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Abstract— This paper presents an explicit multi-model pre-
dictive controller (MMPC) for a waste heat recovery system
(WHRS) mounted on a heavy duty truck engine. WHRS based
on the Rankine cycle principle attracts a lot of interest in
the heavy duty industry, over the past few years, to decrease
the fuel consumption and reach the future pollutant emissions
standards. Control issues have still to be faced before the
integration of such a system into a vehicle. Model predictive
controllers suits really well for our control purpose due to their
ability to handle online optimal control problem. This paper
focuses on the development of an explicit control law based
on MMPC with aim to control the fluid temperature at the
inlet of the expansion machine in order to increase the system
performance and the reliability.

INTRODUCTION

Over the last few years, the increase in fuel price coupled
to the more and more stringent pollutant emissions leg-
islations have compelled the truck manufacturers to look
into innovative solutions to decrease the fuel consumption.
Waste heat recovery systems (WHRS) such as Rankine
cycle could be one of those solutions [1]. Recovering waste
heat by the way of a Rankine cycle and turned it into
another form of energy is not really new. This principle
is used for electricity generation for years since today a
large proportion of the worldwide electricity production is
based on the Rankine process using a wide variety of heat
sources. In the last decades, automotive industry has been
placing more and more attention in recovering waste heat.
The most applied system, today, is the turbocharger which
turns available energy into aeraulic work. Another example
is the turbo-compound which transforms wasted energy
into mechanical one. In addition to those systems, energy
recovery based on the Rankine cycle has attracted a lot of
interest over the last years and a significant potential has
been shown in heavy duty (HD) industry and especially for
long haul truck applications [2], [3]. If working fluid (WF),
heat source, heat sink and components choice are largely
addressed topics, only few papers treat of control system
development [4], [5]. To ensure safe operation and improve
the operating strategy, a key variable is the working fluid
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temperature at the expansion machine inlet: This temperature
is often turned into a superheat criterion (superheat is the
temperature difference between the actual value and the
saturation temperature) and needs to be accurately controlled
in order to maximize the power production and increase
the power generation period by feeding the expander with
vapor at good conditions. Moreover, technical integration
constrains that the control algorithm has to be yet simple
to limit the computational complexity (attribute a large part
of the computational capability of the electronic control
unit to a classical optimization problem is not possible)
and fast to compute (sampling time is 20ms). This paper
is organized as follows: section 2 presents the principle and
the studied system are explained. Section 3 approaches the
controller methodology development when section 4 shows
some numerical results. Finally a conclusion is drawn.

I. PRINCIPLE OF OPERATION AND STUDIED
SYSTEM

A. Rankine process
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Fig. 1. Temperature-entropy diagram of the Rankine cycle

Rankine cycle process is well known and widely used for
years. It relies on four transformations and is a variant of
the Carnot cycle. First, the fluid is pumped and compressed
from the condensing pressure to the evaporation pressure
(1→ 2). The pressurized liquid goes through one or several
heat exchangers to recover thermal power (Q̇in) from the heat
source(s) to be preheated (2 → 3a), vaporized (3a → 3b)
and then superheated (3b → 3c). This superheated vapor
is expanded (3c→ 4) through the expander which aims to
convert the pressure drop of the expansion from evaporating
to condensing pressure into a mechanical power on its shaft
(Ẇout ). Finally the fluid at low pressure, which can be fully
vapor or partially condensed after the expansion process
(depending on the technology used and the superheat level
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at expander inlet), is condensed (i.e. changes from vapor to
liquid phase 4→ 1) releasing heat (Q̇out ) into the heat sink.
An usual representation of the thermodynamic cycle is done
through a temperature-entropy (T-s) form: Figure 1 shows
the state changes of the working fluid (or Rankine fluid) and
transfer fluids (heat source and sink) of a subcritical Rankine
cycle.

