
Food and Environmental Virology
 

Comparative virucidal efficacy of seven disinfectants against murine norovirus and
feline calicivirus, surrogates of human norovirus

--Manuscript Draft--
 

Manuscript Number: FAEV-D-15-00023R3

Full Title: Comparative virucidal efficacy of seven disinfectants against murine norovirus and
feline calicivirus, surrogates of human norovirus

Article Type: Original Research

Keywords: norovirus;  Murine norovirus;  Feline calicivirus;  Foodborne viruses;  Disinfection;
Food-contact surfaces

Corresponding Author: Etienne Thiry
University of Liège, Belgium
Liege, BELGIUM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Liège, Belgium

Corresponding Author's Secondary
Institution:

First Author: William Zonta

First Author Secondary Information:

Order of Authors: William Zonta

Axel Mauroy, Ph.D

Frederic Farnir, Prof.

Etienne Thiry, Prof.

Order of Authors Secondary Information:

Funding Information: Federal Public Service (FPS) Health,
Food Chain Safety and Environment,
Belgium
(RT 10/6 TRAVIFOOD)

Not applicable

The research funds of the University of
Liège

Not applicable

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 
 

Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, 

surrogates of human norovirus 

 

 

Authors: William Zonta, Axel Mauroy, Frederic Farnir, Etienne Thiry 

 

W. Zonta, A. Mauroy, E. Thiry 

Veterinary Virology and Animal Viral Diseases,  

 

F. Farnir 

Biostatistics and Bioinformatics applied to Veterinary Science 

 

Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, 

University of Liège, B-4000 Liège, Belgium 

 

Corresponding author: 

Etienne Thiry 

etienne.thiry@ulg.ac.be 

Tel: +32 4 366 42 50 

Fax: +32 4 366 42 61 

 

Abstract 

Human noroviruses (HuNoV) are the leading cause of acute nonbacterial gastroenteritis in humans 

and can be transmitted either by person-to-person contact or by consumption of contaminated food. 

Knowledge of an efficient disinfection for both hands and food contact surfaces is helpful for the 

food sector and provides precious information for public health. 

The aim of this study was to evaluate the effect of seven disinfectants belonging to different groups 

of biocides (alcohol, halogen, oxidizing agents, quaternary ammonium compounds, aldehyde and 

biguanide) on infectious viral titre and on genomic copy number. Due to the absence of a cell culture 

system for HuNoV, two HuNoV surrogates such as murine norovirus (MNV) and feline calicivirus 

(FCV), were used and the tests were performed in suspension, on gloves and on stainless steel discs. 

When, as criteria of efficacy, a log reduction > 3  of the infectious viral titre on both surrogates and in 

the three tests is used, the most efficacious disinfectants in this study appear to be biocidal products 

B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol and 

aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on 

genomic copy number for both surrogate viruses and in all three tests. 

The results of this study demonstrate that a halogen compound, oxidizing agents and a mix of QAC, 

alcohol and aldehyde are advisable for HuNoV disinfection of either potentially contaminated 

surfaces or materials in contact with foodstuffs. 
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Introduction 

Human noroviruses (HuNoV), small icosahedral non-enveloped enteric viruses, are members of the 

family Caliciviridae and are divided into six genogroups (Green 2013). They are considered to be one 

of the most common causes of acute nonbacterial gastroenteritis worldwide in humans and are 

detected in approximately 50% of acute gastroenteritis outbreaks across Europe and the USA (De Wit 

et al. 2001; Green 2007; Patel et al. 2008; Scallan et al. 2011; Hall et al. 2013; Ramani et al. 2014). 

They are also considered to be the leading global cause of foodborne outbreaks, the main involved 

products being mixed food, seafood, buffet meals and commodities such as fruits and vegetables 

(EFSA and ECDC 2011, 2012, 2013; Hannah Gould et al. 2013; Hall et al. 2014). 

 

The primary transmission route is the faecal-oral one, either via person-to-person contact or by 

consumption of contaminated food or water (Lopman et al. 2003; Siebenga et al. 2007; Kroneman et 

al. 2008; Scallan et al. 2011; Mathijs et al. 2012). Noroviruses are very resistant and can persist for 

several days in the environment (D'Souza et al. 2006). Due to this high persistence on various 

inanimate surfaces and on food, coupled with the prolonged shedding of high amounts of virus in 

faeces and the low infectious dose, person-to-person transmission is very efficient and noroviruses 

constitute a serious public health issue (Mathijs et al. 2012). Alternatively, food can be contaminated 

with HuNoV either at the source in the growing or harvesting areas by contaminated irrigation water 

or during handling or preparation of meals (Tuan Zainazor et al. 2010; Mathijs et al. 2012). 

Foodhandlers have been involved in almost half of all reported outbreaks and this proportion is 

probably underestimated (Koopmans and Duizer 2004; Baert et al. 2009a; Tuan Zainazor et al. 2010; 

Rodriguez-Lazaro et al. 2012; Bellou et al. 2013). HuNoV are commonly identified in closed or semi-

closed communities such as hospitals, nursing homes, cruise ships, military and holiday camps, 

restaurants and catered functions (Glass et al. 2009; Tuan Zainazor et al. 2010; EFSA and ECDC 2012). 

