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Summary

Irrigated agriculture is an important strategic tesecin Morocco, it

accounts for about 45%, on average, of the agri@llf@ross Domestic
Product, contributing thus to food security and exyplent. It occupies
15% (about 1.5 million ha) of the total cultivatadea in the country.
Irrigation scheme managers need to ensure that vgatptimally used in
the irrigated perimeters and that water shortagesagoided. For large
areas under irrigation, this can be achieved thromgter monitoring at
plot level using modeling and satellite-based madihagies. The main
objective of this research was to assess the use of optitaehdar remote
sensing and of crop modeling in the irrigation nbomig and

management of wheat in the irrigated perimeteraufld. The potential of
spectral indices derived from SPOT-5 images wasloexg for

comparing, quantifying and mapping surface watertarinchanges at
regional and local levels. Indices were computedgigie reflectance in
red, near infrared and shortwave infrared bands.fi@dings show that
the normalized difference water index (ND\}) could be used to
estimate and map the surface water content of wiletst, from bare soil
to fully covered soil. Backscatter threshold valdesived from SAR

images were used to detect irrigation water supphewheat plots and
the optimal acquisition frequency of SAR images wigtermined in

order to ensure continuous monitoring. A field crapdel (AquaCrop)
was adjusted to simulate durum wheat yields andettmporal evolution
of soil moisture status in order to manage and dwdBeirrigation water
supplies and assess their impact on vyield. Curretily approaches
described in this paper are being applied indepahdeThis research
was intended, therefore, to provide tools to helpicgehakers and



stakeholders improve irrigation monitoring and gate wheat water

stress at the field and irrigation perimeter levels in sandiareas.

Keywords: irrigation management, spectral index, wheat, beattering,
SAR, semi-arid, Morocco.



Résumeé

L'agriculture irriguée est un secteur stratégiquenaveau des régions
semi-arides et I'un des principaux contributeurs a la $é@limentaire et
a I'emploi. Elle occupe 15% de la superficie totalétivée au Maroc
(environ 1,5 millions d'hectares), et contribue atdau de 45% en
moyenne de la valeur ajoutée en agriculture. Aduoeht, les
gestionnaires de périmetres veillent a ce queligation de l'eau
d’irrigation soit optimale et ainsi éviter une pérud’eau au niveau des
périmétres irrigués. Ceci peut étre accompli, sugdads périmetres, a
travers un suivi de l'eau d'irrigation a I'échetle chaque parcelle en
utilisant des méthodologies basées sur le sateliifa modélisation. La
présente recherche a été positionnée par rappoett@ problématique,
avec un objectif principal de soutenir le suiviaigestion de l'irrigation
du blé a travers les outils de la télédétectioriqapt et radar et de la
modélisation. Le potentiel des indices spectrauxtéa examiné pour
comparer, quantifier et cartographier le changerdernteneur en eau de
surface a I'échelle d’'un périmétre et au sein dasglles. Les indices
spectraux, dérivés des images SPOT-5, ont été détssrai partir de la
réflectance des bandes moyenne infrarouge, prodterdnge et rouge.
D'aprés nos travaux de recherche, le NR)#st approprié pour estimer
et cartographier la teneur en eau de surface desligs de blé. A partir
des valeurs du coefficient de rétrodiffusion désiwéles images SAR, la
valeur de seuil de rétrodiffusion a été établiermitecter les apports en
eau d'irrigation au niveau des parcelles de bléotne, la fréquence
d'acquisition optimale des images SAR a été déternifin d'assurer
une surveillance continue. Le modéle de culturesié&op) a été ajusté
et testé pour simuler les rendements de blé dwi Aien que I'évolution
temporelle de I'état de I'numidité du sol. AquaCaafté utilisé aussi pour

établir une planification des apports en eau dation et estimer leur

Vi



impact sur les rendements. Actuellement, les appsogh@sentées
laissent entrevoir une valorisation opérationnetl@lles sont appliqguées
indépendamment. Cette recherche fournit des méthmmlada gestion et
la planification afin d'aider les décideurs et Iparties prenantes a
améliorer la surveillance d'irrigation et atténderstress hydrique de la
culture du blé a I'échelle de grands périmetragligs dans les régions

semi-arides.

Keywords: irrigation, indice spectral, blé, rétrodiffusioBAR, semi-aride,

Maroc
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Chapter1

Introduction and

thesis outline



1. Context

Irrigated areas produce more than half of all fowifs in the world and therefore

contribute significantly to food security. This adly, however, consumes about
72% of available water resources (Geerts and R869; Seckler et al., 1999). In
Morocco, water availability is one of the main limg factors in achieving good

yields. Irrigated agriculture occupies only 15% loé tcultivated area (about 1.5
million ha) in the country, but accounts for abo&## of the agricultural Gross

Domestic Product and 75% of agricultural exportpeteling on the season. This
contribution is greater during dry seasons wherdyetion in rainfed areas is
severely affected (MAPM, 2012). The challenge for stakehslaled managers in

the irrigated perimeter is to increase producti@amt| water management and
rationalize irrigation. In order to save water amfpHfarmers meet this challenge,
they are given technical supervision and coachirsgwall as subsidies for

irrigation equipment, and legislation governing thebilization and rational use
of water resources has been enacted (Conseil 8updéte I'Eau et du Climat,

Law No. 10-95).

2. Water resources in the study area

Created in the 1940s, the Tadla irrigated perimet@s among the first large
irrigation schemes in the country. It is on a plaircentral Morocco (32°23N
latitude; 6°31° W longitude; 445 m above sea level) that covers about 100,000
hectares (ha) and is characterized by a flat t@mgr. The plain has a semi-arid
climate, with about 300 mm average annual precipitabver the 1970-2010
period and a high inter-annual variation, rangirgmr130 to 600 mm over the
same period.

The Tadla irrigated perimeter is divided into twdbsschemes by the Oum-Er-
Rbia river, which flows from the Middle-Atlas Mouirta (east) to the Atlantic

Ocean (west) (Figure 1).



The irrigation water used in the Tadla perimetanes mainly from surface water
(87.1% of the total amount of irrigation water comgal in 2009/2010). Two
dams, Ahmed-Al-Hansali (capacity of 750 million naf)d Bin-El-Ouidane (1.5
billion m3), supply irrigation water to the Tadla ripeeter, in addition to
groundwater pumping.

The over-exploitation of groundwater has led toudsdl piezometric levels
(FAO, 2011). The proportion of groundwater, howevexs Increased in recent
years due to frequent droughts. Groundwater usedgidcultural purposes in the
Tadla comes from Beni-Moussa and Beni Amir grourtdwand the Turonian
deep water table. The total amount groundwater bgdtle Tadla perimeter was
12.9% (120 million M per year) of the total amount of irrigated watsediin the
2009-2010 cropping season.

The irrigation scheduling program is based on tm®wnt of water reserves in
dams at the beginning of the cropping season and the &stimezed for irrigation
water. In drought years, restrictions on the wateication to the Tadla perimeter
are set by the Agence du Bassin Hydraulique d'Oumtita (ABHOER), which
is responsible for the assessment and managemeratef resources in the Oum
Er Rbia watershed area.
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Figure 1: Location of the Tadla irrigated perimeter.

The Tadla irrigated perimeter is managed by theid®ed) Office for Agricultural
Development of Tadla (ORMVAT), a public sector ington within the Ministry
of Agriculture that is responsible for organiziretdistribution of the water in
the perimeter to more than 27,000 farmers.

The Département de la Gestion du Réseau d'irrigagtode drainage (DGRID),
which is responsible for managing the irrigationdadrainage network,
establishes the provisional distribution program tive irrigated perimeter,
covering 100,000 ha. This program is sent to thericidevel network
management agency, Arrondissement de Gestion dua®RégaGR), for
implementation. The AGR receives applications framfers for their weekly
water requirements per block and, based on theskcatgns and within the
context of the provisional DGRID program, sets tha&tew rotational turns for
irrigation blocks of 25-40 ha and then releases the water.

The irrigation water is supplied via a canal systewnsisting of a network of
main canals (212 km), primary and secondary caid{ km) and tertiary canals

(2,166 km). Distribution agents and valve guards aesponsible for



implementing and controlling the distribution o&thrigation water. This system
involves many field staff and agents at the loeakel, but lacks the ability to

monitor and optimize control of the entire irrigated area.

Since the 1980s, several studies of the Tadla ptin{@able 1) have been
carried out by national and regional stakeholdensartnership with international

institutions and development bodies. They have fedws identifying periods of

likely water scarcity and improving irrigation maygment across the perimeter,
but have not provided a spatio-temporal approachhi® monitoring and control

of the main production parameters. Such an apprdamkever, is essential for

decision-making on large-scale schemes, such aa.T@dir research sought to
contribute to improving the spatio-temporal moniigrand control of irrigation

in the Tadla irrigated perimeter.

Table 1: Studies and projects on the Tadla irrigated peregnet

Project Project title Project period
SID Soil monitoring under Irrigation and drainage 1983-1985
RAB Improving irrigation management at farm level 1991-1993
PAGI-1& PAGI-2 Improvement of the irrigation management 1994-1995
MRT Ressource management of Tadla 1996-1998
PGRE Water resource management 1999-2001
PSIRMA Water saving inirrigated systems in the Maghreb 2004-2009

3. Wheat production

Wheat is the main crop in the Tadla irrigated petan covering more than 36%
(40,000 ha) of the total irrigated area. Despite ldrge amounts of irrigation
water used, wheat yields remain low, with high irdeasonal variations due to
fluctuating water availability and poor managempr#ctices. The average yield
in the 1994-2010 period was 32 quintals/ha, withoefficient of variation of
9.84% (ORMVAT, 2009). Water is one of the main fastdimiting wheat
production in the Tadla perimeter, and good managewofarrigation water on a

large-scale is required in order to address this challenge.



The volume of irrigation water used by wheat in #894-2002 period in Tadla
rose to 136 million riyear, on average. This is equivalent to 18% of agjation
water used across the irrigated perimeter (ORMVAT, 2009).

The wheat-growing cycle in the region runs from Biober-December to June.
During this period, wheat is irrigated following ditional flood irrigation
practice, from two to five times, depending on rdirdgailability in the autumn
and the volume of water accumulated in dams during wintesjaiiyg.

Traditional flood irrigation practice (Robta) inwels compartmentalizing land
into elementary basins with an average size of @8 and supplying water to
these basins, one by one. This technique resultsigation efficiency losses of
about 50% (ORMVAT, 2002).

The spatio-temporal monitoring of wheat developmémigation supplies and
surface water content could be an interesting bfsisimproving irrigation
scheduling and preventing water stress from adieeastecting yield (Duchemin
et al., 2006).

4. Thesis outline

The objective of the research described here wasimprove irrigation
management and plot surface water content mongtdanwheat crop throughout
a large perimeter, based on remote sensing andneoaieling in the semi-arid
area of Morocco (figure 2). The research was aipredarily at decision-makers
and managers of large-scale irrigated perimeterse THevelopment and
application of decision-support tools are presentde: chapters (2-4) are based
on scientific papers published in, or submitted geer-reviewed international

journals.
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Figure 2: Schematic diagram illustrating the thesis outline

Chapter 2 aims to evaluate the potential of twocspk indices, Roger's
normalized difference water index (NDWY) and the moisture stress index
(MSI), to assess surface water content in wheatdigl order to detect irrigation
water supplies in the irrigated perimeter. The iadigvere computed using red,
near infrared (NIR) and shortwave infrared (SWIBg¢atral bands from SPOT-5
high-resolution visible (HRV) images. These satllinages covered the main
growth stages of wheat.

These indices were compared with correspondingitu measurements of soil
moisture and vegetation water content in 30 whiedds in the Tadla irrigated
perimeter in the 2012-2013 and 2013-2014 cropping seasons.

The results obtained were validated using a k-foldss validation method.
NDWIgoy was identified as an operative index for monitgrimrigation and
estimating and mapping surface water content clagéhe main crop growth
stages.

Chapter 3 assesses the potentialsgfithetic aperture radaSAR) satellite
images for detecting irrigation supplies and aredythe radar backscattering

coefficient as a function of the changes of wheatewcontent and soil moisture
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throughout the cropping season in irrigated seidi-areas. The analysis was
performed using SAR images acquired between 31 tMand 12 April 2011 and
the irrigation water invoices database (invoicdsnsitted to farmers for irrigated
water use). A reference level of 1 dB was set fledintiating between irrigated
(recently, up to 2 days) and non-irrigated plots. SB&tckscattering signal
analysis showed the potential for improving irrigatmonitoring and detecting
irrigation supplies at the field and perimeter levels.

Chapter 4 addresses the management of irrigatiderwra plots throughout the
cropping season using a soil-plant-atmosphere m@eel the AquaCrop model
developed by the Land and Water Division of Food Agriculture Organization
of the United Nations, FAO). The experiment was cabelll on 15 fields
between 2009 and 2012. AquaCrop v. 4.0 was adjustédtesated for durum
wheat plots under semi-arid conditions. Grain yieidmass and the evolution of
soil water content (0-90 cm layer) in an irrigatpdrimeter were simulated.
Chapter 4 also describes the analysis of irrigagmnarios used to test the ability
of the model to schedule irrigation water and idgrthe relationship between
grain yield and irrigation water scheduling in arde improve grain yield and
increase water-use efficiency.



Chapter2........ ..

content using visible and
shortwave infrared SPOT-5
data of wheat plots in
irrigated semi-arid regions*

! Adapted from:Benabdelouahab T, Balaghi R, Hadria R, LionbouiNtinet J,
Tychon B. 2015. Monitoring surface water conteningsvisible and short-wave
infrared SPOT-5 data of wheat plots in irrigatednisarid regions. International
Journal of Remote Sensing 36: 4018-40361:10.1080/01431161.2015.1072650.
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Irrigated agriculture is an important componentha agricultural sector, in arid
and semi-arid regions. Given the large spatial @merof irrigated areas,
operational tools based on satellite remote seneamg contribute to optimal
irrigation management. The objective of this studynsisted in detecting
irrigation supplies and in estimating surface wat@ntent of cereal fields using
two spectral indices, the normalized difference watelex (NDWI) and the
moisture stress index (MSI) derived from SPOT-Shhigsolution visible (HRV)
data. , These two indices were correlated to obseswitdnoisture and vegetation
water content in 30 wheat fields located in argateéd area of Morocco, for two
consecutive seasons, in 2012-2013 and 2013-2014. NQWhd MSI were
highly correlated withn situ measurements at both the beginning of the growing
season (sowing) and at full vegetation cover (gfiling). From sowing to grain
filling, the best correlation R=0.86; p<0.01) was found for the relationship
between NDWy.4 values and observed soil moisture values. NRyWan be
used operationally for monitoring irrigation, suchdetecting irrigation supplies

and mitigating wheat water stress at field and regionaldéwesemi-arid areas.

1. Introduction

Half of the world’'s food supply comes from irrigatackas that use about 72% of
the available water resources (Geerts and Raes, Z#%ler et al., 1999). In
Morocco, water availability is the main limiting tac for crop production, and it
is becoming a national priority for the agricultusactor (Lionboui et al., 2014).
This situation has led to work on developing optimstrategies for planning and
managing available water resources. Cereal (whedtbamnley) production is
strongly linked to the amount and distribution aihfall in rainfed areas (Balaghi
et al.,, 2013b) and to the amount of groundwater aattmstored in dams for
irrigated areas. A set of irrigated areas in thentguwas equipped with the
means to improve and secure crop production. Despéelarge amounts of
consumed irrigation water, wheat yields in irrightareas remain low and

fluctuate from one season to another due to fluctuatingreagilability and non-
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optimal management practices (Balaghi et al., 20ltDthe current context of
climate change, water scarcity and population growiiinaging irrigation water
has become a critical issue.

In Morocco, the Tadla irrigated area is managed Hey Regional Office for
Agricultural Development of Tadla (ORMVAT). The magultivated crop in this
area is wheat, covering more than 40,000 hectargs \{tiech represent more
than 36% of the total irrigated area (ORMVAT, 200ORMVAT is seeking a
spatio-temporal methodology for monitoring surfagater content in order to
improve irrigation scheduling and preventing adtimal water stress (Er-Raki et
al., 2010; Ozdogan et al., 2010). In addition, this calfb be profitable for
detecting uncontrolled irrigation and illegal water pumgpi

Remotely sensed reflectance has been used to &smihand vegetation water
content for various crops and to monitor watemgation per surface unit (Ben-
Gal et al., 2010; Ceccato et al., 2002a; Cheng et dl2;20adria et al., 2010;
Penuelas et al., 1997; Tian et al., 2001; Trombetl.et2008), drawing on the
high temporal and spatial resolution of satelliteages. Several indices based on
wavelengths ranging between 400 and 2,500 nm haue developed to describe
land-surface moisture conditions (Kogan, 2000). Edtiiom of surface water
content values from remote sensing data is usbabgd on reflectance in the red
(R; 610-680 nm), Near Infrared (NIR; 780-890 nm) &bldortwave Infrared
(SWIR; 1,580-1,750 nm) regions of the spectrum (Liogieal., 2003; Moreno et
al., 2014; Muller and Décamps, 2000; Skidmore et al., 1975).

During wheat development cycle, crop water stress i deduced from both
vegetation and soil water content (Feng et al., 2Gt&ilam et al., 2007; Ning et
al., 2013). Water stress indices used for crop managestiwuld therefore be
based on the spectral bands that are sensitivetlosbil moisture and vegetation
water content.

Many indices for the simultaneous estimation ofetajon water content and soil

moisture have been proposed for different landased, from bare soils to
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vegetated areas, among which are the visible andwshe@ infrared drought
index (VSDI) (Ning et al., 2013), the modified shorsanfrared perpendicular
water stress index (MSPSI) (Feng et al., 2013), thelifred perpendicular
drought index (MPDI) (Ghulam et al., 2007), the noigeal difference water
index (NDWkoy (Rogers and Kearney, 2004) and the moisture siretex
(MSI) (Hunt Jr and Rock, 1989).

