.65 0.51 -0.70 -0.12 1.35 -0.16

Std σ° (dB) 0.87 0.71 0.53 0.72 0.85 0.74 0.57 0.71 0.66 0.57 0.27 0.48
Gap (Days) 4 1 -2 -5 4 1 -2 -5 4 1 -2 -5

Number of plots 59 59 59 59 48 48 48 48 11 11 11 11
σ° average (dB) 0.35 0.14 2.22 0.77 0.42 0.07 2.24 0.77 0.03 0.46 2.13 0.79

Std σ° (dB) 0.84 0.97 0.66 0.79 0.85 0.97 0.73 0.83 0.84 1.07 0.34 0.78
Gap (Days) 5 2 -1 -4 5 2 -1 -4 5 2 -1 -4

Number of plots 16 16 16 16 13 13 13 13 3 3 3 3
σ° average (dB) 0.22 0.22 2.93 0.63 0.52 0.42 3.18 1.00 0.46 -0.18 2.44 0.31

Std σ° (dB) 0.88 0.88 0.90 0.58 0.35 0.70 0.92 0.46 0.52 1.17 0.69 0.66
Gap (Days) 6 3 0 -3 6 3 0 -3 6 3 0 -3

Number of plots 12 12 12 12 7 7 7 7 4 4 4 4
σ° average (dB) 0.35 0.32 0.73 1.74 0.42 0.46 0.84 1.76 -0.05 -0.55 0.04 1.56

Std σ° (dB) 0.82 0.76 0.81 0.52 0.83 0.69 0.78 0.49 0.63 0.53 0.64 0.74
Gap (Days) 7 4 1 -2 7 4 1 -2 7 4 1 -2

Number of plots 36 36 36 36 31 31 31 31 5 5 5 5
σ° average (dB) 0.22 0.09 0.64 2.14 0.25 0.30 0.66 2.29 0.12 -0.53 0.39 1.66

Std σ° (dB) 0.66 0.67 0.94 0.67 0.69 0.60 0.59 0.68 0.62 0.46 1.32 0.37
Gap (Days) 8 5 2 -1 8 5 2 -1 8 5 2 -1

Number of plots 24 24 24 24 18 18 18 18 6 6 6 6
σ° average (dB) 0.28 0.44 0.56 2.79 0.41 0.58 0.59 2.99 -0.25 -0.17 0.41 1.97

Std σ° (dB) 0.84 0.89 0.80 1.21 0.77 0.85 0.62 1.19 1.01 0.88 1.21 1.03
Gap (Days) 9 6 3 0 9 6 3 0 9 6 3 0

Number of plots 26 26 26 26 21 21 21 21 5 5 5 5

SAR Acquisition data
All plots Plots ≤ 1 ha Plots > 1 ha
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Figure 17: Potential of SAR data to detect irrigated plots (A: All plots; B: Plots ≤ 1 
ha and C: Plot > 1 ha) 



- 55 - 
 

For plots with a gap of 1-2 days between the date of the end of irrigation and the 

date of image acquisition, the backscattering levels ranged from 1.79 and 2.22 dB 

and from 1.34 to 1.74 dB for gaps of 1 and 2 days, respectively. Non-irrigated 

plots or plots irrigated more than 2 days before SAR acquisition showed 

backscattering values that were generally lower than 1 dB. 

This analysis confirms the clear relationship between σ0 VV and irrigation water 

supplies. The variation in radar backscattering coefficients can therefore be 

related mainly to changes in wheat water content and soil moisture induced, in 

our case, by irrigation. These results were confirmed by Mattia et al. (2003), who 

found a linear correlation between backscattering coefficients and fresh biomass 

not exceeding 2,500 g/m2. A study conducted by Baghdadi et al. (2012) showed 

that the error (RMSE) in retrieved soil moisture observed at C-band was about 

6% for a single incidence angle of 20°. 

As shown in Figure 18, backscattering values can also be ordered with regard to 

the time gap between the SAR acquisition date and the irrigation completion date. 

This figure shows the responses of backscatter wheat plots to moisture changes in 

the vegetation cover and soil after an irrigation event. If the gap is zero (i.e., when 

irrigation ends on the SAR acquisition date), the backscattering values are high. 

This is true whatever the plot size. Plots smaller or equal than 1 ha or larger than 

1 ha had average backscattering values of 3.08 and 2.44, respectively. The 

average backscattering value for all plots, whatever their size, was 2.92 dB.  

There was a discrepancy in average backscattering values between irrigated plots 

smaller than 1 ha and those larger than 1 ha of 0.6 dB. The difference between the 

average backscattering value when there was no gap time and when there was a 

lag of 1 day was 0.6 dB for plots larger than 1 ha and about 1dB for plots smaller 

than 1 ha. This result tends to confirm the effect of plot non-uniformity on 

backscatter values.  
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Figure 18: Evolution of backscattering values with regard to the time gap between 
irrigation time and satellite image acquisition. No gap means that irrigation time is 

the date of the satellite pass and a gap indicates the difference in days between 
irrigation and satellite pass (negative gap: irrigated plots; positive gap: non-irrigated 

plots) 

 

Where the time gap was 1 day or more, there was a decrease in average 

backscatter values from irrigated wheat plots, varying between 1.34 and 2.22 dB 

for all plots. 

From the third day of the irrigation, backscatter values fell below 1 dB, which 

was close or equivalent to non-irrigated plots. The value of 1 dB can therefore be 

considered as a reference threshold that distinguishes between, on the one hand, 

irrigated plots and, on the other, non-irrigated plots and plots irrigated for more 

than 2 days. These results can be generalized at the regional level for the studied 

period, especially where wheat plot conditions are fairly homogeneous. 

The time resolution proved to be a limiting factor for the continuous monitoring 

of the irrigated wheat plots, in that it was no longer possible to detect irrigation 

from the fourth day onwards (gap = 3), as shown in Figure 18. SAR images 

therefore need to be acquired at a maximum interval of 3 days (time resolution = 

3). 
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The results showed that SAR technology has great potential for irrigation 

management and could have an important agricultural-economic impact, if 

acquisition frequency can be increased and the prices of SAR images can be 

reduced. In the future, with the possibilities offered by the Sentinel 1A/B missions 

the use of SAR satellites looks promising. Since the launch of other satellites is 

expected in the coming years in band C and L on all polarization. The band C and 

L in all polarization (HH, HV and VV) provide several options to ensure crop 

monitoring (Dabrowska-Zielinska et al., 2007; Fieuzal et al., 2013). These bands 

should be deeply studied and tested in order to develop robust and simple 

approaches for monitoring irrigation. 

In general, remote sensing tools are one of the best ways to monitor large 

agricultural areas, and research should be done on improving the mastery and 

application of SAR remote sensing in agriculture. In the case of irrigated areas, 

SAR images offer great potential for detecting changes and monitoring the water 

content of the surface and biomass in irrigated areas, whatever the plot size. 

4.  Conclusion 

This study sought to assess the potential of SAR data for detecting irrigation 

supplies and to analyze the radar backscattering coefficients as a function of 

changes in wheat water content and soil moisture throughout the cropping season 

in irrigated semi-arid areas. The measured backscattering values showed a clear 

decreasing trend with regard to the time gap between irrigation completion date 

and image acquisition date. After 3 or more days between irrigation completion 

and SAR acquisition, a backscattering value of 1 dB or lower was observed, the 

same as the value observed for non-irrigated plots. A reference level of 1 dB 

could therefore be set for differentiating between irrigated and non-irrigated plots.  

The study showed that in order to ensure continuous monitoring over time of 

irrigated wheat plots, an interval 3 days between the acquisitions of SAR images 

is required. This parameter could be used to compare and map vegetation water 

content and surface moisture at local and regional level in the irrigated Tadla 
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perimeter. These results show that radar signal behavior can be generalized, 

especially where wheat plot conditions are fairly homogeneous. 

SAR backscattering signal analysis shows potential for improving irrigation 

monitoring, detecting irrigation supplies and understanding surface water content 

changes at the field and regional levels in the study area.  

Our findings need to be applied to other crops and other areas in order to test the 

validity of the proposed methodology.  
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IV. Chapter 4: Testing AquaCrop to simulate Durum wheat 

yield and schedule irrigation in semi-arid irrigated 

perimeter in Morocco 

 

 

 

 

 

 

 

 

 

                                                           
3 Adapted from: Benabdelouahab, T., Balaghi, R., Hadria, R., Lionboui, H., Djaby, 
B., Tychon, B., 2015. Testing AquaCrop to simulate Durum wheat yield and schedule 
irrigation in semi-arid irrigated perimeter in Morocco. Irrigation and Drainage 
(Accepted for publication / in production). 
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The aim of this study was twofold: in the first part, we adjusted and tested 

AquaCrop (4.0 version) parameters for durum wheat under semi-arid conditions. 

Grain yield, biomass and the evolution of soil water content (0-90 cm layer) in an 

irrigated perimeter were simulated. The experiment was conducted in the Tadla 

region, between 2009 and 2012, using 15 fields. The comparison between 

observed and simulated grain yield and aboveground biomass using a leave-one-

out cross-validation (LOOCV) approach gave a normalized root mean square 

error of 4.1% (0.2 t.ha-1) and 5.7% (0.8 t.ha-1), respectively. Similarly, the 

difference between observed and modeled soil water content has, on average, a 

nRMSE of 8.2%. In the second part, the analysis of irrigation scenarios showed 

the potential of crop modeling to schedule irrigation water according to a 

threshold for water deficit. It also displayed logical trends in the relationship 

between grain yield and the amount, frequency and timing of irrigation water. 

Scheduling irrigations during the cropping season improved significantly the 

grain yield and increased water-use efficiency. We concluded that AquaCrop 

could be a suitable tool for forecasting yield under semi-arid conditions and to 

improve crop and irrigation management. 

1.  Introduction 

Currently, durum wheat is among the crops which occupies the largest area of 

land and continues to be one of the main sources of food grains to humans. World 

wheat production reached 656 million tons in 2011/2012, with durum wheat 

accounting for 6% of this amount according to the Food and Agriculture 

Organization (FAO) (FAO, 2013). Half of the world’s food comes from irrigated 

and drained lands (Bastiaanssen et al., 2000; Lobell et al., 2003). In Morocco, 

water availability is considered as the main limiting factor for crop growth. Cereal 

(mainly wheat and barley) production is strongly related to the amount and 

distribution of annual rainfall in rainfed areas (Balaghi et al., 2010) and to the 

amount of  groundwater and water stored in dams in irrigated areas. Irrigated 

agriculture in arid and semi-arid regions now plays an important role in food 
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security, with the availability of large amounts of irrigation water having led to an 

increase in production.  

In Morocco, cereals occupy 75% of the cultivated area and account for 10-20% of 

the agricultural Gross Domestic Product (GDP). Durum wheat (Triticum 

turgidum) is one of the major grain crops grown in the country and holds an 

important place in the agricultural production systems. It is cultivated mainly in 

the south-western plains of Morocco, in semi-arid areas (Balaghi et al., 2010). 

