

Process Design and Heat Integration for the Power-to-Methanol Route

Léonard Grégoire, Giulini Davide, Villarreal-Singer Diego, Dumont Marie-Noëlle

Nice, ECCE 10, September 2015

Outline

- 1. Introduction
- 2. Model Description
- 3. Results
- 4. Heat Integration
- 5. Conclusions and Further Work

1. Introduction

Background: Renewable Energy Storage with Liquid Fuels

- ➤ European Commission goals to reduce greenhouse gas emissions by 80% below 1990 levels by 2050, 20% by 2020 (*Energy Roadmap 2050*).
- > Varying nature of renewable sources causes time imbalance between production and consumption.
- ➤ Need for energy storage at different time-scales:
 - > Second and minute scale for frequency regulation
 - ➤ Inter-seasonal scale: Power-to-gas, power-to-fuel

1. Introduction

Power-to-Methanol route

- I. CO₂ Capture
- II. H₂O/CO₂ Co-Electrolysis
- III. Methanol Synthesis and Purification

Methanol as liquid energy carrier → (22.7 MJ/kg)

- easy and cheap long term energy storage
- converted to electricity or fuel use
- CO₂ neutral, if renewable sources are used

Léonard et al., 2015. Electricity storage with liquid fuels in a zone powered by 100% variable renewables, IEEE 978-1-4673-6692-2.

H₂O/CO₂ Co-Electrolysis model

1.
$$H_2 + CO_2 \rightarrow H_2O + CO$$

2.
$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

 $CO_2 \rightarrow CO + \frac{1}{2}O_2$

3.
$$H_2 + CO_2 \rightarrow H_2O + CO$$

Outlet Gas	Present Model	Sun et al. (2012)	Relative
	Molar Fraction [%]	Molar Fraction [%]	Error [%]
H ₂ O	15.2	15.0	1.33
H_2	39.7	40.0	0.75
CO	33.2	32.0	3.75
CO ₂	11.7	12.0	2.50

- Redlich-Kwong-Soave equation of state
- Solid Oxide Electrolysis Cell at 850°C and 1.013 bar
- H₂O/CO₂/H₂ feed ratio: 100/45/10
- Operation at thermoneutral point
- H₂O and CO₂ utilization factor: 70%

Methanol Synthesis model

$$\begin{array}{|c|c|c|}\hline CO_2 + 3 H_2 \leftrightarrow CH_3OH + H_2O \\ CO_2 + H_2 \leftrightarrow CO + H_2O \end{array}$$

Methanol Synthesis usually reaches low per-pass conversions:

- Strongly exothermic reaction (low temperature required)
- Need for high pressure (~50 bar)
- High recycle flow for industrial processes

Internal Condensation Reactor

- Internal liquid condensation and gas recirculation
- Leads to 100% conversion
- Small scale applications allow better heat management

Bos and Brilman, 2014. DOI:10.1016/j.cej.2014.10.059

Methanol Synthesis model

1. Methanol Synthesis

- Redlich-Kwong-Soave equation of state
- Simplified Reactor (equilibrium is achieved): 250°C; 50 bar
- Side reactions neglected
- Condenser: 25°C; 50 bar
- Recycle (2% purge)

2. Methanol Purification

- NRTL model
- Distillation column with 11 stages
- 1.013 bar

Global Model

Sub-processes linked through 2 stages-compression with intermediate cooling.

Models of the two parts are validated separately, according to experimental data available.

3. Results

- ➤ The H/C ratio achieved in the produced syngas is equal to 2.4.

 The electrical energy consumed by the electrolyser 5584 kW, almost 53% of the sub-process total energy demand.
- Results are validated with a relative error of 3.75%.
- Methanol synthesis reactor reaches per-pass conversion of hydrogen up to 22.4% and overall conversion of 99.8%.
- ➤ Methanol productivity is 34.2 kmol/hr (about 1 ton/hr), with 97.7% purity.

4. Heat Integration

Pinch Point Analysis

- Problem targeting: 6 cold streams – 7 hot streams
- Minimum approach ΔT: 20°C
- Pinch point: 245.2°C
- Minimum utility requirements

- - Above the pinch: 3 HE and 5 hot utilities
 - Below the pinch: 9 HE and 6 cold utilities

4. Heat Integration

Economic Evaluation

- Overall Heat Transfer Coefficient (U) preliminary estimation for each exchanger.
- Total Heat Transfer Area (A) estimation: 2657 m².
- Bare module cost (C_{BM}) estimation using method described by *Turton et al. (2013)*, updated with CEPC Index (April 2015): 6,292,835 €.

$$Q = U \cdot A \cdot \Delta T_{LMTD} \cdot f$$

$$A_{tot} = \Sigma_i [Q_i / (\Delta T_{LMTD,i} \cdot U_i)]$$

$$C_{BM} = C_0 \cdot (B_1 + B_2 f_m f_p)$$

Efficiency Assessment

- Process efficiency without HEN: 51.4%.
- Process efficiency with HEN: 70.8%.

$\eta =$	HHV _{out_Met} - HHV _{in_H2}
	$Q_{in} + P_{el} + P_{comp}$

Inlet H ₂ HHV (<i>HHV_{in_H2}</i>)	Outlet Methanol HHV (<i>HHV_{out_Met}</i>)	Electrical Power Input (<i>P_{el}</i>)
0.795	7.053	7.316
Hot Utilities without HEN (Q _{in})	Hot Utilities with HEN (Q _{in})	Compression Power Input (P_{comp})
4.265	0.936	0.590 MW

5. Conclusions and Further Work

- ➤ An efficient process for CO₂-neutral methanol production is proposed as long-term energy storage.
- Production rate of 1 ton_{CH3OH}/hr, corresponding to typical decentralized energy storage.
- Benefits from a heat exchangers network design, but high capital cost needed.
- Solid Oxide cells allow both electrolysis and fuel cell mode.
- > A preliminary model is proposed, some further improvements are required:
 - Use of recycled H₂ for the electrolyser
 - Pressurized electrolyser
 - Build a detailed reactor to implement methanol synthesis kinetics
- Integration of carbon capture (Léonard, 2014) in the efficiency assessment.

Thank you for your attention!

Nice, ECCE 10, September 2015