 

The infective dose is not clearly determined, but studies have suggested that about 10 to 100 virus 

particles are sufficient to induce infection (De Wit et al. 2001; Seymour and Appleton 2001; Bresee et 

al. 2002; Green 2007; FAO/WHO 2008; Doré et al. 2010). More recently, the 50% human infectious 

dose was estimated to lie between 18 and 1000 viral particles or between 1320 and 2800 genome 

equivalents for the HuNoV prototype Norwalk strain (Teunis et al. 2008; Glass et al. 2009; Atmar et 

al. 2014). This infectious dose could vary depending on both the involved strain and the experimental 

methodology. 

 

No robust cell culture system is available for HuNoV although norovirus RNA is infectious in 

mammalian cells and a recent study showed the development of an in vitro infection model for 

Text Click here to download Manuscript Text_Zonta_S4_V4.docx 
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human noroviruses in human B cells (Duizer et al. 2004b; Malik et al. 2005; Guix et al. 2007; Jones et 

al. 2014). Due to the complexity and the specific requirements for this new in vitro cell culture 

system for HuNoV, the use of viral surrogates is still required. The murine norovirus (MNV) and the 

feline calicivirus (FCV) are good candidates as HuNoV surrogates as they can grow in cell culture, are 

genetically related and share similar physiochemical characteristics (Jiang et al. 1993; Wobus et al. 

2006; Kniel 2014). Tulane virus could be considered as an alternative candidate as HuNoV surrogate. 

However Tulane virus does not belong to the genus Norovirus and is less resistant than MNV which is 

currently considered to be a better surrogate for HuNoV (Hirneisen and Kniel 2013). First isolated in 

2003, MNV belongs to genogroup V and infects mice (Karst et al. 2003; Wobus et al. 2006). Although, 

FCV is a respiratory virus and is more susceptible to low pH and high temperature than MNV, it is also 

used as HuNoV surrogate (Slomka and Appleton 1998; Doultree et al. 1999; Clarke and Lambden 

2000; Green et al. 2000; Bidawid et al. 2003; Nuanualsuwan and Cliver 2003; Malik et al. 2006). The 

degree of resistance of HuNoV being unknown, the effect of a biocide on HuNoV was inferred from 

the results obtained on the most resistant HuNoV surrogates. 

 

Preventive methods to control outbreaks of HuNoV are non-specific. They consist of appropriate 

hygienic measures among foodhandlers and in environmental decontamination (Baert et al. 2009a; 

Glass et al. 2009; Atmar 2010; Hirneisen et al. 2010). Disinfectants are biocide substances that 

destroy microorganisms or inhibit their activity on inanimate objects or surfaces (McDonnell and 

Russell 1999). Previous studies (Doultree et al. 1999; Duizer et al. 2004a; Radford et al. 2007) 

concluded that ethanol and quaternary ammonium-based products were ineffective disinfectants of 

FCV and the inactivation of FCV required high concentrations of sodium hypochlorite. MNV is 

sensitive both to alcohols and to bleach and its resistance to basic and acidic pHs as well as it long-

term resistance at room temperature is higher than that of FCV (Cannon et al. 2006; Belliot et al. 

2008; Park and Sobsey 2011). 

 

The aim of this study was to infer the efficacy of biocides on HuNoV surrogates from the screening of 

seven products as virucidal agents by measuring their effect on infectious viral titre and genomic 

copy number of MNV and FCV in suspension, on gloves and on stainless steel discs. These biocides 

(six disinfectants and one hand sanitiser) belong to different major biocide groups such as alcohols, 

halogens, oxidizing agents, quaternary ammonium compounds (QAC), aldehydes, and biguanides 

(McDonnell and Russell 1999; Maillard 2001). 

 

Materials and methods 

Viruses and cells 
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CW1 strain of MNV-1 was propagated in RAW 264.7 cells (ATCC TIB-71) maintained in Dulbecco’s 

modified Eagle’s medium (Invitrogen) complemented (DMEMc) with 10% heat-inactivated foetal calf 

serum (FCS) (BioWhittaker), 2% penicillin (5000 U ml-1) and streptomycin (5000 mg ml-1) (PS; 

Invitrogen), 1% of a non-essential amino acids preparation (NEAA) (Invitrogen) and 1% HEPES buffer 

(1 M; Invitrogen).  

F9 strain of FCV was propagated in Crandell’s feline kidney (CRFK) cells (ATCC CCL-94) (Crandell et al. 

1973) maintained in Eagle’s minimal essential medium (Invitrogen) complemented (MEMc) with 10% 

heat-inactivated FCS (BioWhittaker), 2% PS (Invitrogen) and 1% NEAA (Invitrogen). 

MNV-1 (CW1) and FCV (F9) were grown for 72 h at 37 °C and 5% CO2 until cytopathic effect was 

observed. Viruses were harvested after three freezing/thawing cycles of the cells and the 

suspensions were centrifuged at 1000 x g for 20 min to remove cell debris. Supernatants were 

collected and purified by ultracentrifugation on a 30% sucrose cushion in a SW28 rotor (Beckman 

Coulter) at 112000 x g for 4 h at 4 °C. Pellets were suspended in phosphate-buffered saline (PBS) 

overnight at 4°C, aliquoted and stored at - 80°C. 

Biocides 

Group, substance, final concentration used in the biocide testing and contact time, for each biocidal 

product, are listed in Table 1. The contact times used were those recommended by the 

manufacturer’s instructions for achievement of a virucidal effect, namely 5 and 15 min. in order to 

better mimic field conditions. 

Cytotoxicity tests 

Cytotoxicity of biocidal products was tested by two different ways. 