In the irrigated perimeter of Tadla, cereal production has exceeded 2 million 

quintals. The area under wheat exceeds 40,000 hectares (ha) and represents more 

than 36% of the total irrigated area (ORMVAT). Durum wheat represents around 

13,000 ha of the total cultivated cereals in the irrigated plain of Tadla. Flooding 

irrigation is used for more than 96% of the total area of the perimeter and 

mobilizes large volumes of water. Despite these large amounts of used water, 

crop yields remain low and fluctuate from one area to another and one season to 

another because of varying water management, field management and weather 

conditions (Balaghi et al., 2010).  

Given the importance of wheat production in semi-arid irrigated areas where 

water is the main limiting production factor, large-scale good management of 

irrigation water is required (Lionboui et al., 2014). Crops in arid and semi-arid 

regions, such as those in Morocco, regularly face water stress, considered as the 

main limiting factor for crop growth. There is therefore a need for assessing soil 

water availability in order to improve irrigation scheduling and prevent water 

stress adversely affecting yield. 

Simulation models, based on crop physiological processes and crop response to 

water stress, can contribute to better irrigation management, especially during the 

critical wheat growth period. The accurate information they provide in terms of 

crop forecasting and total soil water content can help to improve productivity and 
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water management through establishing irrigation schemes and planning inputs of 

irrigation water (quantity and timing).  

In this regard, the scientific community is paying increasing attention to 

approaches based on agro-ecological process models. Many process-based crop 

models have been developed in the recent years (Eitzinger et al., 2004; Jamieson 

et al., 1998) and many studies of these models have been conducted to evaluate 

their performance under arid and semi-arid conditions (Ben Nouna et al., 2000; 

Duchemin et al., 2008; Hadria et al., 2007). The level of complexity of these 

models can be high, but when working on a large scale and in operational 

conditions, robust models with few parameters are usually preferred (Mkhabela 

and Bullock, 2012; Steduto et al., 2009; Wellens et al., 2013). 

AquaCrop is a crop water productivity simulation model developed by the Food 

and Agriculture Organization (FAO) of the United Nations (Hsiao et al., 2009; 

Raes et al., 2009a; Raes et al., 2009b; Steduto et al., 2009). The model simulates 

crop yield response to irrigation, soil and climate conditions. It is based on the 

concepts of crop yield response to water (Doorenbos and Kassam, 1979; 

Doorenbos and Pruitt, 1977) and is suitable for areas where the water is a limiting 

factor for agricultural production. Aimed at balancing precision and simplicity, it 

uses a small number of explicit and mostly intuitive parameters and input 

variables that require simple methods for their estimation (Hsiao et al., 2009; 

Steduto et al., 2009). Simulations of crop growth and development are performed 

on the basis of daily time steps. The model simulates crop growth using growing 

degree days (GDDs) or calendar days. Several researchers have tested AquaCrop, 

under water-limiting conditions, for predicting crop biomass and yield, water 

requirement, water-use efficiency and soil water dynamics in various weather 

conditions and environments and have reported satisfactory results. The model 

has been tested for barley (Araya et al., 2010), cotton (Farahani et al., 2009), 

maize (Abedinpour et al., 2012; Hsiao et al., 2009; Steduto et al., 2009; Stricevic 

et al., 2011), durum wheat (Soddu et al., 2013), soft wheat (Andarzian et al., 
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2011; Iqbal et al., 2014; Jin et al., 2014; Mkhabela and Bullock, 2012) and 

cabbage (Wellens et al., 2013).  

The research of (Soddu et al., 2013) is quite different from what we done, where 

they focused on the simulations of future durum wheat yields under climate 

change scenarios in a rainfed area at regional scale. In addition to crop yield 

simulation, the model also predicts soil water dynamics and water supply using 

soil physics parameters and weather data (Geerts et al., 2010; Iqbal et al., 2014; 

Mkhabela and Bullock, 2012; Xiangxiang et al., 2013).  

Designing and implementing operational tools that can provide accurate estimates 

of crop water needs and the impact on production, and can quantify crop water 

consumption and production, would facilitate the monitoring of irrigation 

efficiency and crop water use. The main objective of this study was to test the 

ability of AquaCrop to simulate durum wheat (Triticum turgidum) biomass 

production, grain yield and the soil water content profile (0-90 cm layer) in an 

irrigated area, on the one hand, and on the other hand to study the capacity of the 

model to manage the irrigation water and optimize a timely application of 

irrigation supply to increase water use efficiency.  

2.  Materials and methods 

2.1 Study area 

The study area (Figure 19) is situated in the center of Morocco, 

between the Atlantic coast in the north-west and the Atlas Mountains in the south-

east (32°23΄ north latitude; 6°31΄west longitude; 445 m above sea level).  
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Figure 19: Location of the Tadla irrigated perimeter (upper left window represents 
Morocco map; in the upper right window, the experimental plots in black diamond) 

 

The area is characterized by a semi-arid climate; the annual average 

temperature is about 19°C, with large inter-seasonal variation (maximum = 38°C 

in August and minimum = 3.5°C in January). The average annual precipitation is 

about 300 mm (average over the 1970-2010 period), with significant inter-annual 

variation (from 130 mm to 600 mm).  

Created in the 1940s, the Tadla perimeter was among the first large 

irrigation schemes in the country and was aimed at benefiting small farmers and 

introducing modern farming techniques and industrial crops (Préfol, 1986). This 

irrigated perimeter is managed by the Regional Office for Agricultural 

Development of Tadla (ORMVAT). The irrigated area covers 100,000 hectares 

(ha) and is characterized by a flat topography. The groundwater depth in the area 

varies from 31 to 117 m (Bouchaou et al., 2009; Najine et al., 2006). Durum 

wheat is one of the main crops in this perimeter (12% of total cultivated area). It 

is usually sown between mid-November and mid-January, depending when the 
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first significant precipitation occurs, and is harvested between May and June, 

depending on temperature conditions. Irrigation is applied using the traditional 

surface flood method. During the growing season, wheat is irrigated between two 

and five times, depending on rainfall. 

2.2 Field experiments  

The experimental sites are located across the eastern Beni-Moussa 

municipality in the 2009-2010, 2010-2011 and 2011-2012 cropping seasons. Data 

were collected from 15 fields of durum wheat, located at Tadla’s Regional 

Agricultural Research or belonging to farmers (Table 12), thus providing a valid 

representation of the soil-plant relationship in the study area. The field data 

related to Marzak and Karim cultivars, which are widely cultivated in the study 

region. 

The average seeding rate was 350-400 seeds/m² throughout the study area. The 

nutrient requirements were adequately met by fertilizer applications applied 

before seeding and at the stem elongation stage. The nutrient doses applied were 

0.18 t.ha-1 of triple superphosphate, 0.2 t.ha-1 of ammonitrate and 0.1 t.ha-1 of 

urea. Weeds and diseases were controlled by the use of herbicides and a 

preventive fungicide, and no disease infections or pests were detected.  

For each studied field, dates of emergence, anthesis and maturity were recorded. 

Observations of phenological development stages and senescence of durum wheat 

were made every 7-10 days.  

All the studied plots were harvested 10-15 days after physiological maturity, and 

the grain yield was measured. Aboveground biomass quadrats of 1 m² were cut at 

ground level with three replicates per plot. The collected samples were placed in 

the oven at a temperature of 65 °C for 48 hours to get the dry aboveground 

biomass (Iqbal et al., 2014).  

We quantified the water provided at plot level for each irrigation supply. This 

quantification was done by multiplying the flow rate at the plot by the duration of 

irrigation. At the irrigated perimeter, the flow was fixed according to the size of 
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the irrigation canals of large-scale irrigation. By applying the technique of surface 

irrigation, the farmers consider that this operation is performed once the entire 

plot is completely submerged. Soil moisture and infiltration rate influence the 

amount of water supplied, which does not allow the farmers to control the 

irrigation depth unlike other irrigation methods (drip irrigation and sprinkler 

irrigation).  

Soil moisture was measured using gravimetric methodology in two of the fifteen 

fields, E1 and E2. The measurements were dried in an oven at 105°C for 24 h and 

made every 10-15 days and at depths of 0-30, 30-60 and 60-90  cm, during the 

2009-2010 growing season for E1 and during the 2010-2011 growing season for 

E2. The measurements were performed in three replications by sampling. 

Table 12: Main management characteristics of experimental fields of durum wheat 

 

 

No. Year Area (ha) Cultivar Sowing day
Harvesting 

date

Number of 

irrigations

Total irrigation 

(mm)

1 2009 2.3 Marzak 06/12/2009 14/06/2010 1 141

2 2010 1.5 Karim 07/11/2010 13/06/2011 3 421

3 2010 2 Karim 11/12/2010 28/06/2011 3 424

4 2010 0.6 Marzak 07/12/2010 24/06/2011 2 268

5 2010 1.6 Karim 09/12/2010 24/06/2011 2 273

6 2011 2 Karim 10/12/2011 28/06/2012 3 454

7 2011 0.8 Marzak 15/11/2011 16/06/2012 4 491

8 2011 1 Marzak 14/11/2011 17/06/2012 4 543

9 2011 2.6 Karim 18/12/2011 25/06/2012 3 415

10 2011 2.3 Marzak 11/12/2011 25/06/2012 3 410

11 2011 2.5 Marzak 08/12/2011 28/06/2012 3 411

12 2011 0.8 Karim 08/12/2011 28/06/2012 3 361

13 2011 0.8 Karim 06/12/2011 27/06/2012 3 413

E1 2009 0.5 Karim 05/12/2009 23/06/2010 2 329

E2 2010 1.1 Marzak 02/11/2010 07/06/2011 3 398
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2.3 Soil data 

At the study area, the soils are classified as isohumic mainly based on 

French soil classification (C.P.C.S) (Badraoui and Stitou, 2001; Massoni et al., 

1967). From 30 soil samples collected from several sites providing coverage of 

the entire study area, soil physics properties were measured (Benabdelouahab, 

2009). For three depths (0-30cm), (30-60cm) and (60-90cm), permanent wilting 

point (PWP) and field capacity (FC) were determined using a pressure plate 

extractor. The soil reached PWP and FC when the water potential was at -1.5 

MPa and -0.033 MPa, respectively (Kirkham, 2005). Hydraulic conductivity was 

determined by using a Guelph kit at varying depths (Table 13). 

