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Abstract

.

The long-term management of high-level nuclear wastes is envisaged by deep geological repos-
itory. Due to the safety function of the host formation, the behaviour of the Excavation Damaged
Zone (EDZ) that develops around underground galleries during their drilling is of paramount im-
portance. The EDZ is dominated by fracturing process which engenders irreversible modifications
of the hydro-mechanical properties of the porous rock. In this zone, a significant hydraulic per-
meability increase of several orders of magnitude is observed. It may alter the safety function of
the host formation by creating preferential flow paths for the migration of radionuclides towards
the biosphere. Consequently, the understanding and the prediction of the EDZ hydro-mechanical
behaviour are crucial issues for the long-term management of nuclear wastes. Among the dif-
ferent low-permeability media that are envisaged for the deep repository, the Callovo-Oxfordian
claystone is studied.

The fracturing behaviour, the water transfers, and the coupled processes that occur around
the underground galleries are most particularly addressed, especially in the EDZ. The fractures
induced by the excavation process are reproduced with strain localisation in shear bands. An
appropriate model allowing to properly reproduce the strain localisation in geomaterials with
finite element methods is used. It is an enhanced model for microstructure media called the
coupled local second gradient model and which involves a regularisation method. Its application
is extended to unsaturated anisotropic rocks with compressible solid grains. The numerical
modelling of the fractured zone with shear banding provides information about its shape, extent,
fracturing structure, and behaviour that are in good agreement with in situ measurements. In
particular, the shape of the EDZ in the Callovo-Oxfordian claystone is governed by its anisotropy
and the gallery convergence strongly depends on the appearance of the shear bands.

The fluid transfers and the coupled processes are investigated in the EDZ. The impact of the
rock fracturing on its hydraulic properties is addressed by taking into account strain localisation
effects at macroscale. The evolution of the intrinsic water permeability is expressed by a strain-
dependent relation which engenders a more pronounced increase of the permeability inside the
shear bands. In agreement with experimental measurements, an important increase is reproduced
in the excavation damaged zone. After gallery excavation, the hydraulic transfers in the rock
surrounding the galleries are investigated by considering the interaction between the rock and
the gallery air. These transfers are studied at large-scale during the reproduction of gallery
air ventilation. Depending on the air hygrometry, the gallery ventilation implies drainage and
desaturation of the surrounding rock which affect the shear banding development. The hydraulic
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transfers in the rock which depend on the water exchanges at gallery wall are also studied.

The proposed approach aims to highlight the important hydro-mechanical aspects to take
into account for the reproduction of the EDZ behaviour in unsaturated biphasic media with
shear banding. The focus is resolutely on the large-scale numerical modelling of the EDZ as well
as on the reproduction of the mechanical and hydraulic experimental measurements performed
around galleries.

Keywords: Excavation damaged zone - Fracturing - Numerical modelling - Strain localisation
- Shear banding - Unsaturated anisotropic rock
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CHAPTER 1. INTRODUCTION

1.1 Underground waste repository

Nuclear energy is a leading energy source used nowadays all over the world. The energy pro-
duction process inevitably generates radioactive wastes that are hazardous to most forms of life,
including the human being and its environment. To limit the risks, long-term nuclear waste man-
agement is considered and adapted depending on the nuclear waste activity and half-life period
(IAEA, 1983, 2009). In fact, the more harmful the waste, the more isolated from the biosphere it
should be stored. Various radioactive waste management agencies are responsible for assessing,
achieving, and attesting adequate and sustainable disposal solutions (Andra, 2005a). Actually,
surface, shallow, and deep geological facilities are envisaged with an increasing insulation related
to the increasing waste harmfulness.

The deep geological disposal (NEA, 2008) is considered for long-lived intermediate-level and
high-level wastes of types B and C which constitute the most significant part of the radioactivity
generated by nuclear wastes. This mode of disposal consists of a repository in stable geological
media providing good confining characteristics, such as a low permeability (IAEA, 2003). It is
designed to delay and slow down the radionuclide migration on a time-scale consistent with the
radioactive decay period, thereby avoiding to affect the biosphere and the living organisms. A
multi-barriers confinement concept with a series of engineered and natural barriers is adopted to
contain the nuclear wastes (NEA, 2003; Kim et al., 2011). For the high-level wastes, a vitrification
process is firstly realised, then they are placed in steel canisters, which are in turn possibly placed
in concrete containers or in a bentonite engineered barrier. Finally, the waste packages are placed
in underground structures composed of many galleries, with the last and highest level barrier
being the natural geological formation.