Indices specifically designed for vegetation watentent monitoring have been
developed using NIR and SWIR bands, including thematized difference
infrared index (NDII) (Hardisky et al., 1983), theogal vegetation moisture
index (GVMI) (Ceccato et al., 2002a; Ceccato et alg2d) and the normalized
difference water index (NDW¥Lo (Gao, 1996). Although this last index has been
given the same name as the NRVJdeveloped by Rogers and Kearney (2004),
it is based on a different formula. Gao’s NDMlis calculated as the normalized
difference of NIR and SWIR bands, whereas Rogerskaatney (2004) use red
and SWIR bands to compute the NDy)I(Lei et al., 2009). In our study, we
used the NDW{,4 definition given by Rogers and Kearney (2004).

In the literature, many indices based on NIR spkctHectance have been
developed to monitor soil moisture, such as the gretjgular drought index
(PDI) (Ghulam et al., 2007), the distance drought index ([Pdhg et al., 2008),
the surface water content index (SWCI) (Zhang e28D8) and the surface water
capacity index (SWCI) (Du et al.,, 2013). These inslide&ave proved to be
efficient over bare soil surfaces (Ghulam et al.,&@in et al., 2008; Zhang et
al., 2008).

An operational index for simultaneously measuringface water content of bare
soil, mixed bare and covered soil has become crimidtrigation management,
especially in arid and semi-arid regions. This iquieed, especially for large
irrigated areas and throughout the cropping seagben the vegetation cover is
continuously changing. An operational tool adaptedthis context, and that

combines simplicity and robustness still deserves to blerexp
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The main objective of this study was to explore ploéential of NDWkqq and

MSI for comparing, quantifying and mapping the scefavater content of wheat
plots, from bare soil to completely covered soil. sTidex could lead to an
operational tool for monitoring surface water comtend managing irrigation, at

least for the study area.

2. Materials and methods

2.1 Study area

The study area is located in central b@o (32°23" north ; 6°31°
west; 445 m above sea level), within the irrigatp@mimeter of the Tadla region.
The area is characterized by a semi-arid climae:annual average temperature
is about 19°C, with large inter-seasonal variatione Bverage cropping season
precipitation is about 300 mm (average over theQ1BTFL0 period), with
significant inter-annual variation ranging from 180600 mm. The area covers
about 100,000 (ha) and is characterized by a fladgmphy. The groundwater
depth varies from 31 to 117 m (Bouchaou et al., 20@§ine et al., 2006). Wheat
is one of the main cultivated crops, covering 36%heftotal cultivated land. As
in the rest of Morocco, traditional flood irrigatiesmthe dominant practice used in
cereal plots. Generally, the wheat-growing cyclenm tegion starts in November
and ends in June of the following calendar yearrlapping the rainy season.
Wheat is irrigated from two to five times, dependioig water availability in
autumn and winter and on amount of stored watedams during the rainy
season.

The area is divided into several hundred irrigatiots. For this study, 30 wheat
plots were selected, with size varying from 1.7 tcb24ha (total area 117 ha). The
diversity of crop management and irrigation schesduin these plots was
representative of the general agricultural practicesaratba.

Figure 3 shows the location of studied area andtiiites the location of the
selected plots. The plots were labeled from P1 ® &% divided into 348 sub-
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plots of about 0.5 ha each. The plots P8, P9, P11 and/@®6monitored for two
successive cropping seasons (2012-2013 and 2043-2The irrigation was
managed by farmers. The irrigation duration ranged from 1dey2 per ha.
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Figure 3: Location of the irrigated area (upper left insebgls a map of Morocco;

the study area is indicated by diagonal lines am&l éxperimental plots are in grey)

2.2 Soil data

At the study area, soil physics analyses were paddrfrom 30 soil
samples (Table 2) (Benabdelouahab, 2009). Theseleanmwere collected from
several sites providing coverage of the entire ystadea. Water content at
permanent wilting point (PWP) and field capacityCjFvere measured using a
pressure plate extractor. Soil reached PWP and F&hwie water potential was
at -1.5 MPa and -0.033 MPa, respectively (Kirkham, 2005).

On the basis of these analyses (Table 2), the aalsnainly homogeneous with
fine texture which is characterized by a high wabedding capacity. The
proportions of clay, silt and sand, which determogether the soil textural class,
present a high homogeneity, with a standard deviatib 3.40%, 2.69% and
1.27%, respectively. The bulk density value is 1.21nfg3}, with a standard
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deviation of 0.14. The small variability of the bulknsity permits us to consider
this parameter as constant value. This result jestthe use of the gravimetric

soil moisture.

Table 2: Soil physics properties in Tadla, Morocco

Soil properties Depth 0-30 Depth 30-60 Depth 60-90
prop Value STDDEV_ Value STD DEV Value STD DEV

Sand (%) 25.4 2.7 24.5 1.9 24 0.3

Silt (%) 41 1.3 35.5 1.65 39.7 1.3

Clay (%) 33.6 3.4 40 1.3 36.3 1.5

Bulk density (g.cni®) 1.2 0.1 1.5 0.1 15 0.1
Field capacity (mm) 78.7 11.6 95.2 8.2 96 12.1

Saturation (mm) 106 4.2 118 4.8 125 5.5

Permanent wilting

. 36.2 3.1 394 6.2 39.7 8.8
point (mm)

Hydraulic conductivity

(cm.hY) 51 1.9 3.5 1.7 3.5 1.9

2.3 Field data

The experiments were conducted during the 2012-2048 2013-
2014 wheat cropping seasons to assess change# mmossture and vegetation.
Dates and amounts of irrigation water supply angsjgogical crop data were
collected.
Soil moisture was measured weekly for all 30 pldising the two cropping
seasons, starting from sowing until grain filling, &0 cm depth, with three
random replications per plot. Soil moisture was mea$ using gravimetric
methodology (dried in an oven at 105°C for 24 hpWe®getation water content
was also measured weekly, starting from tilleringiluwheat grain filling
(January to May 2013). In each plot, the vegetatiatewcontent was measured
in four randomly selected quadrats (i.e., an area.®f*00.5 m). From each
quadrat, sub-samples were used to measure the veéitjie fresh and dry above-

ground biomass in order to quantify vegetation watetent (dried in an oven at
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65°C for 48 h). Soil and vegetation water contentrewguantified on a
gravimetric basis (i.e., grams water/grams soil onmbaiss), expressed as a
percentage (%). These measurements were used tolisksta relationship
between vegetation water content and covered soil maisture

The collected field data (soil moisture and vegetatwater content) were
vectorized as points and the experimental plotpaggons, in a Geographical
Information System. Polygons were drawn so as tmvenpixels falling along
plots boundaries. The experimental plots were siuthelilvinto sub-plot units of
identical size (0.5 ha) and an identifier code wssigmed to each of these units.
Polygons of these sub-plot units served as a wagxthcting pixel images that
were close and directly linked to ground measurements.

As far as possible, field data were collected iregutar and timely manner to
ensure that ground measurements were acquired reyrmelsly with satellite
passes so as to obtain a good comparison betwsdmfeasurements and remote
sensing data. Field measurements collected within a maxioh@ days before or
after a satellite pass were used for the analysesaldb ensured that during this
period (between the field observation and the imagpisition date) there was

no precipitation event or irrigation water supply.
2.4 Satellite images and their processing

Ten SPOT-5 HRYV satellite images were acquired betm@ecember
(at wheat emergence) and April (at grain fillingy the 2012-2013 and 2013-
2014 cropping seasons (Table 3). They covered temporajehamsurface water
content during the main wheat growth stages, eXoefthe final senescent stage.
The processing level of the acquired images wasati;h included radiometric
and geometric corrections. Atmospheric correctiomere performed from
radiance images, using the Fast Line-of-sight Atrhesp Analysis of Spectral
Hypercubes (FLAASH) model available in the ENVItsafre. FLAASH is an
atmospheric correction tool that corrects the wavgths between 400 and 2,500

nm by eliminating the effects of water vapor antbaels in the atmosphere. This
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model is considered to be more accurate for SP@Wages than other models
(Guo and Zeng, 2012).

The NDVI threshold method (Momeni and Saradijian, 209ing et al., 2013)
was used to classify the land surface into thred leover categories (Tables 5
and 6): bare soil (beginning of cropping seasonthwWNDVI < 0.2; partly
vegetated soil (mixed cover) with 0=2NDVI < 0.5; and full vegetation cover
with NDVI > 0.5.

The 12 December 2012 and 2 December 2013 images acxuired at the
beginning of the growing season, when the soil vaas,bvhereas the 21 March
2013, 26 March 2013, 11 April 2013, 26 March 2014 abdApril 2014 images
were acquired when the soil was completely coveréd 2 February 2013, 6
January 2014 and 1 February 2014 images were acginrthe middle of the

cropping season when the surface was partly covered leyatien.

Table 3: List of acquired SPOT-5 HRV images and their chimastics

Acquisition Cropping Sensor Wavelength Resolution
date season (nm) (meters)

12 December 2012
02 February 2013

21 March 2013 2012/2013
26 March 2013 Géjzneig?e_zgo fed: 10
11 April 2013 SPOT-5 NlR: 780,890 Green: 10
HRV Ce NIR: 10
02 December 2013 . .
SWIR:1580-1750 SWIR: 20
06 January 2014
01 February 2014 201372014
26 March 2014
15 April 2014

The visible spectrum (400-740 nm) is sensitivedgetation water stress (Jensen,
2005), with a more significant reflectance changé@red band (580-680 nm).
The NIR band serves as a moisture-reference banerea$ the SWIR band is

used as the moisture-measuring band. ReflectantkeirNIR spectrum (740-
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1,300 nm) is most sensitive to leaf internal strrestchanges (Jacquemoud and
Baret, 1990) and is insensitive to moisture vanafiiglvidge and Lyon, 1985),
except in conditions leading to leaf dehydrationiolhtherefore affects leaf
structure (Girard and Girard, 2010; Jensen, 2007)efextudies confirmed the
high sensitivity of the SWIR band to moisture vhoa in vegetation and soil
(Ceccato et al., 2001; Cheng et al., 2013; Cheng &dll; Hunt Jr et al., 2011;
Hunt Jr and Rock, 1989; Liu et al., 2012; Yilmaz et a008a; Yilmaz et al.,
2008b).

The first step of images post-processing involveehguting two spectral indices,
the NDWkqq (Lasaponara and Masini, 2012; Rogers and Kearn@d)2thd the
MSI (Ceccato et al., 2001; Ceccato et al., 2002b; Huahd Rock, 1989) (Table
4), using the spectral reflectance in the Red, NI 8kVIR bands for each
SPOT-5 HRV image.

Table 4: Spectral indices derived from the SPOT-5 sensaod,(R&R and SWIR refer
to the spectral reflectance bands of SPOT-5 image)

Indices Equation Properties References
Normalised Vegetation Rogers and Kearney, 2004;
. (Red —  water content A :
Difference . Lei, Li, and Bruce 2009;
SWIR)/(Red  and soll L
Water Index + SWIR) moisture Lasaponara and Masini,
(NDWI Rog) 2012
conten
Moisture Vegetation Ceccato et al. 2001; Cecci
Stress (SWIR/NIR) wategr content et al. 2002; Hunt Jr and
Index (MSI) Rock 1989

The second step involved delineating the regioimtefest (ROI) used as a mask of
wheat sub-plots. The average values of the NRW@nd MSI spectral indices were
then computed for each corresponding sub-plot (Pixels) where field

measurements were conducted (Figure 4).
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Figure 4: Schematic diagram illustrating field data and edéite image processing

2.5 Model calibration and evaluation

The average MSI and NDWJ, values of the sub-plots antle
corresponding ground measurements were comparad) disiear regression
analysis. The regression coefficieatandb, reported in Tables 5 and 7, stand for
the slope and intercept of the regression line, respectively
The statistics used for evaluating the regressiodats were: the coefficient of
determination (R2), the root mean square error (RM&tich is one of the most
widely used as error assessment indices), and theatived RMSE (nRMSE)
expressed as a percentage of the RMSE dividedebyn#an of observed values
(Richter et al., 2012):

RMSE = ["; (Si-Oi) 2/n]®® (1)

NRMSE = ", (Si-0i) Znf*<100/M (2)

where Si and Oi refer to simulated and observedegbf the studied variable,
respectively; n is the number of observations; inid the mean of the observed

variable.
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NnRMSE indicates the accuracy of the model and thgedsion around the mean
of the observed values.

The accuracy of the regression models was evaluasedy the k-fold cross
validation (k-fold CV) approach (Cassel, 2007). Creakdation is a resampling
method that offers a different approach to modellwation. It uses k replicate
samples of observation data, builds models with)(k-af data and tests with the
remaining 1/k. The random k-fold CV takes k indeparticsamples of size N*(k-
1)/k (Cassel, 2007). In our study, it involved 33.3%tle observations as the
validation data, with the remaining 66.6% of the obstons being the training
data, with 10 repetitions (N = 10).

2.6 Mapping soil moisture

Soil moisture was mapped using relationships of tladidated linear
regression models between satellite indices andngkroneasurements. The
maps display surface soil moisture at plot level dach acquired satellite
image. The same approach could be used to map vegetatiorcoratnt (see
the Appendix 1).

3. Results and discussion

3.1 Soil moisture assessment at the beginning of edt

cropping season

The relationship between observed soil moisture tedMSI and
NDWIgoy values was assessed in 47 sub-plots at the bagirofi the wheat
cropping season (NDVI<0.2), using images acquiredbecember 2012 and 2
December 2013.
The reduced number of data used for this analgsexplained by the infrequent
measurements collected with a lag time of maximundays between field

measurements and dates of satellite pass.

-20-



As shown in Table 5, the R2 and RMSE were 0.84 (p30a@dd 1.03% for the
NDWIgogand 0.79 (p<0.01) and 1.18% for the MSI, respectively.

We compared the soil moisture values predictedguiia k-fold CV method and
those measured in situ (Table 6). The statisticdicators obtained from this
comparison were R? = 0.81 (p<0.01) and RMSE = 1.099%@WIgr.q and R? =
0.76 (p<0.01) and RMSE = 1.24% for MSI. This comparisbowed that errors
were acceptable for both the MSI and NI confirming the ability of these
indices to accurately explain soil moisture vatiggbfor bare soil. Ghulam et al.
(2007) reported similar results using the PDI and¥ with an R2 of 0.56 and
0.55, respectively, over bare surfaces.

Table 5: Linear regression analysis of the relationshipvimtn observed soil
moisture and selected spectral indices

Statistical indicators

Samples R? a b RMSE nRMSE
Bare soil
47 084 -2274 118 1.03 10.69
(NDVI<0,3)
Mixed C
(03':;DV‘|’<V§;) 65 075 -13.9 83 138 7.22
NDW!I Rog ! !
Covered Soil
100 083 -20.1 457 1.05 6.17
(NDVI>0,7)
Alltypes of cover 212  0.86 -20.5 3.42 162 10.1
Bare soil 47 079 -204 126 118 1223
(NDVI<0,3) ’ ’ ’ ’ ’
Mixed C
(03':;DV‘|’<V§;) 65 038 24 2175 - ;
MSI ’ ’
Covered Soil
100 0.68 -20.4 319 144 848
(NDVI>0,7)

All types of cover 212 0.49 -0.32 6.97 10.19 64.11
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Table 6: The k-fold CV of the linear regression analysishef relationship between
observed soil moisture and selected spectral irsdice

K-fold cross validation indicators

Samples R? RMSE nRMSE
Bare soil 150 0.81 1.09 10.82
(NDVI<0,3) ' : '
(0'\/;':;132’;;) 210 0.74 1.41 7.24
NDWI Rog ! !
Covered Soil
330 0.84 1.08 6.34
(NDVI>0,7)
All types of cover 700 0.87 1.61 10.01
Bare soil
150 0.76 1.238 12.3
(NDVI<0,3)
Mixed Cover
210 0.37 - -
(0,3<NDVI<0,7)
MSI
Covered Soil
330 0.68 1.51 8.88
(NDVI>0,7)
All types of cover 700 0.40 3.27 20.61

3.2 Vegetation water content and soil moisture assement at

full vegetation cover

The relationship between observed vegetation watetent and MSI
and NDWkqqwas assessed in 62 sub-plots, when the soil was completelyedov
by vegetation (NDVI > 0.5). The statistical indicstmbtained are presented in
Table 7. The two spectral indices were stronglyteelato vegetation water
content. The statistical indicators R2 and RMSE wei#y (p<0.01), 2.49% for
NDWIgogand 0.55 (p<0.01), 3.47% for MSI, respectively.
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Table 7: Linear regression analysis of the relationship betw observed vegetation
water content and selected spectral indices

Statistical indicators

Samples R? a b RMSE nRMSE
NDW!I Rog 0.77 -47.75 4390 2.49 3.48
Vegetation 62
MSI 0.55 -3498 97.57 3.47 4.85

Table 8: The k-fold CV of the linear regression analysishef relationship between
observed vegetation water content and the speictdides

K-fold cross validation indicators

Samples R? RMSE nRMSE

NDWI Rog 0.78 2.62 3.64
Vegetation 200
MmsI 0.57 3.69 5.13

In order to validate these results, we comparedrebdesegetation water content
values with those predicted using the k-fold CV method. Asvahin Table 8, the
errors were low for both NDWy and MSI. The evaluation model indicators
obtained for predicted vegetation water contentmfraN\DWigo, were:
RMSE=2.62% and R2=0.72 (p<0.01). For MSI, the valuesViRIMSE=3.69%
and R2=0.47 (p<0.01). These results confirmed the ability dMN{, to estimate
the vegetation water content for wheat, whereasMiB¢ values were less in
agreement with the observed values. Similar reswudise reported for MSI by
QiuXiang et al. (2012) and Hunt Jr and Rock (1989).

Ning et al. (2013) reported the ability of the VSDIsimulate both soil moisture
and vegetation water content, obtaining an R2=0.51 and i@gj2ectively.
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In areas with limited water availability, the craicperiod for wheat is during
rapid growth, from the end of tillering to full steetongation. In our study area,
this corresponds to the period that usually bedgmamid-March. Figure 5
compares measured soil moisture and wheat vegetatter content during the
critical tillering to grain filling period. The fige shows a strong relationship
between these two variables, with an R2=0§820(01). During the development
stages of healthy wheat, from tillering to graitirfig, and under the soil moisture
conditions of the study area, the relationship viresal between FC (24.3%) and
PWP (9.8%), which accorded with the findings repotgdGirard and Girard
(2010). This shows that surface soil moisture cardignated using vegetation
water content and vice-versa.