Table 13: Soil physics properties in Tadla, Morocco 

 

2.4 Meteorological data 

Meteorological data were measured during wheat growing season by 

an automated weather station belonging to the Moroccan National Weather 

Service located near studied plots (32.347° north latitude; -6.382° west longitude; 

Value STD DEV Value STD DEV Value STD DEV

Texture 

Sand (%) 25.4 2.7 24.5 1.9 24 0.3

Silt (%) 41 1.3 35.5 1.65 39.7 1.3

Clay (%) 33.6 3.4 40 1.3 36.3 1.5

Bulk density (g.cm-3) 1.2 0.1 1.5 0.1 1.5 0.1

Field capacity (mm) 78.7 11.6 95.2 8.2 96 12.1

Saturation (mm) 106 4.2 118 4.8 125 5.5

Permanent wilting 
point (mm)

36.2 3.1 39.4 6.2 39.7 8.8

Hydraulic conductivity 
(cm.h-1)

5.1 1.9 3.5 1.7 3.5 1.9

Soil properties
Depth 0-30 Depth 30-60 Depth 60-90

Clay loam Clay loam Clay loam



- 68 - 
 

493 meters (m) above mean sea level) (Table 14). Available data were daily 

maximum and minimum air temperatures, rainfall, wind speed, relative humidity, 

and solar radiation. Air temperature and relative humidity were measured at a 

height of 1.8 m using a radiation shielded probe. Wind speed was measured at a 

height of 10 m using a cup anemometer and converted to a 2 m elevation using a 

logarithmic wind speed profile as described by Allen et al. (1998).  

Rainfall was measured with tipping bucket rain gauges. Incoming solar radiation 

(Rs) was measured at 2 m with a pyranometer (CES180). Reference 

evapotranspiration (ETo) was calculated using the Penman-Monteith equation 

(Allen, 2000; Allen et al., 1998). Data were measured by each sensor at 10 s 

intervals and recorded as daily averages, sums, maximum and minimum values. 

Table 14: Monthly average weather conditions over the experimental plots (3 

cropping seasons, from 2009-2010 to 2011-2012) 

 

2.5 AquaCrop: presentation and parameterization 

AquaCrop is a FAO crop model (Steduto et al., 2009) that simulates 

crop and soil response to water stress under various climatic, soil and crop 

management conditions. Crop yield is estimated as the product of dry biomass by 

the harvest index (HI). At the flowering stage, HI increases linearly as a function 

Average STD Average STD Average STD Average STD

November 3.7 1.2 27.9 4.9 22.5 26.8 63.4 10.9

December 0.4 1.8 24.2 1.5 109.8 0.0 48.4 2.2

January -1.0 1.9 24.0 3.3 76.0 45.0 51.9 6.9

February -1.7 2.4 24.9 6.3 73.6 61.2 63.0 3.1

March -0.5 2.6 28.3 5.6 43.6 36.2 96.0 4.2

April 6.0 2.8 31.2 5.1 1.5 2.2 132.8 23.9

May 6.3 1.3 37.0 5.7 5.9 5.2 165.7 10.8

June 12.7 0.3 40.3 3.0 10.8 17.0 200.5 13.1

Temperature

min (°C)

Temperature

max (°C)

Rainfall

(mm)

ET0

(mm/month)Month
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of time after a latent phase, up to near physiological maturity. Transpiration is 

calculated and then translated into biomass using biomass water productivity, 

evaporative demand and air CO2 concentration data (Allen et al., 1998; Steduto et 

al., 2009). 

AquaCrop (v4.0), used in this study, is structured so as to integrate the soil-plant-

atmosphere continuum. It consists of five components: i) weather component, 

which requires five types of data input – daily maximum and minimum air 

temperatures (T), daily rainfall, daily reference evapotranspiration and the mean 

annual CO2 concentration in the atmosphere; ii) crop input parameters (planting 

dates, plant density, growth phenology and aerial canopy); iii) soil component, 

which is configured as an independent system of variable depth, with  one or 

several horizons of varying texture compositions, and the hydraulic characteristics 

including hydraulic conductivity at saturation (Ks) and volumetric water content 

at saturation, FC and PWP; iv) field management conditions (fertilizer application 

and field-surface practices); and v) irrigation management (irrigation method, 

percentage of wetted surface, date and amount of water applied). AquaCrop 

provides default values, called conservative parameters, that are related to the 

crops being studied (Raes et al., 2009a). The non-conservative parameters depend 

on crop management and environmental conditions. In this study, these 

parameters were estimated using measured data from all three cropping seasons. 

Default settings proposed by the model was used to estimate initial canopy cover 

(CCo) from sowing rate, seed weight, seed number and estimated germination 

rate. The canopy expansion rates were automatically estimated by the model after 

we provided phenological dates, i.e. (date of emergence, maximum canopy cover, 

senescence and maturity. The flowering date, length of flowering stage, HI 

reference and HI build-up period were specified in order to calculate grain yield 

production. AquaCrop was run on the basis of calendar days.  
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2.6 Testing AquaCrop 

In order to validate and calibrate the model for durum wheat (Triticum 

turgidum), we used the results of the experiments conducted from 2009-2010 to 

2011-2012. Initially, the parameters were established using the whole dataset 

from 15 fields for the simulation of grain yield and biomass; for soil water content 

we used only the soil moisture measurements carried out in the E1 and E2 fields. 

Accuracy of the model was evaluated using the k-fold cross validation (k-fold 

CV) approach, given the small size of our dataset (< 30 observations). This 

approach uses k replicate samples of observation data, builds model with (k-1)/k 

of data and tests with the remaining 1/k. Where the number of observations was 

reduced, leave-one-out cross validation (LOOCV), which is a k-fold CV taken to 

its extreme, with K equal to the number of systematic repetitions, was used 

(Cassel, 2007). LOOCV is an effective and widely used method (Cawley and 

Talbot, 2003; Cawley and Talbot, 2004). In our study, it involved using a single 

observation from the 15 observations as the validation data, and the other 

observations as the training data. This was repeated such that each observation in 

the sample was used once for validation (Stone, 1974).  

The conservative parameters of crop growth in winter soft wheat and durum 

wheat are presumed to be close as they display quite similar physiological 

behavior (El Hafid et al., 1996). On this basis, we initially used the conservative 

parameters of soft wheat following the AquaCrop manual annexes (Raes et al., 

2009b) to derive the conservative parameters of durum wheat. This approach led 

us to adjust only parameters known to be very sensitive for wheat in AquaCrop, 

i.e. the maximum root water extraction in the top and bottom quarters of the root 

zone in order to calibrate the model so that it could predict durum wheat yields 

under semi-arid irrigated conditions. The AquaCrop durum wheat parameters are 

presented in Table 15. 
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Table 15: Crop parameters used for durum wheat 

 

Value STD DEV Unit or meaning Assessment method

Base  temperature  0 - ◦ C (Raes et al., 2009b)

Upper temperature 26 - ◦ C (Raes et al., 2009b)

Canopy  cover  per  seeding  
at  90%  emergence  (CC0)

1.5 - cm² (Raes et al., 2009b)

Canopy  growth  
coefficient (CGC)   

0.05 -
Increase in canopy cover 

(fraction soil cover per day)
(Raes et al., 2009b)

Crop   coefficient  for 
 transpiration  at  
CC = 100%   

1.1 - Full  canopy  transpiration  
relative  to  ET0

(Raes et al., 2009b)

Decline  in  crop  coefficient  
after  reaching  CCx   

0.15 - % Decline  per  day  due  
to  leaf  aging

(Raes et al., 2009b)

Canopy decline coefficient 
(CDC)

0.072 -
Decrease in canopy cover 

(in fraction per day)
(Raes et al., 2009b)

Water  productivity   15 -  g  (biomass)  m-² (Raes et al., 2009b)

Leaf  growth  threshold  
p-upper  

0.2 - Above  this  leaf  growth  
is  inhibited

(Raes et al., 2009b)

Leaf   growth  threshold  
p-lower    

0.65 - Leaf  growth  stops  
completely as  this  p

(Raes et al., 2009b)

Maximum root water 
extraction 
in top quarter of root zone

0.038 (m3 water/m3 soil/day) Adjusted

Maximum root water 
extraction 
in top quarter of root zone

0.018 (m3 water/m3 soil/day) Adjusted

Leaf   growth  stress  
coefficient  curve  shape   

5 - Moderately  convex  curve (Raes et al., 2009b)

Stomatal  conductance  
threshold  p-upper   

0.65 -
Above  this  stomata  begin  

to  close
(Raes et al., 2009b)

Stomata  stress  coefficient  
curve  shape    

2.5 - Highly  convex  curve (Raes et al., 2009b)

Senescence  stress 
coefficient  p-upper    

0.7 - Above  this  early  canopy  
senescence  begins

(Raes et al., 2009b)

   Non-conservative parameters

Plant density 2250000 200000 Plant/ha Measured

Sowing to emergence 12 0.8 Day Measured

Sowing to maximum rooting 103 9 Day Measured

Sowing to senescence 192 11 Day Measured

Sowing to maturity 172 10 Day Measured

Sowing to flowering 120 12 Day Measured

Length of the flowering stage 15 0.71 Day Measured

Building up of HI 48 - % Measured

Maximum rooting depth 0.8 - m Measured

Parameters description

   Conservative Parameters
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2.7 Model evaluation 

For evaluating the performance of the AquaCrop, field measurements 

(observed data) were compared with outputs generated by the model (simulated 

data) in terms of crop yield, biomass and soil moisture in the root zone. 

Different statistical indices were used to compare modeled with observed values. 

These indices were the coefficient of determination (R²), the root mean square 

error (RMSE), the normalized RMSE (nRMSE; expressed as a percentage; 

Loague and Green (1991) and the mean bias error (MBE).  

RMSE = $∑ (&�'(�)�
)

)�*� +�.-  (1) 

nRMSE = $∑ (&�'(�)�
)

)�*� +�.- ×	���0      (2) 

Si and Oi refer to simulated and observed values of the studied variable, 

respectively; n is the number of observations; and M is the mean of the observed 

variable. The nRMSE indicates the accuracy of the model and the dispersion 

around the mean of the observed values. The simulation is considered to be 

excellent when the nRMSE value is lower than 10%, good if it is higher than 10% 

but lower than 20%, fair if it is higher than 20% but lower than 30%, and poor if 

it is higher than 30% (Jamieson et al., 1991). 

The MBE is an indicator that assesses whether the model is underestimating or 

overestimating the observed values, and it also gives the uniformity of error 

distribution. Positive MBE values indicate overestimation, negative values 

indicate underestimation and a value of zero indicates equal distribution between 

negative and positive values. The MBE is calculated as follows: 

MBE = �
) 2∑ (Si − Oi))�*� 6   (3) 
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2.8 Model application 

Adjusted AquaCrop (v4.0) was used to improve irrigation scheduling 

in the studied irrigated perimeter. We evaluated the effects of various irrigation 

scenarios (different dates and frequencies of irrigation supplies) on grain yield 

and water use efficiency (WUE). We took into account periods of crop stress, 

development stages of wheat and rainfalls.  

The crop parameter values and the soil characteristics for the plots E1 and E2 

were used for different scenarios. For irrigation supplies, we conserved the same 

amount of water provided at plot level and we varied the moment of inputs. In 

case we proposed an additional irrigation supplement, we took 105 mm, which 

represents the average amount of water commonly brought in the irrigated 

perimeter of Tadla due to the use of flooding irrigation method, the lack of plots 

leveling and the presence of deep soil cracks. 

 WUE is a helpful indicator for evaluating the impact of irrigation scheduling 

decisions (Liu et al., 2007). In a crop production system, WUE is used to define 

the relationship between crop production and the amount of water involved in 

crop production, expressed as crop production per unit volume of water. In this 

study, WUE (kg.m-3) refers to the ratio between the final grain yields (GY) and 

cumulative crop evapotranspiration during the whole crop cycle (ET). 