First, a quantitative evaluation of cell viability and metabolism after exposure to biocidal products 

was performed using Thiazolyl blue (MTT). In this MTT test, the initial biocide concentration was 

either the undiluted biocide for biocides A, F and G (initial concentration of 100%) or a 1:1 (vol/vol) 

dilution in cell culture medium for biocides B, C, D and E (initial concentration of 50%). Thus, for the 

MTT tests, initial concentrations differed from concentrations recommended by the manufacturer in 

that they were always higher. However, the concentrations used during later biocide testing 

corresponded to those of manufacturer’s instructions (Table 1). Consequently, during the MTT test, 

cell cultures were exposed to the initial concentration and the nine 10-fold factor dilutions of the 

biocides. The optical density of the wells was determined at a test wavelength of 570 nm with 

background subtraction at 630 nm. 

For the second evaluation of cytotoxicity, monolayers of RAW 264.7 or CRFK cells were inoculated 

with three ten-fold dilutions starting from biocide concentrations corresponding to those 

recommended in manufacturers’ instructions (Table 1). After 1h at 37°C, cell monolayers were 

overlayed with agarose for 72h and incubation continued at the same temperature. Thereby, the 
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biocide dilutions used in this second cytotoxicity test were the same as those used during the 

following biocide testing. Alteration of cell monolayers was checked after fixation and staining as 

described in the “infectivity assay” section. 

Biocide interaction with virus infectivity 

A test of cell sensitivity to biocidal products was performed. To check if exposure to a biocide 

decreases the cell sensitivity to a virus, virus titrations were performed on either untreated cells or 

cells treated with biocides. The same dilutions as used in the biocide testing were added to cell 

monolayers for each biocidal product. After washing twice with PBS, cells were inoculated with 

dilutions of viral suspensions and the viral titre was determined by plaque assay. In parallel, cell 

monolayers without contact with biocides were inoculated with dilutions of viral suspension. A 

difference of less than one log10 between the viral titre obtained from infected cells in contact with 

biocides and from those without contact with biocides indicates an absence of cell sensitivity to 

biocidal products. 

Infectivity assay 

Titres of each virus were determined by plaque assay (Hyde et al. 2009). Briefly, cells were split into 

six-well plates at a density of 106 cells per well. On the following day, cells were inoculated with 10-

fold dilutions of virus in DMEM (MNV) or MEM (FCV). After 1 hour at 37 °C, the inoculum was 

removed and the cells were overlaid with 2 ml DMEMc (or MEMc) with 0.5% SeaPlaque agarose. 

Plates were stored at room temperature for 20 min and then incubated at 37 °C and 5% CO2 for 72 h. 

To count the plaques, the overlaying medium was removed and cells were fixed by adding 1 ml of 4% 

formaldehyde/well for 30 min and then stained with 2 ml of 0.3% crystal violet at room temperature. 

The same protocol was used to determine the viral titre after biocide exposure. 

Molecular detection by RT-qPCR 

RNA was extracted from 100 µl of each sample, using the QIAamp viral RNA kit (Qiagen) and 

following manufacturer’s instruction. Total RNA was diluted in 60 µl of elution buffer and stored at -

 80°C before use. One step RT-qPCR was performed with a C1000 Touch thermocycler (Biorad) on a 

final volume mix of 25 µl following manufacturing instructions.  The RT-qPCR reaction for MNV or 

FCV consisted of 12.5 µl of 2 x RT-qPCR reaction mix (iScriptTM One-Step RT-PCR Kit for Probes, 

Biorad), MNV primers and probe (at the final concentrations of 100 nM and 200 nM respectively) or 

FCV primers and probe (at the final concentrations of 500 nM and 200 nM respectively), 0.5 µl of 

iScript reverse transcriptase, 5 µl of RNA template and water to 25 µl. 

Cycle conditions were as follows: 10 min at 50°C, 5 min at 95°C and 45 cycles of 10 seconds at 95°C 

and 30 seconds at 60°C. The primers and probes used to detect MNV and FCV are detailed in Table 2. 

For quantification, each amplicon (FCV and MNV) was first cloned into pGEM-T easy (Promega®). 

Cloning reactions were analysed by sequencing after plasmid purification with the High pure plasmid 
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isolation kit (Roche). Plasmid DNA was quantified via nanodrop and converted into genomic copies. 

Serial dilutions were then prepared (from 10-5 to 10-9) and tested for the determination of standard 

curves for MNV-1 and FCV quantification. 

Biocide testing 

In this experiment, we used two different surrogate viruses, MNV and FCV, and three different tests, 

i.e. suspension, glove and stainless steel disc tests. The method was adapted from the AFNOR norm 

EN 14476 and is illustrated in Fig. 1 (AFNOR 2007). Clean conditions were simulated by addition of 

0.3% bovine serum albumin (BSA). BSA mimicked the presence of organic load that could be present 

in field conditions on surfaces and could interfere with the activity of the disinfectant. 

For each experiment, a sample without biocidal product was used as a control sample, following the 

same steps as described for the other samples, and was used for comparison with the samples 

containing one of the seven biocidal products. 