Different low-permeability host materials are envisaged such as argillaceous (Félix et al.,
1996; Neerdael and Boyazis, 1997), granite (Bäckblom, 1991), and salt (Langer, 1999; Behlau
and Mingerzahn, 2001) formations. They are privileged in different countries depending on the
geological properties of their underground. Among these materials, a particular attention is paid
to the Callovo-Oxfordian claystone (COx) which is the geological medium envisaged in France
by the national radioactive waste management agency Andra (Andra, 2005a). The Andra is in
charge of the long-term management of the French radioactive wastes and has been entrusted of
the conception of a safe and reversible disposal system through the Cigéo project (Labalette et al.,
2013). The deep geological repository facility will be composed of horizontal cells containing the
radioactive nuclear wastes as illustrated in Fig. 1.1.

(a) (b)

Fig. 1.1: General concept of the repository layout in Callovo-Oxfordian claystone for nuclear
waste of (a) type B and (b) type C after sealing (Andra, 2005a).
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1.2 Fracturing and coupled processes

Long-term repository of radioactive wastes in deep geological media requires a good understand-
ing of the host formation behaviour and of the coupled processes occurring during the different
storage phases. Diverse phases are in fact achieved during the underground repository. The first
one is the construction phase that consists of the excavation of the different galleries composing
the underground disposal structures. The drilling process inevitably generates stress modifica-
tions, cracks, and eventually fractures in the surrounding medium (Fig. 1.2 (a)). The cracks and
fractures concentrate in the gallery’s vicinity and an Excavation Damaged Zone (EDZ) is created
around the nuclear waste cells (Tsang et al., 2005) with important modifications of the hydro-
mechanical properties (Bossart et al., 2002). In this zone, a significant hydraulic permeability
increase of several orders of magnitude is observed experimentally (Fig. 1.2 (b)). This increase
may alter the safety function of the host formation by creating preferential flow paths for the
migration of radionuclides towards the biosphere.

(a) (b)

Fig. 1.2: Excavation damaged zone around a gallery in Opalinus clay: (a) mechanical fracturing
and (b) permeability evolution (Bossart et al., 2002).

Secondly, a maintenance phase occurs with air ventilation performed inside the galleries. Such
ventilation may affect the material behaviour by draining its water and causing desaturation,
especially in the damaged zone. If negative pore water pressure (suction) occurs close to the
gallery, it could affect the damaged zone (Matray et al., 2007) by, for instance, modifying its
fracturing structure and transport properties. The damaged zone can thus be influenced by
air-material interactions due to gallery air ventilation.

After the construction and maintenance phases, the repository phase is realised. The nuclear
waste packages are placed in their cells which are sealed with swelling clay and concrete (Fig. 1.1).
At this stage, the dominant process taking place around nuclear cells is hydraulic resaturation. In
fact, the pore water pressure in the far field engenders water flows directed towards the damaged
zone which will progressively resaturate. Later, the heat generation which is characteristic of
high-level wastes activity will create thermal effects, and gas migration will also appear due to
radiolyse or steel corrosion. Both processes may also modify the host material behaviour in the
long term (François, 2008; Gerard, 2011).
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1.3 Objectives

The fluid transfers occurring around underground galleries are of paramount importance when en-
visaging the long-term sustainability of underground structures for nuclear waste disposal. These
transfers are mainly conditioned by the behaviour of the surrounding unsaturated material and
by its interactions with the gallery air. The hydro-mechanical behaviour of the excavation dam-
aged zone, which develops around galleries due to the drilling process, is thenceforward critical
because it is composed of fractures having a significant irreversible impact on flow character-
istics and transfer kinetics. Consequently, it is obvious that understanding and predicting the
behaviour of the excavation damaged zone is a major issue (Blümling et al., 2007).

The first objective is to improve the description of the fractures and of the EDZ development
during excavation. Different methods could be taken into consideration to reproduce the drilling
effects in geomaterials, from diffuse material damage to fracture onsets and open macrocracks
(Barenblatt, 1962; Krajcinovic, 1996; Hajiabdolmajid et al., 2002; Jia et al., 2007; Zhu et al.,
2008; Lisjak et al., 2014). Among the different methods, an appropriate method has to be chosen
for the particular treated application.