WUE = 9:
;<      (4) 

3.  Results and discussions 

3.1 Grain yield 

Figure 20 presents the relationship between observed and modeled durum 

wheat grain yields. The simulated and measured yields showed a good 

correlation, with an R² value of 0.97. The calculated model evaluation criteria 

between the simulated and measured yields were: RMSE = 0.20 t.ha-1, nRMSE = 
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4.1% and MBE = 0.03 t.ha-1. The positive MBE value indicates that the model is 

in average overestimating slightly the observed values. 

Using the LOOCV method, we obtained R² values of 0.95 (Figure 21). The 

difference between the values of the linear regression of the dataset and the values 

of the LOOCV method validation data were minimal, confirming the ability of 

the model to simulate yields. The differences between the observed and simulated 

outputs of LOOCV for durum wheat yield were: RMSE = 0.23 t.ha-1, nRMSE = 

4.7% and MBE = -0.01 t.ha-1.  

Andarzian et al. (2011) simulated soft wheat grain yield using AquaCrop and 

obtained a R² of 0.95 and a nRMSE of 5%. The difference between the observed 

and modeled grain yield of soft wheat was 0.14 t.ha-1, indicating that the model 

overestimated the yield by 2.7%. Mkhabela and Bullock (2012) reported that the 

difference between the modeled and observed grain yield of soft wheat was 0.12 

t.ha-1, signifying that AquaCrop overestimated the yield by only 3%. Salemi et al. 

(2011) reported that the model underestimated the grain yield of soft wheat by 

1.35%. The model results are comparable with those provided by other models 

used by Eitzinger et al. (2004) and Rodriguez et al. (2003) to simulate wheat yield 

and soil water content. These authors simulated soft wheat grain yield using the 

STICS model for wheat and reported that there was a good agreement between 

observed and modeled grain yield, with an RMSE of 0.550 t.ha-1, an nRMSE of 

8.5% and an MBE of 0.29 t.ha-1. AquaCrop also appears to be quite efficient in 

predicting durum wheat grain yield under semi-arid irrigated conditions in a large 

range of crop conditions, as indicated by our study. 
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Figure 20: Relationship between observed and simulated durum wheat grain yield 
(t.ha-1) using the whole datasets (Calibration) 

 

Figure 21: Relationship between observed and simulated durum wheat grain yield 
(t.ha-1) using the LOOCV subsets (Validation) 
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3.2 Final aboveground biomass 

Figure 22 presents the relationship between observed and modeled 

durum wheat aboveground biomass for the study area. The RMSE, nRMSE and 

R2 were 0.8 t.ha-1, 5.7% and 0.93, respectively. The difference between the 

values of the linear regression of the observed dataset and the simulated values 

using the LOOCV method were minimal. The statistical indicators we obtained 

were: RMSE = 0.7 t.ha-1, nRMSE = 4.8%, MBE = 0.01 t.ha-1 and R²=0.92 (Figure 

23). These results confirm the capacity of the model to simulate aboveground 

biomass. 

Araya et al. (2010) simulated barley aboveground biomass using AquaCrop and 

reported an RMSE of 0.36-0.90 t.ha-1 and R² values higher than 0.8. Similarly, 

Andarzian et al. (2011) simulated soft wheat aboveground biomass using the 

model and reported an R² value of 0.95 and nRMSE value of 4.4%. 

The average difference between simulated and observed biomass of durum wheat 

was 0.08 t.ha-1, indicating that the model slightly underestimated this parameter 

(by 0.6%). Salemi et al. (2011) reported that the model underestimated the 

aboveground biomass of soft wheat by 1.42%. In our study, AquaCrop accurately 

predicted the final aboveground biomass of durum wheat under the conditions in 

the Tadla area. 
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Figure 22: Relationship between observed and simulated durum wheat biomass 
(t.ha-1) using the whole datasets 

 

 

Figure 23: Relationship between observed and simulated durum wheat biomass 
(t.ha-1) using the LOOCV subsets (Validation) 
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3.3 Soil water content 

Figures 24 and 25 present the comparison between observed and 

simulated soil water content of the whole profile for the two fields where this 

variable was measured. The soils in these plots have similar characteristics. 

However, when we apply the model at large-scale it advisable to integrate spatial 

variability of soil data, in order to improve simulation accuracy. An important 

point arising from these figures is that the variations in simulated soil moisture 

followed the variation of rainfall and the occurrence of irrigation events exactly, 

indicating that the model is sensitive enough to be used as an efficient tool to 

monitor irrigation in real time.  

 

 

Figure 24: Comparison between simulated and observed soil moisture measurements 
at 0-90 cm depth for plot E1 followed during the cropping season 2009/2010. 

Descendent arrows  indicate irrigation water supply 
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Figure 25: Comparison between simulated and observed soil moisture measurements 
at 0-90 cm depth for plot E2 followed during the cropping season 2010/2011. 

Descendent arrows  indicate irrigation water supply 
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ability of the model to predict wetting and drying events resulting from irrigation 

and rainfall. Similar results were obtained in our study for the soil moisture 

profile evolution under durum wheat. 

3.4 Model applications for irrigation management scenarios 

The results of this part, summarized in tables 16 and 17, showed that 

grain yields can be improved by 14 to 48% for both studied plots (E1 and E2), 

depending on the adopted irrigation scenario, and taking into account the 

availability of water in the root zone and the periods of water stress.  

For the 2009/2010 growing season, rainfall provided enough water from the 

sowing until March unlike the second phase of the season. The non-sufficient 

quantities of irrigation water supply during the dry phase of the year can 

drastically affect grain yield. This explains the low yields recorded for the plot E1 

(Table 16). In this case study, we suggested to irrigate at grain filling stage (see 

scenarios E1-S2 to E1-S7 of Table 16) to avoid water stress effect during this 

stage, since rainfall satisfied water requirements and meet the increasing 

evaporative demand for the crop during the previous stages. Such situation occurs 

frequently in studied areas where the high evaporative demand corresponds to the 

grain filling stage. 

Regarding the parcel E2, we achieved good yield (6.2 t/ha) in 2010/2011 because 

precipitation occurred during grain filling stage (Table 17). However, the 

scenarios showed, in table 17, that this yield can be improved by scheduling 

irrigation during the first growing stage of wheat. Indeed, water stress during this 

period can affect leaf growth that leads to a decrease in biomass production and 

final grain yield (Hsiao et al., 2009; Steduto et al., 2009). 

For the case of double irrigation scenarios, the best yields were achieved when 

irrigation was applied during the flowering and grain filling stages (E1-S3 and 

E2-S4). Water stress at grain filling stage leads to a decrease in grain yield which 

is related to harvest index (Steduto et al., 2009).  
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In case of low rainfall at early crop growth and grain filling stages, we 

recommend to farmers to apply an irrigation supply at these stages to improve 

crops performance and to increase grain weight.  

For E1-S2 scenario, we tested the effect of postponing the second irrigation. A 

delay of ten days caused a decrease in grain yield by about 28% according to the 

model. In the studied area, the duration to irrigate one hectare is one to two days 

using the flooding irrigation method. Therefore, plots exceeding 5 ha may be 

subject to a large heterogeneity of yields due to delayed irrigation. This is not the 

case for the drip and sprinkler irrigation methods.  

One of the problems facing the irrigation management is contributions in excess 

of the irrigation water that affect saving irrigation water. When analyzing 

precipitation distribution during the 2010/2011 wheat season, we deduced that we 

can avoid the first irrigation scheduled initially eight days after sowing. The 

cancellation of this first irrigation (E2-S8) induced a slight reduction in the 

estimated yield by only 0.34%.  

Water use efficiency was calculated as the ratio of produced wheat grain yield to 

cumulative evapotranspiration (Table 16 and 17).  
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Table 16: Alternative irrigation scenarios implemented in AquaCrop for the plot E1 
(Rainfall = 448.6 mm) 

 

Table 17: Alternative irrigation scenarios implemented in AquaCrop for the plot E2 
(Rainfall = 337 mm) 

 

 

 

Studied 
scenarios

Irrigation timing 
from sowing

Quantity
(mm)

Grain Yield
(t/ha)

Biomass
(t/ha)

Irrigation
(mm)

ET
(mm)

water-use 
efficiency 
(kg/m3)

Baseline 
scenario*

8; 103 121; 148 3.90 12.42 269 348 1.12

E1-S1 8; 93 121; 148 3.02 11.57 269 321.6 0.94

E1-S2 8; 113 121; 148 4.92 13.57 269 387.5 1.27

E1-S3 111; 142 121; 148 7.63 16.79 269 505 1.51

E1-S4 106; 136 121; 148 7.10 16.03 269 483.1 1.47

E1-S5 111; 142; 160 121; 148; 105 8.93 18.84 374 587.7 1.52

E1-S6 106; 136; 152 121; 148; 105 8.40 17.25 374 564 1.49

E1-S7 6; 111; 142 121; 148; 105 8.30 17.65 374 535.6 1.55

E1-S8 103 148 3.63 12.31 148 346 1.05

   *: Reference irrigation scenario which has been applied.

Studied 
scenarios

Irrigation timing 
from sowing

Quantity
(mm)

Grain Yield
(t/ha)

Biomass
(t/ha)

Irrigation
(mm)

ET
(mm)

water-use 
efficiency 
(kg/m3)

Baseline 
scenario*

8; 151; 164 128; 150; 120 6.22 15.63 398 395.9 1.57

E2-S1 8; 161; 174 128; 150; 120 5.10 13.47 398 335.5 1.52

E2-S2 8; 141; 154 128; 150; 120 7.27 17.74 398 443.1 1.64

E2-S3 87; 146 150; 120 7.23 17.86 270 443.4 1.63

E2-S4 97; 146 150; 120 7.50 18.47 270 457.6 1.64

E2-S5 87; 141; 154 128; 150; 120 7.90 19.19 398 476 1.66

E2-S6 8; 87; 146 120; 128; 120 7.23 17.85 398 443.4 1.63

E2-S7 97; 141; 154 128; 150; 120 8.19 19.19 536 493.3 1.66

E2-S8 151; 164 150; 120 6.19 15.57 270 394.5 1.57

   *: Reference irrigation scenario which has been applied.
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The WUE varied in different irrigation scenarios. The highest WUE was found 

for the scenarios with three irrigations scenario, while the lowest one was found 

with two irrigations scenario. The WUE generally decreased when water 

availability decreased (Andarzian et al., 2011).  

With the proposed planning based on three irrigations, the values of WUE 

reached 1.55 for E1-S7 scenario and 1.66 for scenarios E2-S5 and E2-S7  (Table 

16 and 17). WUE was lower for the 2009/2011 cropping season compared to 

2010/2011. For the first studied cropping season, water stress was so great from 

the flowering stage. This situation does not meet the high evaporative demand of 

crops. Scheduling irrigations during the water stress period (the case of scenarios 

E1-S3, E1-S4, E1-S5, E1-S6 and E1-S7) improved significantly the grain yield, 

and the WUE increased from 1.12 to 1.55 kg.m-3. For the grain yield values, the 

simulated productions were almost close to the optimal 8 t/ha. 