For suspension tests, the average initial virus titre for MNV and FCV was 1.4x107 and 1.1x108 pfu/ml 

respectively and the inoculum volume was 10 or 15 µl. For suspension tests, a mixture containing 

10% of the virus (either MNV or FCV), 10% of BSA (to reach a final concentration of 0.3%) and 80% of 

the biocidal product at the specific concentration, recommended by the manufacturer’s instructions 

(Table 1), was prepared. After determination of a contact time for each biocidal product (Table 1), 

the tested suspension was diluted three times by a 10-fold factor in cell culture media (at 4°C) in 

order to reduce both the activity of the biocide and the cytotoxic effect. From these three dilutions 

of virus-biocide suspensions, a first aliquot was used for an infectivity assay (500 µl as inoculum in a 

6-well plate) and a second aliquot was used for molecular detection (100 µl for the RNA extraction 

followed by the one-step RT-qPCR). 

A biocidal product with a log10 reduction equal to or higher than three was equivalent to a 99.9% 

decrease of infectious titre and was considered effective following the Guidelines on the application 

of general principles of food hygiene to the control of viruses in food (Codex Alimentarius 2012). 

Each biocidal product was tested in three independent experiments. 

The efficiency of a disinfectant could vary depending on the test. Suspension tests for virucidal 

activity do not exactly reflect field conditions. To better mimic these field conditions, two other 

experiments were performed using gloves and stainless steel discs as tested surfaces. For the gloves 

and stainless steel discs tests, a mixture containing 10% of the virus (either MNV or FCV) and 10% of 

BSA (to reach a final concentration of 0.3%) was deposited at the centre of the surface (either glove 

or stainless steel disc) and allowed to dry for 30 min under a laminar flow. 

Stainless steel discs were washed and sterilized by autoclaving before use. Fingers of sterile latex 

gloves (KimtechPure, Kimberly-Clark) were used to form a tube and were inverted to mix virus and 

biocide on the external surface of the glove. Then the biocide was deposited on the same area during 
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a biocide-dependent contact time (Table 1). In the glove test, cell culture media was directly added 

on the gloves and pipetted several times to recover the virus. In the stainless steel disc test, the discs 

(Stainless steel disc, AISI 304 cold rolled, Laserflash sa) were placed into 6-well plates and DMEMc 

(for MNV) or MEMc (for FCV) was added to dilute the biocide and to stop its effect. The plate was 

placed on a rocking platform for 15 min at 4°C. From this first dilution, two further 10-fold dilutions 

were performed and finally, all dilutions were used for the infectivity assay and for the quantification 

of genomic copies as previously described for the suspension tests. 

To evaluate the putative inhibitory effect of each biocide on the RT-qPCR, all the steps of the biocide 

test were also performed, starting with a suspension of one of the seven biocidal products, the BSA 

and PBS instead of the surrogate virus. After the extraction process on the three dilutions, a RT-qPCR 

was performed on these samples, containing a part of the extraction and a part of the DNA plasmid 

corresponding to the surrogate virus. The Ct values were compared with the Ct values of RT-qPCR 

performed only with the DNA plasmid without any remaining part of the biocides.  

Data analysis 

Each assay was performed in three independent experiments and from these, three replicates were 

tested by RT-qPCR. For the same test, samples treated with a disinfectant and untreated samples 

were compared and the results were expressed as log reduction. Thus, the virus elution efficiency 

should not interfere with our results and statistical analyses. Log reduction was expressed as mean ± 

standard deviation. Statistical analyses were performed using SAS software, version 9.3. Genomic 

copy number and infectivity were modelled using a linear model involving two factors - namely, the 

biocide, the virus and their interaction - for each condition. Differences between biocides were 

assessed using least square means and their standard errors, using a Tukey correction for multiple 

comparisons. Results were considered significant when the associated p-values were lower than 0.05 

or 0.01. 

 

Results 

Evaluation of biocide cytotoxicity 

The highest non-cytotoxic concentrations of biocides after quantitative evaluation of cell viability and 

metabolism with MTT were 10-1 (biocide F), 10-2 (biocides A, B, C and G) and 10-4 (biocides D and E) 

on RAW 264.7 cells and 10-1 (biocide G), 10-2 (biocide A) and 10-3 (for biocides B, C, D, E and F) on 

CRFK cells (Table 3). 

The biocide dilutions used in the following biocide testing were the 100- and 1000-fold dilutions of 

biocides which had already been diluted to concentrations recommended for use by the 

manufacturer (presented in Table 1).  
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Since these 100- and 1000-fold dilutions corresponded to concentrations lower than (or equal to) the 

non-cytotoxic ones previously evaluated by MTT test (Table 3), they were logically also not cytotoxic. 

The microscopic examination of the cell monolayers confirms the results obtained with the MTT test. 

 

Biocide interaction with virus infectivity 

When the residual effect of biocidal products was tested on the virus infectivity, the difference 

between infectious viral titres determined on cells in contact with biocides and cells without biocides 

was lower than 1 log10, showing that, in the infectivity assay, a reduction of infectious viral titre 

reflects biocide effect only on the virus. 

Biocide interaction with molecular detection 

The Ct values were compared for samples containing either plasmids and biocide or only plasmids. 

Theoretically, delta Ct lower than 3.3 means a difference of genomic copy number lower than 1 log10. 

In our study, the mean delta Ct were 1.5 ± 1.3 and 1.2 ± 0.7 for MNV and FCV, respectively. These 

findings showed that the presence of biocide residue within the experiment assay had non-significant 

effect on neither MNV nor FCV molecular detection. 

Biocide efficacy 

The log reduction and standard deviation of both the infectious viral titre and the genomic copy 

number of MNV and FCV during the three different tests are given in Table 4. According to both 

Codex Alimentarius and Afnor Norm 14476, a biocide was considered effective when the log 

reduction of the infectious viral tire was ≥ 3 log10 (AFNOR 2007, Codex Alimentarius 2012). 