Then, because sedimentary geomaterials frequently exhibit a transversely isotropic behaviour,
a constitutive mechanical model incorporating the material anisotropy has to be taken into
account. At repository scale, experimental measurements have also highlighted that the material
anisotropy plays an important role in the onset of fractures and in the fractured zone pattern
(Armand et al., 2014). This role will be analysed.

The third major objective is the description of the fluid transfers and of the material hydro-
mechanical behaviour around galleries, especially in the damaged zone. The impact of fracturing
on the transport properties has to be addressed to reproduce the significant hydraulic perme-
ability increase observed in the excavation damaged zone. After gallery excavation, the material
interaction with the gallery air conditions the hydraulic transfers, the water drainage, and the
possible desaturation or resaturation of the rock. The hydraulic interactions at gallery walls
as well as a hydro-mechanical model under partial saturation conditions, capable to reproduce
experimental observations on clay rocks, are therefore developed.

In addition to these hydro-mechanical aspects, thermal effects will also be generated around
the nuclear waste cells and will have an impact on the response of the host formation and of the
EDZ (François et al., 2009; Dizier, 2011). Yet the heat generation of the wastes is not analysed
and the focus is on the hydro-mechanical aspects.

Finally, the developed models are used to address numerical modelling at repository scale,
including excavation and gallery air ventilation experiment in the Callovo-Oxfordian claystone.
The modelling objective is to better understand how the fracturing and the hydro-mechanical cou-
pling influence the host formation response during the different phases of the underground repos-
itory. The numerical modelling is performed with the non-linear finite element code Lagamine
developed at the University of Liège (Charlier, 1987; Collin, 2003).

More broadly, the developments and applications that follow are oriented towards the mod-
elling of the excavation damaged zone and of the hydro-mechanical coupling occurring in partially
saturated low-permeability rocks. They are realised in partnership with the Andra which con-
ducts various scientific research programs to ensure the feasibility of a safe repository in the
Callovo-Oxfordian claystone and to characterise the claystone behaviour. The study of the EDZ
behaviour is motivated mainly by two of theses research programs. The first one is the study
of the Saturation Damaged Zone (SDZ) experiment that is realised in the context of the Group
of Laboratories (GL) for gas transfer established by the Andra. The experiment consists of a
large-scale gallery air ventilation test performed in the Andra’s Underground Research Labora-
tory (URL). Its purpose is to investigate the rock-atmosphere interactions and the possible EDZ
desaturation at repository scale (Cruchaudet et al., 2010a). The second is the benchmark named
"Transversal action - Models" that is realised in the context of the Andra’s Group of Laboratories
for geomechanics. It consists in developing and calibrating numerical models for the Callovo-
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Oxfordian claystone, and to use them to model underground structures by the reproduction of
the drilling phase (Seyedi et al., 2012, 2013).

1.4 Outline

The thesis global frame consists of five main chapters that are articulated following the major
objectives and published research articles. Numerical applications are realised all along the
different chapters, improving the complexity of the material behaviour at each step. Globally,
each chapter is based on an article but it is written with more developments and results to gain
a global coherence. In that sense, the global frame of the document is slightly unusual because it
does not corresponds exactly to a thesis by publication, nor to a complete coherent monograph.
The different research articles are recalled in the abstracts of the chapters and are listed in the
appendix B. The chapters are succinctly summarised as follows:

Chapter 2 states the starting point of the research. It includes the global properties of the
considered argillaceous rock as well as experimental evidences of excavation damaged zone and
air-rock interaction. A general framework for unsaturated porous media is detailed, then pre-
liminary numerical modelling of the EDZ and of gallery air ventilation is performed.

Chapter 3 presents how the fracturing description is improved and details the chosen method.
Because localised deformations can generally appear in materials prior to cracks and material
ruptures in a large number of situations, the fractures are represented with shear strain localisa-
tion in band mode. An appropriate model allowing to properly reproduce the strain localisation
in geomaterials with finite element methods is defined. The chosen model is an enhanced model
for microstructure media which is called the coupled local second gradient model.

Chapter 4 contains the numerical modelling of an excavation fractured zone with shear band-
ing. Some improvements of the coupled local second gradient model are included for unsaturated
and compressible media. The numerical results provide information about the fractured zone
extension, structure, and behaviour. A theoretical gallery air ventilation is also reproduce to
highlight its effect on shear banding.

Chapter 5 is devoted to the transversely isotropic behaviour of the rock. The behaviour of
anisotropic materials depends on the direction of loading with respect to their microstructure.
This directional dependence is commonly observed both on elastic and plastic characteristics
which will be envisaged in the model. The influence of transverse isotropy on shear banding
remains an important issue that is investigated through numerical applications. Additionally,
viscosity effect is also included in the modelling to improve the reproduction of long-term defor-
mation.