The WUE ranged from 0.94 to 1.66 kg.m-3 for the two studied cropping seasons. 

The highest WUE was observed for three irrigation scenarios (E2-S7), in which it 

peaked at 1.66 kg.m-3 (Table 17). 

This application showed the potential of AquaCrop to manage irrigation water 

and to optimize frequency and timing of the irrigations supplies. This allow  to 

increase WUE by avoiding period of water stress and overwatering, and thus 

guaranteeing optimal growing conditions throughout the cropping season.  

4.  Conclusions and perspectives 

Irrigated agriculture is an important strategic sector semi-arid region. While 

irrigation is expected to provide water to crop to prevent water stress, in reality, 

despite the availability of irrigation water, optimal yields are not often achieved. 

The stakeholders involved in managing irrigated areas need simulation model 

tools to help them schedule irrigation and assess its impact on yield. 

In this study, the ability of AquaCrop (v4.0) to simulate durum wheat yield, 

biomass and soil moisture evolution on one hand and  to describe the impact of 
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irrigation water supplies (timing and quantity) on recorded yields on the other 

hand were shown under semi-arid irrigated conditions.  

Required conservative parameters of the model were determined on the basis of 

predefined parameters for soft wheat. Of the latter, only four had to be adjusted. 

The use of the statistical LOOCV method provided excellent results for the main 

model outputs (i.e., soil water content profile evolution, biomass and grain yield). 

The analysis of irrigation scenarios showed that the model can optimize 

frequency and timing of the irrigations supplies. This allow to maintain good 

grain yields and to increase WUE by avoiding period of water stress and 

overwatering, and thus guaranteeing optimal growing conditions throughout the 

cropping season.  

Furthermore, new prospects are opening to improve the tool performance by 

integrating short-term weather forecasts in the process of making decision. This 

should improve the effectiveness of irrigation scheduling by considering the 

significant rainfall expected. 

This aspect will permit decision-makers and farmers to better schedule irrigation, 

to insure water saving and to avoid irrigation supplies followed by a significant 

amount of rainfall. This will be a first step to establish a warning system for 

irrigation across the whole studied irrigated perimeter. 

We concluded that this model is a suitable tool for simulating the effects of water 

stress on crop productivity in order to improve irrigation management and thereby 

optimize water-use efficiency under arid and semi-arid conditions. 
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1.  Conclusion 

Cereals are by far the most important crops in terms of added value, area covered 

and food security. In Morocco, water availability is the main limiting factor for 

cereal production and its management has long been a national priority for the 

agricultural sector. In terms of agricultural water management, flooding irrigation 

is practiced on more than 93% of the total area of irrigated perimeters in Morocco 

and mobilizes large volumes of water. Given the importance of this sector, good 

management of irrigation water at a large-scale is essential. This has led to work 

on developing optimum strategies for planning and managing available water 

resources in order to improve irrigation scheduling and prevent water stress from 

adversely affecting yield. 

In order to address this issue, we focused on two techniques: optical and radar 

remote sensing; and crop modeling. The approaches developed in this research 

are intended primarily for decision-makers and managers of large-scale irrigated 

perimeters (40,000 ha). 

Remote sensing was used because of its high potential in monitoring agricultural 

parameters. We analyzed the ability of two spectral indices (NDWIRog and MSI) 

derived from SPOT images and backscattering values derived from SAR images 

to monitor irrigation. These indices were compared with corresponding in situ 

measurements of soil moisture and vegetation water content in 30 wheat fields. 

NDWIRog and MSI were highly correlated with the in situ measurements at both 

the beginning of the growing season (sowing) and at full maturity (grain filling). 

From sowing to grain filling, the best correlation (R²=0.86; p<0.01) was found for 

the relationship between NDWIRog values and observed soil moisture values. 

NDWIRog can therefore be used as an operative index for monitoring irrigation in 

order to estimate and map surface water content changes at the main crop growth 

stages at the field and regional levels in the Tadla irrigated perimeter.  

Backscatter amplitude analysis showed that significant changes in surface states 

(backscattering values) caused by irrigation could be detected, with values 

ranging between 0.11 to 3.11 dB.  
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A reference level was set at 1 dB to differentiate between, on the one hand, 

irrigated plots and, on the other, non-irrigated plots and plots irrigated for more 

than 2 days. There was no significant difference between the non-irrigated plots 

and irrigated plots after more than 2 days. 

In order to guarantee continuous irrigation monitoring of the irrigated area over 

time, it was necessary to ensure that the interval in SAR image acquisition did not 

exceed 3 days.  

This study provided evidence that radar data contain important information for 

the detection of irrigation water supplies during the studied cropping season 

period.  

The developed approaches, based on remote sensing combined with crop growth 

models, could be used as an operational tool for managing irrigation and crops, as 

well as for monitoring the evolution of surface water content at the plot and 

irrigation scheme levels. The practical aspects of these approaches include: (i) 

triggering irrigation supplies in water stress situations and otherwise preventing 

excess supplies of irrigation water; and (ii) detecting illegal irrigation and 

pumping. This is relevant in irrigated areas where irrigation is not scheduled and 

uncontrolled water pumping is prohibited.  

These approaches will help to improve irrigation monitoring and management in 

the Tadla irrigation. They will also directly contribute to the sustainability of 

agricultural production systems and preserve water resources (groundwater and 

surface). 

The performance of the approaches presented need be checked in other contexts 

before judging their suitability for application in other areas. 

The high resolution remote sensing approaches provide a means of synoptic 

monitoring for agricultural parameters at the time of image acquisition, but do not 

ensure their temporal monitoring. It is common for there to be more than 10 days 

between two satellites passes. In order to achieve maximum yield and improve 

the water-use efficiency in irrigation, it is necessary to control wheat production 

parameters in time and space. Resorting to crop models is justified mainly by the 

need to provide temporal monitoring and to assess the impact of the production 
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parameters monitored on yields with a view to overcoming the limits of remote 

sensing.  

The field crop model (AquaCrop v4.0) developed by FAO was chosen for this 

research. AquaCrop was adjusted and tested to simulate durum wheat yields and 

the temporal evolution of soil moisture status, as well as to assess the impact of 

irrigation water supplies (timing and quantity) on recorded yields. The required 

conservative parameters of the model were determined on the basis of predefined 

parameters for soft wheat. Only four of these parameters had to be adjusted. The 

use of the statistical leave-one-out cross-validation (LOOCV) method gave 

excellent results for the main model outputs. The comparison between observed 

and simulated grain yield and above-ground biomass gave a normalized root 

mean square error (RMSE) of 4.1% (0.2 t.ha-1) and 5.7% (0.8 t.ha-1), respectively. 

Similarly, the difference between observed and modeled soil water content was 

16.7 mm on average. 

The analysis of irrigation scenarios showed that the model can optimize the 

frequency and timing of irrigation water supplies. It could help to maintain good 

grain yields and increase water-use efficiency by avoiding periods of water stress 

and overwatering, thereby guaranteeing optimal growing conditions throughout 

the cropping season.  

New prospects are opening up for improving crop modeling by integrating 

weather forecasts into the process of decision-making and by adopting spatial 

modeling that uses data layers on a grid format derived from satellite data. 

Decision-makers and managers need to be encouraged to adopt spatial and 

temporal monitoring techniques for better scheduling of irrigation supplies, 

improving water saving and avoiding supplying irrigation water when rainfall is 

sufficient. These approaches constitute an important step in establishing an 

effective irrigation management system across the studied irrigated perimeter. 

Our research has provided methods to help stakeholders and policy-makers in 

their management and decision-making. Each method was applied independently.  
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2.   Perspectives 

2.1  Use of recent advances in remote sensing data collection 

Remote sensing tools have demonstrated their capabilities to operationally 

monitor specific farm management practices, including irrigation, over large 

agricultural areas (Bastiaanssen et al., 2000; Ozdogan et al., 2010; Pinter et al., 

2003). The growing interest in satellite imagery is due to the new strategy that 

enables and encourages the profitable use of high spatial resolution images (10-30 

m pixel size). Publicly free remote sensing data has been improved during the last 

decades, and the potentialities offered are increasing and strengthened with, e.g. 

the launch of Sentinel 1/2 missions (developed by European Space Agency, ESA, 

within the Copernicus initiative) and Landsat 8 mission (developed by U.S. 

Geological Survey and NASA).  

Thanks to the Sentinel-1A and Sentinel-2A satellites (launched in April 2014 and 

April 2015, respectively), and with the Sentinel 1B and 2B satellites (expected to 

be launched in 2016), high-resolution images of land surface with a temporal 

frequency of five days (high revisit time) will be available for operational 

purposes. Complementarity between Sentinel-2 and the US Landsat mission is 

also expected. 

Temporal resolution and spatial coverage of available satellite data can nowadays 

be improved by using pointable satellites but at high cost. Also, airborne can 

perform flights on demand and below the clouds to overcome the limitations of 

satellite sensors instruments (Jones and Vaughan, 2010).  

A temporal resolution of about 3–10 days for optic and radar data, can improve 

significantly irrigation monitoring and crop management throughout the growing 

season (Vuolo et al., 2015). However, satellites can offer a response with a delay 

of about one day in data provisions after acquisition. In order to intervene in time, 

it is compulsory to ensure a short gap between acquisition frequency of satellite 

images and their processing.  

Otherwise, with the current opportunity to acquire good quality satellite data, we 

think that the main efforts would be devoted, during the coming two decades, to 
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the development of useful applications in several domains especially in the 

irrigation management.  In this case, the main part of the investment will be 

allocated for hardware and image processing software as well as personal 

training. 

2.2  Retrieving soil moisture by satellite  

The surface soil moisture estimation and irrigation water supply detection can be 

performed directly using optic, passive and active microwave sensors. As 

described in Chapters 2 and 3, the potential of remote sensing (optic and radar) to 

retrieve accurately the surface moisture and detect irrigation supply was 

demonstrated. The most important consideration is to ensure robust estimation of 

these two items and to improve irrigation water monitoring and crop management 

in semi-arid areas. These findings need to be tested and validated with available 

Landsat-8 and sentinel 1/2 products, so that to add to the knowledge base and 

improve the mastery and application of satellite imagery in agriculture. 

The high sensitivity of the Short Wave Infra-Red (SWIR) band to surface 

moisture variation was confirmed in Chapter 2. The cloud cover penetration 

capability constitutes the main limitation for optical remote sensing data use. This 

limitation is less acute in arid and semi-arid areas where dry periods are more 

frequent. Optical imagery could be used for water stress warning by detecting 

plots with under-threshold water content that are probably suffering from water 

stress.  

SAR data in C-band frequency (Chapter 3) has particular advantages since it is 

largely independent of the time of day or cloud cover, and can also partially 

penetrate the surface cover. Other wavelengths such as L-band can be explored. 