B. Studied system

The studied WHRS (Figure 2) recovers heat from both
exhaust gas recirculation (EGR) and exhaust in series, which
means that the working fluid goes first through the evaporator
linked to the EGR and then through the tailpipe boiler (linked
to the exhaust gases) [6]. This special configuration has
been chosen to lower the EGR temperature downstream the
boiler. The Rankine fluid is pumped in an atmospheric vented
tank and pressurized by the feed pump. By controlling its
speed, the working fluid mass flow rate going through the
evaporators is set. The fluid then flows through the EGR and
the tailpipe boiler where it is turned into vapor. It is expanded
in a turbine, condensed in a water cooled condenser and
goes back to the tank . The system is mounted onto an 11L
6 cylinder turbocharged engine with diesel particulate filter
(DPF) and selective catalyst reduction (SCR) exhaust after
treatment system. The working fluid is a mixture of water
and ethanol which reduces the flammability of pure ethanol
and decreases the freezing temperature of pure water.

II. RANKINE CYCLE CONTROLLER

A. Controller aim

This paper describes a temperature controller development
for the system mentioned in section I-B. The aim is to
reduce the standard variation around the set point. To do
that, the manipulating variable (MV) is the working fluid
mass flow rate, and is used to ensure that the temperature
after the two evaporators (the controlled variable CV) track a
desired set-point. In the following, superheat is used instead
of temperature since only normal operation mode, where
the goal is to keep the working fluid in vapor phase, is
considered. Having an efficient control of it is important to
maximize the system efficiency and to ensure that no liquid
enters in the turbine which can be destroyed due to its high
rotational speed. This work focuses only on the evaporators
models since the system dynamic is mainly controlled by the
heat exchangers (HEX) behavior.
Moreover, technical integration impacts the choice of the
control algorithm: it has to be simple (poor computational
capability) and fast to be computed (sampling time is 20ms).

B. Nonlinear evaporator model

The input vector u contains the MV ṁ f0 and four inputs dis-
turbances which are: the WF pressure and enthalpy entering
in the evaporator (Pf0 and h f0 ) and the gas mass flow and

Fig. 2. Studied system schematic

temperature entering in the boiler (respectively ṁgL and TgL ).
The state vector contains: the WF mass flow and enthalpy
(respectively ṁ f and h f ), internal wall temperature (Twint ),
transfer fluid temperature (Tg) and external wall temperature
(Twext ). The complete model development and experimental
validation is shown in [6]. After the spatial discretization,
the system of equations defining the response of the ith cell
for working fluid, internal pipe, transfer fluid and external
pipe is shown by equation (1):

Zẋi = fi (x,u)

where: Z =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


xT

i =
[
ṁ fi h fi Twinti

Tgi Twexti

]
uT =

[
ṁ f0 Pf0 h f0 ṁgL TgL

]
(1)

fi(xi,u) =
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∂ρ fi−1
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(
Tfi−Twinti

)
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h fi
ρ fi

∂ρ fi
∂h fi

− ṁ fi(
ṁ fi−1 h fi−1−ṁ fi h fi

)
−α fi Aexchint f

(
Tfi−Twinti

)
ρ fiV f

α fi Aexchint f

(
Tfi−Twinti

)
+αgAexchintg

(
Tgi−Twinti

)
ρwint Vwint

ṁgcpg (Tgi )(Tgi−1−Tgi)−αg

[
Aexchintg

(
T ∗gi
−Twinti

)
−Aexchextg

(
Tgi−Twexti

)]
ρgiVgcpg(Tgi)

αambAexchextamb

(
Tamb−Twexti

)
+αgAexchextg

(
Tgi−Twexti

)
ρwext Vwext


(2)

where i ∈ [1 : nd ] and the ambient temperature Tamb is taken
constant around the entire HEX.