NDWIgog and MSI performed well in assessing top 10 cmmsoilsture, when the
soil was completely covered by vegetation. As shawhable 5, R2 and RMSE
were equal to 0.83 (p<0.01) and 1.05% for the NR)V&nd 0.68 (p<0.01) and
1.44% for the MSI, respectively.

These results show the capacity of both NR)WENnd MSI to simultaneously
estimate both vegetation water content and soiktua, even when the soil is
completely covered by the canopy, as confirmed leykttiold validation results
in Table 6.

Table 5 shows that change in land-cover type indiuene MSI with opposing
trends. As MSI uses NIR band that behave differesntiyording to type of cover
(Ning et al., 2013), this index is not suitable fomparing different land-cover

types simultaneously.
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Figure 5: Relationship between vegetation and soil moistoeasurements (FC: Field
capacity and PWP: Permanent wilting point). Dataravacquired on 21 March 2013, 26
March 2013, 11 April 2013, 26 March 2014 and 15iAp014

3.3 Soil moisture assessment during the main growthagies of
wheat

Following the strong ability of NDWky and MSI to estimate soil
moisture separately for bare soil and full vegetatiover, we tested the capacity
of these spectral indices to estimate this parantateughout wheat cropping
season, apart from the senescent stage which waduatdd, since no irrigation
is applied during this stage of wheat developmeiguriés 6 and 9 show the
comparison between observed soil moisture valudstlaose derived using the
spectral indices for the 10 acquisition dates.
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Figure 7: Relationship between soil moisture (at 10 cm degtia) the NDW,q
values derived from all the acquired images (lagetiof maximum 2 days between
field measurements and dates of satellite pass)
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The statistical indicators R2 and RMSE were 0.860(p%) and 1.62 % for
NDWIgrog respectively (Table 5). The point clouds for MSI, repraesgrtifferent
kinds of cover, show opposite trends according t rifain growth stages of
wheat (Figure 9). This indicated that there was n@mue linear relationship
between MSI and surface soil moisture, for the entiheat crop cycle (apart
from the senescent stage). The standard deviatighi®fndex varies between
0.009 and 0.1 (Figure 9). The ratio between MSI valaed the standard
deviation expressed as a percentage varies between 0.23%.88%.

In contrast, there was good agreement between MRVWNd soil moisture,
whatever the wheat growth stage with a standardatiem values ranging
between 0.007 and 0.087 (Figure 6). The ratio betWw#awWIr,, values and the
standard deviation as a percentage ranges betwd@&oland 12.87%. The
relationship was maintained from one year to thieewot(cf. figure 6). The
dispersion of the observed cloud points was maidlye to the spatial
heterogeneity which characterized soil moisture at plat iBi et al., 2009; Song
et al., 2009; Wang et al., 2013), and the variable tage ranging from 0 to 3
days between field measurement and satellite pass.

With a two-day lag time, 75% of the overall obserpaihts were discarded. In
this case, the selected points corresponded tofieelyf the acquired images. As
shown in Figure 7, R2 and RMSE were 0.95 (p<0.01) arib% for the
NDWiIgrog respectively. The observed point clouds dispersias significantly
reduced (figure 7).

As shown in Table 5, the slope values (a) of théedifit types of cover for
NDWIgrog Were relatively similar. For mixed cover, the slopes slightly steeper,
indicating the stability of NDWA,q at different stages of crop cover (from
emergence to grain filling) and its ability to qti&nsoil moisture throughout
crop growth.
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This finding was confirmed when comparing estimateud observed soil
moisture using the k-fold CV approach (Figure 8)e Wiatistics obtained for
NDWIgoq were RMSE = 1.61% and R2 = 0.85 (p<0.01).

In Figure 8, it is important to note that the modely overestimate the dry soil
moisture (lower than 12%). Further analysis, withaegér dataset, should be
performed to check a possible nonlinear relatigngi@tween NDWd,4 and soil
moisture.

With regard to MSI, the statistical analysis showleat this index is not suitable
for estimating soil moisture throughout crop grogviperiod, although it can
accurately estimate bare soil moisture and vegetatiater content separately
(Figure 9). The NIR reflectance of covered soiligngicantly higher than that of
bare soil (Ning et al., 2013). As MSI uses NIR as the refereacd, the values of
this index are much higher for bare soil than fovered soil, which means that
MSI cannot be used to compare dissimilar land-cover types.

Feng et al. (2013) simulated soil moisture usingM&PSI| model and obtained
an Rz of 0.66. They also obtained R2 values of 0.54 aml 0.60 for the PDI,
MPDI and SPSI models, respectively, for both bare and cogeiréaces.

Ning et al. (2013) proposed using the VSDI for momitg soil and vegetation
moisture simultaneously over different land-cowgoess. This index is based on
exploiting the SWIR and red bands. In a comparisetween VSDI and the
fractional water index over different land-covepéyg, they obtained an R2 of
0.54.

3.4 Mapping soil moisture

Figures 10 and 11 show the soil moisture maps e@rftom the 10
SPOT-5 dates based on NDWj for the first (2012-2013) and second (2013-
2014) cropping season, respectively. These maps wererated using a
regression model (soil moisture = -20.51 * ND¥jl + 3.42) obtained by
comparing the 10 available images and field measeinés (see Figure 6). Soil
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moisture ranged from 6% (red) to 24% (blue). Figure€) and 11(f) show the
location of the plots.

The maps display change and variability of soil shae between and within the
plots, showing in particular differences between ang wet plots. Such results
could be very useful for monitoring water stressaolarge scale for wheat, and
for detecting irrigation supplies.

In Figure 10(a), plots P1, P2, P3, P4 and P5 havehethigoisture contents than
other plots. This variation is caused by the findgation being applied before 12
December 2012, the date when satellite image was acquired.

Some plots (P6, P7, P8 and P9) in Figure 10(b) shownadtheterogeneity of the
surface water content. The drying process is apparehése plots, indicating the
onset of water stress in the crop. This figure alsows heterogeneity among
different plots, mainly due to irrigation suppliestrbeing provided at the same
time.

Figure 10(b) shows high soil moisture values, exitepd6%, for plots P1, P2,
P3, P4 and P15 in the red square and P10 in theshluere. These plots were
irrigated during the last 10 days of January 2018s Was the second irrigation
applied by farmers in the study area. Plot P4 ditdappear to be completely
irrigated at this time, indicating that irrigationags/ in progress on the image
acquisition date. The other plots were irrigatedlamuary or after 2 February
2013, the date of the satellite pass.

Figures 10(c) and 10(d) show significant homoggnaitd a dominance of blue,
indicating that soil moisture was high (20-24%). sTisi explained by rainfall that
occurred between 14 and 18 March 2013 (31.3 mm)oang4 March 2013 (14
mm). These dates correspond to the dates when inmegesacquired (i.e., 21
and 26 March 2013). Figure 10(e) shows that after 2 weeksédltathere was a
homogeneous drying of the plots, with soil moistaneging from 14 to 16%. The
drying process was somewhat attenuated for plo#s gfd P5) which were

irrigated by the end of March.
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Figure 10: Soil moisture maps derived from the NRVytata: (a) 12 December
2012; (b) 2 February 2013; (c) 21 March 2013; (&) Rlarch 2013; (e) 11 April
2013; and (f) codes for the experimental plots

In Figure 11(a), some pixels in P24 displayed qaitégh surface water content
level (16-18%), explained by the first irrigation. Wheat fields, irrigation water
is supplied straight after sowing. Thus, the detectib the first irrigation can
generally indicate the sowing date.

In Figure 11(b), it is interesting to note that plot P17 appto be partly irrigated,
indicating that irrigation was in progress. Plo& P9, P11, P16, P18, P19, P20,
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P24 and P25 were irrigated a few days before at¢puisif the satellite image on
6 January 2014.

Figure 11(c), derived from the satellite image acpiion 1 February 2014,
shows high and homogeneous surface water contéf#4%). This is explained
by significant rainfall that occurred between 30 and 31dgn2014 (36.5 mm).
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Figure 11: Soil moisture maps derived from the NRWytlata: (a) 2 December 2013;
(b) 6 January 2014; (c) 1 February 2014; (d) 26 Mar2014; (e) 15 April 2014; and
(f) codes for the experimental plots
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Both Figures 11(d) and 11(e), derived from imagesuged on 26 March 2014
and 15 April 2014, show relatively low humidity, ramg from 12 to 15%. This
can be explained by irrigation that was schedutetie beginning of March and
after mid-April, in addition to lack of rainfall fahe period of 12 days before the
date of image acquisition. These figures portray the psamfedrying and the start
of water stress of wheat crop.

The developed method can be used as an operatimhdbr managing irrigation
and crops and monitoring the evolution of surfaegewncontent at the plot scale,
as well as on a larger scale across the irrigated area.

The practical aspects of this method that could rawg irrigation water
management in an irrigated perimeter include the follgwin

- The method combined to a calibrated crop modal lma used for triggering
irrigation supplies in water stress situations and otlsergrevent contributions in
excess of irrigation water. Such information coukl ¥mluable for decision-
makers in charge of irrigation and crop management iratetyareas.

- It could also be useful for detecting illegaligation and pumping. This is
relevant in irrigated areas where irrigation hast meen scheduled and
uncontrolled water pumping is prohibited.

- It could also be used for detecting the date @#isg, which is usually

concomitant with the first irrigation.

4. Conclusions

This study sought to assess the ability of two spemdices,NDWIg,, and MSI
derived from SPOT-5 HRV satellite images, to estensdirface water content
from bare soil to completely covered soil throughthe cropping season in
irrigated semi-arid areas.

The comparison betweedDWIg.,, using the Red and SWIR bands, and soil
moisture measurements at a depth of 0-10 cm thouigihe cropping season
showed good agreement, with an R2 of 0.86. MSI apgdarbe less suitable for

quantifying and comparing soil moisture contendlifferent stages during wheat
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cycle. This index could be used, however, to estirlbate soil moisture, covered
soil moisture and vegetation water content seplgral&e derived soil moisture
maps showed interesting spatial patterns that cbaldelated to the dates of
irrigation and rainfall events in the irrigated perimetemadla.

NDWIg,, Can be used to compare, quantify and map surfater wantent, at
different stages of crop cover (from sowing to grhlling) over years. It shows
potential for improving irrigation monitoring, detex irrigation supplies, wheat
stress management and our understanding of swfater content changes at
field and regional levels in the study area. Thdguerance of the methodology
should be checked in other contexts before jud@gmguitability for application
in other areas.
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Chapter 3

Detecting wheat irrigation
supply using SAR data in

semi-arid regions 2

% Submitted 13.07.2015 (under revie®enabdelouahab, T., Derauw, D., Tychon, B.,
Balaghi, R., Wellens, J., Barbier, C., 2015. Detgctwvheat irrigation supply using
SAR data in semi-arid regions. Remote Sensing Appbns: Society and
Environment.
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The objective of this study was to use SAR datdetiect the supply of irrigation
water during the anthesis and grain-filling phegaial stages of wheat in the
irrigated Tadla perimeter of Morocco. Backscatteraugfficients were derived
from four ERS-1 images acquired between 31 MarchlahApril 2011 and were
compared with the irrigation water invoices databas order to assess their
sensitivity to surface moisture (vegetation watentent and soil moisture). The
analysis showed that there were significant changebackscattering values
caused by irrigation, with values ranging betweerd @idd 3.11 dB. A reference
level of 1 dB was established for differentiatingfeeen (recently; up to 2 days)
irrigated and non-irrigated plots. We also selectilable images with an interval
of 3 days for the acquisition of SAR images in orde ensure continuous
monitoring of the irrigated wheat plots over timéneTstudy showed that radar
data contain important information for the assesdma irrigation supplies
during the cropping season, which could help regjigecision-support systems
to monitor and control irrigation supplies over large areas

1. Introduction:

Irrigated areas throughout the world are facingeasing pressure due mainly to
erratic precipitation regimes (Dore, 2005), long deyiods and rapidly growing
population demands. In this context, the effectiveagament and monitoring of
irrigated areas require a good understanding o$pla¢ial and temporal processes
governing agricultural systems.

Managing and monitoring an irrigated area effetyivian be done by analyzing
these processes over an entire crop cycle andya &gricultural area where the
surface is heterogeneous (various types of cropsses of soil and management
approaches) in order to assess the overall impact of cnopgement practices.

In Morocco, cereals are one of the major grain crgqmsvn and they hold an
important place in the agricultural production sys$, occupying 75% of the
cultivated area and accounting for 10-20% of thacafjural Gross Domestic

Product (GDP). Nevertheless, yields remain low andtdiate from one area to
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another and one season to another because of gamgter management, field
management and weather conditions (Balaghi et al., 2010).

Given the importance of wheat production in serid-areas where water is the
main limiting factor, large-scale irrigation of whéa common practice. There is
therefore a need for good management of irrigadigoplies in order to improve
irrigation scheduling and prevent water stress fratversely affecting yield.

Remote sensing satellites can be used for momgtolémd surface changes
because of their extensive coverage capacity agliént revisits (Fieuzal et al.,
2011; Kalluri et al., 2003; Moran et al., 1997; Ozdogan et alQR0

Several studies have investigated the sensitivitysynthetic Aperture Radar
(SAR) imagery to surface parameters (soil coverfaser water content and
roughness) (Baghdadi et al., 2009; Dabrowska-Ziediretkal., 2007; Feng et al.,
2013; Moran et al., 1997; Ulaby et al., 1986; Zribalet2005). SAR sensitivity is

linked to the sensor characteristics (frequengaidence and polarization). Many
authors (Beriaux, 2012; Hadria et al., 2009; Mattialet2003; McNairn et al.,

2012) have demonstrated the potential of SAR fonitndng agricultural factors

that have a significant influence on backscatter coefitsi

The recent launch of Sentinel-1, which offers botlody spatial resolution and
high revisit time, could be interesting (Aulard-Macl2011; Snoeij et al., 2008).
It is still difficult, however, to acquire synchram® multi-sensor time series in
order to analyze satellite data sensitivity ovemparable surface conditions. C-
band data are available from the ERS-1/2, EnviSadaRat-1/2 and Sentinel-1
systems.

For wheat canopies and topsoil moisture, the seitgitbf radar backscattering
coefficients was demonstrated by Mattia et al. (208 Picard et al. (2003).
Some attempts have been made to use simplifiediordaips between SAR

backscattering coefficients and wheat canopy cheriatics (Dente et al., 2008;
Mattia et al., 2003). Few authors, however, have tried to apglsetar on a large

scale and in a representative context (Fieuzal et al., 2013).
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At C-band frequency, the temporal behavior of wheatifferent studies (Mattia
et al., 2003; Saich and Borgeaud, 2000) shows siglitdral trends for the same
study site. Recent studies have proposed multi-seaqgaroaches for irrigation
management purposes by combining optical and radages (Fieuzal et al.,
2011; Hadria et al., 2009; Hadria et al., 2010).

In irrigation monitoring, it is Clearly expected thtne backscattering signal
generated from SAR images and interferometric @e reacts to changes in
surface moisture (Hadria et al., 2009), which couldirbportant indicator to
detect irrigation inputs and monitoring surface stuie on a large scale and in a
realistic context during the anthesis and graim§l phenological stages of
wheat. In this case study, the change in backstajtenlues and coherence is
expected to be related primarily to changes in matatent of the cover and the
ground since the roughness parameter is assuniEdonstant, since it is wheat
at the same development stage for all parcels. ififismation could be very
useful in improving national grain yield forecasbakels that currently do not take
into account production from irrigated areas, desfie fact that they occupy
over 1million ha. Irrigation water supply data (tinteiration and irrigated area)
could be integrated into yield forecast models in order fwore their accuracy.

In this context, we conducted an analysis of a lamgmber of agricultural plots
using time series of SAR images in order to astfesis sensitivity to surface
moisture. This was done by evaluating the valueghef backscatter signal
compared with the variability of the surface maistthat is closely related to the
irrigation supply program at wheat plot level (dstses of irrigation dates). With
respect to the use of temporal coherence as aoaiodj no conclusive results

were derived due to the lack of adequate SAR data.

2. Methodology

Previous studies using SAR images have shown thenpal of using
backscattering signals to monitor vegetation watentent and surface soil

moisture via a simple linear relationship and or@dence-angle data (De Zan et
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al., 2014; Fieuzal et al., 2011; Le Hegarat-Mascld.e2@02; Mattia et al., 2003;
Ulaby et al., 1986; Zribi et al., 2005; Zwieback et aD,15). Drawing on these
studies, the methodology adopted in our study sotalietect irrigation water

supplies to the wheat crop using SAR data.
2.1 Study Site

The irrigated Tadla perimeter (Figure 12) is in tc@nMorocco, between the
Atlantic coast in the north-west and the Atlas Mwims in the south-east
(32°23N latitude; 6°31°'W longitude; 445 m above sea level). The studied area is
characterized by a semi-arid climate; the annuakrame temperature is about
19°C, with a large inter-seasonal variation (max82Qin August and min =
3.5°C in January). The average annual precipitaoabout 300 mm (average
over the 1970-2010 period), with significant int@nraal variation (from 130 mm
to 600 mm).
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Figure 12: Location of the irrigated area (upper left insebsls a map of Morocco;
the plot plan is indicated by black lines and thedged irrigated plots are
multicolored according to the date the irrigatiomsvcompleted)

The irrigated Tadla perimeter is managed by theiddad Office for the
Agricultural Development of Tadla (ORMVAT). The sted area is in Beni-
Moussa East, covers 40,000 ha and is characterized by figtraqy.

Cereal crops are one of the main crops in the saréa. In the 2010-2011
cropping season, wheat occupied about 17% (6,730f tiag total cultivated area
of Beni-Moussa East. It is usually sown between khidlember and December,
depending on when the first significant precipdatioccurs, and is harvested
between May and June.

We studied those wheat plots that were irrigatetvéen 29/03/2011 and
12/04/2011. The studied plots represented 3.5% (28%.5f the total area under
wheat in Beni-Moussa East. Irrigation is appliedehasing the traditional surface

-42 -



flood method. During the growing season, wheat is irrigagdgtden two and five

times, depending on rainfall conditions.

2.2 Ground and Satellite Data

221 Ground Data

We used the available invoices of irrigation watatabase intended
for farmers for the period between 28/03/2011 asd4/2011 corresponding to
the period when images were acquired in the 2010/20opping season. This
database is organized and managed by ORMVAT, whirhdkarge of irrigation
water management in the area. The database holdsodgteriods of irrigation
(start and end), plots and the amount of water bgefdrmers across the studied
area. During the crop development stages of antresis grain filling, plot

conditions (phenological stages, irrigation techniqueskevairly homogeneous.

