Short Communication

Long-lasting airway inflammation associated with equid herpesvirus-2 in experimentally challenged horses

Guillaume Fortier a,b,⁎, Eric Richard a, Erika Hue a, Christine Fortier a, Stéphane Pronost a,b, Didier Pottier c, Laurent Lemaître d, Pierre Lekeux e, Kerstin Borchers f, Etienne Thiry g

a Frank Duncombe Laboratory, 14053 Caen Cedex 4, France
b University of Caen Basse-Normandie, SF 4206, ICORE, EA 4655 U2RM, 14032 Caen, France
c Merial S.A.S., 29 Avenue Tony Garnier, 69007 Lyon, France
d Department of Functional Sciences, Physiology, University of Liège, 4000 Liège, Belgium
e Institut für Virologie, Fachbereich Veterinärmedizin, FU Berlin, Philippstraße 13, Haus 18, 10115 Berlin, Germany
f Department of Infectious and Parasitic Diseases, Virology and Viral Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium

⁎ Corresponding author at: Frank Duncombe Laboratory, 14053 Caen Cedex 4, France. Tel.: +33 231 471919.
E-mail address: guillaume.fortier@calvados.fr (G. Fortier).

The aim of this trial was to investigate the putative involvement of equid herpesvirus 2 (EHV-2) in airway inflammation of adult horses. Six horses received corticosteroid treatment, before either mock infection (n = 2) or EHV-2 strain LK4 inoculation (n = 4). These four horses were also submitted to immunosuppression 84 days post inoculation. EHV-2 was detected by quantitative PCR in respiratory samples up to respectively 21 days and 14 days. Nested PCR, cloning and sequencing allowed the detection of five different 'field' strains throughout the trial. Neutrophils proportions were transiently increased in respiratory fluids; neutrophilia being significantly associated with concomitant EHV-2 detection. The laboratory findings reproduced in this trial were compatible with sub-clinical lower airway inflammation and suggest that EHV-2 infection should be suspected when investigating poorly-performing horses.

© 2013 Elsevier Ltd. All rights reserved.
Fig. 1. Schematic representation of the experimental study design. Phase 1 is from Day -2 (2 days before inoculation) up to Day 21 (+21d); phase 2 is from Day 84 (+84d) up to Day 100 (+100d). CS conjunctival swab; NS, nasal swabs; TW, tracheal wash; BALF, bronchoalveolar lavage fluid. a infected group (IG) horses only b control group (CG) horses only.

Fig. 2. Neutrophil counts and EHV-2 viral load in tracheal wash of the control group (horses 1 and 2) and the infected group (horses 3–6). TW, tracheal wash; Neutro, neutrophil; MAEC, morphological abnormalities of epithelial cells; EHV-2, viral load in TW (logarithmic scale). Day 0 (0 d) and Day 86 (+86 d) correspond to the day of inoculation and/or the last day of corticoid treatment.

analyses, including PCR assays and cytology of respiratory fluids (Appendix A) were conducted in a blinded manner. Overall, experimentally challenged horses revealed mild to moderate clinical signs during both phases of the trial (Appendix A). EHV-1, EHV-4 and EHV-5 were not detected at any time in any sample. On Day 2\textsubscript{c0}, EHV-2 was detected in the blood of all horses, in the nasal swabs of IG5 but not found in respiratory fluids of any horse. Supplementary Tables 1 and 2 (Appendix A) summarise viral loads in blood and nasal swabs at other time points. Figs. 2 and 3 illustrate EHV-2 viral loads, neutrophil counts and morphological abnormalities of epithelial cells (MAEC; Appendix A) in respiratory fluids throughout both phases. EHV-2 detection was significantly associated with concomitant TW neutrophilia ($P = 0.008$) and MAEC ($P = 0.028$), whereas viral loads were not significantly correlated with neutrophil counts ($P = 0.53$).

EHV-2 was detected in, respectively, 23% of TW without cytological modifications, 50% of TW with either neutrophilia or MAEC, and 73% of TW with both criteria; the trend being statistically significant ($P = 0.001$). Moderate BAL fluid neutrophilia was also present, whilst no significant association was found with EHV-2 detection. Moreover, five different ‘field’ EHV-2 strains were identified in nasal swabs from three horses on Day 0 (two strains for CG1 and IG3, respectively and one for IG5). On Day +2, ‘inoculated’ EHV-2 strain was detected in nasal swabs of IG5, along with two different ‘field’ strains (Appendix A; Fig. 1).

This is, to our knowledge, the first study reporting systematic evaluation of viral DNA loads and cytological profiles during an experimental EHV-2 challenge. Since EHV-2 was detected in blood but not in any respiratory fluid before immunosuppression, corticosteroid treatment successfully stimulated viral shedding as
appraised by quantitative PCR, as well as associated airway inflammation. Viral loads and concomitant neutrophil counts in respiratory fluids were however not significantly correlated. These findings are in accordance with a study by Brault et al. (2011) in which clinical signs of respiratory disease were not significantly associated with either viral loads or any specific EHV-2 genotype.

Since clinical signs related to EHV-2 infections were previously reported in foals only, we aimed to determine whether EHV-2 could be experimentally associated with subclinical airway troubles in adult horses. No clinical manifestation was reported, whilst hyperaemia of the tracheal mucosa and tracheal hyper-reactivity were noticed. Moreover, both neutrophilia and late detection of viral DNA up to Day +21 and Day +14 post-infection, respectively during phase 1 and 2, are compatible with subclinical forms of IAD as currently defined (Couetil et al., 2007).

Quantitative PCR also revealed that each horse was previously infected with EHV-2, while the ‘inoculated’ EHV-2 strain was detected only on a single occasion. Phase 1 of the experiment then resulted in an unsuccessful super-infection of IG horses, possibly due to a protective immune response or competition with reactivated ‘field’ EHV-2 strains. The results also confirmed previous data revealing that multiple EHV-2 strains may be concomitantly detected in respiratory samples of a single horse (Brault et al., 2011). EHV-2 is ubiquitous and found to early infect foals (Bell et al., 2006). The molecular tools being used in the current study were nonetheless highly targeted for tracking purposes of the ‘inoculated’ EHV-2 (Appendix A) so the precise number of different strains being shed was not definitively determined.

In conclusion, the present trial allowed experimental confirmation that EHV-2 DNA detection in TW was significantly associated with concomitant neutrophilia. The economic consequences of such long-lasting airway inflammation may be of paramount importance in racehorses (Holcombe et al., 2006). EHV-2 status should probably be evaluated when investigating poorly-performing horses.

Conflict of interest statement

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Acknowledgments

The authors would like to thank Loïc de Saint Jean, André Roussel, Alain Pirel and Emilie Soulier (Charles Rivers Laboratories) for technical support, and acknowledge the scientific contribution of Dr. Dominique Jas (Merial), and Dr. Emmanuelle Van Erck (Equine Sports Medicine), the logistic assistance of Pr. Jean-Marie Denoix, Pr. Fabrice Audigié and Dr. Marie-Capucine Dupuis (CIRALE), the kind collaboration of the Animal Health Department (Frank Duncombe Laboratory), and the financial support of Conseil Général du Calvados. This work has been undertaken thanks to the Hippolia Foundation.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tvjl.2012.12.027.

References