 

Effect on MNV infectivity 

In suspension and in stainless steel disc tests, the log10 reduction of MNV infectious viral titre was 

between 3.32 and 3.85 for the biocidal products A, B, C, D, E, F and G (Table 4). In the glove tests, the 

log10 reduction of MNV infectious viral titre was higher than 4.36 log10 for the biocidal products A, B, 

C, D and E and lower than 2.95 log10 for the biocidal products F and G (Table 4). In both suspension 

tests and disc tests, no significant difference was observed between the biocides. For the glove tests, 

the log10 reduction of biocides A to E was significantly different (P < 0.01) from biocides F and G 

(Fig. 2). 

 

Effect on MNV genome integrity 

The average reduction of genomic copy number was higher than 2 log10 for biocidal products A and B, 

between 1 and 2 log10 for biocidal products D and G and lower than 1 log10 for biocidal products C and 

E.  For the biocidal product F, there was no log10 reduction (Table 4). The effect of all biocidal 

products on MNV genomic copy number was significant (P < 0.01) in comparison to the control 
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sample (Fig. 3). There was no significant difference between biocides C, D, E and G. On the contrary, 

the effect on MNV genomic copy number of biocides C, D, E and G was significantly different to 

biocides A and B on the one hand and to biocide F on the other hand (P < 0.01) (Fig. 3). 

 

Effect on FCV infectivity 

The log10 reduction with biocidal products B, C and D was higher than 4.09 log10 in the three different 

tests, except in the case of biocide B on disc tests with a 3.77 log10 reduction (Table 4). The log10 

reduction with biocides A, E, and F ranged from 3.52 to 3.94 in suspension tests and was lower than 

2.89 log10 in glove and disc tests. The log10 reduction with the biocidal product G was lower than 2.25 

log10 in the three different tests. In suspension tests, the log10 reduction of biocides A, B, C, D, E and F 

was significantly different to the log10 reduction of biocide G (P < 0.01) and the log10 reduction of 

biocides B and C was also significantly different to the log10 reduction of biocides A (P < 0.01), E and F 

(P < 0.05) (Fig. 2). The log10 reduction of biocide D was significantly different to the log10 reduction of 

biocides A (P < 0.05) and G (P < 0.01). For the glove tests the log10 reduction of biocides B, C and D 

was significantly different to the log10 reduction of biocides A, E, F and G (P < 0.01). For the disc tests, 

the log10 reduction of biocides B (P < 0.05), C (P < 0.01) and D (P < 0.01 with A and G; P < 0.05 with F) 

was significantly different to the log10 reduction of biocides A, F and G and the log10 reduction of 

biocide C was also significantly different to the log10 reduction of biocide E (P < 0.05) (Fig. 2). 

 

Effect on FCV genome integrity  

The log10 reductions of FCV genomic copy number with the biocide product B were highest, ranging 

from 2.39 to 3.88 depending on the different tests (Table 4). The log10 reductions of FCV genomic 

copy number with biocidal products C, D and E ranged from 1.04 to 2.30, 0.08 to 2.08 and 0.06 to 

1.46 respectively (Table 4). The effects of biocidal products B, C, D and E on FCV genomic copy 

number were significant (P < 0.01) (Fig. 3). The log10 reductions of FCV genomic copy number with 

biocidal products A, F and G ranged from 0.03 to 0.42, from -0.11 to 0.07, and from 0.21 to 0.42 

respectively (Table 4). 

Biocidal products A, F and G had no significant effect on genomic copy number (Fig. 3). 

 

Discussion 

Two HuNoV surrogates, namely MNV and FCV, were used to evaluate the biocidal effect of seven 

fully formulated products, representing the major groups of disinfectants. 

When, as criteria of efficacy, a log reduction > 3  of the infectious viral titre on both surrogates and in 

the three tests is used, the most efficacious disinfectants in this study appeared to be biocidal 

products B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol 
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and aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on 

genomic copy number for both surrogate viruses and in all three tests. 

 

Biocide B, containing sodium hypochlorite, is often used to disinfect water and environmental 

surfaces. It’s significant effect on infectious viral titre and genomic copy number confirms results of 

other studies which also revealed a significant effect on HuNoV genome integrity (Girard et al. 2010; 

Lim et al. 2010; Park and Sobsey 2011; Hirneisen and Kniel 2013; Tung et al. 2013).  

Biocide C contains peracetic acid (PAA) and hydrogen peroxide (H2O2), representing the oxidizing 

agents and reduced the MNV and the FCV viral titres by more than 3 and 4 log10 respectively; these 

findings are consistent with several studies (Baert et al. 2009b; Fraisse et al. 2011; Vimont et al. 

2015). The effect on the genomic copy number was significant but lower than that of other biocidal 

products such as sodium hypochlorite for example; again, this finding is in accordance with the 

results of Fraisse et al. (2011). FCV seems to be more sensitive to sodium hypochlorite and to PAA 

than MNV (Gulati et al. 2001; Baert et al. 2009b; D'Souza and Su 2010; Fraisse et al. 2011; Park and 

Sobsey 2011; Kim et al. 2012; Vimont et al. 2015); therefore FCV could overestimate the effect of 

these two biocides on HuNoV. 