222 Climate Data

Daily meteorological data was obtained from theo@fer station,
which is part of the Moroccan National Weather rtwand is located in the
study area (Figure 13). Rainfall was measured vifipirtg bucket rain gauges.
The collected data showed that there was no ptatigm between 16/03/2011
and 21/04/2011. The change in backscattering vabfeSAR images was

therefore due only to irrigation water supplies to theatleop in the study area.
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Figure 13: Daily meteorological data for the study area
223 Radar Data: Time Series of SAR Images

We selected all ERS images available in the arshifdne ERS-1
ERS-2 satellite are SAR instruments operating &tagd (f = 5.3 GHz), =~ 5.6
cm). SAR images were acquired, all in the descendags. The images were
acquired in VV polarizations at medium incidencegglaa (23.3°) (Table 9).
Figure 12 gives an example of a SAR image of the study area.
Between 1995 and 1996, ERS-1 and ERS-2 were flyingandem, i.e. ERS-2
was following ERS-1 with a one day delay. The Tand&RS images were used
to evaluate the Tandem coherence on the area. Butpnodydata were available
for this period. Four ERS2 acquired in 2008 were alade available. They were
acquired with a 35-day repeated cycle.
In 2011, at end of its life, ERS2 orbit was adaptedfter a 3-day repeat interval.
Four images of our zone were acquired during tkisod allowing us to have a

short but good time series of SAR data for which groundwlata available.
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Table 9: SAR images selected covering the study area

Date d'acquisition

Sensor ) Polarisation
d'image
ERS 11/08/2008 \"AY
ERS 15/09/2008 vV
ERS 24/11/2008 \A%
ERS 29/12/2008 \"AY
ERS 31/03/2011 \"AY
ERS 03/04/2011 \AY
ERS 06/04/2011 \AY
ERS 12/04/2011 \"AY
ERS1 01/01/1996 \AY
ERS2 02/01/1996 vV
ERS1 03/09/1995 vV
ERS2 04/09/1995 vV
ERS1 17/12/1995 \AY
ERS2 18/12/1995 \'A%
224 Amplitude | mages

Time series of backscattering amplitude images gereerated over
the study area based on Single-Look Complex imagesthe ERS-1/2 archives.
Using the CSL InSAR Suite (CIS) developed by thent€e Spatial de Liege
(Derauw, 1999), an amplitude image and coherencgdmeere computed and
geoprojected with a final ground sampling of 30*&® (Grandchamp and

Cavassilas, 1997). The step-by-step process was as follows:

- Amplitude image reduction: Amplitude was computed before geoprojection
using box averaging to reduce the speckle noisthdyncoherent summation of
backscattering values.

- Coregistration: In order to generate usable time series, we perfbrooarse
and then fine coregistration in relation to a glabaster acquisition. The chosen

global master acquisition was the one from 31 M&@hl. Coarse coregistration
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(about 2.5 pixels) is performed by correlating thgphtude windows centered on
target anchor points regularly distributed on trester image. Fine coregistration
(about 0.5 pixel), when applicable, is performed thgtouocal coherence
maximization.

- Interpolation: Slave images were interpolated with regard to thmputed
transform in order to superimpose them on the maste and allow the SAR
products to be computed. After these steps, the @ilScomputed the amplitude
images, the interferogram and the coherence imageaddition to the
geoprojection of these products.

Once amplitude images and tandem coherence timesserre generated,
temporal evolution of coherence and amplitude veeralyzed to detect irrigation
water supplies to the wheat crop. Then indicatdrgrigation evidences were
sought crossing with available archives data pmeidrom irrigation water

management services.

2.25 Backscatter Coefficient Calculation and
Georeferencing

Amplitude images are not calibrated and do not ideinformation
on the backscattering coefficient. Image calibratimas performed using
equations 1 and 2, below (Laur et al., 2002). Thip stéows the amplitude
digital number (DN) to be converted into the backtring coefficient in
decibels (dB) for each pixel.

Following radiometric calibration, all images arenhgeoreferenced using ENVI

5 software.

DN,

2 3
_ ij 1 Ry j .
% =% cay <Rref> sin(a;) - (1)

0(dB) = 10 loge?; (2)
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In equation 1, backscattering coefficient$)(are derived from the digital number
(DN) of the pixels (i, j) and from the parametersiué images, such as the local
incidence angle of j;), the slant range position (R and the look angle
corresponding to pixel ‘i,j’§;), and the constant parameters come from the ERS
SAR calibration document (the calibration factd€), [the gain [G@;;)?)] (Laur et

al., 2002).

2.3 Delimitation of the Cereal Area

2.3.1. Satellite Images and Their Processing

One SPOT-5 HRV satellite image was acquired on P&l 2011
(Table 10), when the soil was completely coveredrdgetation. It spanned the
period between anthesis (March) and grain filligpril) in the 2010-2011

cropping season.

Table 10: List of acquired SPOT-5 HRV images and their cheastics

Acquisition  Cropping Sensor Wavelength Resolution
date season (nm) (meters)

SPOT-5 Green: 500-590 Red: 5
15/04/2011 2010/2011 Red: 610-680 Green:5

HRV NIR: 780-890 NIR: 5

The processing level of the acquired images was),(Mhich included

radiometric and geometric corrections.

232 Supervised Classification

In order to define the cereal area, we used a mawirikelihood
classification method that is a widely used supedi pixel-based method
(Ouyang et al., 2011).
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Training areas representative of the land covessels were selected in order to
develop class signature files. For each image, trgiareas were defined based
on a field survey, expert field knowledge and aagjlldata (tree crops mask and
irrigation canals). Two thirds of the training areeere used in the classification
process, the remaining one third in the accuracgsassent. The main classes
were: cereals; bare soil; industrial crops; perennialssrapd arboriculture.

For the wheat class, we selected a sufficient numbpixels representing 1.08%
of the total pixels (500,123 pixels) (Yang et al.,, 201We performed the
separability analysis, using the Jeffries-Matusitdaghce, for training samples in
the final classification scheme with values of sapdity between 1.99 and 2,
indicating good class separation.

The contingency matrix was used to evaluate theepéage of sampled pixels
classified as expected. User accuracy and produceracy regarding the wheat
class were 97.8% and 96.73%, respectively. The ovaallracy assessment and

Kappa values were 95.7% and 0.94, respectively, indicating gassification.
2.4 Integration and Intersection of Ground and SatelliteData

From the SAR data we obtained an amplitude timeeseWe also analyzed
archival data of the irrigation supply scheduledubg farmers in the irrigated
Tadla perimeter at the plot level. The archival data was gedvty ORMVAT.

The backscatter parameter from the ERS-2 imagesawaraged for each of the
341 training plots. This was followed by crossingthe information layers to
monitor and analyze the spatiotemporal evolutionbatkscattering intensity,
depending on irrigation water supplies used by &srfor their wheat plots.

Figure 14 summarizes these steps.

-48 -



| Treatment of 738 irrigated : | Plots’schemes ' ! Image Spot-5 | ! Image ERS-2

: plots (all crops) with data : : identified by ID at ! (5 m resolution) | : (30 m resolution)
I base comprising: ! | Beni-Moussa East | e R Lo T l """""
1 - Time of irrigation, 1 : perimeter (6,766 | ¥ __._.
| - Duration of irrigation, : 1 polygons) 1 ! - Box averaging, !
!~ Amount of irrigation water, | bommmmqmmmm - ''. Coregistration, !
L Plotdentfcaton (Plt ). T supenied <TG [ Imerpolation,

_______ ¥ I, : classification i 1

| Joining of database
v by Plat identification

Geographical Identification of

| 1
i database by Plot i : cereal zanes : : - Calibration. and calculation of ‘,
1 identification ' ; acrqss the ; ; backscatterlng values (dB). i
I R i, perimeter i |;Georeferencing. _ _ _._. Z
: Intersection resulting i ‘ 1
| shapefile of irrigated
1

wheat plots (341 plots) | __________________ { Computation of the |

y_ wheat platsisaL plobsl -
' Generation of ROl and Mask | backscattering
—t
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""""""""" plot
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.7 €15 Software " Matlab software L7 ArcGIS10 software

Figure 14: Schematic diagram illustrating field data and SA&Radprocessing

3. Results and Discussion

Amplitude and coherence images were derived fra@nBRS-2 acquired images.
However, for images acquired on 2008 and 2011 a tdssoherence was
observed. This general de-correlation is due topttadonged lag time (about 1
month) separating the acquired images on 2008, @tiketattitude of ERS-2 that
was badly controlled at the end of satellite litading to the angular yaw
instability for the images acquired on 2011 (Figur&). Inversely a good
coherence was found for ERS tandem images acquirgé®95 and 1996 (Figure
16).
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Figure 15: Coherence image (1) between acquired images or881/&nd 03/04/11
and (2) between acquired images on 31/03/11 and41?1

6°56'0"W 6°34°0"W

32°28'0"N

Irrigation perimeter of Tadla

6°56°0"W 6°34°0"W 6°12°0"W

Figure 16: Coherence image between ERS 1 and ER§ured respectively on
01/01/1996 and 02/01/1996
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The available invoices of irrigation water databasdy covered the period
between 28/03/2011 and 15/04/2011 correspondiffRiB-2 images acquired in
the 2010/2011 cropping season. Amplitude images denged from the ERS-2
images acquired on 31/03/11, 03/04/11, 06/04/11 and 12/04/1

These data were used to assess the potential ofdafsRfor detecting irrigation
and to analyze the radar backscattering as a émaii changes in wheat water
content and soil moisture.

The lack of ground data during the Tandem acquisjiienod on one side and the
lack of coherence due to the ERS2 aging in 201iherother side prevent us to
perform the expected study using interferometric coheras@n indicator.

Table 11 shows the measured backscattering valesllf plots for which
irrigation dates were made available. For each SAfjuiaition date,
backscattering values are ordered and classifiedrding to the known date of
irrigation completion. Clear changes and trendsdokbcattering values can be
seen. These changes are subsequent to irrigati@n aglied to the plots and to
the heterogeneity of their moisture condition. Aowh in Table 11, the
backscattering values for all plots varied betw8elil to 3.11 dB. In this case,
roughness is considered as constant, since alllpavege homogeneous in term
of the cultivated crop and the development stage.

As shown in Figure 17, the highest backscatter wateeurred when the SAR
acquisition date corresponded with the irrigatiompletion date. In this case, the
average backscattering values of plots smaller thaa (Figure 17-B) and plots
larger than 1 ha (Figure 17-C) varied between 2r@D3a18 dB and between 1.97
and 3.14, respectively. The average backscatterihggsdor all plots, whatever
their size, varied between 2.79 and 3.11 dB (Figuréll It is important to note
that the total number of plots was 341, of which 2&2e smaller than 1 ha and
59 were larger than 1 ha.

The variation was more important for plots with area between 1.01 and 4.42

ha, exhibiting a standard deviation of 1.11 dB, wnlj{ots smaller than 1 ha
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which had a small deviation of 0.19 dB. This largeiation was due to the
duration of irrigation and the timing of the staftirrigation, which affected the
response of backscatter plots and the fall in baatlexring values in already
irrigated plots, given that the flood irrigation takes 1agsih&.
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Table 11: The average backscattering values for irrigateceatiplots as a function of
date of completion of irrigation and date of aceudrimages (no gap means that

irrigation time is the date of satellite pass andap indicates the difference in days
between irrigation and satellite pass (negative:gajmated plots; positive gap: non-

irrigated plots)
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SAR Acquisition data
All plots Plots < 1 ha Plots > 1 ha
31/3/11 3/4/11 6/4/11 12/4/11|31/3/11 3/4/11 6/4/11 12/4/11|31/3/11 3/4/11 6/4/11 12/4/11
- c°average (dB] 1.34 0.22 0.48 0.47 136 0.16 045 046 1.16 0.88 0.79 055
s Std 6° (dB) 0.32 0.69 0.60 0.59 0.32 0.68 0.62 0.1 0.25 045 0.13 0.08
| capoays) | -2 5 8 11 2 5 8 11 2 5 8 -1
Number of plots| 24 24 24 24 22 22 22 22 2 2 2 2
- ¢°average (dB] 1.79 0.37 0.70 0.75 1.79 037 070 0.75 1.88 -0.12 050 0.97
s Std 6° (dB) 056 059 057 0.55 056 059 057 0.55 0.86 1.29 0.39 047
S| capoays) | 1 4 7 10 -1 4 7 10 -1 4 7 10
Number of plots| 26 26 26 26 23 23 23 23 3 3 3 3
- ¢°average (dB] 2.86 0.68 0.59 0.91 3.12 084 065 0.98 246 045 048 0.78
s Std 6° (dB) 0.75 0.64 050 0.71 0.73 0.39 0.33 0.80 0.62 0.88 0.67 059
=| Gap (Days) 0 -3 -6 -9 0 -3 -6 -9 0 -3 -6 -9
Number of plots| 28 28 28 28 17 17 17 17 11 11 11 11
¢°average (dB] 0.23 1.68 0.78 0.62 029 172 082 0.71 -0.34 132 043 -0.15
E Std 6° (dB) 0.7C 0.2 0.5t 0.6 0.71 0.2 0.5€ 0.6C 0.1t 0.5t 0.34 0.2¢
S| ap (Days) 1 2 5 -8 1 2 5 -8 1 2 5 -8
Number of plots| 31 31 31 31 28 28 28 28 3 3 3 3
¢°average (dB] 0.51 2.14 0.94 0.8¢ 0.5z 2.1t 0.9¢ 0.9 0.3t 1.8¢ 0.3t 0.1¢
E Std 6° (dB) 0.6 0.4¢ 0.6 0.5C 0.6¢ 0.5C 0.61 0.4z 0.7¢ 0.1z 0.8C 1.2C
I| Gap (Days) 2 1 -4 7 2 1 -4 7 2 1 -4 -7
Number of plots| 32 32 32 32 30 30 30 30 2 2 2 2
c ¢°average (dB] 0.44 3.11 1.1C 0.9t 0.4¢ 3.11 1.14 0.9t 0.1¢ 3.14 0.77 0.9C
-% E Std 6° (dB) 0.7z 0.7 0.4¢& 0.5 0.6¢ 0.7z 0.4% 0.5¢ 1.0¢ 0.9¢ 0.8 0.47
25| cap(Days) 3 0 3 6 3 0 -3 -6 3 0 3 6
5 Number of plots| 27 27 27 27 24 24 24 24 3 3 3 3
§ ¢°average (dB] -0.07 0.14 1.5¢ 0.3¢ 0.0¢ 0.2 1.6t 0.1 | -0.7C -0.1z 1.3t -0.1¢
:: E Std ¢° (dB) 0.87 0.71 0.5: 0.72 0.8t 0.74 057 0.71 0.6€ 0.57 0.27 0.4¢
5 3| cap (Days) 4 1 2 5 4 1 2 5 4 1 2 5
Number of plots| 59 59 59 59 48 48 48 48 11 11 11 11
o° average (dB] 0.3t  0.14 2.2z 0.77 0.4z 0.07 224 0.77 0.0t 0.4€ 2.1 0.7¢
E Std ¢° (dB) 0.84 097 066 0.79) 085 097 0.73 043 084 1.07 034 078
X! Gap (Days) 5 2 -1 -4 5 2 -1 -4 5 2 -1 -4
Number of plots| 16 16 16 16 13 13 13 13 3 3 3 3
o’ average (dB] 0.22 0.22 293 0.63] 052 042 318 100 046 -018 244 031
E Std ¢° (dB) 0.88 088 090 058 035 070 092 046 052 117 0.69 066
I| Gap(Days) 6 3 0 -3 6 3 0 -3 6 3 0 -3
Number of plots| 12 12 12 12 7 7 7 7 4 4 4 4
|ocaverage (dB] 035 032 073 174 042 046 084 176 -0.05 -055 004 156
S| stdo®(dB) 082 076 081 052 083 069 078 049 063 053 064 074
S| Gap (Days) 7 4 1 -2 7 4 1 -2 7 4 1 -2
Number of plots| 36 36 36 36 31 31 31 31 5 5 5 5
_ |o°average (4B} 0.22 0.09 0.64 214 025 030 066 229 012 -0.53 039 166
S| stdo®(dB) 0.66 067 094 0.67f 069 060 059 068 062 046 132 037
I| Gap (Days) 8 5 2 -1 8 5 2 -1 8 5 2 -1
Number of plots| 24 24 24 24 18 18 18 18 6 6 6 6
_ |o°average (4B} 0.28 0.44 056 2.79 041 058 059 299 -025 -017 041 1297
S| stdo®(dB) 084 089 080 1.21f 0.77 085 062 119 101 0.88 121 103
S| Gap (Days) 9 6 3 0 9 6 3 0 9 6 3 0
Number of plots| 26 26 26 26 21 21 21 21 5 5 5 5
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For plots with a gap of 1-2 days between the dateeend of irrigation and the
date of image acquisition, the backscattering leraged from 1.79 and 2.22 dB
and from 1.34 to 1.74 dB for gaps of 1 and 2 daygpews/ely. Non-irrigated
plots or plots irrigated more than 2 days beforeRSAcquisition showed
backscattering values that were generally lower than 1 dB.

This analysis confirms the clear relationship beme’ VVV and irrigation water
supplies. The variation in radar backscattering faents can therefore be
related mainly to changes in wheat water contedt sl moisture induced, in
our case, by irrigation. These results were confirimgdlattia et al. (2003), who
found a linear correlation between backscatterimgfficients and fresh biomass
not exceeding 2,500 gfmA study conducted by Baghdadi et al. (2012) showed
that the error (RMSE) in retrieved soil moisturesetved at C-band was about
6% for a single incidence angle of 20°.

As shown in Figure 18, backscattering values cam ladésordered with regard to
the time gap between the SAR acquisition date badrtigation completion date.
This figure shows the responses of backscatter wheis to moisture changes in
the vegetation cover and soil after an irrigation evenhefgap is zero (i.e., when
irrigation ends on the SAR acquisition date), thekbaattering values are high.
This is true whatever the plot size. Plots smalteegual than 1 ha or larger than
1 ha had average backscattering values of 3.08 af] Pespectively. The
average backscattering value for all plots, whatever ¢ims; was 2.92 dB.