C. Local multi linear model development

Development of a good nonlinear first principle model is a
severe effort (many parameters are usually hard to get from
experimental results) and may be difficult to be implemented
in an online model based control strategy. Here, integration
constrains lead to develop a simple and fast controller. In
that case, many works report the usage of multi linear model
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approaches [7], [8]. Let us consider the single input single
output (SISO) nonlinear model of the form:

ẋ = f (x,u), (3)
y = g(x,u), (4)

where the input is the considered MV (the WF mass flow
rate entering in the EGR boiler) and the output is the
considered CV (the WF temperature at the outlet of the
tailpipe boiler). The four remaining input components in
(1) are further considered as input disturbances. By plant
experiments or simulation of the detailed non linear model
(1-2), the relationship between the MV and the CV defined
in the nonlinear SISO system (3-4) can be identified by a
series of first order plus time delay (FOPTD) models (each
with a subscript i ∈ [1,N]), where the model parameters are
the static gain Gi, the time constant τi and the delay Li:

Fi(p) =
yi

u
=

Gi

1+ τi p
e−Li p. (5)

In the sequel, the scalar MV is u and the scalar CV is yi.
To obtain a global model, theses N local models have now
to be combined. The weighting scheme has to estimate the
probability of one model among N to be valid by comparing
the process measurements to the output of each local models.
The global model output is then calculated by weighting the
local model outputs and sum them.

D. Weighting schemes

The two weighting schemes, used in the latter, estimate the
validity of the ith model by calculating the modeling error:

εi,k = yp,k− yi,k, (6)

which corresponds to the ith model error at the current time
tk between the real measure yp,k and the ith model output
yi,k.

1) Bayesian estimator: Most of the study on multi linear
approach found in the literature use the Bayesian estimator
as adaptive estimation technique to select the best model at
each time step [9], [8]. It is based on probabilities calculation
P(i), representing the probability of the ith model to be valid.
This weighting scheme assigns a value between 0 and 1 to
each model outputs where the weights sum is equal to 1
to ensure that the global model is always bounded by the
extreme values of the N models in the bank. It also allows an
exact, if it appears, model to be the only prediction model.
The recursive Bayesian weighting scheme is a conditional
probability of the ith model among the N models of the bank
to be true given the model population in the bank and its past
history of probabilities. It is written as follows:

pi,k =
exp(− 1

2 εi,kKiεi,k pi,k−1)
N
∑

m=1
(exp(− 1

2 εm,kKmεm,k pm,k−1)

, (7)

wi,k =


pi,k

N
∑

m=1
pm,k

for pi,k > δ

0 for pi,k < δ .

(8)

In the probability calculation of equations (7-8), a vector
(K) containing convergence factor Ki (i ∈ [1 N]) is used
to improve the convergence to a single model. If more
combination of the different models contained in the bank
is desired, this factor should be detuned and set at a low
value. To keep every models of the bank alive, an artificial
probability is introduced such as all pi,k never goes below this
artificial lower limit δ (which is a tuning parameter). This
one is called in the following cut-off probability and is set to
improve the estimator performance. However every models
having this lower saturation value as probability are excluded
from the weight computation as it is shown in equation (8).
The model output is then defined as at the current time tk:

yk =
N
∑

i=1
wi,k yi,k. (9)

2) New developed estimator: To simplify the weighting
scheme and reduce the number of setting parameters, a
weighting scheme has been developed. All values denoted
by a superscript, ˜ , refer to normalized values.

ε̃i,k =
ε2

i,k
N
∑

m=1
ε2

m,k

, (10)

ci,k = (1− ε̃i,k)
j=N

∏
j 6=i, j=1

ε̃ j,k, (11)

c̃i,k =
ci,k

N
∑

m=1
cm,k

. (12)

The value c̃i,k computed thanks to equation (12) is then
filtered through a first order transfer function with unit static
gain

wi(s) =
1

1+ τ f ilts
c̃i(s) (13)

to obtain the current weight of each local model wi,k. τ f ilt
is a scalar which plays a similar role as the convergence
matrix K used in Bayesian approach (7). The number of
tuning parameters is then decreased to the only parameter
τest instead of N + 1 (K and λ ) in the Bayesian recursive
scheme. The global model output is then calculated in the
same way than with the Bayesian method with (9).