Indeed, L-band penetrates deeper into the vegetation cover and soil and provides 

more relevant information on moisture and water content (Zwieback et al., 2015). 

These two bands might be explored further in order to develop robust and simple 

approaches for detecting irrigation schemes for the main crops in irrigated areas. 

Moreover, the potential of the studied indices for retrieving surface moisture and 

backscattering value threshold to detect irrigation supplies for various crops under 

different irrigation methods can be further investigated. This will help in the 
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control and monitoring of irrigation water supplies and in assessing surface water 

content changes. 

The discontinuity of remote sensing data heightens the importance of modeling 

that will simulate the temporal evolution of crop development and soil water 

content. Combining intermittent remote sensing data with a crop growth modeling 

approach through assimilation techniques should provide better temporal model 

outputs than using crop growth models alone. 

2.3 Soil water content monitoring at the field-scale 

The gravimetric method, used in this research, requires a large data collection 

effort without ensuring, in most cases, a temporal correspondence with the 

acquired satellite images or enabling a continuous flow of data. For a temporal 

synchronization between satellite data and field measurements, it is more 

appropriate to perform continuous measurement of soil water content in control 

experimental sites. To achieve this objective, probes can be installed in root zone 

and connected to data loggers. Measurements data can be automatically recorded 

in real time and provide detailed time series. A representative set of soil water 

content stations equipped with electronic probes should ideally be installed on the 

main irrigation perimeters in order to express the spatial variability of the soil-

crop-climate relationship but this requires funds that may not easily be granted. 

2.4 Crop models spatialization  

AquaCrop model can simulate crop growth and soil water content at a daily time 

step, based on environmental conditions and under different crop management 

practices (e.g. irrigation).  

As shown in chapter 4at the plot level, AquaCrop could play a key role in 

optimizing growing conditions throughout the cropping season in order to ensure 

satisfactory production/yield and improve water-use efficiency, while avoiding 

water excess or water deficit situations.  

The spatialization of the model could give it an added value and serve irrigation 

perimeters managers to support their management decisions at perimeter scale. 

This spatialization requires parcel management data (time of seeding, crop type, 
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fertilizer amounts and time of application, irrigation timing…) for all the parcels 

of the perimeter (Tadla perimeter is 100000 ha). This large amount of data is 

often lacking (or provided too late) to perimeter managers to optimize the water 

supply. 

The detection of irrigation supplies timing and the estimation of surface water 

content in cereal fields using the optical spectral indices and SAR data (chapters 2 

and 3) can partially correct this lack and provide very useful information for the 

perimeter water management.   

The combination of the studied crop growth model and remote sensing data (optic 

and Radar) in an operational system can lead to a significant improvement in crop 

yield forecasts and soil moisture estimation at local and large scales.  

2.5 Development of a system for crop management at large-

scale fields 

Future research also includes the development of a web interface or user-friendly 

platform for crop management, based on a system that integrates satellite data and 

crop modeling (figure 1). This research aimed at providing a scientific and 

technical approach for monitoring of irrigation supplies and surface water content 

in a semi-arid irrigated area. The approach could lead to operational management 

tools for an efficient irrigation at field and regional levels. 
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Figure 26: Workflow of an integrated system for irrigation management and crop 
growth monitoring in semi-arid regions. 
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The proposed system requires three principal components of input data that are 

satellite remote sensing data (optic and radar), climate data and collected data in 

the experimental fields. The surface moisture, irrigation supply detection and land 

use maps are derived from satellite images. The aspects related to remote sensing 

have been developed for wheat in Chapters 2 and 3 using SPOT-5 and SAR 

images, respectively. Further studies should be undertaken to test the applicability 

of this research findings for other crops and using the available Landsat-8 and 

sentinel 1/2 products. 

The proposed operational tool aims to spatialize AquaCrop model by integrating 

the spatial geo-database (SGDB) in the analysis and simulation process per 

homogeneous unit or pixel. The SGDB is constituted by the satellite derived 

indicators, the punctual field data, soil maps, interpolated climate data and 

weather forecasts. 

The data provided by users will also be built at the SGDB for the control of inputs 

data. The outputs of simulations are integrated in the SGDB and they are 

available to users. The tool would also provide management and monitoring 

advices, in real time through a web interface, to meet the requirements of 

managers and users. On this basis, the irrigation management advice provided is 

meant to limit excess water application and achieve a better use of irrigation 

water and cost savings. 

For the development of this tool, we intend to exploit the existing platform 

CGMS Morocco and benefit from the experience of its research team (Balaghi et 

al., 2013a). As part of INRA’s medium-term research project and in partnership 

with other research institutions, possibilities exist for continuing to develop these 

tools and test their applicability to any important crops in other irrigated areas 

with different climatic and edaphic conditions. This tool will be made available to 

decision-makers and managers of various institutions involved in the management 

of irrigation water in the region (e.g., ORMVAT, ABOHER). 

The proposed system, designed primarily for decision-makers and managers of 

large irrigated perimeters, requires three principal components of input data that 
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are satellite remote sensing data (optic and radar), climate data and collected data 

in the experimental fields. The surface moisture, irrigation supply detection and 

land use maps are derived from satellite images. The aspects related to remote 

sensing have been developed for wheat in Chapters 2 and 3 using SPOT-5 and 

SAR images, respectively. Further studies should be undertaken to test the 

applicability of this research findings for other crops and using the available 

Landsat-8 and sentinel 1/2 products. 

The proposed operational tool aims to spatialize AquaCrop model by integrating 

the spatial geo-database (SGDB) in the analysis and simulation process per 

homogeneous unit or pixel. The SGDB is constituted by the satellite derived 

indicators, the punctual field data, soil maps, interpolated climate data and 

weather forecasts. 

The managers of large irrigated areas can use the validated spatial surface (soil 

and vegetation) moisture evolution and spatial yield forecasting provided by the 

system for crop management and monitoring irrigation. The outputs of 

simulations are integrated in the SGDB and they are available to users. The tool 

would also provide management and monitoring advices, in real time through a 

web interface, to meet the requirements of managers and users. These outputs can 

be used for: (i) triggering irrigation supplies in water stress situations, (ii) 

detecting irrigation supplies, (iii) scheduling irrigation and assessing its impact on 

yield and (iv) detecting illegal irrigation and pumping. In drought years, with the 

restrictions on the water allocation to the irrigated perimeter, the system could 

help the managers to prioritize the irrigation of plots and districts depending on 

the level of water stress and the development stages of crops. 

On this basis, the irrigation management advice provided is meant to limit water 

excess, reduce water shortage and achieve a better use of irrigation water and cost 

savings. For the development of this tool, we intend to exploit the existing 

platform CGMS Morocco and benefit from the experience of its research team 

(Balaghi et al., 2013a). As part of INRA’s medium-term research project and in 

partnership with other research institutions, possibilities exist for continuing to 

develop these tools and test their applicability to any important crops in other 

irrigated areas with different climatic and edaphic conditions. This tool will be 
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made available to decision-makers and managers of various institutions involved 

in the management of irrigation water in the Tadla region (e.g., ORMVAT, 

ABOHER) in a first step and may be later transferred to large perimeter managers 

of all Morocco if it proofs its performance and its usefulness in the Tadla 

perimeter. 
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In Morocco, water availability is becoming a national priority for the 

agricultural sector. In this context, the stakeholders try continuously to 

improve strategies of water irrigation management, on one hand, and to 

assess vegetation water content status, on the other hand, in order to 

improve irrigation scheduling and prevent water stress that affects yield 

adversely. 

The aim of this study was to evaluate the potential of two spectral indices, 

calculated from SPOT-5 high resolution visible (HRV) data, to retrieve 

the vegetation water content values of wheat in an irrigated area. These 

indices were the normalized difference water index (NDWIGao) and the 

moisture stress index (MSI). The values of these indices were compared 

with corresponding values of in situ-measured vegetation water content in 

16 fields of wheat during the 2012-2013 cropping season.  

Good correlations were found between observed vegetation water content 

values and NDWIGao and MSI values during the crop growth period from 

anthesis to grain filling. These results were validated using the K-fold 

cross validation method and showed a good stability of the proposed 

regression models with a slight advantage for the NDWIGao. Based on 

these results, the NDWIGao was chosen to map the spatial variability of 

vegetation water content of wheat at the east of Beni-Moussa irrigated 

perimeter. These results proved that the indices based on near and 

shortwave infrared band (NIR and SWIR) are able to monitor vegetation 

water content changes in wheat from anthesis to grain filling stage. These 

indices could be used to improve irrigation and crop management of 

wheat at both field and regional levels. 

 

1.  Introduction 

In the world, irrigated areas produce more than half of all foodstuffs and 

thus contribute to food security. They are using about 72% of available 
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water resources (Geerts et al., 2009; Seckler et al., 1999). In Morocco, 

water availability is considered as the main limiting factor for crop 

growth. Cereal production is strongly related to the amount and 

distribution of annual rainfall in rainfed areas and to the amount of 

groundwater and water stored in dams in irrigated areas.  Irrigation water 

has to be supplied to the plants when the soil water reserves are depleted 

and are causing plant stress. For instance, in the Tadla irrigated area, the 

main crop is wheat and represents more than 36% (40.000 ha) of the total 

irrigated area (ORMVAT, 2009). 

The average volume of water consumed by the wheat crop during the 

period from 1994 to 2002 reached 136 Mm3 / year in the irrigated 

perimeter of Tadla. This amount is the equivalent of 18% of all irrigation 

consumed across the irrigated perimeter (ORMVAT, 2009). In this 

situation, knowing the vegetation water content could be an interesting 

basis for improving irrigation scheduling and preventing water stress 

adversely affecting yield (Duchemin et al., 2006). 

In order to estimate the water content of the vegetation for various crops, 

remote sensing has been used through the spectral indices (Ceccato et al., 

2002a; Hadria et al., 2010; Trombetti et al., 2008), taking account of the 

high temporal and spatial resolution of the recent satellites.  

During the wheat development cycle, water stress effects can be directly 

observed in the vegetation (Feng et al., 2013; Ghulam et al., 2007; Ning 

et al., 2013). Water stress indices used in irrigation management should 

therefore be based on the spectral bands that are sensitive to vegetation 

water content. Many indices designed for vegetation moisture monitoring 

have been developed using NIR (780-890 nm) and SWIR (1580-1750 nm 

) bands, including the normalized difference infrared index (NDII) 

(Hardisky et al., 1983), the global vegetation moisture index (GVMI) 

(Ceccato et al., 2002a), the moisture stress index (MSI) (Hunt Jr and 

Rock, 1989) and the normalized difference water index (NDWIGao) (Gao, 
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1996). For wheat management, the use of these spectral indices for 

assessing the vegetation water content becomes essential during critical 

periods (flowering to grain filling) to ensure good yields. 