There was a discrepancy in average backscattealgs between irrigated plots
smaller than 1 ha and those larger than 1 ha off.G ke difference between the
average backscattering value when there was ndimapand when there was a
lag of 1 day was 0.6 dB for plots larger than 1 hd about 1dB for plots smaller
than 1 ha. This result tends to confirm the effeciplot non-uniformity on

backscatter values.
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Figure 18: Evolution of backscattering values with regardite time gap between
irrigation time and satellite image acquisition. lgap means that irrigation time is
the date of the satellite pass and a gap indictitedifference in days between
irrigation and satellite pass (negative gap: irriga plots; positive gap: non-irrigated

plots)

Where the time gap was 1 day or more, there was ceea®e in average
backscatter values from irrigated wheat plots, vayyetween 1.34 and 2.22 dB
for all plots.

From the third day of the irrigation, backscatteluea fell below 1 dB, which
was close or equivalent to non-irrigated plots. Vakeie of 1 dB can therefore be
considered as a reference threshold that distihgsibetween, on the one hand,
irrigated plots and, on the other, non-irrigated pland plots irrigated for more
than 2 days. These results can be generalized ag¢dgimal level for the studied
period, especially where wheat plot conditions are fairmdgeneous.

The time resolution proved to be a limiting factor the continuous monitoring
of the irrigated wheat plots, in that it was noden possible to detect irrigation
from the fourth day onwards (gap = 3), as shownigufeé 18. SAR images
therefore need to be acquired at a maximum intef/8ldays (time resolution =
3).
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The results showed that SAR technology has gre#&npal for irrigation
management and could have an important agriciegahomic impact, if
acquisition frequency can be increased and theepriaf SAR images can be
reduced. In the future, with the possibilities offered by thetiSel 1A/B missions
the use of SAR satellites looks promising. Sincel#umch of other satellites is
expected in the coming years in band C and L opdddirization. The band C and
L in all polarization (HH, HV and VV) provide sevéraptions to ensure crop
monitoring (Dabrowska-Zielinska et al., 2007; Fiduziaal., 2013). These bands
should be deeply studied and tested in order tceldpvrobust and simple
approaches for monitoring irrigation.

In general, remote sensing tools are one of the Wwags to monitor large
agricultural areas, and research should be donenproving the mastery and
application of SAR remote sensing in agriculturetHa case of irrigated areas,
SAR images offer great potential for detecting gemnand monitoring the water

content of the surface and biomass in irrigated areas, vendtes plot size.

4. Conclusion

This study sought to assess the potential of SAR f& detecting irrigation
supplies and to analyze the radar backscatterimgficients as a function of
changes in wheat water content and soil moistumithout the cropping season
in irrigated semi-arid areas. The measured backsoajtvalues showed a clear
decreasing trend with regard to the time gap betvieigation completion date
and image acquisition date. After 3 or more daysvéen irrigation completion
and SAR acquisition, a backscattering value of lodBwer was observed, the
same as the value observed for non-irrigated plstseference level of 1 dB
could therefore be set for differentiating between iredatnd non-irrigated plots.
The study showed that in order to ensure continuoasitoring over time of
irrigated wheat plots, an interval 3 days betweenatquisitions of SAR images
is required. This parameter could be used to commademap vegetation water

content and surface moisture at local and regitmadl in the irrigated Tadla
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perimeter. These results show that radar signal viilmhaan be generalized,
especially where wheat plot conditions are fairly homogase

SAR backscattering signal analysis shows poteritialimproving irrigation
monitoring, detecting irrigation supplies and untierding surface water content
changes at the field and regional levels in the study area.

Our findings need to be applied to other crops @heér areas in order to test the

validity of the proposed methodology.
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Chapter 4 .

simulate Durum wheat
yield and schedule
irrigation in semi-arid
irrigated perimeter in
Morocco *

3 Adapted from:Benabdelouahab, T., Balaghi, R., Hadria, R., Liab#l., Djaby,
B., Tychon, B., 2015. Testing AquaCrop to simulateum wheat yield and schedule
irrigation in semi-arid irrigated perimeter in Maep. Irrigation and Drainage
(Accepted for publication / in production).
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The aim of this study was twofold: in the first pawe adjusted and tested
AquaCrop (4.0 version) parameters for durum whedeusemi-arid conditions.
Grain yield, biomass and the evolution of soil watentent (0-90 cm layer) in an
irrigated perimeter were simulated. The experimeas wonducted in the Tadla
region, between 2009 and 2012, using 15 fields. Thempadson between
observed and simulated grain yield and abovegrdumiass using a leave-one-
out cross-validation (LOOCV) approach gave a noedl root mean square
error of 4.1% (0.2 thHY and 5.7% (0.8 t.ha-1), respectively. Similarly, the
difference between observed and modeled soil waietent has, on average, a
NRMSE of 8.2%. In the second part, the analysis afation scenarios showed
the potential of crop modeling to schedule irrigatiwater according to a
threshold for water deficit. It also displayed logi trends in the relationship
between grain yield and the amount, frequency amihg of irrigation water.
Scheduling irrigations during the cropping seasmproved significantly the
grain yield and increased water-use efficiency. Wactuded that AquaCrop
could be a suitable tool for forecasting yield undemi-arid conditions and to

improve crop and irrigation management.

1. Introduction

Currently, durum wheat is among the crops which piesuthe largest area of
land and continues to be one of the main sourcésodfgrains to humans. World
wheat production reached 656 million tons in 20012 with durum wheat
accounting for 6% of this amount according to theod= and Agriculture

Organization (FAO) (FAO, 2013). Half of the worldsdd comes from irrigated
and drained lands (Bastiaanssen et al., 2000; Lebedl., 2003). In Morocco,

water availability is considered as the main limitingdador crop growth. Cereal
(mainly wheat and barley) production is stronglyared to the amount and
distribution of annual rainfall in rainfed areasa{8ghi et al., 2010) and to the
amount of groundwater and water stored in damerigated areas. Irrigated

agriculture in arid and semi-arid regions now plays important role in food
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security, with the availability of large amountsiwigation water having led to an

increase in production.

In Morocco, cereals occupy 75% of the cultivated amehaccount for 10-20% of
the agricultural Gross Domestic Product (GDP). Durwvheat {riticum

turgidum is one of the major grain crops grown in the d¢oumnd holds an
important place in the agricultural production syss. It is cultivated mainly in

the south-western plains of Morocco, in semi-arid areakgBaet al., 2010).

In the irrigated perimeter of Tadla, cereal produtthas exceeded 2 million
quintals. The area under wheat exceeds 40,000 bedtza) and represents more
than 36% of the total irrigated area (ORMVAT). Durwheat represents around
13,000 ha of the total cultivated cereals in thigdted plain of Tadla. Flooding
irrigation is used for more than 96% of the totabaaof the perimeter and
mobilizes large volumes of water. Despite theseelaamounts of used water,
crop yields remain low and fluctuate from one aceanother and one season to
another because of varying water management, fieldagement and weather
conditions (Balaghi et al., 2010).

Given the importance of wheat production in serd-amigated areas where
water is the main limiting production factor, largeale good management of
irrigation water is required (Lionboui et al., 201&xops in arid and semi-arid
regions, such as those in Morocco, regularly facemsttess, considered as the
main limiting factor for crop growth. There is thEne a need for assessing soil
water availability in order to improve irrigatiorcteeduling and prevent water

stress adversely affecting yield.

Simulation models, based on crop physiological ees and crop response to
water stress, can contribute to better irrigatiomagement, especially during the
critical wheat growth period. The accurate informatthey provide in terms of

crop forecasting and total soil water content calp io improve productivity and

-61-



water management through establishing irrigatidvestes and planning inputs of

irrigation water (quantity and timing).

In this regard, the scientific community is payingcrieasing attention to
approaches based on agro-ecological process mddaits; process-based crop
models have been developed in the recent yeaar@r et al., 2004; Jamieson
et al., 1998) and many studies of these models hage bonducted to evaluate
their performance under arid and semi-arid conatiBen Nouna et al., 2000;
Duchemin et al., 2008; Hadria et al., 2007). The le¥etanplexity of these

models can be high, but when working on a largeeseald in operational

conditions, robust models with few parameters arellys preferred (Mkhabela

and Bullock, 2012; Steduto et al., 2009; Wellens et al., 2013)

AquaCrop is a crop water productivity simulationdaebdeveloped by the Food
and Agriculture Organization (FAO) of the Unitedtidas (Hsiao et al., 2009;
Raes et al., 2009a; Raes et al., 2009b; Steduto e0@8).2T'he model simulates
crop vyield response to irrigation, soil and climataditions. It is based on the
concepts of crop yield response to water (Doorenbnd Kassam, 1979;
Doorenbos and Pruitt, 1977) and is suitable for andeese the water is a limiting
factor for agricultural production. Aimed at balamgiprecision and simplicity, it
uses a small number of explicit and mostly int@tiparameters and input
variables that require simple methods for theiingsion (Hsiao et al., 2009;
Steduto et al., 2009). Simulations of crop growth dexkelopment are performed
on the basis of daily time steps. The model simslatep growth using growing
degree days (GDDs) or calendar days. Several iwrarhave tested AquaCrop,
under water-limiting conditions, for predicting crdgpomass and vyield, water
requirement, water-use efficiency and soil wateraagits in various weather
conditions and environments and have reportedfaetiisy results. The model
has been tested for barley (Araya et al., 2010), rcoff@rahani et al., 2009),
maize (Abedinpour et al., 2012; Hsiao et al., 2008d&b et al., 2009; Stricevic
et al., 2011), durum wheat (Soddu et al., 2013), softatvfkndarzian et al.,
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2011; Igbal et al., 2014; Jin et al., 2014; Mkhabeld 8ullock, 2012) and
cabbage (Wellens et al., 2013).

The research of (Soddu et al., 2013) is quite diffef®m what we done, where
they focused on the simulations of future durum athgelds under climate
change scenarios in a rainfed area at regionaé.stladdition to crop yield
simulation, the model also predicts soil water dyicanand water supply using
soil physics parameters and weather data (Geegk, &010; Igbal et al., 2014;
Mkhabela and Bullock, 2012; Xiangxiang et al., 2013).

Designing and implementing operational tools tlzet provide accurate estimates
of crop water needs and the impact on productiod, gan quantify crop water
consumption and production, would facilitate the ftaring of irrigation
efficiency and crop water use. The main objectivehig study was to test the
ability of AquaCrop to simulate durum whealriicum turgidum) biomass
production, grain yield and the soil water conterdfife (0-90 cm layer) in an
irrigated area, on the one hand, and on the othet toastudy the capacity of the
model to manage the irrigation water and optimizeingely application of

irrigation supply to increase water use efficiency.

2. Materials and methods

2.1 Study area

The study area (Figure 19) is situated in the cenfeMorocco,
between the Atlantic coast in the north-west and the Atlasni&ins in the south-

east (32°23" north latitude; 6°31 west longitude; 445 m above sea level).
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Figure 19: Location of the Tadla irrigated perimeter (uppetft iwindow represents
Morocco map; in the upper right window, the expenital plots in black diamond)

The area is characterized by a semi-arid climdie;annual average
temperature is about 19°C, with large inter-seaseadhtion (maximum = 38°C
in August and minimum = 3.5°C in January). The averagnual precipitation is
about 300 mm (average over the 1970-2010 periodh, significant inter-annual
variation (from 130 mm to 600 mm).

Created in the 1940s, the Tadla perimeter was arttfundjrst large
irrigation schemes in the country and was aimegeatfiting small farmers and
introducing modern farming techniques and indulstniaps (Préfol, 1986). This
irrigated perimeter is managed by the Regional d®ffifor Agricultural
Development of Tadla (ORMVAT). The irrigated areavers 100,000 hectares
(ha) and is characterized by a flat topography. gieeindwater depth in the area
varies from 31 to 117 m (Bouchaou et al., 2009; Napgt al., 2006). Durum
wheat is one of the main crops in this perimet@f4lof total cultivated area). It

is usually sown between mid-November and mid-Janu#pending when the
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first significant precipitation occurs, and is hastesl between May and June,
depending on temperature conditions. Irrigationgpliad using the traditional
surface flood method. During the growing season, wisdarigated between two

and five times, depending on rainfall.
2.2 Field experiments

The experimental sites are located across the reaBeni-Moussa
municipality in the 2009-2010, 2010-2011 and 201126ropping seasons. Data
were collected from 15 fields of durum wheat, lodatt Tadla's Regional
Agricultural Research or belonging to farmers (€ab2), thus providing a valid
representation of the soil-plant relationship ir ttudy area. The field data
related to Marzak and Karim cultivars, which are elydcultivated in the study
region.

The average seeding rate was 350-400 seeds/m3ytoouthe study area. The
nutrient requirements were adequately met by i#etil applications applied
before seeding and at the stem elongation stagendinient doses applied were
0.18 t.ha-1 of triple superphosphate, 0.2 t.ha-1 of amtrate and 0.1 t.ha-1 of
urea. Weeds and diseases were controlled by theofideerbicides and a
preventive fungicide, and no disease infections or pests aetected.

For each studied field, dates of emergence, anthasisnaturity were recorded.
Observations of phenological development stagesandscence of durum wheat
were made every 7-10 days.

All the studied plots were harvested 10-15 daysrgfhysiological maturity, and
the grain yield was measured. Aboveground biomaadrats of 1 m2 were cut at
ground level with three replicates per plot. Thdemiéd samples were placed in
the oven at a temperature of 65 °C for 48 hourgdbthe dry aboveground
biomass (Igbal et al., 2014).

We quantified the water provided at plot level &ach irrigation supply. This
quantification was done by multiplying the floweadt the plot by the duration of

irrigation. At the irrigated perimeter, the flow whsed according to the size of
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the irrigation canals of large-scale irrigation. &yplying the technique of surface
irrigation, the farmers consider that this operati®rperformed once the entire
plot is completely submerged. Soil moisture anditiation rate influence the
amount of water supplied, which does not allow themkrs to control the
irrigation depth unlike other irrigation methodsrigdirrigation and sprinkler
irrigation).

Soil moisture was measured using gravimetric mettogy in two of the fifteen
fields, E1 and E2. The measurements were dried dvan at 105°C for 24 h and
made every 10-15 days and at depths of 0-30, 30r8068-90 cm, during the
2009-2010 growing season for E1 and during the 2@A growing season for

E2. The measurements were performed in three replicatyosenpling.

Table 12: Main management characteristics of experimentéds$ief durum wheat

Harvesting Number of Total irrigation

No. Year Area(ha) Cultivar Sowing day date irrigations (mm)
1 2009 2.3 Marzak 06/12/2009 14/06/2010 1 141
2 2010 1.5 Karim 07/11/2010 13/06/2011 3 421
3 2010 2 Karim 11/12/2010 28/06/2011 3 424
4 2010 0.6 Marzak 07/12/2010 24/06/2011 2 268
5 2010 1.6 Karim 09/12/2010 24/06/2011 2 273
6 2011 2 Karim 10/12/2011 28/06/2012 3 454
7 2011 0.8 Marzak 15/11/2011 16/06/2012 4 491
8 2011 1 Marzak 14/11/2011 17/06/2012 4 543
9 2011 2.6 Karim 18/12/2011 25/06/2012 3 415
10 2011 2.3 Marzak 11/12/2011 25/06/2012 3 410
11 2011 2.5 Marzak 08/12/2011 28/06/2012 3 411
12 2011 0.8 Karim 08/12/2011 28/06/2012 3 361
13 2011 0.8 Karim 06/12/2011 27/06/2012 3 413
E1 2009 0.5 Karim 05/12/2009 23/06/2010 2 329
E2 2010 1.1 Marzak 02/11/2010 07/06/2011 3 398
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2.3 Soil data

At the study area, the soils are classified as isotnainly based on
French soil classification (C.P.C.S) (Badraoui anitb&t 2001; Massoni et al.,
1967). From 30 soil samples collected from sevetak providing coverage of
the entire study area, soil physics properties weeasured (Benabdelouahab,
2009). For three depths (0-30cm), (30-60cm) and (@DH), permanent wilting
point (PWP) and field capacity (FC) were determinging a pressure plate
extractor. The soil reached PWP and FC when thervgatential was at -1.5
MPa and -0.033 MPa, respectively (Kirkham, 2005). Hylitaconductivity was
determined by using a Guelph kit at varying depths (Table 13

Table 13: Soil physics properties in Tadla, Morocco

Soil properties Depth 0-30 Depth 30-60 Depth 60-90
Value STD DEV  Value STD DEV Value STD DEV
Texture Clay loam Clay loam Clay loam
Sand (%) 25.4 2.7 245 1.9 24 0.3
Silt (%) 41 1.3 35.5 1.65 39.7 1.3
Clay (%) 33.6 3.4 40 13 36.3 15
Bulk density (g.cni®) 1.2 0.1 1.5 0.1 15 0.1
Field capacity (mm) 78.7 11.6 95.2 8.2 96 12.1
Saturation (mm) 106 4.2 118 4.8 125 5.5

Permanent wilting

. 36.2 3.1 394 6.2 39.7 8.8
point (mm)

Hydraulic conductivity

(cm.hY) 51 1.9 3.5 1.7 3.5 1.9

24 Meteorological data

Meteorological data were measured during wheat ijgpweason by
an automated weather station belonging to the MamcNational Weather
Service located near studied plots (32.347° notitutke; -6.382° west longitude;

-67-



493 meters (m) above mean sea level) (Table 14)ildbka data were daily
maximum and minimum air temperatures, rainfall, wepeed, relative humidity,
and solar radiation. Air temperature and relativenidity were measured at a
height of 1.8 m using a radiation shielded probe.d\peed was measured at a
height of 10 m using a cup anemometer and convéoted? m elevation using a
logarithmic wind speed profile as described by Allen et aB&)L9

Rainfall was measured with tipping bucket rain ggigncoming solar radiation
(Rs) was measured at 2 m with a pyranometer (CES1B&ference
evapotranspiration (ETo) was calculated using teanfan-Monteith equation
(Allen, 2000; Allen et al., 1998). Data were measurgdelch sensor at 10 s

intervals and recorded as daily averages, sums, maximumiaimsum values.