Biocide D, composed of glutaraldehyde, QAC and isopropanol, significantly reduced the infectious 

viral titre and the genomic copy number of both surrogates. Previously published results may be 

controversial, reporting a significant effect either on MNV or FCV infectious titres (Doultree et al. 

1999; Jimenez and Chiang 2006; Belliot et al. 2008; Girard et al. 2010; Whitehead and McCue 2010; 

Su and D'Souza 2012). These apparently contradictory results could be explained by the biocide 

concentrations, the kind of QAC, the contact time and the nature of the surfaces tested. The 

difference between biocide D (significant reduction of both MNV and FCV infectious titres) and 

biocide E (significant reduction of MVN infectious titre only) could be explained by the chemical 

composition of the QAC used. Glutaraldehyde significantly reduced MNV and FCV titres by ≥ 6 log10 at 

a 2% concentration (D'Souza and Su 2010) while the reduction in MNV and in FCV titres was ≤ 3 log10 

after the use of QAC (Belliot et al. 2008; Girard et al. 2010; Whitehead and McCue 2010). In this 

study, biocide D, a mixture containing glutaraldehyde, QAC and isopropanol, showed a significant 

effect on the infectious titre with a log reduction ≥ 3 log10 on both surrogates and in the three tests, 

as well as a significant effect on the genome integrity (P < 0.01). Therefore, interactions between 

different substances, e.g. providing synergistic or antagonistic effects, are likely to exist and should 

be taken into account. Comparisons between studies on biocidal products are difficult due to the 

large number of disinfectants and the variety of conditions of use: concentration, contact time, test 

set-up and surrogate virus. 
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The mechanisms of action of these disinfectants showing a significant efficiency on both MNV and 

FCV surrogates are not fully clarified. Previous studies demonstrated a virucidal activity of halogens 

by a modification of capsid integrity as it is observed with PAA and glutaraldehyde (O'Brien and 

Newman 1979; McDonnell and Russell 1999). H2O2 acts as an oxidant on lipids, proteins and DNA 

(McDonnell and Russell 1999; Wutzler and Sauerbrei 2000). After PAA and H2O2 treatments of HuNoV 

faecal samples, HuNoV binding was only reduced by less than 1 log10. These results suggest that 

binding was not affected and capsids were not altered by these oxidizing agents (Kingsley et al. 

2014). The mechanisms of action of glutaraldehyde on viruses are still unknown but probably also 

involve cross-linking of proteins, RNA and DNA (Chambon et al. 1992; McDonnell and Russell 1999). 

QAC have an effect on lipids and enveloped viruses and, in studies on bacteriophages, QAC had an 

effect on infectivity but did not affect the genomic DNA (Doultree et al. 1999; McDonnell and Russell 

1999). 

 

Alcohols and chlorhexidine associated with alcohol had differing effects on the two surrogates in the 

three tests. Biocide A (alcohol) had a significant effect on infectious viral titre and genomic copy 

number of MNV but no significant effect on these same parameters of FCV, thus confirming previous 

studies (Park et al. 2010; Tung et al. 2013). The biocide products F and G are an association of alcohol 

and chlorhexidine (which is a major member of the biguanide group). They produced a significant 

effect on MNV in suspensions and stainless steel disc tests but not on FCV (except biocide F in the 

suspension test). Several studies (Park et al. 2010; Iwasawa et al. 2012; Matsuhira et al. 2012) 

showed poor effects of chlorhexidine on both MNV and FCV viral titres. Our results are in accordance 

with this with regard to FCV. The short contact time used in previous studies (< 5 min) could explain 

the absence of any significant effect of alcohol (D'Souza and Su 2010) and of chlorhexidine (Park et 

al. 2010; Iwasawa et al. 2012; Matsuhira et al. 2012) on the infectious titre of MNV and FCV. Our 

results as well as previous studies confirmed that MNV is more susceptible to alcohol and 

chlorhexidine than FCV (Park et al. 2010; Tung et al. 2013; Cromeans et al. 2014). These data also 

suggest differences between MNV and FCV regarding viral capsid integrity (Cannon et al. 2006; Park 

et al. 2010). 

 

While the results above present useful information with regard to effects of disinfectants on HuNoV 

surrogates, it must be noted that this work has some limitations. Obviously, results extrapolated 

from HuNoV surrogates should always be carefully interpreted, as they are not directly obtained for 

HuNoV. However since these surrogates are genetically related to HuNoV, they still remain the best 

approach for evaluation of the effect of disinfectants on HuNoV. Information obtained from other 

existing HuNoV surrogates (e.g. Tulane virus) could contribute to a better understanding of 
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disinfectant effects against HuNoV. The second limitation is the use of only one parameter per test 

condition as a fixed temperature, contact time and disinfectant concentration were maintained per 

disinfectant. It could be interesting to comprehensively analyse a possible effect of different 

conditions of application on infectious viral titre and genomic copy number. Thus, determination of a 

shorter efficient contact time could be interesting for practical use. 

 

In conclusion, halogen compounds, oxidizing agents and a combination of QAC, alcohol and aldehyde 

showed the best biocide activity for the disinfection of surfaces and materials. The information on 

the lowest efficient concentration and the shortest contact time of these three biocides on HuNoV 

surrogates will be useful during selection of the most appropriate disinfectant against HuNoV. Both 

harmonisation and standardisation of test conditions could be beneficial to compare biocide efficacy. 