Chapter 6 concerns the fluid transfers and the material coupled behaviour, especially in the
EDZ. It regroups the precedent aspects (shear band and anisotropy descriptions) and incorporates
permeability variation as well as air-rock interaction. A gallery air ventilation experiment is
numerically reproduced to study its influence on hydraulic transfers.

Lastly, general conclusions and outlooks are stated and evidence the main contributions of the
thesis.
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CHAPTER 2. EDZ AND AIR INTERACTION IN ARGILLACEOUS ROCK

Abstract The hydro-mechanical material behaviour and the fluid transfers taking place around
underground galleries are addressed in this chapter. Firstly, the global characteristics of the con-
sidered argillaceous rock are summarised. Then, the excavation damaged zone development and
the effects of exchanges between air and rock are detailed. The water transfers are most particu-
larly analysed through a gallery air ventilation test. The modelling of such experiment requires
to develop a general framework for unsaturated porous media including hydro-mechanical be-
haviour. Lastly, the ventilation test is numerically reproduced and the preliminary results that
are obtained highlight the future challenges about EDZ and transfer modelling. For more details
about this preliminary modelling, please refer to the scientific paper of Charlier et al. (2013b).

Article Charlier, R., Collin, F., Pardoen, B., Talandier, J., Radu, J. P., and Gerard, P. (2013).
An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo-Oxfordian
argillite. Eng Geol, 165:46-63. doi: 10.1016/j.enggeo.2013.05.021.

2.1 Callovo-Oxfordian claystone

Among the different materials suitable for deep geological repository of nuclear wastes, the
behaviour of the Callovo-Oxfordian claystone will be most particularly studied. This geological
medium is envisaged by the French national radioactive waste management agency (Andra)
(Andra, 2005a). The Callovo-Oxfordian claystone, also called argillite, is part of the Paris Basin,
a geological area in France filled with a thick accumulation of sedimentary formations. This basin
is constituted of a succession of quasi-horizontal sedimentary layers of clay, limestone, and marls
(Fig. 2.1). The Callovo-Oxfordian claystone is a quite homogeneous indurated clay formation
with very low permeability, located between 400 and 600 m depth. It is a stiff rock exhibiting
good retaining ability of radionuclides and its mineralogical composition is mainly made of illite-
smectite clay minerals (Gaucher et al., 2004), quartz, and carbonate. The carbonate cements
give good mechanical strength and contribute together with the high content of clay minerals to
the very low permeability of this rock (Distinguin and Lavanchy, 2007). The proportions of the
different minerals evolve in the rock layer with the depth.

The understanding of the geomechanical behaviour of the possible host formations is a crucial
issue to evaluate and ensure the feasibility of a safe repository. This is why many Underground
Research Laboratories (URL) have been developed around the world (Kickmaier and McKinley,
1997; Gens et al., 1998; Croisé et al., 2004; Rutqvist et al., 2005; Delay et al., 2007). The research
programs in the different laboratories must allow an accurate characterisation of the confining
properties of suitable geological formations. In France, the Andra developed an URL at Bure, in
the Meuse/Haute-Marne area, at an average depth of 490 m corresponding to the median depth
of the Callovo-Oxfordian formation. At this site location, the geological layers dip slightly to
the West and the North-West. This low dip allows to assume that if an anisotropic behaviour of
the claystone is observed, the main orientations of anisotropy are located in the horizontal sedi-
mentary planes and along the vertical direction. The underground facility illustrated in Fig. 2.2
is composed of several galleries in which a series of experiments are conducted to characterise
the formation. These in situ experiments cover various aspects, such as the mechanical, the hy-
draulic or the thermal behaviours of the host rock as well as its retention and diffusion properties
of radioactive elements.

At the URL level, the material features anisotropic characteristics. This behaviour is due
firstly to the material mode of deposition (inherent anisotropy). A layered structure is observed
for sedimentary materials because they were usually deposited vertically in a succession of hor-
izontal layers and were subjected to stress. Over time, this structure can lead to the creation
of weakness planes called bedding planes due to metamorphism or diagenetic processes (Blüm-
ling et al., 2007). A second possible type of anisotropy is an induced anisotropy that results
of the loading history and deformation following the material deposition (Arthur et al., 1977a).
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Fig. 2.1: Geological cross-section at the Meuse/Haute-Marne underground research laboratory
site (Andra, 2005a).