Recent studies have confirmed the high sensitivity of the SWIR band to 

vegetation water variations (Ceccato et al., 2001; Cheng et al., 2013; Hunt 

Jr et al., 2011; Liu et al., 2012; Yilmaz et al., 2008b). Otherwise, the 

reflectance in the NIR spectrum (740–1300 nm) is the most sensitive to 

leaf internal structure changes (Jacquemoud and Baret, 1990) and is 

insensitive to vegetation water variation (Elvidge and Lyon, 1985), except 

in extremely high stress conditions, which cause severe leaf dehydration 

and thus affect leaf structure (Jensen, 2007). The NIR band serves as a 

moisture-reference band, whereas the SWIR band is used as the moisture-

measuring band. Currently, the spectral indices are widely used to 

estimate the biophysical properties of the vegetation, including the water 

content. However, the uses of these indices are often made with empirical 

methods. 

In arid and semi-arid regions, stakeholders and managers of water 

resources express a strong need for tools that can assess vegetation water 

content. In this paper, we explored the potential of two spectral indices, 

the NDWIGao and MSI, derived from high spatial resolution SWIR and 

NIR, to assess and map the vegetation water content of wheat in the 

irrigated area of Tadla, Morocco. 

 

2. Materials and methods 

2.1  Study area 

The study area (Figure 27) is located in the center of 

Morocco, between the Atlantic coast in the north-west and the Atlas 

Mountains in the south-east (32°23΄ north latitude; 6°31΄west longitude; 

445 m above sea level). This irrigated plain of Tadla covers about 
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100,000 ha and is characterized by a flat topography and composed of a 

right bank (Beni-Amir) and left bank (Beni-Moussa). This area is 

characterized by a semi-arid climate: the average annual precipitation is 

about 300 mm (average over the period 1970-2010), with a significant 

inter-annual variation ranging from 130 to 600 mm in the same period. 

This plain is managed by the Regional Office for Agricultural 

Development of Tadla (ORMVAT). 

Wheat is one of the main crops in this area, covering 36% of the total 

cultivated area. The wheat-growing cycle in the region runs from 

November-December to June. During this period, wheat is irrigated, 

using the flooding irrigation technique, between two and five times, 

depending on the water available in autumn and the volume accumulated 

in dams during winter and spring seasons.  

The area is divided into several hundred irrigation plots. Sixteen wheat 

plots of them were selected in this study. The size of these plots varied 

from 1.7 to 14.5 ha (the total area is 77 ha). The combination of crop 

management and irrigation schedule for these plots was representative of 

the agricultural practices for wheat in the region. Figure 27 shows the 

location of studied area and illustrates the position of the selected plots 

(P1 to P16).  
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Figure 27: Location of the Tadla irrigated perimeter (upper left window 

represents Morocco map; in the lower right window, the study area in 

dashed line and the experimental plots are in blue) 

2.2 Field experiments 

Experiments were conducted during the 2012-2013 wheat 

growing season to record dates and amounts of irrigated water supplied 

and to collect crop physiological data. Data were collected from 16 fields 

of wheat, located at Tadla’s Regional Agricultural Research or belonging 

to farmers, thus providing a valid representation of the soil-plant 

relationship in the study area. The field data related to Marzak and Achtar 

cultivars, which are widely cultivated in the study region. 

Vegetation water content was measured weekly from anthesis until wheat 

grain filling (March to May 2013).  It was measured in four randomly 

selected quadrates in each plot (i.e., an area of 0.5 * 0.5 m). From each 

quadrate, sub-samples were used to measure the weight of the fresh and 

dry above-ground biomass (dried in an oven at 65°C for 48 h) (Iqbal et 

al., 2010). Water vegetation content was quantified on a gravimetric (g 
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water/g vegetation) basis and was expressed in this document as a 

percentage (%). 

We synchronized the field measurements with the planning for acquiring 

satellite images. In our case study, we only considered field 

measurements taken within a time lag of three days. We also ensured that 

during this time lag there was no rainfall event or irrigation supply. 

Using geographical information system (GIS) software, we vectorized the 

collected field data (vegetation water content) as point and the 

experimental plots delimitations as polygons. We subdivided the 

experimental plots into units (sub-plots) of the same size and assigning 

per unit a code to identify and locate in space and time. Then, each sub-

plot has been joined to the punctual data of vegetation water content and 

soil moisture corresponding to it spatially. 

2.3  Satellite images and their processing 

Three SPOT-5 HRV satellite images were acquired in 21 

March 2013, 26 March 2013 and 11 April 2013 when the soil was 

completely covered by vegetation. They covered the period between 

anthesis (March) and grain filling (April) in the 2012-2013 cropping 

season. These wheat growth stages are crucial to ensure good yield (de 

San Celedonio et al., 2014). 

SPOT-5 scenes have 10-m pixel resolution and four spectral bands: B1 

(green: 0.50–0.59 µ m), B2 (red: 0.61–0.68 µ m), B3 (near infrared NIR: 

0.79–0.89 µ m) and B4 (short-wave infrared SWIR: 1.58–1.75 µ m).  One 

of the big advantages of Spot 5 images compared to other VHR images is 

the large swath (60 km×60 km) that allows a complete view of our region 

of interest. We also had the opportunity to program the satellite passes 

when the vegetation covered completely the soil and to match the critical 

time for the wheat crop.  
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The processing level of the acquired images was (1B), which included 

radiometric and geometric corrections. We conducted an atmospheric 

correction from the images of radiance, using the FLAASH model (Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes) included in 

the ENVI 5 software. The latter model is considered more accurate 

compared to other models for SPOT-5 image (Guo and Zeng, 2012).  

We computed the two spectral indices, NDWIGao (Gao, 1996; Hardisky 

et al., 1983) and the MSI (Ceccato et al., 2002a; Ceccato et al., 2001; 

Hunt Jr and Rock, 1989), using the spectral reflectance NIR and SWIR 

for each SPOT-5 HRV image acquisition date (Table 18). 

Table 18: Studied spectral indices derived from SPOT-5 sensor 

 

The next step consisted in generation of a mask of wheat sub-plots, using 

ENVI 5 software. The average values of the spectral indices (NDWIGao 

and MSI) were then computed for each corresponding sub-plot (7×7 

pixels) where field measurements were conducted (Figure 28). In our case 

study, we took ½ ha (7×7 pixels) as a reference area, where irrigation 

applications are synchronous and homogeneous at this scale. Regression 

analysis was carried out between vegetation water content measurements, 

MSI and NDWIGao values. This permitted to establish the relationships 

Indices Equation Properties References

Normalised 
Difference 

Water Index
(NDWI Gao)

(Red – 
SWIR)/(Red 

+ SWIR)

Vegetation water 
content

Soil moisture 
content

Gao (1996); 
Hardisky et al. 

(1983)

Moisture 
Stress 

Index (MSI)
(SWIR/NIR)

Water content of 
leaves in 

vegetation water 
content 

Hunt Jr and Rock 
(1989); Ceccato et 

al. (2001)
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between the NDWIGao and MSI values derived from the SPOT-5 images 

dataset and the ground studied measurements. 

 

 

Figure 28: Schematic diagram illustrating field data and Satellite images 

processing 

2.4  Supervised classification 

In order to define the cereal area, which is our region of 

interest, we used a supervised classification method where 65 datasets 

have been taken for calibration and 112 sets for validation data. 

Separability analysis allow to determine how distinct, and thus separable, 

different surface types are from each other. Wheat, as a cereal, and other 

land occupations were categorized into two different classes to analyze 

their spectral separability. The Jeffries-Matusita (JM) distance was used 

to assess the potential of band pairs to discriminate between two different 

region classes. The values range between 0 and 2. 
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2.5  Model validation 

Cross-validation is a technique to explore the reliability of a 

model to assess how the results of a statistical analysis will be applied to 

an independent data set (Kohavi, 1995). It is mainly used to estimate the 

accuracy of a predictive model. Several cross-validation techniques are 

used: "holdout method", "k-fold cross-validation" and "leave-one-out 

cross-validation" (LOOCV). 

The k-fold cross validation (k-fold CV) approach was used to evaluate the 

accuracy of the obtained regression models between the two spectral 

indices and surface water content (Cassel, 2007). This approach uses k 

replicate samples of observation data, builds models with (k-1)/k of data 

and tests with the remaining 1/k. K-fold CV is an effective and widely 

used method. In our case, it involved 20% of the observations as the 

validation data, with the remaining 80% of the observations being the 

training data. We emphasize that the random k-fold CV takes k 

independent samples of size N*(k-1)/k (Cassel, 2007). We performed the 

cross-validation analysis using SAS 9.1 software. 

2.6  Model evaluation 

Different statistical indices were used to compare predicted 

and observed values. These indices were the coefficient of determination 

(R²), the root mean square error (RMSE), the normalized RMSE 

(nRMSE) expressed as a percentage of the RMSE divided by the mean of 

observed values (Richter et al. 2012) and the mean absolute error (MAE):  

=>?@ = $∑ (A�'B�)�
C

C�*� +�.-  (1) 

�=>?@ = $∑ (A�'B�)�
C

C�*� +�.- ×	���D      (2) 
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Where Si and Oi refer to simulated and observed values of the studied 

variable, respectively; n is the number of observations; and M is the mean 

of the observed variable. The nRMSE indicates the accuracy of the model 

and the dispersion around the mean of the observed values.  

2.7  Mapping of vegetation water content  

To illustrate the practical use of this study, vegetation water 

content was mapped by using the validated linear regression model 

between vegetation water content and NDWIGao index. Three maps were 

presented here for the east of Beni-Moussa irrigated area. 

 

3. Results and discussions 

3.1 Vegetation water content assessment at full 

vegetation cover 

We compared the values of observed vegetation water content 

of 32 studied sub-plots and their spectral indices values derived from the 

three images acquired on 21 March 2013, 26 March 2013 and 11 April 

2013. The results of this comparison were presented in figure 29. 

The statistical indicators obtained from the previous comparison, 

presented in figure 29, showed that both spectral indices simulated well 

the vegetation water content. The values of statistical indicators R², 

RMSE, and nRMSE were 0.63, 3.19% and 4.24% for the NDWIGao and 

0.58, 3.22 and 4.27% for the MSI, respectively. Similar results were 

reported for the indices based on shortwave infrared band by Hunt Jr and 

Rock (1989) and QiuXiang et al. (2012) when simulating the vegetation 

water content. 
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Figure 29: Relationship between observed vegetation water content and 

derived spectral indices 

In order to validate these results, we compared observed vegetation water 

content values and those predicted using the k-fold CV method. As 

shown in figure 30, the errors were minimal for both the NDWIGao and 

MSI. The evaluation model indicators obtained for predicted vegetation 

water content from the NDWIGao were 3.39%, 4.52% and 0.52 for RMSE, 
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nRMSE and R², respectively. For the MSI, these values were 3.55%, 

4.74% and 0.48 for RMSE, nRMSE and R², respectively (Figure 30). 

These results confirmed the ability of NDWIGao to retrieve well the 

vegetation water content of wheat, while the values in MSI were 

comparatively less in agreement with the observed values. 

 

 

Figure 30: Comparison between observed and predicted vegetation water 

content (%) using the k-fold CV of all acquired images 
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3.2 Supervised classification 

We performed a supervised classification to identify cereal 

area. The analysis of the numerical JM values allowed us to conclude that 

the separability results for training samples on final classification scheme 

are good. The estimated value of separability was 1.99. 