In addition, hand and surface disinfection are not the only targets to control and reduce HuNoV 

contamination in food industry and human healthcare centres. These measures should be combined 

with an optimal management of foodhandlers hygiene and with optimised detection of HuNoV at 

critical points of possible contamination. 
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Figure captions 

Fig.1 Protocol and steps of the study. 

 

Fig.2 Comparison of the effect of the biocidal products (A to G) on MNV and FCV titres. S: significant 

difference with p-values < 0.01 (**) or < 0.05 (*); NS: no significant difference; A: Ethanol; B: Sodium 

hypochlorite; C: Peracetic acid and hydrogen peroxide; D: Benzylammoniumchloride, 

didecydimethylammonium chloride, isopropanol and glutaraldehyde; E: Didecydimethylammonium 

chloride, isopropanol and glutaraldehyde; F: Isopropanol and chlorhexidine; G: Isopropanol and 

chlorhexidine. 

 

 

Fig.3 Comparison of the effect of the biocidal products (A to G) on detection of MNV and FCV 

genome copies. S: significant difference with p-values < 0.01 (**) or < 0.05 (*); NS: no significant 

difference; Ctrl: controls; A: Ethanol; B: Sodium hypochlorite; C: Peracetic acid and hydrogen 

peroxide; D: Benzylammoniumchloride, didecydimethylammonium chloride, isopropanol and 

glutaraldehyde; E: Didecydimethylammonium chloride, isopropanol and glutaraldehyde; F: 

Isopropanol and chlorhexidine; G: Isopropanol and chlorhexidine. 
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Table 1: Biocides (substances and commercial products) and their conditions of use during the 

biocide testing. Products A to F are intended for the disinfection of surfaces and product G for hand 

disinfection. 

 Product Biocide 
group 

Active ingredient Final 
concentration 

(%) used in 
this study 

Contact 
timea 
(min) 

A Ethanol Alcohol Ethanol 70 5 

B Kenochlore® Halogen 
Sodium 

hypochlorite 
0.5 5 

C 
Kenocid 
2100-S ® 

Oxidizing 
agents 

Peracetic acid and 
hydrogen peroxide 

0.05 
0.2 

5 

D Virocid® 

Quaternary 
ammonium 
compounds 

 
Alcohol 

Aldehyde 

Benzylammonium- 
chloride 

Didecyldimethyl-
ammoniumchloride 

Isopropanol 
Glutaraldehyde 

0.5 15 

E 
Kenocid 

210® 

Quaternary 
ammonium 
compound 

Alcohol 
Aldehyde 

Didecyldimethyl-
ammoniumchloride 

 
Isopropanol 

Glutaraldehyde 

0.25 15 

F Alcocid® 
Alcohol 

Biguanide 
Isopropanol 

Chlorhexidine 
70 

0.1-1 
To 

dryness 

G Kenosept G® 
Alcohol 

Biguanide 
Isopropanol 

Chlorhexidine 
70 
0.5 

To 
dryness 

 

a: Contact time recommended by manufacturer’s instructions 
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Table 2: Primer and probe sets and concentrations used to detect murine norovirus (MNV) and 

feline calicivirus (FCV) by RT-qPCR; both probes labelled 5’ 6-carboxyfluorescein (FAM) and 3’ MGB 

(minor groove binder) 

 

Virus Primer and probe 
Final 

concentration 
Sequence (5’-3’) Location (bp)a Ref. 

MNV 

FW-ORF1/ORF2 100 nM  CACGCCACCGATCTGTTCTG 4972-4991 

[37] RV-ORF1/ORF2 100 nM GCGCTGCGCCATCACTC 5064-5080 

MGB-ORF1/ORF2 200 nM CGCTTTGGAACAATG 5001-5015 

FCV 

p30F 500 nM  TGGATGAACTACCCGCCA 2415-2432 [38] 

p30R 500 nM  CATATGCGGCTCTGATGGCTTGAAACTG 2507-2534 [39] 

P30P 200 nM TCGGTGTTTGATTTGGCCTG 2456-2475 b 

 

a Nucleotide positions based on MNV (GenBank access NC_ 008311.1) and FCV sequences (GenBank access NC_001481.2). 

b Zicola A., personal communication. 
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Table 3: Determination of the cytotoxicity of biocides in Raw and CrFK cells by MTT test. Results 

represent the average optical density (O.D.) measured in 8 wells at 570 nm with background 

subtraction at 630 nm. 

 

a The underlined O.D. correspond to the highest non-cytotoxic biocide concentration. 

b O.D. in bold correspond to the biocide concentration used in the biocide testing to determine the log 

reductions of both pfu and genomic copy number. 

c The initial concentration was either the undiluted biocide (the biocides A, F and G) either the biocide mixed 

1:1 with cell culture media in 50% (vol/vol) suspension (the biocides B, C, D and E). 