Table 14: Monthly average weather conditions over the experimental plots (3
cropping seasons, from 2009-2010 to 2011-2012)

Temperature Temperature Rainfall ETO
Month min (°C) max (°C) (mm) (mm/month)
Average STD Average STD Average STD Average STD

November 3.7 12 279 49 225 268 634 109
December 04 18 242 15 109.8 0.0 484 2.2
January -1.0 19 240 33 76.0 450 519 6.9
February -1.7 24 249 63 736 612 63.0 3.1
March -05 26 283 56 436 36.2 960 4.2
April 6.0 28 312 51 15 22 1328 239
May 63 13 370 57 59 52 165.7 10.8
June 127 03 403 3.0 10.8 17.0 200.5 13.1

2.5  AguaCrop: presentation and parameterization

AquaCrop is a FAO crop model (Steduto et al., 2008} simulates
crop and soil response to water stress under vargbimatic, soil and crop
management conditions. Crop yield is estimated eaptbduct of dry biomass by

the harvest index (HI). At the flowering stage, Hirgases linearly as a function
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of time after a latent phase, up to near physioldgicaturity. Transpiration is
calculated and then translated into biomass usiomdss water productivity,
evaporative demand and air CO2 concentration data (Atlah, 1998; Steduto et
al., 2009).

AquaCrop (v4.0), used in this study, is structuredsdto integrate the soil-plant-
atmosphere continuum. It consists of five composiet weather component,
which requires five types of data input — daily mmaxm and minimum air
temperatures (T), daily rainfall, daily reference ptsanspiration and the mean
annual CO2 concentration in the atmosphere; iip énput parameters (planting
dates, plant density, growth phenology and aeriabgn iii) soil component,
which is configured as an independent system ofbkr depth, with one or
several horizons of varying texture compositions, and tHealyic characteristics
including hydraulic conductivity at saturation (Ka)d volumetric water content
at saturation, FC and PWP; iv) field management ¢iomdi (fertilizer application
and field-surface practices); and v) irrigation @mgement (irrigation method,
percentage of wetted surface, date and amount dérvagiplied). AquaCrop
provides default values, called conservative pararsgthat are related to the
crops being studied (Raes et al., 2009a). The noreoaats/e parameters depend
on crop management and environmental conditions.this study, these
parameters were estimated using measured data frome&lldtopping seasons.
Default settings proposed by the model was usebtimate initial canopy cover
(CCo) from sowing rate, seed weight, seed numberegtichated germination
rate. The canopy expansion rates were automatiestisnated by the model after
we provided phenological dates, i.e. (date of emeryeneximum canopy cover,
senescence and maturity. The flowering date, lengtlloofering stage, HI
reference and HI build-up period were specifiedrieo to calculate grain yield

production. AquaCrop was run on the basis of calendar days.
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2.6 Testing AquaCrop

In order to validate and calibrate the model forudu wheat (Triticum
turgidum), we used the results of the experimentglgcted from 2009-2010 to
2011-2012. Initially, the parameters were establishsiig the whole dataset
from 15 fields for the simulation of grain yield and biomdsssoil water content
we used only the soil moisture measurements caoti¢dh the E1 and E2 fields.
Accuracy of the model was evaluated using the #-fooss validation (k-fold
CV) approach, given the small size of our dataseB@<observations). This
approach uses k replicate samples of observatitay dailds model with (k-1)/k
of data and tests with the remaining 1/k. Wherenilmaber of observations was
reduced, leave-one-out cross validation (LOOCV), Wihica k-fold CV taken to
its extreme, with K equal to the number of systemagipetitions, was used
(Cassel, 2007). LOOCYV is an effective and widely usssthod (Cawley and
Talbot, 2003; Cawley and Talbot, 2004). In our stutlynpuolved using a single
observation from the 15 observations as the vadidatlata, and the other
observations as the training data. This was repesatetd that each observation in
the sample was used once for validation (Stone, 1974).

The conservative parameters of crop growth in wisieft wheat and durum
wheat are presumed to be close as they display uihilar physiological
behavior (El Hafid et al., 1996). On this basis, wédhy used the conservative
parameters of soft wheat following the AquaCrop v@rannexes (Raes et al.,
2009b) to derive the conservative parameters afirduvheat. This approach led
us to adjust only parameters known to be very seador wheat in AquaCrop,
i.e. the maximum root water extraction in the top bottom quarters of the root
zone in order to calibrate the model so that itid¢quredict durum wheat yields
under semi-arid irrigated conditions. The AguaCrapuch wheat parameters are

presented in Table 15.
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Table 15: Crop parameters used for durum wheat

Parameters description Value STD DEV Unit or meaning Assessment method
Conservative Parameters
Base temperature 0 - °C (Raes et al., 2009b)
Upper temperature 26 - °C (Raes et al., 2009b)
Canopy cover per seeding
1. - 2 R t al., 2009b

at 90% emergence (CCO) 5 em (Raes eta )
Canopy growth Increase in canopy cover

coefficient (CGC) 0.05 B (fraction soil cover per day) (Raes et al., 2009b)
Crop _coeficient for Full canopy transpiration

transpiration at 1.1 - relative to ETO (Raes et al., 2009b)
CC =100%

Decline in crop coefficient 0.15 } % Decline per day due (Raes et al., 2009b)
after reaching CCx to leaf aging

Canopy decline coefficient 0.072 ) Decrease in canopy cover R t al. 2009b
(CDC) : (in fraction per day) (Raes etal., )
Water productivity 15 - g (biomass) m-2 (Raes et al., 2009b)
Leaf growth threshold 0.2 ) Above this leaf growth (Raes et al., 2009b)
p-upper is inhibited

Leaf growth threshold 065 ) Leaf growth stops (Raes et al., 2009b)
p-lower completely as this p

Maximum root water

extraction 0.038 (m3 water/m3 soil/day) Adjusted

in top quarter of root zone

Maximum root water

extraction 0.018 (m3 water/m3 soil/day) Adjusted

in top quarter of root zone

Leaf. .grOWth stress 5 - Moderately convex curve (Raes et al., 2009b)
coefficient curve shape

Stomatal conductance 065 } Above this stomata begin (Raes et al., 2009b)
threshold p-upper to close

tomata str ici .

Stomata stress coefficient 2.5 - Highly convex curve (Raes et al., 2009b)
curve shape

Sene_sgence stress 0.7 R Above this early canopy (Raes et al., 2009b)
coefficient p-upper senescence begins
Non-conservative parameters

Plant density 2250000 200000 Plant/ha Measured
Sowing to emergence 12 0.8 Day Measured
Sowing to maximum rooting 103 9 Day Measured
Sowing to senescence 192 11 Day Measured
Sowing to maturity 172 10 Day Measured
Sowing to flowering 120 12 Day Measured
Length of the flowering stage 15 0.71 Day Measured
Building up of HI 48 - % Measured
Maximum rooting depth 0.8 - m Measured
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2.7 Model evaluation

For evaluating the performance of the AquaCropdfraeasurements
(observed data) were compared with outputs geretatehe model (simulated
data) in terms of crop yield, biomass and soil moisturedndbt zone.
Different statistical indices were used to compaaleled with observed values.
These indices were the coefficient of determina{ig®), the root mean square
error (RMSE), the normalized RMSE (nRMSE; expresssda percentage;
Loague and Green (1991) and the mean bias error (MBE).

(Si—-01i)2
n

RMSE = %1, ]0'5 (1)

(2)

(51—01)2]0'5 100
T X —_—

nRMSE = |31,

Si and Oi refer to simulated and observed valueshef studied variable,

respectively; n is the number of observations; lsinid the mean of the observed
variable. The nRMSE indicates the accuracy of theleh@and the dispersion
around the mean of the observed values. The sironlasi considered to be
excellent when the nRMSE value is lower than 10%gddbit is higher than 10%

but lower than 20%, fair if it is higher than 20% lbawer than 30%, and poor if
it is higher than 30% (Jamieson et al., 1991).

The MBE is an indicator that assesses whether thgehis underestimating or
overestimating the observed values, and it alsosgthe uniformity of error

distribution. Positive MBE values indicate overestiion, negative values
indicate underestimation and a value of zero irtdc@qual distribution between

negative and positive values. The MBE is calculated asifsilo

MBE = - [¥L,(Si — 0D)] (3)
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2.8 Model application

Adjusted AquaCrop (v4.0) was used to improve irfascheduling
in the studied irrigated perimeter. We evaluateddffiects of various irrigation
scenarios (different dates and frequencies ofatieg supplies) on grain yield
and water use efficiency (WUE). We took into accopetiods of crop stress,
development stages of wheat and rainfalls.

The crop parameter values and the soil charadtsri&ir the plots E1 and E2
were used for different scenarios. For irrigatiop@ies, we conserved the same
amount of water provided at plot level and we \aiilee moment of inputs. In
case we proposed an additional irrigation supplémeea took 105 mm, which
represents the average amount of water commonlyghtoin the irrigated
perimeter of Tadla due to the use of flooding atign method, the lack of plots
leveling and the presence of deep soil cracks.

WUE is a helpful indicator for evaluating the impax irrigation scheduling
decisions (Liu et al., 2007). In a crop productiontesys WUE is used to define
the relationship between crop production and theuwrnof water involved in
crop production, expressed as crop production pirvofume of water. In this
study, WUE (kg.m-3) refers to the ratio betweenfthal grain yields (GY) and

cumulative crop evapotranspiration during the whole cyaped ET).

_ oy
WUE=2 (4)

3. Results and discussions

3.1 Grain yield

Figure 20 presents the relationship between observed adeled durum
wheat grain yields. The simulated and measured sjieddowed a good
correlation, with an R? value of 0.97. The calculateadel evaluation criteria
between the simulated and measured yields were:lRM8.20 t.hd, nRMSE =
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4.1% and MBE = 0.03 t.Ha The positive MBE value indicates that the model is
in average overestimating slightly the observed values.

Using the LOOCV method, we obtained R2 values of QE§ure 21). The
difference between the values of the linear regressidreaddtaset and the values
of the LOOCV method validation data were minimainfirming the ability of
the model to simulate yields. The differences betwibe observed and simulated
outputs of LOOCYV for durum wheat yield were: RMSB 23 t.hd, nRMSE =
4.7% and MBE = -0.01 t.Ha

Andarzian et al. (2011) simulated soft wheat gragldyusing AquaCrop and
obtained a R? of 0.95 and a nRMSE of 5%. The diffezdmetween the observed
and modeled grain yield of soft wheat was 0.14 % ladicating that the model
overestimated the yield by 2.7%. Mkhabela and Bullg&kL2) reported that the
difference between the modeled and observed graid gf soft wheat was 0.12
t.ha’, signifying that AquaCrop overestimated the yiejdoly 3%. Salemi et al.
(2011) reported that the model underestimated the gield of soft wheat by
1.35%. The model results are comparable with thoseiged by other models
used by Eitzinger et al. (2004) and Rodriguez et al. (200djrtolate wheat yield
and soil water content. These authors simulatedvandat grain yield using the
STICS model for wheat and reported that there wgea agreement between
observed and modeled grain vyield, with an RMSE 660.t.h&, an nRMSE of
8.5% and an MBE of 0.29 t.HaAquaCrop also appears to be quite efficient in
predicting durum wheat grain yield under semi-amigjated conditions in a large

range of crop conditions, as indicated by our study.
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3.2 Final aboveground biomass

Figure 22 presents the relationship between obdeavel modeled
durum wheat aboveground biomass for the study ditea.RMSE, nRMSE and
R2 were 0.8 thH§ 5.7% and 0.93, respectively. The difference between th
values of the linear regression of the observedsgatand the simulated values
using the LOOCV method were minimal. The statisticglicators we obtained
were: RMSE = 0.7 t.i§ nRMSE = 4.8%, MBE = 0.01 t.Hand R2=0.92 (Figure
23). These results confirm the capacity of the madesimulate aboveground
biomass.

Araya et al. (2010) simulated barley abovegroundnbis using AquaCrop and
reported an RMSE of 0.36-0.90 thand R2 values higher than 0.8. Similarly,
Andarzian et al. (2011) simulated soft wheat abowagd biomass using the
model and reported an R2 value of 0.95 and nRMSE value of 4.4%.

The average difference between simulated and obddromass of durum wheat
was 0.08 t.h4, indicating that the model slightly underestimatieid parameter
(by 0.6%). Salemi et al. (2011) reported that the rhaohelerestimated the
aboveground biomass of soft wheat by 1.42%. In audystAquaCrop accurately
predicted the final aboveground biomass of durureatlunder the conditions in

the Tadla area.
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3.3 Soil water content

Figures 24 and 25 present the comparison betweseangdd and
simulated soil water content of the whole profite the two fields where this
variable was measured. The soils in these plots lsawdar characteristics.
However, when we apply the model at large-scaldvtsable to integrate spatial
variability of soil data, in order to improve simtitan accuracy. An important
point arising from these figures is that the véoiad in simulated soil moisture
followed the variation of rainfall and the occurcenof irrigation events exactly,
indicating that the model is sensitive enough toubed as an efficient tool to

monitor irrigation in real time.
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Figure 24: Comparison between simulated and observed soiltureismneasurements
at 0-90 cm depth for plot E1 followed during themping season 2009/2010.

Descendent arrowd  indicate irrigation water supply

-78 -



100

—~

E 30 S

c < | g0

= 2 2| 60

= 5

S O | a0

c 10 o

g H I iy

xr , ; I .||;| L | ; ||; Ol
11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011

Total water content (mm)

50 t t t t t
11/2010 12/2010 01/2011 02/2011 03/2011 04/2011 05/2011

Date

Figure 25: Comparison between simulated and observed soiltateimeasurements
at 0-90 cm depth for plot E2 followed during themping season 2010/2011.

Descendent arrowd  indicate irrigation water supply

The statistical indices also showed the abilitytef model to simulate total soll
water content. The RMSE, nRMSE, MBE and R2 valuegw&rt68 mm, 8.55%,

11.12 mm and 0.95 for the E1 plot and 15.73 mm, 7.90%, & and 0.94 for

the E2 plot, respectively. The model simulated wedl variation in soil water

content in the soil profiles (0-90 cm layer) angtoaed its tendency to vary. The
positive MBE values indicate that the model is egéimating the observed
values.

Both Mkhabela and Bullock (2012) and Zeleke et @01() reported that

AquaCrop simulated soil water content well andwlag it varied in the root zone
(0-90 cm layer). Hussein et al. (2011) and Farahaai. ¢2009) also reported the
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ability of the model to predict wetting and dryiegents resulting from irrigation
and rainfall. Similar results were obtained in otudy for the soil moisture

profile evolution under durum wheat.
3.4 Model applications for irrigation management scenarios

The results of this part, summarized in tables 16 Bf showed that
grain yields can be improved by 14 to 48% for bsiildied plots (E1 and E2),
depending on the adopted irrigation scenario, amdhdainto account the
availability of water in the root zone and the periods oewstress.

For the 2009/2010 growing season, rainfall providgedugh water from the
sowing until March unlike the second phase of thasen. The non-sufficient
quantities of irrigation water supply during theydphase of the year can
drastically affect grain yield. This explains thevlgields recorded for the plot E1
(Table 16). In this case study, we suggested toateigt grain filling stage (see
scenarios E1-S2 to E1-S7 of Table 16) to avoid mwsiieess effect during this
stage, since rainfall satisfied water requirementsl aneet the increasing
evaporative demand for the crop during the previtages. Such situation occurs
frequently in studied areas where the high evaparaiemand corresponds to the
grain filling stage.

Regarding the parcel E2, we achieved good yieldt(B&) in 2010/2011 because
precipitation occurred during grain filling stagd&able 17). However, the
scenarios showed, in table 17, that this yield carinfiroved by scheduling
irrigation during the first growing stage of whelaideed, water stress during this
period can affect leaf growth that leads to a dexwen biomass production and
final grain yield (Hsiao et al., 2009; Steduto et al., 2009).

For the case of double irrigation scenarios, the pesds were achieved when
irrigation was applied during the flowering and igréilling stages (E1-S3 and
E2-S4). Water stress at grain filling stage leads tlecrease in grain yield which

is related to harvest index (Steduto et al., 2009).
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In case of low rainfall at early crop growth andaigr filling stages, we
recommend to farmers to apply an irrigation supgdithese stages to improve
crops performance and to increase grain weight.

For E1-S2 scenario, we tested the effect of postigpthie second irrigation. A
delay of ten days caused a decrease in grain pielmbout 28% according to the
model. In the studied area, the duration to irrigate hectare is one to two days
using the flooding irrigation method. Therefore, pl@xceeding 5 ha may be
subject to a large heterogeneity of yields duedlaykd irrigation. This is not the
case for the drip and sprinkler irrigation methods.

One of the problems facing the irrigation managenecontributions in excess
of the irrigation water that affect saving irrigati water. When analyzing
precipitation distribution during the 2010/2011 \wwheeason, we deduced that we
can avoid the first irrigation scheduled initiakgight days after sowing. The
cancellation of this first irrigation (E2-S8) indeet a slight reduction in the
estimated yield by only 0.34%.

Water use efficiency was calculated as the ratiprofluced wheat grain yield to

cumulative evapotranspiration (Table 16 and 17).
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Table 16: Alternative irrigation scenarios implemented in Aa@rop for the plot E1

(Rainfall = 448.6 mm)

Suded g Qi G et Bensssironn £ ey
(kg/m3)
siaefg':: 8; 103 121;148 390 1242 269 348  1.12
E1-S1 8; 93 121;148 302 1157 269 321.6 0.94
E1-S2 8; 113 121,148 492 1357 269 3875 1.27
E1-S3 111,142  121:148 763 1679 269 505 151
E1-S4  106:136  121;148  7.10 1603 269 4831 147
E1-S5 111;142;160 121;148;105 893 1884 374 587.7 2 15
E1-S6 106136152 121:148:105 840 1725 374 564 149
E1-S7  6;111;142 121;148,105 830  17.65 374 5356 155
E1-S8 103 148 363 1231 148 346 105

* Reference irrigation scenario which has bapplied.

