

PhD Thesis Research

*FE*² approach for the modelling of coupled hydro-mechanical behaviour of partially saturated coalbeds

François BERTRAND Supervised by: Frédéric COLLIN

University of Liège

November 2015

Coalbed methane

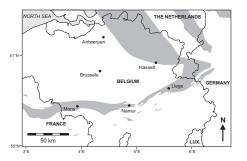
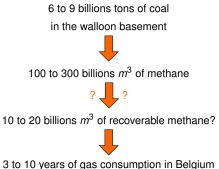
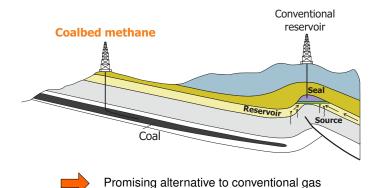




Figure: Map of the outcropping or shallow subsurface coal basins (shaded area) in and around Belgium. Modified after [Piessens and Dusar, 2006].

Coalbed methane (CBM) = unconventional resource Source rock (= coalbeds) is also the reservoir for the methane

Coalbeds = dual porosity systems

Micropores + Macropores \iff Matrix + Cleats

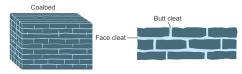


Figure: From Schlumberger Oilfield Glossary

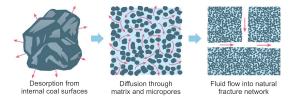


Figure: From Schlumberger Oilfield Glossary

Coalbeds = dual porosity systems

Micropores + Macropores \iff Matrix + Cleats

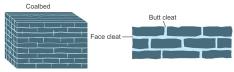


Figure: From Schlumberger Oilfield Glossary

Cleat permeability is directly dependent on the width of the cleats.

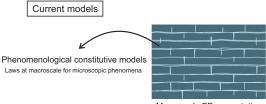
Challenge

"The influence of **geomechanical processes** is an **important issue for coalbed methane** recovery and **ignoring** geomechanical processes **may lead to errors** in the evaluation of coalbed methane production." [Gu et al., 2005]

But

Coupled hydro-mechanical behaviour of coalbeds

= complex + still defeats a comprehensive description

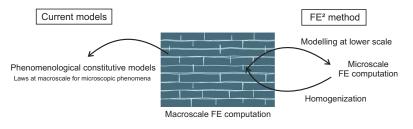

Challenge

"The influence of **geomechanical processes** is an **important issue for coalbed methane** recovery and **ignoring** geomechanical processes **may lead to errors** in the evaluation of coalbed methane production." [Gu et al., 2005]

But

Coupled hydro-mechanical behaviour of coalbeds

= complex + still defeats a comprehensive description


Macroscale FE computation

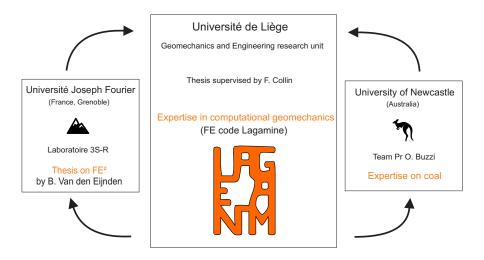
"The influence of **geomechanical processes** is an **important issue for coalbed methane** recovery and **ignoring** geomechanical processes **may lead to errors** in the evaluation of coalbed methane production." [Gu et al., 2005]

But

Coupled hydro-mechanical behaviour of coalbeds

= complex + still defeats a comprehensive description

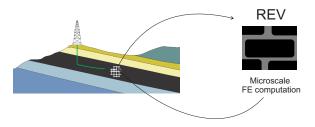
Apply a multi-scale method taking advantage of the periodical structure of coal.


Introduction

Overview of the thesis

- Work environment
- Workpackage 1: Development of a multiphase flow model
- Workpackage 2: Development of a mechanical model
- Workpackage 3: Coupled hydro-mechanical model
- Workpackage 4: Reservoir modelling
- Work plan

B) Conclusion


Work environment

Workpackage 1: Multiphase flow model

FE² method :

Constitutive equations

(flow law, storage law) are applied only on the **microscopic scale**.

- Task 1.1: Extension of the FE² method to unsaturated conditions.
- Task 1.2: Extension to multiphase flow conditions (liquid and gas).
- Task 1.3: The developed model is faced and compared with others models found in the literature: [Pan and Connell, 2012], [Shi et al., 2014].

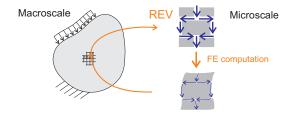
Workpackage 2: Development of a mechanical model

The **mechanical behaviour** of the coalbed **results from** the **geometry** and the **properties** of the components.