E. MMPC strategy

At time tk (the continuous time is discretized at the constant
sampling rate Ts), the model outputs yi,k of the N FOPTD
models (5) allow to compute the models weights wi,k and
the final model output yk with (9). This modeling (5) and
(9) is used in a MMPC framework to ensure a tracking of
the process output yp to the set-point ysp, accounting for
the control move effort ∆u. Since here, a major issue for
the technical integration, is to decrease the computational
load, the number of optimization arguments (i.e., the control
horizon) is first set to its minimum: 1 (u(t) = u(tk) = uk).
The control horizon is tp. Therefore, the MMPC algorithm
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aims to find, at each current time tk, the optimal step input
u?k that minimizes following the cost function J: min

uin f≤uk≤usup
J(uk) =

tk+tp∫
tk

(yp(t)− ysp)2 +wu∆u2
k dt,

∆uk = uk−uk−1,
(14)

where wu is a scaling factor and a penalty weight for the con-
trol move. In this quadratic form, the ideal optimal solution
leads to J(u?k) = 0, i.e.: the tracking is perfect (yp(t) = ysp ∀t)
and the control is at a steady state (∆uk = 0 ∀t).
In the internal model control structure, the control u is both
applied to the process and the model(s). Hence, it allows to
compute the modeling error e at each k:

ek = yp,k− yk. (15)

this error is assumed constant into the future and used to get
the output prediction yp(t) in (14) using the model:

yp(t) = y(t)+ ek. (16)

In the same way, the set point ysp is taken constant on the
prediction horizon and updated at each time k. The question
is now to write y(t) according to uk (and also the constant
values and the parameters updated at each k). Let us start
from the definition of the output response yi(t) of one linear
FOPTD model i (5) with any input profile u(t) from any
current time tk, and starting from the current process output
yp,k:

yi(t) = yp,ke
−(t−tk)

τi +
∫ t

tk
(e
−(t−s)

τi
Gi

τi
u(s− τi))ds (17)

(17) can be developed as:

yi(t) = yp,ke
−(t−tk)

τi +
Gi

τi
e
−t
τi

∫ t

tk
(e

s
τi u(s− τi))ds (18)

To proceed, we need to define, based on the time delay Li:{
λi = max(ai ∈ N|ai ≤ Li

Ts
)

∆Li = Li−λiTs,∈ R+,
(19)

which allows to define u(.) used in the integration interval
of (18), based on past input values and the future input value
of u. Then, the integration in (18) is done by parts, where
the λi +2 time intervals are given in table I:

s s−Li u(s−Li)
tk → tk +∆Li tk−Li→ tk−λi u(tk−λi−1)
tk +∆Li→ tk +∆Li +Ts tk−λi → tk−λi+1 u(tk−λi )
. . . . . . . . .
tk +∆Li +(λi− j)Ts→ tk +∆Li +(λi− j+1)Ts tk− j → tk− j+1 u(tk− j)
. . . . . . . . .
tk +∆Li +(λi−1)Ts→ tk +Li tk−1→ tk u(tk−1)
tk +Li→ t tk → t−Li u(tk) = uk

TABLE I
INPUT SEQUENCE DEFINITION.

yi(t) = yp,ke
−(t−tk)

τi + Gi
τi

e
−t
τi u(tk−λi−1)

tk+∆Li∫
tk

e
s
τi ds

+ Gi
τi

e
−t
τi

(
j=λi
∑
j=1

u(tk− j)
tk+∆Li+(λi− j+1)Ts∫
tk+∆Li+(λi− j)Ts

e
s
τi ds

)
+ Gi

τi
e
−t
τi u(tk)

t∫
tk+Li

e
s
τi ds.

(20)

(20) can be summarized as a linear expression in the opti-
mization argument uk:

yi(t) = yp,k f1i(τi, tk, t)+ f2i(Ts,Gi,τi,∆Li,λi, tk, t,u(past))
+uk f3i(Gi,τi,Li, tk, t),

(21)
where the fi may be explicitly defined offline and numeri-
cally updated online at each time tk.
Therefore, replacing first (21) in (9), assuming that the
weights wi,k are constant over the prediction horizon, then
combining this result with (15) and (16) in (14), the cost
function to minimize can be written as:

J(uk) =
tk+tp∫

tk

((
N
∑

i=1

(
wi,kyi(t)

)
+ ek− ysp

k

)2

+wu∆u2
k

)
dt

(22)
where tp = max(tpi) ∀i is each prediction horizon has to be
tuned according: tpi = γp ∗ τi +Li; γp ∈ R+,

e.g.: γp = 1(63% of the dynamics is predicted)
or γp = 3(95% of the dynamics is predicted).