Fig. 2.2: Gallery network of the Meuse/Haute-Marne underground research laboratory developed
in Callovo-Oxfordian claystone (Armand et al., 2014).
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Lithological conditions (overburden pressure), rheological properties, and tectonic processes can
of course play an important role (Wileveau et al., 2007).

For the considered claystone, the anisotropy is observed on the hydro-mechanical properties
and on the in situ stress state. The anisotropic stress state in the clayey rock at the main level
of the laboratory highlights an important horizontal stress and is defined as follows (Wileveau
et al., 2007):

σv = 12− 12.7 MPa

σh = 12− 12.4 MPa

σH = 14.4− 16.1 MPa

σH
σh

= 1.2− 1.3

pw = 4.5− 4.7 MPa

where σv is the vertical principal total stress, σh is the minor horizontal principal total stress,
σH is the major horizontal principal total stress, and pw is the pore water pressure. The usual
value that is considered for the ratio σH/σh is closer to 1.3, even if it varies with the rheological
material properties and the depth (Armand et al., 2013, 2014).

The hydraulic permeability of the rock is lower than 10−19 m2 with a more important value
along the quasi-horizontal bedding planes which is in a ratio of about 3 with the vertical per-
meability. The mechanical characteristics also differ depending on the orientation. For instance,
the ratio of elastic Young’s modulus parallel to the bedding planes and in the vertical direction
ranges from 1.05 to 1.4 (Andra, 2005b), and the uniaxial compressive strength of the material
also depends on the orientation. Table 2.1 presents some typical values of some basic properties
of Callovo-Oxfordian claystone and highlights the low porosity and the high strength of this
material.

Symbol Name Value Unit

E Young’s modulus 4− 5.6 GPa
ν Poisson’s ratio 0.18− 0.37 −
b Biot’s coefficient 0.6 −
ρ Density 2300− 2400 kg/m3

ρd Dry density 2210− 2330 kg/m3

Φ Porosity 15− 18 %
w Water content 3− 7 %
ϕ Friction angle 20− 25 °
ψ Dilatancy angle 0− 0.5 °
c Cohesion 3− 7 MPa
Rc Uniaxial compressive strength 20− 30 MPa

Table 2.1: Geomechanical characteristics of Callovo-Oxfordian claystone (Gens et al., 2007; Wile-
veau and Bernier, 2008; Malinsky, 2009; Andra, 2005a,b).

2.2 Excavation damaged zone

The process of underground excavation generates in situ stress modification and damage propa-
gation in the surrounding medium. When the damage threshold is reached, microcracks initiate,
then accumulate, propagate (distributed damage), and can lead to the onset of macrocracks
(interconnected fractures). Different modes of fractures exist: opening or tensile fractures, shear
fractures, and mixed-mode fractures which are a combination of the two previous modes (Jenq
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and Shah, 1988). In the rock mass around underground galleries, distinct brittle failure mecha-
nisms can occur due to the damage accumulation and microcracks coalescence (Diederichs, 2003).
The failure mechanisms consist of macroscale shear failure in case of high-stress environment,
spalling in case of low-stress environment, and unravelling which corresponds to tensile failure
(Fig. 2.3). The author also mentions that dilating cracks appear close to the excavation wall
because it is not restraint. Similar failure mechanisms are observed on small-scale laboratory
tests.

Fig. 2.3: Mechanisms of rock mass brittle failure around gallery (Diederichs, 2003).

An Excavation Damaged Zone (EDZ) therefore develops close to the drift wall with dis-
tributed damage as well as hypothetical macro-scale fractures. Emsley et al. (1997) and Tsang
and Bernier (2004) define it as a zone dominated by geochemical and hydro-mechanical prop-
erty changes that are mainly irreversible and which induce important modifications in flow and
transport properties (Bossart et al., 2004; Tsang et al., 2005; Armand et al., 2007), such as
permeability increase. These property modifications could alter the safety function of the rock;
therefore, the EDZ behaviour is a major issue concerning the long-term management of nuclear
waste repository. The EDZ has been carefully investigated in URL through, for instance, in situ
observations, fracture measurements, permeability analyses, and fluid transfers.

Hereafter, the excavation damaged zone in Callovo-Oxfordian claystone is defined by focusing
on experimental evidences of induced mechanical fracturing and permeability evolution.

