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My PhD focuses on the analysis and development of the 
PFEM for new applications involving free surfaces/interfaces 

 

Bird strike on a wind shield test 
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Formulation for incompressible  
free-surface flows 



From now on I will focus on Newtonian incompressible 
fluid flows 

𝜌0
D𝒖

D𝑡
= −div 𝑝𝐈 + 𝜇 div grad(𝒖) + grad(𝒖)T + 𝜌0𝒃 in 𝛀  

𝐃 𝒖 =
1

2
(grad(𝒖) + grad(𝒖)T) 𝛔 = −𝑝𝐈 + 2𝜇𝐃 𝒖  , 

div 𝒖 = 0 in 𝛀  

𝜌
D𝒖

D𝑡
= div 𝛔 + 𝜌𝒃   in 𝛀 

D𝜌

D𝑡
+ 𝜌 div 𝒖 = 0 in 𝛀  

(𝛔 = 𝛔T) 

𝒖 𝒙, 𝑡 = 𝒖 𝒙, 𝑡 ∀𝒙 ∈ Γ𝐷 

𝛔 𝒙, 𝑡 ∙ 𝒏 = 𝒕 𝒙, 𝑡 ∀𝒙 ∈ Γ𝑁  



A stable weak form can be obtained by using a Galerkin 
approach and a Petrov-Galerkin stabilization for pressure  

  𝜌0 D𝒖D𝑡 ⋅ 𝒘 dΩ =  𝑝𝐈 ∶ grad 𝒘  dΩ −  𝜇 grad 𝒖 ∶ grad 𝒘  dΩ +ΩΩΩ

 

− 𝜇 grad 𝒖 T ∶ grad 𝒘  dΩ
Ω

+ 𝜌0 𝒃 ⋅ 𝒘 dΩ +  𝒕 ⋅ 𝒘
Γ𝑁Ω

 dΓ  

 div 𝒖 𝑞 dΩ
Ω

 +  𝜏pspg
𝑒
1

𝜌0
grad(𝑞)

Ω0
𝑒

𝑁𝑒𝑙

𝑒=1

𝜌0
D𝒖

D𝑡
+ div 𝑝𝐈 − 𝜇 div grad 𝒖 + grad 𝒖 T − 𝜌0𝒃  

𝐌
𝒖n+1 − 𝒖n

Δ𝑡
+ 𝐊𝒖 + 𝐃T𝒑 = 𝑩 

𝐂
𝒖n+1 − 𝒖n

Δ𝑡
+ 𝐃𝒖 + 𝐋𝒑 = 𝑯 

∀𝒘 ∈ 𝑯1(Ω)| 𝒘 = 𝟎 on Γ𝐷, ∀𝑞 ∈ 𝐿2(Ω) 

[Tezduyar et al. (1992), Cremonesi et al. (2010)] 



The method has been validated against an analytical solution 
for the free-surface evolution of a classical sloshing example 

𝜌0 = 1 kg/m
3 

𝜇  = 0.01 kg/ms  



Our results perfectly agree with the analytical solution but 
show some differences with those found by other authors 



For free-surface flows some dangerous simplifications 
are often proposed in the literature 

1. Strong imposition of the pressure at the free surface 

 

 

 

 

2. Wrong definition of the boundary term 

 𝜌0
D𝒖

D𝑡
⋅ 𝒘 dΩ

Ω

= (… ) −  𝜇 grad 𝒖 ∶ grad 𝒘  dΩ +  ( 𝒕 − 𝜇 grad 𝒖 T𝒏 ) ⋅ 𝒘 dΓ
Γ𝑁Ω

 

𝜇 div grad 𝒖 + grad 𝒖 T = 𝜇 Δ 𝒖 , for incompressible flows 

 𝜌0
D𝒖

D𝑡
⋅ 𝒘 dΩ

Ω

= (… ) +  𝒕 ⋅ 𝒘 dΓ
Γ𝑁

 𝑝 = 0 , on ΓN 

neglected 

neglected 

« pseudo-tractions » 



PFEM issues 



To introduce the problem, let’s consider again a sloshing 
example, but with a very coarse discretization 

1 2 

3 4 



Some odd oscillations in the pressure field appear, at 
node 5 for instance, when the time step is « too » small 



A first observation: the evolutions of the vertical velocity at 
node 5 for meshes 1 – 4, without performing any remeshing, 
are very different 

node 5 

node 5 

node 5 

node 5 



The remeshing introduces perturbations in the velocity field 
which have to be counter-balanced by the pressure gradient 

𝐌
𝒖 n+1 + 𝛿𝒖 − 𝒖 n

Δ𝑡
 

𝐌
𝛿𝒖

Δ𝑡
+ 𝐊𝛿𝒖 + 𝐃T𝛿𝒑 = 𝟎 

+ 𝐊(𝒖 n+1+𝛿𝒖) 

+ 𝐃T 𝒑 n+1 + 𝛿𝒑 = 𝑩  

𝒖n+1 = 𝒖 n+1 + 𝛿𝒖 

𝒑n+1 = 𝒑 n+1 + 𝛿𝒑 

Momentum balance: 

𝛿𝒑 = −𝐃−T
1

Δ𝑡
𝐌 + 𝐊 𝛿𝒖 



To analyze these effects on a more realistic problem we 
consider the sloshing of an oscillating water reservoir 

Pressure sensor 

[ Experimental results  available online on the SPHERIC community website: https://wiki.manchester.ac.uk/spheric ] 

https://wiki.manchester.ac.uk/spheric
https://wiki.manchester.ac.uk/spheric


The present method can reproduce the global evolution 
of the phenomenon with very good accuracy 

3.5s simulation 
 
6000 particles 
 
       experimental 

numerical 



If a reasonable discretization is used pressure evolution 
appears to be very well reproduced 
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Nevertheless, pressure oscillations are still present and 
become visible if the time step is slightly decreased 
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Pressure oscillations still appear on fluid-solid boundaries 
due to the way contact is dealt with in the PFEM 



Conclusions 

Correct free-surface flows formulation: 

 

- Avoid imposing pressure at the free surface 

- Do not use so-called «pseudo-tractions» 

 

Remeshing issues: 

 

- Use large time steps  (but what about explicit schemes?) 

- Use fine discretizations 

- Different fluid-solid contact definition  
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What have we tried in order to solve the pressure 
oscillations problem: 

• Scaling of nodal equations with respect to what happens around a 
node 

 

• Use of nodal integration instead of classical Gauss points 
integration 

 

• Introduction of local mass correction in order to preserve the 
coherence among particles densities, nodal areas and nodal 
masses 

 

 

 



A first comparison with other methods implemented in      
LS-Dyna confirms the potentialities of the present method 





Pressure directly measured at node (dt=0.002s) 
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Pressure directly measured at node (dt=0.001s) 
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