Biocide group Biocide Cells 
O.D. for initial 

biocide 
concentration c 

O.D. for ten-fold dilutions of the initial biocide concentration ab 
O.D. for 

reference 
(untreated 

cells) 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 

Alcohol A 
Raw 0.08 0.09 0.27 0.60 0.47 0.54 0.50 0.39 0.36 0.34 0.26 0.37 

CrFK 0.09 0.10 0.20 0.55 0.41 0.39 0.39 0.29 0.31 0.27 0.21 0.31 

Halogen B 
Raw 0.08 0.13 1.88 1.76 1.62 1.36 1.12 1.87 1.41 1.41 1.34 1.02 

CrFK 0.04 0.13 0.52 0.94 0.92 0.91 0.93 0.98 0.92 0.72 0.66 0.63 

Peracetic acid, 
hydrogen peroxide 

C 
Raw 0.05 0.10 1.73 2.01 1.92 1.72 1.80 1.40 1.70 1.70 1.19 0.96 

CrFK 0.05 0.10 0.36 0.92 0.93 0.98 0.92 0.87 0.95 0.92 1.02 0.59 

Quaternary 
ammonium 
compounds, 

alcohol, aldehyde 

D 
Raw 0.26 0.11 0.07 0.08 0.82 1.88 1.49 1.43 1.88 2.23 1.82 0.85 

CrFK 0.26 0.11 0.19 0.90 0.97 0.93 0.98 0.96 1.01 1.00 0.87 0.88 

E 
Raw 0.23 0.11 0.09 0.09 1.97 2.38 2.14 1.80 2.27 1.86 1.44 1.84 

CrFK 0.05 0.11 0.36 0.87 0.90 0.89 0.93 0.82 0.92 0.89 1.00 0.58 

Alcohol, 
biguanide 

F 
Raw 0.07 1.76 1.91 1.44 1.63 1.80 1.30 1.68 1.55 1.57 1.19 1.16 

CrFK 0.06 0.06 0.11 0.37 0.47 0.58 0.63 0.57 0.61 0.52 0.47 0.37 

G 
Raw 0.08 0.14 1.98 1.88 1.37 1.43 1.32 1.72 1.34 1.46 1.43 1.13 

CrFK 0.08 0.94 1.05 1.01 0.93 1.03 0.79 0.98 0.57 0.49 0.77 0.65 
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Table 4: Results on log reduction and standard deviation of infectious viral titre and of genomic 

copy number of murine norovirus (MNV) and feline calicivirus (FCV) in suspension (s), on gloves (g) 

and on stainless steel discs (d) 

 

 

   MNV FCV 

   Log10 reduction of 

Biocide group Biocide Test 
Infectious viral 

titre 
Genomic copy 

number 
Infectious viral 

titre 
Genomic copy 

number 

Alcohol A 

s ≥ 3.85 ± 0.0* 2.14 ± 1.4 ≥ 3.52 ± 0.1* 0.03 ± 0.1 

g ≥ 5.18 ± 0.0* 2.94 ± 1.4 ≤ 2.35 ± 0.2 0.42 ± 1.1 

d ≥ 3.69 ± 0.5* 2.08 ± 0.4 ≤ 2.15 ± 0.4 0.04 ± 0.3 

Halogen B 

s ≥ 3.85 ± 0.0* 6.07 ± 1.9 ≥ 4.70 ± 0.0* 3.88 ± 2.4 

g ≥ 4.87 ± 0.5* 2.65 ± 1.4 ≥ 4.47 ± 0.3* 2.68 ± 1.2 

d ≥ 3.69 ±0.5* 2.3 ± 0.7 ≥ 3.77 ± 0.8* 2.39 ± 1.1 

Peracetic acid, 
hydrogen peroxide 

C 

s ≥ 3.85 ± 0.0* 0.68 ± 0.4 ≥ 4.70 ± 0.0* 2.30 ± 0.3 

g ≥ 4.36 ± 0.1* 0.43 ± 0.3 ≥ 4.72 ± 0.8* 1.18 ± 0.8 

d ≥ 3.69 ± 0.5* 1.63 ± 0.2 ≥ 4.77 ± 0.8* 1.04 ± 0.1 

Quaternary 
ammonium 

compounds, alcohol, 
aldehyde 

D 

s ≥ 3.85 ± 0.0* 0.62 ± 0.3 ≥ 4.48 ± 0.4* 2.08 ± 0.3 

g ≥ 5.18 ± 0.0* 1.22 ± 0.3 ≥ 4.09 ± 0.8* 0.63 ± 0.9 

d ≥ 3.69 ± 0.5* 1.19 ± 0.7 ≥ 4.36 ± 1.1* 0.08 ± 0.2 

E 

s ≥ 3.85 ± 0.0* 0.58 ± 0.3 ≥ 3.70 ± 1.7* 1.46 ± 0.8 

g ≥ 4.54 ± 0.6* 0.81 ± 0.4 ≤ 2.50 ± 0.3 0.38 ± 0.7 

d ≥ 3.32 ± 0.2* 0.79 ± 0.6 ≤ 2.89 ± 1.6 0.06 ± 0.2 

Alcohol, 
biguanide 

F 

s ≥ 3.85 ± 0.0* -0.37 ± 0.4 ≥ 3.94 ± 0.2* 0.07 ± 0.1 

g ≤ 2.95 ± 0.8 -0.02 ± 0.3 ≤ 2.25 ± 0.3 -0.11 ± 0.6 

d ≥ 3.69 ± 0.5* -0.92 ± 0.5 ≤ 2.51 ± 0.8 0.02 ± 0.3 

G 

s ≥ 3.85 ± 0.0* 1.29 ± 1.2 ≤ 1.80 ± 0.2 0.42 ± 0.6 

g ≤ 2.85 ± 1.2 0.68 ± 0.3 ≤ 2.25 ± 0.3 0.24 ± 0.5 

d ≥ 3.69 ± 0.5* 1.02 ± 0.8 ≤ 2.15 ± 0.4 0.21 ± 0.6 
 

* log10 reduction of infectious viral titre> 3 log10 

≥ indicates that the virus titre was below the detection limit 
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