(23)
Based on the step response series (20) of the N linear FOPTD
models, the expression (22) is a quadratic one in uk:

J(uk) = β2,k(N,Gi,τi,Li, tp,wu,wi,k)u2
k

+β1,k(N,Ts,Gi,τi,Li, tp,∆Li,λi,wu,yp,k,y
sp
k ,ek,u(past),wi,k)uk

+β0,k(N,Ts,Gi,τi,Li, tp,∆Li,λi,wu,yp,k,y
sp
k ,ek,u(past),wi,k)

(24)
The βi,k(.) can be easily explicitly defined offline (see the
appendix) and are updated at each time tk.

Since J is convex in uk (due to the fact that β2,k > 0, by
definition), let us then define

umin
k (N,Ts,Gi,τi,Li, tp,∆Li,λi,wu,yp,k,y

sp
k ,ek,u(past),wi,k)

(25)
the solution of the minimization of (24) obtained with the
first order optimality at each tk:

∂J
∂uk

= 0 at uk = umin
k . (26)

The calculation of umin
k is then straightforward:

umin
k =

−β1,k
2β2,k

(27)

which leads to the explicit formulation of the solution u?k of
the constrained optimization problem (14): if uin f ≤ umin

k ≤ usup : u?k = umin
k

if umin
k ≤ uin f : u?k = uin f

if usup ≤ umin
k : u?k = usup.

(28)

Using (28), the solution is very fast to compute (no online
optimization task, no online dynamic model resolution).

F. Simulation results

The MMPC strategy is then implemented into Simulink and
coupled to a detailed experimentally validated model [6].
The engine operation covers a heat flow rate entering into
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Ki - 380
δ - 0.001
τ f ilt s 5.33
γp - 5
Ts ms 20
wu K2.kg−2.s−2 min(Gi)

TABLE II
CONTROLLER TUNING PARAMETERS

the WHRS going from 0 to 140kW that is divided into
10kW zones, hence leading to 14 different triplets of the
FOPTD parameters. As seen in figure 3 for two of them,
this model structure is validated by comparing complete
simulation results of the nonlinear model (1 - 2) and each
SISO FOPTD model (5) identified around an operating point.
On both operating points the agreement is good. Model
parameters of the FOPTD models change a lot from one
operating point to another as it can be seen on figure
4, hence underlying the nonlinear aspect of the model.

Fig. 3. FOPTD and nonlinear model variations for two operating points.

Fig. 4. FOPTD model parameters

The controller is then tested on a validated simulation
model [6] and the two weighting schemes are compared.
Perfect actuators and sensors are considered and controller
tuning parameters are set to obtain the best performance.
All values of the convergence matrix K are set to the same
value. Table II shows the controller tuning parameters used
(i ∈ [1 N]). The set point is changed during the simulation
time to assess the performance as well for load changes as
set point variations. Despite the large inputs disturbances
(figure 5) of the representative long haul truck driving cycle
used, the tracking performance (shown in figure 6) of the

Fig. 5. Input disturbances

Fig. 6. Tracking performance

controller for the two implemented weighting schemes is
good. The Bayesian scheme gives better performance as well
in terms of accuracy as in response time. The main reason
is the presence of a cut off probability (δ ) which allows
here to converge to a single model faster than with the
other approach. The developed weighting scheme uses more
blending to compute the global model output. In addition
to that, the new developed weighting scheme seems less
performant to reach the set point when it moves far from
the operating point where the 14 FOPTD models have been
identified. For both weighting schemes, the time response is
quite long compared to the use of a nonlinear model based
controller [10], which requires meanwhile the full perfect
knowledge of all nonlinear model parameters and an online
nonlinear model inversion (which may be no compatible with
our integration constraints).