Table 17: Alternative irrigation scenarios implemented in Aa@rop for the plot E2
(Rainfall = 337 mm)

Studied Irrigation timing Quantity  Grain Yield Biomasslrrigation ET thgr-use
scenarios  from sowing (mm) (Wha)  (vha)  (mm) (mm) ehciency
(kg/m3)
Baselne g 151.164 128,150,120 622 1563 398 3959 157
scenario
E2-S1  8:161;174 128;150;120 510  13.47 398 3355 152
E2-S2  8;141;154 128;150;120 7.27  17.74 398 4431 1.64
E2-S3 87; 146 150; 120 7.23  17.86 270 4434 163
E2-S4 97; 146 150; 120 750 1847 270 4576 164
E2-S5  87;141;154 128;150;120 7.90  19.19 398 476  1.66
E2-S6  8;87;146 120;128;120 7.23  17.85 398 4434 1.63
E2-S7  97;141;154 128;150;120 819  19.19 536 4933  1.66
E2-S8 151; 164 150; 120 6.19 1557 270 3945 157

*. Reference irrigation scenario which has bepplied.
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The WUE varied in different irrigation scenarios.eThighest WUE was found
for the scenarios with three irrigations scenaribilevthe lowest one was found
with two irrigations scenario. The WUE generally d&sed when water
availability decreased (Andarzian et al., 2011).

With the proposed planning based on three irrigatiocthe values of WUE
reached 1.55 for E1-S7 scenario and 1.66 for scenB2eS5 and E2-S7 (Table
16 and 17). WUE was lower for the 2009/2011 cropmegson compared to
2010/2011. For the first studied cropping seasonem&itess was so great from
the flowering stage. This situation does not meethigh evaporative demand of
crops. Scheduling irrigations during the water stygsriod (the case of scenarios
E1-S3, E1-S4, E1-S5, E1-S6 and E1-S7) improved sigmifiy the grain yield,
and the WUE increased from 1.12 to 1.55 Kg.ifor the grain yield values, the
simulated productions were almost close to the optim&ie8 t/

The WUE ranged from 0.94 to 1.66 kg'rfor the two studied cropping seasons.
The highest WUE was observed for three irrigatioensirios (E2-S7), in which it
peaked at 1.66 kg.f(Table 17).

This application showed the potential of AquaCropntanage irrigation water
and to optimize frequency and timing of the irrigas supplies. This allow to
increase WUE by avoiding period of water stress awerwatering, and thus

guaranteeing optimal growing conditions throughout theming season.

4. Conclusions and perspectives

Irrigated agriculture is an important strategic teecsemi-arid region. While
irrigation is expected to provide water to cropptevent water stress, in reality,
despite the availability of irrigation water, optiimaelds are not often achieved.
The stakeholders involved in managing irrigatedasraeed simulation model
tools to help them schedule irrigation and assess its impageld.

In this study, the ability of AquaCrop (v4.0) to sieie durum wheat yield,
biomass and soil moisture evolution on one hand smdescribe the impact of
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irrigation water supplies (timing and quantity) cecorded yields on the other
hand were shown under semi-arid irrigated conditions.

Required conservative parameters of the model determined on the basis of
predefined parameters for soft wheat. Of the latisly four had to be adjusted.
The use of the statistical LOOCV method providededlent results for the main
model outputs (i.e., soil water content profile evolution, laissnand grain yield).
The analysis of irrigation scenarios showed tha thodel can optimize
frequency and timing of the irrigations supplies.isThllow to maintain good
grain yields and to increase WUE by avoiding periafd water stress and
overwatering, and thus guaranteeing optimal grovaogditions throughout the
cropping season.

Furthermore, new prospects are opening to improeettlol performance by
integrating short-term weather forecasts in theg@ss of making decision. This
should improve the effectiveness of irrigation shfiemg by considering the
significant rainfall expected.

This aspect will permit decision-makers and farnterbetter schedule irrigation,
to insure water saving and to avoid irrigation digpfollowed by a significant
amount of rainfall. This will be a first step to &slish a warning system for
irrigation across the whole studied irrigated perimeter.

We concluded that this model is a suitable toolsiarulating the effects of water
stress on crop productivity in order to improve irrigatioanagement and thereby

optimize water-use efficiency under arid and semi-aridlitioms.
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Chapter5

Conclusion and perspectives
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1. Conclusion

Cereals are by far the most important crops in $esfradded value, area covered
and food security. In Morocco, water availabilitytie main limiting factor for
cereal production and its management has long beeational priority for the
agricultural sector. In terms of agricultural watesnagement, flooding irrigation
is practiced on more than 93% of the total areiarigfated perimeters in Morocco
and mobilizes large volumes of water. Given the irgwe of this sector, good
management of irrigation water at a large-scaksgential. This has led to work
on developing optimum strategies for planning arahaging available water
resources in order to improve irrigation schedulimgl prevent water stress from
adversely affecting yield.

In order to address this issue, we focused on tebnigues: optical and radar
remote sensing; and crop modeling. The approachedoged in this research
are intended primarily for decision-makers and rgens of large-scale irrigated
perimeters (40,000 ha).

Remote sensing was used because of its high palténtnonitoring agricultural
parameters. We analyzed the ability of two speatdices (NDWkoq and MSI)
derived from SPOT images and backscattering valeesed from SAR images
to monitor irrigation. These indices were compareth worrespondingn situ
measurements of soil moisture and vegetation watetent in 30 wheat fields.
NDWIlgog and MSI were highly correlated with tire situ measurements at both
the beginning of the growing season (sowing) anfdilamaturity (grain filling).
From sowing to grain filling, the best correlatid®?€0.86; p<0.01) was found for
the relationship between NDW4, values and observed soil moisture values.
NDWIge4 can therefore be used as an operative index foitarmg irrigation in
order to estimate and map surface water contemgesaat the main crop growth
stages at the field and regional levels in the Tadla igthperimeter.

Backscatter amplitude analysis showed that sigmtichanges in surface states
(backscattering values) caused by irrigation cobtl detected, with values
ranging between 0.11 to 3.11 dB.
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A reference level was set at 1 dB to differentibtgween, on the one hand,
irrigated plots and, on the other, non-irrigated pland plots irrigated for more
than 2 days. There was no significant differencevbeh the non-irrigated plots
and irrigated plots after more than 2 days.

In order to guarantee continuous irrigation moimigrof the irrigated area over
time, it was necessary to ensure that the interv8AR image acquisition did not
exceed 3 days.

This study provided evidence that radar data contaportant information for
the detection of irrigation water supplies durire tstudied cropping season
period.

The developed approaches, based on remote sensignea with crop growth
models, could be used as an operational tool foragiag irrigation and crops, as
well as for monitoring the evolution of surface amtontent at the plot and
irrigation scheme levels. The practical aspectsheté¢ approaches include: (i)
triggering irrigation supplies in water stress aitans and otherwise preventing
excess supplies of irrigation water; and (ii) dater illegal irrigation and
pumping. This is relevant in irrigated areas whetigation is not scheduled and
uncontrolled water pumping is prohibited.

These approaches will help to improve irrigationnitaring and management in
the Tadla irrigation. They will also directly coftute to the sustainability of
agricultural production systems and preserve wadsources (groundwater and
surface).

The performance of the approaches presented neeldes&ed in other contexts
before judging their suitability for application in otteeas.

The high resolution remote sensing approaches ¢ogsi means of synoptic
monitoring for agricultural parameters at the tioiémage acquisition, but do not
ensure their temporal monitoring. It is common foere to be more than 10 days
between two satellites passes. In order to achiexdmum yield and improve
the water-use efficiency in irrigation, it is necagsto control wheat production
parameters in time and space. Resorting to crop Isadgistified mainly by the
need to provide temporal monitoring and to asdessnipact of the production
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parameters monitored on yields with a view to oeering the limits of remote
sensing.

The field crop model (AquaCrop v4.0) developed byCF#vas chosen for this
research. AquaCrop was adjusted and tested to $emdlsum wheat yields and
the temporal evolution of soil moisture status, &l &s to assess the impact of
irrigation water supplies (timing and quantity) mcorded yields. The required
conservative parameters of the model were detethvnethe basis of predefined
parameters for soft wheat. Only four of these pataraéhad to be adjusted. The
use of the statistical leave-one-out cross-valuat{LOOCV) method gave
excellent results for the main model outputs. Theagarison between observed
and simulated grain yield and above-ground biongege a normalized root
mean square error (RMSE) of 4.1% (0.2 thand 5.7% (0.8 t.H8, respectively.
Similarly, the difference between observed and nextisbil water content was
16.7 mm on average.

The analysis of irrigation scenarios showed that thodel can optimize the
frequency and timing of irrigation water supplietscould help to maintain good
grain yields and increase water-use efficiency¥miding periods of water stress
and overwatering, thereby guaranteeing optimal grgwionditions throughout
the cropping season.

New prospects are opening up for improving crop eiad by integrating
weather forecasts into the process of decisionimgakind by adopting spatial
modeling that uses data layers on a grid formaiveldrfrom satellite data.
Decision-makers and managers need to be encouragediopt spatial and
temporal monitoring techniques for better schedulof irrigation supplies,
improving water saving and avoiding supplying iatign water when rainfall is
sufficient. These approaches constitute an imporsa@p in establishing an
effective irrigation management system across the studigated perimeter.

Our research has provided methods to help staketsolghd policy-makers in
their management and decision-making. Each method wasdjpliependently.
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2. Perspectives

2.1 Use of recent advances in remote sensing data eclion

Remote sensing tools have demonstrated their ddjgsbito operationally
monitor specific farm management practices, inclgdimigation, over large
agricultural areas (Bastiaanssen et al., 2000; Ozdegal., 2010; Pinter et al.,
2003). The growing interest in satellite imagerydige to the new strategy that
enables and encourages the profitable use of hafilapesolution images (10-30
m pixel size). Publicly free remote sensing dataldessh improved during the last
decades, and the potentialities offered are inargaand strengthened with, e.g.
the launch of Sentinel 1/2 missions (developed logean Space Agency, ESA,
within the Copernicus initiative) and Landsat 8 sis (developed by U.S.
Geological Survey and NASA).

Thanks to the Sentinel-1A and Sentinel-2A satallitaunched in April 2014 and
April 2015, respectively), and with the Sentinel 1®1&B satellites (expected to
be launched in 2016), high-resolution images ofilanrface with a temporal
frequency of five days (high revisit time) will bavailable for operational
purposes. Complementarity between Sentinel-2 andJd_andsat mission is
also expected.

Temporal resolution and spatial coverage of avkilabtellite data can nowadays
be improved by using pointable satellites but @hhtost. Also, airborne can
perform flights on demand and below the cloudsuercome the limitations of
satellite sensors instruments (Jones and Vaughan, 2010).

A temporal resolution of about 3—-10 days for optiel radar data, can improve
significantly irrigation monitoring and crop managent throughout the growing
season (Vuolo et al., 2015). However, satellites cér afresponse with a delay
of about one day in data provisions after acquisitio order to intervene in time,
it is compulsory to ensure a short gap betweenisitign frequency of satellite
images and their processing.

Otherwise, with the current opportunity to acquioed quality satellite data, we
think that the main efforts would be devoted, duriing coming two decades, to

-89 -



the development of useful applications in severainains especially in the
irrigation management. In this case, the main paithe investment will be
allocated for hardware and image processing softwas well as personal
training.

2.2 Retrieving soil moisture by satellite

The surface soil moisture estimation and irrigaticater supply detection can be
performed directly using optic, passive and activiErowave sensors. As
described in Chapters 2 and 3, the potential of tersensing (optic and radar) to
retrieve accurately the surface moisture and deteiation supply was
demonstrated. The most important consideration enture robust estimation of
these two items and to improve irrigation water itwing and crop management
in semi-arid areas. These findings need to be tesiddvalidated with available
Landsat-8 and sentinel 1/2 products, so that totadtie knowledge base and
improve the mastery and application of satellite imageggniculture.

The high sensitivity of the Short Wave Infra-RedWIR) band to surface
moisture variation was confirmed in Chapter 2. Thaud cover penetration
capability constitutes the main limitation for ayai remote sensing data use. This
limitation is less acute in arid and semi-arid arednere dry periods are more
frequent. Optical imagery could be used for wateesst warning by detecting
plots with under-threshold water content that ax@bably suffering from water
stress.

SAR data in C-band frequency (Chapter 3) has pdaticadvantages since it is
largely independent of the time of day or cloud epvand can also partially
penetrate the surface cover. Other wavelengths asidikband can be explored.
Indeed, L-band penetrates deeper into the vegetatioar and soil and provides
more relevant information on moisture and waterteon(Zwieback et al., 2015).
These two bands might be explored further in otdefevelop robust and simple
approaches for detecting irrigation schemes for the mapsadn irrigated areas.
Moreover, the potential of the studied indices frieving surface moisture and
backscattering value threshold to detect irrigation sepfbr various crops under
different irrigation methods can be further invgated. This will help in the
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control and monitoring of irrigation water suppligsd in assessing surface water
content changes.

The discontinuity of remote sensing data heightéesimportance of modeling
that will simulate the temporal evolution of cropvelopment and soil water
content. Combining intermittent remote sensing data witlo growth modeling
approach through assimilation techniques shouldigeobetter temporal model
outputs than using crop growth models alone.

2.3 Soil water content monitoring at the field-scale

The gravimetric method, used in this research, requa large data collection
effort without ensuring, in most cases, a temporarespondence with the
acquired satellite images or enabling a continutays of data. For a temporal
synchronization between satellite data and fieldagsneements, it is more
appropriate to perform continuous measurement ibfwsier content in control

experimental sites. To achieve this objective, praaesbe installed in root zone
and connected to data loggers. Measurements dataecantomatically recorded
in real time and provide detailed time series. Argspntative set of soil water
content stations equipped with electronic probesikhideally be installed on the
main irrigation perimeters in order to express spatial variability of the soil-

crop-climate relationship but this requires funds that nayeasily be granted.

2.4 Crop models spatialization

AquaCrop model can simulate crop growth and soteweontent at a daily time
step, based on environmental conditions and undfarelt crop management
practices (e.g. irrigation).

As shown in chapter 4at the plot level, AquaCropld¢aulay a key role in
optimizing growing conditions throughout the crapgpiseason in order to ensure
satisfactory production/yield and improve water-eggciency, while avoiding
water excess or water deficit situations.

The spatialization of the model could give it anled value and serve irrigation
perimeters managers to support their managemeindialex at perimeter scale.
This spatialization requires parcel management (atee of seeding, crop type,
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fertilizer amounts and time of application, irrigatitiming...) for all the parcels
of the perimeter (Tadla perimeter is 100000 ha)sTaige amount of data is
often lacking (or provided too late) to perimetesmagers to optimize the water
supply.

The detection of irrigation supplies timing and #gimation of surface water
content in cereal fields using the optical spedtrdices and SAR data (chapters 2
and 3) can partially correct this lack and prowaey useful information for the
perimeter water management.

The combination of the studied crop growth model memdote sensing data (optic
and Radar) in an operational system can lead tondisant improvement in crop
yield forecasts and soil moisture estimation at local amye Iscales.

2.5 Development of a system for crop management arte-

scale fields

Future research also includes the development#tainterface or user-friendly
platform for crop management, based on a systenirttegfrates satellite data and
crop modeling (figure 1). This research aimed atviging a scientific and
technical approach for monitoring of irrigation glips and surface water content
in a semi-arid irrigated area. The approach ccedd lto operational management
tools for an efficient irrigation at field and regional lksve
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The proposed system requires three principal coemsrof input data that are
satellite remote sensing data (optic and radarphat# data and collected data in
the experimental fields. The surface moisture, itiigasupply detection and land
use maps are derived from satellite images. Thecspalated to remote sensing
have been developed for wheat in Chapters 2 andir®) BPOT-5 and SAR
images, respectively. Further studies should be weidanrtto test the applicability
of this research findings for other crops and ugimgy available Landsat-8 and
sentinel 1/2 products.

The proposed operational tool aims to spatializea®rop model by integrating
the spatial geo-database (SGDB) in the analysis saiidilation process per
homogeneous unit or pixel. The SGDB is constitutgdth®e satellite derived
indicators, the punctual field data, soil maps, irdtded climate data and
weather forecasts.

The data provided by users will also be built at the SGDBhcontrol of inputs
data. The outputs of simulations are integratedhia $GDB and they are
available to users. The tool would also provide rgenzent and monitoring
advices, in real time through a web interface, to tnithe requirements of
managers and users. On this basis, the irrigatioragement advice provided is
meant to limit excess water application and achiavieetter use of irrigation
water and cost savings.

For the development of this tool, we intend to eitptbe existing platform
CGMS Morocco and benefit from the experience ofésearch team (Balaghi et
al.,, 2013a). As part of INRA’s medium-term researcbjgut and in partnership
with other research institutions, possibilities €kis continuing to develop these
tools and test their applicability to any importambps in other irrigated areas
with different climatic and edaphic conditions. Ttos! will be made available to
decision-makers and managers of various institutiongviedan the management
of irrigation water in the region (e.g., ORMVAT, ABOHER).

The proposed system, designed primarily for decisiakers and managers of
large irrigated perimeters, requires three princqmahponents of input data that
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are satellite remote sensing data (optic and radémate data and collected data
in the experimental fields. The surface moisturegation supply detection and
land use maps are derived from satellite images. a8pects related to remote
sensing have been developed for wheat in Chaptared23 using SPOT-5 and
SAR images, respectively. Further studies shouldubdertaken to test the
applicability of this research findings for othetops and using the available
Landsat-8 and sentinel 1/2 products.

The proposed operational tool aims to spatializea®rop model by integrating
the spatial geo-database (SGDB) in the analysis saiidilation process per
homogeneous unit or pixel. The SGDB is constitutgdth®e satellite derived
indicators, the punctual field data, soil maps, irdeded climate data and
weather forecasts.