The contingency matrix was used to evaluate the percentage of sampled 

pixels that were classified as expected. This classification was validated 

and the accuracy assessment and Kappa statistic indicated that it was a 

good classification. The overall accuracy is 0.95 while the overall Kappa 

is 96.7%. 

 

Figure 31: Supervised classification map of wheat over the region of Beni-

Moussa East (2012-2013) 

3.3 Mapping of vegetation water content 

Figures (32, 33 and 34) show three maps of vegetation water 

content (VWC) of wheat class derived from the five SPOT-5 images. 

These maps were generated using the regression model (VWC = 51.55 * 

NDWIGao + 65.75) obtained by comparing the three images on a pixel 
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basis and field measurements. The analysis of the three maps showed that 

vegetation water content ranged from 58% to 87% between the three 

considered dates. For these maps we had an RMSE of 3.19% and an 

nRMSE of 4.24%.  

Figures (32 and 33) present a high homogeneity of vegetation water 

content (dominance of green color). Indeed, vegetation water content 

exceeded 70% for all plots. This is explained by important precipitation 

events that were recorded between 14 and 18 March 2013 (31.3 mm) and 

on 24 March 2013 (14 mm). 

On the opposite, Figure 34 shows a strong heterogeneity in vegetation 

water content values after three weeks of precipitation and a 

homogeneous drying of several plots, with vegetation water content 

ranging from 58% to 76%. 

Obtained maps allowed monitoring the variability of vegetation water 

content in wheat for each agricultural development center (ADC). 

Irrigation management is done independently at each development center. 

An overview of the maps allowed distinguishing between different levels 

of vegetation water content. Such information could be valuable for 

stakeholders and decision-makers in charge of irrigation areas and could 

help them to better manage irrigation at a large scale. It could also help 

judge the priority ADC to receive irrigation supplies according to the 

given state of vegetation water content. 
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Figure 32: Vegetation water content maps derived from NDWIGao data 

(21/03/2013) 

 

Figure 33: Vegetation water content maps derived from NDWIGao data 

(26/03/2013) 
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Figure 34: Vegetation water content map derived from NDWIGao data 
(11/04/2013) 

4. Conclusions 

In this study, the ability of the two spectral indices (NDWIGao and MSI) 

to monitor vegetation water content of wheat was assessed in a semi-arid 

irrigated area. These indices were calculated using the near and shortwave 

infrared band derived from SPOT-5 HRV satellite images. 

The comparison between studied spectral indices values, based on SWIR 

and NIR, and vegetation water content measurements showed good 

correlations. This result demonstrated the potential of SWIR and NIR 

bands to improve irrigation and crop management based on vegetation 

water content changes per surface unit.  

These indices (NDWIGao and MSI) allowed vegetation water content to be 

assessed and quantified from anthesis to grain filling and showed their 

potential as an important tool for improving irrigation monitoring and 

water stress management at field and regional levels. 



- 128 - 
 

Appendix references 
 

Cassel D.L. (2007) Re-sampling and simulation, the SAS way, in: Sas 
(Ed.), Proceedings of the SAS Global Forum 2007 Conference, 
SAS Institute Inc., Cary, NC. 

Ceccato P., Flasse S., Grégoire J.M. (2002) Designing a spectral index 
to estimate vegetation water content from remote sensing 
data: Part 2. Validation and applications. Remote Sensing of 
Environment 82:198-207. DOI: 
http://dx.doi.org/10.1016/S0034-4257(02)00036-6. 

Ceccato P., Flasse S., Tarantola S., Jacquemoud S., Grégoire J.M. 
(2001) Detecting vegetation leaf water content using 
reflectance in the optical domain. Remote Sensing of 
Environment 77:22-33. DOI: 
http://dx.doi.org/10.1016/S0034-4257(01)00191-2. 

Cheng T., Riaño D., Koltunov A., Whiting M.L., Ustin S.L., Rodriguez 
J.C. (2013) Detection of diurnal variation in orchard canopy 
water content using MODIS/ASTER airborne simulator 
(MASTER) data. Remote Sensing of Environment 132:1-12. 
DOI: http://dx.doi.org/10.1016/j.rse.2012.12.024. 

de San Celedonio R.P., Abeledo L.G., Miralles D.J. (2014) Identifying 
the critical period for waterlogging on yield and its 
components in wheat and barley. Plant and Soil 378:265-277. 
DOI: 10.1007/s11104-014-2028-6. 

Duchemin B., Hadria R., Erraki S., Boulet G., Maisongrande P., 
Chehbouni A., Escadafal R., Ezzahar J., Hoedjes J.C.B., Kharrou 
M.H., Khabba S., Mougenot B., Olioso A., Rodriguez J.C., 
Simonneaux V. (2006) Monitoring wheat phenology and 
irrigation in Central Morocco: On the use of relationships 
between evapotranspiration, crops coefficients, leaf area 
index and remotely-sensed vegetation indices. Agricultural 
Water Management 79:1-27. DOI: 
10.1016/j.agwat.2005.02.013. 

Elvidge C.D., Lyon R.J.P. (1985) Influence of rock-soil spectral 
variation on the assessment of green biomass. Remote 
Sensing of Environment 17:265-279. DOI: 
http://dx.doi.org/10.1016/0034-4257(85)90099-9. 

Feng H., Chen C., Dong H., Wang J., Meng Q. (2013) Modified 
Shortwave Infrared Perpendicular Water Stress Index: A 



- 129 - 
 

Farmland Water Stress Monitoring Method. Journal of 
Applied Meteorology and Climatology 52:2024-2032. DOI: 
10.1175/jamc-d-12-0164.1. 

Gao B.C. (1996) NDWI - A normalized difference water index for 
remote sensing of vegetation liquid water from space. 
Remote Sensing of Environment 58:257-266. 

Geerts S., Raes D., Garcia M., Miranda R., Cusicanqui J.A., Taboada C., 
Mendoza J., Huanca R., Mamani A., Condori O., Mamani J., 
Morales B., Osco V., Steduto P. (2009) Simulating Yield 
Response of Quinoa to Water Availability with AquaCrop. 
Agron. J. 101:499-508. DOI: 10.2134/agronj2008.0137s. 

Ghulam A., Qin Q., Teyip T., Li Z.L. (2007) Modified perpendicular 
drought index (MPDI): a real-time drought monitoring 
method. ISPRS Journal of Photogrammetry and Remote 
Sensing 62:150-164. DOI: 
http://dx.doi.org/10.1016/j.isprsjprs.2007.03.002. 

Guo Y., Zeng F. (2012) Atmospheric correction comparison of SPOT-5 
image based on model FLAASH and model QUAC. Int. Arch. 
Photogramm. Remote Sens. Spatial Inf. Sci. XXXIX-B7:7-11. 
DOI: 10.5194/isprsarchives-XXXIX-B7-7-2012. 

Hadria R., Duchemin B., Jarlan L., Dedieu G., Baup F., Khabba S., 
Olioso A., Le Toan T. (2010) Potentiality of optical and radar 
satellite data at high spatio-temporal resolutions for the 
monitoring of irrigated wheat crops in Morocco. 
International Journal of Applied Earth Observation and 
Geoinformation 12, Supplement 1:S32-S37. DOI: 
10.1016/j.jag.2009.09.003. 

Hardisky M.A., Michael S.R., Klemas V. (1983) Growth response and 
spectral characteristics of a short Spartina alterniflora salt 
marsh irrigated with freshwater and sewage effluent. 
Remote Sensing of Environment 13:57-67. DOI: 
http://dx.doi.org/10.1016/0034-4257(83)90027-5. 

Hunt Jr E.R., Li L., Yilmaz M.T., Jackson T.J. (2011) Comparison of 
vegetation water contents derived from shortwave-infrared 
and passive-microwave sensors over central Iowa. Remote 
Sensing of Environment 115:2376-2383. DOI: 
http://dx.doi.org/10.1016/j.rse.2011.04.037. 

Hunt Jr E.R., Rock B.N. (1989) Detection of changes in leaf water 
content using Near- and Middle-Infrared reflectances. 
Remote Sensing of Environment 30:43-54. 



- 130 - 
 

Iqbal M.A., Bodner G., Heng L.K., Eitzinger J., Hassan A. (2010) 
Assessing yield optimization and water reduction potential 
for summer-sown and spring-sown maize in Pakistan. 
Agricultural Water Management 97:731-737. DOI: 
http://dx.doi.org/10.1016/j.agwat.2009.12.017. 

Jacquemoud S., Baret F. (1990) PROSPECT: A model of leaf optical 
properties spectra. Remote Sensing of Environment 34:75-
91. DOI: http://dx.doi.org/10.1016/0034-4257(90)90100-Z. 

Jensen J.R. (2007) Remote Sensing of the Environment: An Earth 
Resource Perspective. 2nd ed. Prentice Hall. 

Kohavi R. (1995) A study of cross-validation and bootstrap for 
accuracy estimation and model selection, Fourteenth 
International Joint Conference on Artificial Intelligence, San 
Mateo, CA: Morgan Kaufmann. pp. 1137–1143. 

Liu S., Roberts D.A., Chadwick O.A., Still C.J. (2012) Spectral responses 
to plant available soil moisture in a Californian grassland. 
International Journal of Applied Earth Observation and 
Geoinformation 19:31-44. DOI: 
http://dx.doi.org/10.1016/j.jag.2012.04.008. 

Ning Z., Yang H., Qiming Q., Lu L. (2013) VSDI: a visible and shortwave 
infrared drought index for monitoring soil and vegetation 
moisture based on optical remote sensing. International 
Journal of Remote Sensing 34:4585-4609. DOI: 
doi.org/10.1080/01431161.2013.779046. 

ORMVAT. (2009) Rapport annuel de l'Office de la mise en valeur 
agricole de Tadla. 

QiuXiang Y., AnMing B., Yi L., Jin Z. (2012) Measuring cotton water 
status using water-related vegetation indices at leaf and 
canopy levels. Journal of Arid Land 4(3):310−319. DOI: doi: 
10.3724/SP.J.1227.2012.00310. 

Seckler D., Barker R., Amarasinghe U. (1999) Water scarcity in the 
twenty-first century. Water Resources Development 15:29–
42. DOI: 10.1080/07900629948916. 

Trombetti M., Riaño D., Rubio M.A., Cheng Y.B., Ustin S.L. (2008) 
Multi-temporal vegetation canopy water content retrieval 
and interpretation using artificial neural networks for the 
continental USA. Remote Sensing of Environment 112:203-
215. DOI: http://dx.doi.org/10.1016/j.rse.2007.04.013. 

Yilmaz M.T., Hunt Jr E.R., Jackson T.J. (2008) Remote sensing of 
vegetation water content from equivalent water thickness 



- 131 - 
 

using satellite imagery. Remote Sensing of Environment 
112:2514-2522. DOI: 
http://dx.doi.org/10.1016/j.rse.2007.11.014. 

 

 