G. Conclusion

This paper reports an explicit control law based multi-model
predictive controller (MMPC). Based on FOPTD models, it
is a fast control algorithm since it does not require any online
optimization, nor a dynamic model resolution. A weighting
scheme for multi linear models approach is also shown
and compared to a classical Bayesian weighting scheme.
Simulation results developed for a waste heat recovery Rank-
ine based system used in heavy duty trucks, show similar
performance to the Bayesian scheme but contrary to this
method, the new proposed approach requires less effort in
terms of tuning. Currently experimentally validated, the new
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proposed weighting scheme outperforms the Bayesian for a
low number of linear models in the data bank. However,
for both cases shown here, the time response is longer than
with a nonlinear model based controller structure and needs
to be improved. In the meantime, the explicit controller
presented here is a very fast algorithm and does not re-
quire to solve online a dynamic model that might be too
time consuming, contrarily to the nonlinear model based
approach. The presented controller can be derived either
from an available detailed model (1-2), or directly from
experiments (without detailed model development). Also, a
known set point trajectory into the prediction horizon could
be beneficial on this aspect but needs to be designed. Indeed,
the knowledge of the future operating conditions is here often
hard to get and requires complex calculations. At the time
of writing, the strategy proposed has been implemented on
the experimental setup and first results are convincing.

H. Appendix

1) β. expression:

β1,k =
N
∑

i=1

[
β
′

1,k +β
′′

1,k +β
′′′

1,k +β
′′′′

1,k

]
−2wuuk−1tp,

β
′

1,k = −Gi τi wi,k
2 yp,k

(
e

Li
τi +2e−

tp
τi − e

Li−2 tp
τi −2

)
β
′′

1,k = −Gi
2

τi u(tk−λi−1)wi,k
2 e−

2 tp
τi

(
e

∆Li
τi −1

)
. . .

. . .

(
e

tp
τi −1

) (
e

Li
τi −2e

tp
τi + e

Li+tp
τi

)
β
′′′

1,k =
λi

∑
j=1

Gi
2

τi u(tk− j)wi,k
2 e

∆Li−tp− j Ts+λi Ts
τi . . .

. . .
(

e
Ts
τi −1

) (
e

Li−tp
τi −2

)
. . .

. . .−Gi
2

τi u(tk− j)wi,k
2 e

∆Li− j Ts+λi Ts
τi . . .

. . .

(
e

Li
τi −2

) (
e

Ts
τi −1

)
β
′′′′

1,k = 2Gi wi,k (ek− ysp)
(

tp + τi e
Li−tp

τi − τi e
Li
τi

)
β2,k =

Gi
2 wi,k

2
(

2 tp+4τi e
Li−tp

τi −τi e
2Li−2 tp

τi −4τi e
Li
τi +τi e

2Li
τi

)
2

+ wutp

(29)
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NOMENCLATURE

Greek letters

α Heat transfer coeffi-
cient (W/m2/K)

β Polynomial weight
(uSI)

δ Cut off probability (−)

γ Prediction tuning pa-
rameter (−)

ρ Density (kg/m3)

τ Time constant (s)

Latin letters

ṁ Mass flow (kg/s)

tp Prediction time (s)

Ts Sampling time (s)

A Area (m2)

e Modeling error (−)

G FOPTD gain (K/kg/s)

h Enthalpy (J/kg)

J Cost function (−)

K Bayesian recursive
scheme convergence
matrix (−)

L FOPTD lag (s)

N Number of local mod-
els (−)

nd Discretization number
(−)

P Pressure (Pa)

p Bayesian recursive
scheme probability (−)

T Temperature (K)

t Time (s)

u Input (−)

V Volume (m3)

w Weight (−)

X Developed scheme raw
weight (−)

x State (x)

y Output (−)

Sub and superscripts
amb Ambient

ext External wall

f Working fluid

f ilt Filter

g Gas

int Internal wall

k Current

p Process

sp Set point

w Heat exchanger wall
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