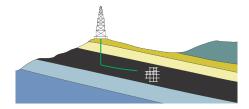
Triaxial experimental results \Leftrightarrow REV responses

- Task 2.1: Evaluate numerically the **influence of the cleat density** in the REV on the macroscopic behaviour of the material.
- Task 2.2: Identification of the **material parameters** through a back-analysis of some experimental results.

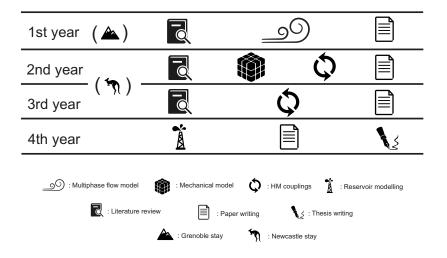
Workpackage 3: Coupled hydro-mechanical model


Task 3.1: Experimental campaign

Hydro-mechanical tests on an Australian coal:


Shrinkage/swelling properties and permeability measurements

• Task 3.2: Coupled model implemented in the FE code LAGAMINE.



A synthetic reservoir model with **one production well** is **simulated from the drilling** of the well **to the production** period.

The necessity or not of stimulation techniques is evaluated.

High potential for coalbed methane in Wallonia

Challenge = better understand **methane migration** to optimize recovery.

Development of a coupled **hydro-mechanical model** for coalbed methane reservoirs in the framework of the finite element square method (FE^2).

Thank you for your attention!

*FE*² approach for the modelling of coupled hydro-mechanical behaviour of partially saturated coalbeds

Related work: E

Efficiency of shaft sealing for CO_2 sequestration in coal mines, Presentation at the Workshop on Geomechanics & Energy EU 2015 (held from 13-10-2015 to 15-10-2015 in Celle, Germany).

References

Gu, F., Chalaturnyk, J., et al. (2005).

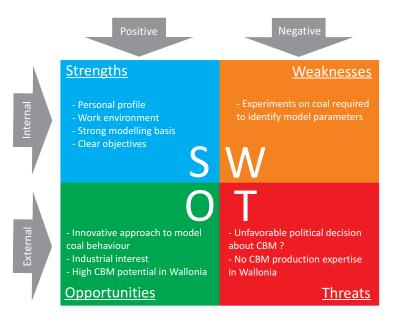
Analysis of coalbed methane production by reservoir and geomechanical coupling simulation.

Journal of Canadian Petroleum Technology, 44(10).

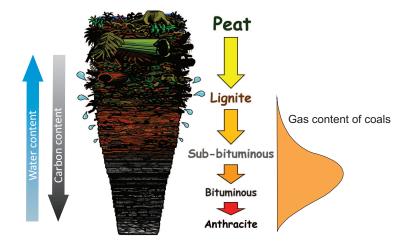
Pan, Z. and Connell, L. D. (2012).

Modelling permeability for coal reservoirs: a review of analytical models and testing data.

International Journal of Coal Geology, 92:1-44.



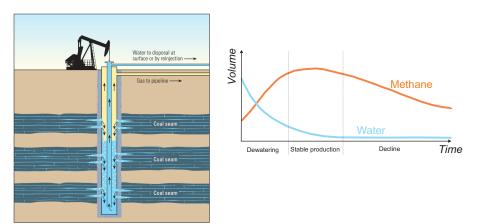
Piessens, K. and Dusar, M. (2006).


Feasibility of *CO*₂ sequestration in abandoned coal mines in belgium. *Geologica Belgica*.

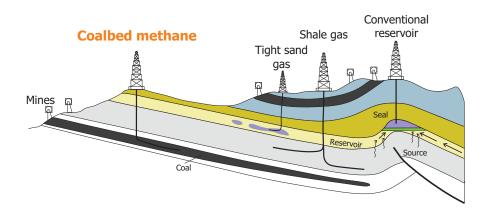
Shi, J.-Q., Pan, Z., and Durucan, S. (2014).

Analytical models for coal permeability changes during coalbed methane recovery: Model comparison and performance evaluation. *International Journal of Coal Geology*, 136:17–24.

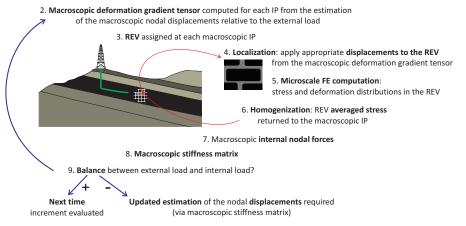
Coalification


Modified after Kentucky Geological Survey (University of Kentucky)

Global overview


Country	CBM resources [10 ¹² m ³]	CBM annual production [10 ⁹ m ³]
Russia	17.0 - 113.0	1
Canada	17.9 - 76.0	9
China	36.8	5
USA	21.5	52
Australia	8.0 - 14.0	4

Production



From Schlumberger (2009),

Coalbed Methane: Clean Energy for the World

1. Macroscopic structure discretised by finite elements