The managers of large irrigated areas can usealidated spatial surface (soil
and vegetation) moisture evolution and spatialdyfefrecasting provided by the
system for crop management and monitoring irrigatid’he outputs of
simulations are integrated in the SGDB and theyaaeglable to users. The tool
would also provide management and monitoring adyigereal time through a
web interface, to meet the requirements of managetaisers. These outputs can
be used for: (i) triggering irrigation supplies imater stress situations, (ii)
detecting irrigation supplies, (iii) scheduling gation and assessing its impact on
yield and (iv) detecting illegal irrigation and ppimg. In drought years, with the
restrictions on the water allocation to the irreghtperimeter, the system could
help the managers to prioritize the irrigation &t and districts depending on
the level of water stress and the development stages of crops

On this basis, the irrigation management adviceigeavis meant to limit water
excess, reduce water shortage and achieve a bsttef irrigation water and cost
savings. For the development of this tool, we intémdexploit the existing
platftorm CGMS Morocco and benefit from the expetemf its research team
(Balaghi et al., 2013a). As part of INRA’s medium-teresearch project and in
partnership with other research institutions, poli$#s exist for continuing to
develop these tools and test their applicabilityatty important crops in other
irrigated areas with different climatic and edapbanditions. This tool will be
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made available to decision-makers and managerar@us institutions involved
in the management of irrigation water in the Tatdgion (e.g., ORMVAT,
ABOHER) in a first step and may be later transit@®large perimeter managers
of all Morocco if it proofs its performance and itsefulness in the Tadla
perimeter.
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Appendix 1

Assessment of vegetation
water content in wheat using
near and shortwave infrared
spot5 data in an irrigated

area*

* Adapted from:Benabdelouahab, T., Balaghi, R., Hadria, R., Lianp#l.,
Tychon, B., 2015. Assessment of vegetation wateterd in wheat using
near and shortwave infrared spot5 data in an ie@area. Revue de Science
de I'Eau (Accepted for publication).
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In Morocco, water availability is becoming a natibpaiority for the
agricultural sector. In this context, the stakehddey continuously to
improve strategies of water irrigation managementppe hand, and to
assess vegetation water content status, on the b#ret, in order to
improve irrigation scheduling and prevent wateesdrthat affects yield
adversely.

The aim of this study was to evaluate the potential ofsmextral indices,
calculated from SPOT-5 high resolution visible (HRdata, to retrieve
the vegetation water content values of wheat inrégated area. These
indices were the normalized difference water indPWIs,) and the
moisture stress index (MSI). The values of theskcas were compared
with corresponding values of in situ-measured \ag@t water content in
16 fields of wheat during the 2012-2013 cropping season.

Good correlations were found between observed aggatwater content
values and NDWj,, and MSI values during the crop growth period from
anthesis to grain filling. These results were vaédausing the K-fold
cross validation method and showed a good stalilityhe proposed
regression models with a slight advantage for tidAN:,, Based on
these results, the NDWJ, was chosen to map the spatial variability of
vegetation water content of wheat at the east ofi-B®wussa irrigated
perimeter. These results proved that the indicegdas near and
shortwave infrared band (NIR and SWIR) are ablentmitor vegetation
water content changes in wheat from anthesis tio §jitng stage. These
indices could be used to improve irrigation andpcroanagement of

wheat at both field and regional levels.

1. Introduction

In the world, irrigated areas produce more than oié#ll foodstuffs and

thus contribute to food security. They are usingual®2% of available
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water resources (Geerts et al., 2009; Seckler et399)1In Morocco,
water availability is considered as the main limgtifactor for crop
growth. Cereal production is strongly related to tAmount and
distribution of annual rainfall in rainfed areasdato the amount of
groundwater and water stored in dams in irrigateds Irrigation water
has to be supplied to the plants when the soil materves are depleted
and are causing plant stress. For instance, in tb&aTisigated area, the
main crop is wheat and represents more than 36%9q@Ma) of the total
irrigated area (ORMVAT, 2009).

The average volume of water consumed by the whregt during the
period from 1994 to 2002 reached 136 fMiyear in the irrigated
perimeter of Tadla. This amount is the equivalent&#¥o of all irrigation
consumed across the irrigated perimeter (ORMVATQORO In this
situation, knowing the vegetation water content ddug¢ an interesting
basis for improving irrigation scheduling and pretveg water stress
adversely affecting yield (Duchemin et al., 2006).

In order to estimate the water content of the \adget for various crops,
remote sensing has been used through the speutiads (Ceccato et al.,
2002a; Hadria et al., 2010; Trombetti et al., 2008)ntalaccount of the
high temporal and spatial resolution of the recent satllit

During the wheat development cycle, water stressctffcan be directly
observed in the vegetation (Feng et al., 2013; Gheaal., 2007; Ning
et al., 2013). Water stress indices used in irrigat@magement should
therefore be based on the spectral bands thateasitigse to vegetation
water content. Many indices designed for vegetatoisture monitoring
have been developed using NIR (780-890 nm) and S@4R0-1750 nm
) bands, including the normalized difference irdgdarindex (NDII)
(Hardisky et al., 1983), the global vegetation moesturdex (GVMI)
(Ceccato et al.,, 2002a), the moisture stress index)(k&int Jr and
Rock, 1989) and the normalized difference waterin@dDWIg,9 (Gao,
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1996). For wheat management, the use of these dpeuliaes for
assessing the vegetation water content becomestiesshiring critical
periods (flowering to grain filling) to ensure good yields.

Recent studies have confirmed the high sensitvitthe SWIR band to
vegetation water variations (Ceccato et al., 2001; Ckeal, 2013; Hunt
Jr et al.,, 2011; Liu et al., 2012; Yilmaz et al., 2008bjherwise, the
reflectance in the NIR spectrum (740-1300 nm) & rtfost sensitive to
leaf internal structure changes (Jacquemoud an@tB&®90) and is
insensitive to vegetation water variation (Elvidge agdn, 1985), except
in extremely high stress conditions, which causesiseleaf dehydration
and thus affect leaf structure (Jensen, 2007). Tie bdnd serves as a
moisture-reference band, whereas the SWIR banc:t asthe moisture-
measuring band. Currently, the spectral indices wgely used to
estimate the biophysical properties of the vegatatincluding the water
content. However, the uses of these indices are ofeate with empirical
methods.

In arid and semi-arid regions, stakeholders and gemaof water
resources express a strong need for tools thadssess vegetation water
content. In this paper, we explored the potentiawaf spectral indices,
the NDW/ls,, and MSI, derived from high spatial resolution S\W4Rd
NIR, to assess and map the vegetation water coofentheat in the

irrigated area of Tadla, Morocco.

2. Materials and methods

2.1 Study area

The study area (Figure 27) is located in the cemter
Morocco, between the Atlantic coast in the northinasd the Atlas
Mountains in the southast (32°23" north latitude; 6°31 west longitude;

445 m above sea level). This irrigated plain of @adbvers about
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100,000 ha and is characterized by a flat topograitycomposed of a
right bank (Beni-Amir) and left bank (Beni-Moussajhis area is
characterized by a semi-arid climate: the averagmia precipitation is
about 300 mm (average over the period 1970-201Qk avisignificant
inter-annual variation ranging from 130 to 600 mmthie same period.
This plain is managed by the Regional Office for ridgltural
Development of Tadla (ORMVAT).

Wheat is one of the main crops in this area, coge86% of the total
cultivated area. The wheat-growing cycle in the gegruns from
November-December to June. During this period, whegaitrigated,
using the flooding irrigation technique, between tand five times,
depending on the water available in autumn ands¢theme accumulated
in dams during winter and spring seasons.

The area is divided into several hundred irrigatpbots. Sixteen wheat
plots of them were selected in this study. The sizthese plots varied
from 1.7 to 14.5 ha (the total area is 77 ha). Ttvmkination of crop
management and irrigation schedule for these plats representative of
the agricultural practices for wheat in the regibigure 27 shows the
location of studied area and illustrates the pmsitf the selected plots
(P1 to P16).
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2.2 Field experiments

Experiments were conducted during the 2012-2013atvhe
growing season to record dates and amounts obieihwater supplied
and to collect crop physiological data. Data werected from 16 fields
of wheat, located at Tadla’s Regional AgriculturgsBarch or belonging
to farmers, thus providing a valid representation tioé soil-plant
relationship in the study area. The field data eelab Marzak and Achtar
cultivars, which are widely cultivated in the study region.

Vegetation water content was measured weekly frothesis until wheat
grain filling (March to May 2013). It was measuredfour randomly
selected quadrates in each plot (i.e., an area of 0.5 m). From each
quadrate, sub-samples were used to measure thetwéitite fresh and
dry above-ground biomass (dried in an oven at GBtGl8 h) (Igbal et

al., 2010). Water vegetation content was quantifiech agravimetric (g
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water/g vegetation) basis and was expressed in db@ment as a
percentage (%).

We synchronized the field measurements with tharmtey for acquiring
satellite images. In our case study, we only consdlefield
measurements taken within a time lag of three déAsalso ensured that
during this time lag there was no rainfall event or irrigasapply.

Using geographical information system (GIS) sofmyave vectorized the
collected field data (vegetation water content) @@int and the
experimental plots delimitations as polygons. We dsubted the
experimental plots into units (sub-plots) of theneasize and assigning
per unit a code to identify and locate in space tamd. Then, each sub-
plot has been joined to the punctual data of veigetavater content and

soil moisture corresponding to it spatially.
2.3 Satellite images and their processing

Three SPOT-5 HRV satellite images were acquire®in
March 2013, 26 March 2013 and 11 April 2013 when $lod was
completely covered by vegetation. They covered theod between
anthesis (March) and grain filling (April) in the022-2013 cropping
season. These wheat growth stages are crucial tweegeod yield (de
San Celedonio et al., 2014).
SPOT-5 scenes have 10-m pixel resolution and fpactsal bands: B1
(green: 0.50-0.5A m), B2 (red: 0.61-0.68 m), B3 (near infrared NIR:
0.79-0.891 m) and B4 (short-wave infrared SWIR: 1.58-1i7/). One
of the big advantages of Spot 5 images comparether VHR images is
the large swath (60 kmx60 km) that allows a completes of our region
of interest. We also had the opportunity to progthm satellite passes
when the vegetation covered completely the soiltarmatch the critical

time for the wheat crop.
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The processing level of the acquired images wag, (MBich included
radiometric and geometric corrections. We condu@erdatmospheric
correction from the images of radiance, using thAA&ABH model (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypgbes) included in
the ENVI 5 software. The latter model is consideradre accurate
compared to other models for SPOT-5 image (Guo and Zeng).2012
We computed the two spectral indices, NDWIGao (G&961 Hardisky
et al., 1983) and the MSI (Ceccato et al., 2002a; Gecsaal., 2001,
Hunt Jr and Rock, 1989), using the spectral reflegtadlR and SWIR
for each SPOT-5 HRV image acquisition date (Table 18).

Table 18: Studied spectral indices derived from SPOT-5 sensor

Indices Equation Properties References
s rea - VT Gao 150
SWIR)/(Red . ; Hardisky et al.
Water Index + SWIR) Soil moisture (1983)
(NDWI Gao) content
Moisture Waﬁi;ﬁgztﬁm of Hunt Jr and Rock
Stress (SWIR/NIR) veqetation water (1989); Ceccato et
Index (MS) 9 al. (2001)
content

The next step consisted in generation of a maskheft sub-plots, using
ENVI 5 software. The average values of the spetidites (NDWIGao
and MSI) were then computed for each correspondgimgrplot (7x7
pixels) where field measurements were conducted (FERxen our case
study, we took ¥ ha (7x7 pixels) as a reference, avbare irrigation
applications are synchronous and homogeneoussasthie. Regression
analysis was carried out between vegetation wateieat measurements,
MSI and NDWIGao values. This permitted to estabttsh relationships
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between the NDWIGao and MSI values derived fromSROT-5 images

dataset and the ground studied measurements.

i Shapefile data Creation of shapefile I Image Spot-5 I
measurements for experimental plots I (10 m resolution) I
(16 polygons) . .

Derivation of Classification "

Creation of sub-plots | 1, | NDwiand MSI (Supervised) |
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(219 polygons) | I
) Wheat Class I

W S s o) e pie st i e A A M e %
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Mask for each satellite H2>

image i

Computation of the average of NDWI
and MSI by sub-plots .

Table grouping (spatially and temporally) field
data and spectralindices.

v

Figure 28: Schematic diagram illustrating field data and Siateimages

processing
2.4 Supervised classification

In order to define the cereal area, which is ouroregf
interest, we used a supervised classification methioere 65 datasets
have been taken for calibration and 112 sets fdidaton data.
Separability analysis allow to determine how distimnd thus separable,
different surface types are from each other. Whesaé eereal, and other
land occupations were categorized into two differelasses to analyze
their spectral separability. The Jeffries-MatusitM) distance was used
to assess the potential of band pairs to discrimibatween two different

region classes. The values range between 0 and 2.
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2.5 Model validation

Cross-validation is a technique to explore thealslity of a
model to assess how the results of a statisticalysis will be applied to
an independent data set (Kohavi, 1995). It is maiskd to estimate the
accuracy of a predictive model. Several cross-vatidatechniques are
used: "holdout method", "k-fold cross-validation"dafileave-one-out
cross-validation" (LOOCYV).

The k-fold cross validation (k-fold CV) approach was useevaluate the
accuracy of the obtained regression models betvilkentwo spectral
indices and surface water content (Cassel, 2007% djyproach uses k
replicate samples of observation data, builds modt#ls (k-1)/k of data
and tests with the remaining 1/k. K-fold CV is afeefive and widely
used method. In our case, it involved 20% of the wmlasiens as the
validation data, with the remaining 80% of the olbations being the
training data. We emphasize that the random k-fod takes k
independent samples of size N*(k-1)/k (Cassel, 200/8 performed the
cross-validation analysis using SAS 9.1 software.

2.6 Model evaluation

Different statistical indices were used to compparedicted
and observed values. These indices were the ceeifiof determination
(R?), the root mean square error (RMSE), the noredliRMSE
(nRMSE) expressed as a percentage of the RMSEedivg the mean of
observed values (Richter et al. 2012) and the mean abschtéMAE):

(Si—01)?
n

0.5
RMSE =[S, | @

)

(5i—01)? 05 100
nRMSE = g, &0 x =2
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Where Si and Oi refer to simulated and observedegbf the studied
variable, respectively; n is the number of obseovetj and M is the mean
of the observed variable. The nRMSE indicates tlceracy of the model

and the dispersion around the mean of the observed values.
2.7 Mapping of vegetation water content

To illustrate the practical use of this study, vatieh water
content was mapped by using the validated linegression model
between vegetation water content and NRWindex. Three maps were

presented here for the east of Beni-Moussa irrigated area.

3. Results and discussions

3.1 Vegetation water content assessment at full

vegetation cover

We compared the values of observed vegetation wateent
of 32 studied sub-plots and their spectral indicsies derived from the
three images acquired on 21 March 2013, 26 Marct3 20 11 April
2013. The results of this comparison were presented iref@@wr
The statistical indicators obtained from the pregiocomparison,
presented in figure 29, showed that both spectdit@s simulated well
the vegetation water content. The values of stedistindicators R2,
RMSE, and nRMSE were 0.63, 3.19% and 4.24% for the Npyéhd
0.58, 3.22 and 4.27% for the MSI, respectively. Simiksults were
reported for the indices based on shortwave infréaand by Hunt Jr and
Rock (1989) and QiuXiang et al. (2012) when simaotatihe vegetation
water content.
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Figure 29: Relationship between observed vegetation wateteadand

derived spectral indices

In order to validate these results, we comparedrebdesegetation water
content values and those predicted using the k-@id method. As
shown in figure 30, the errors were minimal for btdte NDWk,, and
MSI. The evaluation model indicators obtained foedicted vegetation
water content from the NDWi.were 3.39%, 4.52% and 0.52 for RMSE,
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NRMSE and R?, respectively. For the MSI, these valuese 3.55%,
4.74% and 0.48 for RMSE, nRMSE and R?, respectiveigu(é 30).
These results confirmed the ability of NDyY to retrieve well the
vegetation water content of wheat, while the valiesMSI were

comparatively less in agreement with the observed values.
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Figure 30: Comparison between observed and predicted vegetatiter

content (%) using the k-fold CV of all acquired gea
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area. The analysis of the numerical JM values aliougeto conclude that

the separability results for training samples oralfficlassification scheme

are good. The estimated value of separability was 1.99.

The contingency matrix was used to evaluate thegp¢age of sampled

pixels that were classified as expected. This dlaatibn was validated

and the accuracy assessment and Kappa statisitated that it was a

good classification. The overall accuracy is 0.95levthie overall Kappa

is 96.7%.
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Figure 31: Supervised classification map of wheat over théoregf Beni-

3.3

Moussa East (2012-2013)

Mapping of vegetation water content

Figures (32, 33 and 34) show three maps of vegatatater

32°30'0"N

content (VWC) of wheat class derived from the f8BPOT-5 images.

These maps were generated using the regression (M€ = 51.55 *
NDWiIg,, + 65.75) obtained by comparing the three images qixel
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basis and field measurements. The analysis of tee thaps showed that
vegetation water content ranged from 58% to 87%véen the three
considered dates. For these maps we had an RMSEL#¥%3and an
NRMSE of 4.24%.

Figures (32 and 33) present a high homogeneity egfetation water
content (dominance of green color). Indeed, vegetatiater content
exceeded 70% for all plots. This is explained byangnt precipitation
events that were recorded between 14 and 18 M&t8 31.3 mm) and
on 24 March 2013 (14 mm).

On the opposite, Figure 34 shows a strong heterigeinevegetation
water content values after three weeks of pretipita and a
homogeneous drying of several plots, with vegetaticater content
ranging from 58% to 76%.

Obtained maps allowed monitoring the variability vafgetation water
content in wheat for each agricultural developmesnter (ADC).
Irrigation management is done independently at €asielopment center.
An overview of the maps allowed distinguishing bedw different levels
of vegetation water content. Such information cohkl valuable for
stakeholders and decision-makers in charge ofaiting areas and could
help them to better manage irrigation at a largdesdt could also help
judge the priority ADC to receive irrigation sumdi according to the

given state of vegetation water content.
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Figure 32: Vegetation water content maps derived fidBWIg,, data
(21/03/2013)
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Figure 33: Vegetation water content maps derived figBWIg,, data
(26/03/2013)
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Figure 34: Vegetation water content map derived friidWIg,,data
(11/04/2013)

4. Conclusions

In this study, the ability of the two spectral ioels (NDWk,, and MSI)
to monitor vegetation water content of wheat waessed in a semi-arid
irrigated area. These indices were calculated using tlieandahortwave
infrared band derived from SPOT-5 HRV satellite images.

The comparison between studied spectral indicagegabased on SWIR
and NIR, and vegetation water content measuremedmigvesl good
correlations. This result demonstrated the potemtiaBWIR and NIR
bands to improve irrigation and crop managemenedam vegetation
water content changes per surface unit.

These indices (NDWL,and MSI) allowed vegetation water content to be
assessed and quantified from anthesis to graindilind showed their
potential as an important tool for improving irriigen monitoring and

water stress management at field and regional levels.
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