2.2.1 Rock fracturing

For the Callovo-Oxfordian claystone, many in situ observations and measurements of fractures
induced by the drilling are conducted in the vicinity of the Andra’s URL. To characterise the
fractured zone, the fractures located at the front, on the sidewalls, and in the rock around
experimental galleries are of particular interest and are studied through a structural analysis. The
geological survey of the galleries is performed after the excavation with two principal methods:
three-dimensional scan measurements of the drifts’ faces and sidewalls, and a structural analysis
of core samples coming from boreholes. The scan measurements provide the senses, the strikes,
and the dips of the superficial fractures. The fractures at the gallery fronts are illustrated in
Fig. 2.4 for galleries parallel to both major and minor horizontal principal stresses. In addition
to the scans, boreholes are drilled in the rock from the gallery walls and in different directions.
The fracturing analyses realised on the borehole cores provide the EDZ extent and a description
of the fracturing pattern as illustrated in Fig. 2.5. The description includes the cracks density
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and the type of fractures (Armand et al., 2014).

(a)

(b)

Scanning of tunnel face Raw scan Interpreted scan

Lower chevron

Types of fractures:

Concave right scale

Upper chevron

Concave left scale

Spalling (bulge)

Fig. 2.4: Fractures at the front of the galleries parallel to (a) the major and (b) the minor hori-
zontal principal stresses in the Andra’s URL (according to Armand et al. (2014) and Cruchaudet
et al. (2010a)).

Armand et al. (2014) indicate that extension (spalling) and shear fractures in chevrons are
detected around the galleries as well as at the excavation front face (Figs. 2.4 and 2.5). For this
material, shearing is the principal failure mechanism because of the high in situ stress environ-
ment (Diederichs, 2003). It has been evaluated, from core sample analyses, that approximately
75 % of the total number of fractures are shear fractures (mode II, Armand et al. (2014)). In the
gallery axial direction, the shear chevron fractures initiate during the drilling in the rock ahead
of the excavation front. Spalling and extensional failures appear during gallery convergence but
remain less developed. Therefore, in the gallery cross-section, both types of fractures are de-
tected close to the galleries but only shear fractures in chevrons are present deeper in the rock
(Fig. 2.5). The extent of the fractured zone can then be separated in two sub-zones as shown in
Fig. 2.5: a zone with mixed fractures (shear and extension) close to the gallery and a zone with
only shear fractures further in the rock. The Fig. 2.6 illustrates a synthesis of the conceptual
model of the induced fractures for both gallery orientations in Callovo-Oxfordian claystone.

Furthermore, the excavation fractured zone in Callovo-Oxfordian claystone has an elliptical
extension that can reach several meters with a significantly larger extent in one direction. The
shape of the fractured zone differs for the two main drifts orientations because of the stress state
anisotropy as illustrated in Fig. 2.6. In fact, for galleries oriented in the direction of the minor
horizontal principal stress, the anisotropy of the stress state in the plane perpendicular to the
gallery axis seems to control the fracturing patterns in the rock. Nevertheless, the development
of fractures in the rock has been observed even for galleries oriented in the direction of the major
horizontal principal stress (Fig. 2.6) that present an isotropic or quasi-isotropic stress state in
their perpendicular plane (gallery section). In this case, the anisotropic extent of the fractured
zone around drifts suggests that the material anisotropy plays an important role in the onset of
fractures.

The orientations of the galleries, the stress state anisotropy, and the fracturing pattern have
also an influence on the convergence of the galleries. Fig. 2.7 illustrates the convergence mea-
surements of drifts parallel to each principal horizontal stress from Armand et al. (2013). A

15



CHAPTER 2. EDZ AND AIR INTERACTION IN ARGILLACEOUS ROCK

(a)

(b)

(c)

Fig. 2.5: Fractures in the rock around the galleries parallel to the major horizontal principal stress
in the Andra’s URL: (a) tree-dimensional visualisation of the fracture network (GET drift) and
(b,c) conceptual model of the induced fractures (Armand et al., 2014).

convergence anisotropy develops in all drifts, for both gallery orientations, with the major con-
vergence measured in the same direction than the location of the fractured zone. Nonetheless,
the convergence and its anisotropy are larger for the drifts oriented parallel to the minor hori-
zontal stress, where the stress anisotropy in the gallery section is more important with a ratio of
σH/σv ≈ 1.3.

Other low-permeability geological formations are envisaged for nuclear waste repository. For
instance, two clayey formations that are considered in Europe are the Boom clay (Belgium) and
the Opalinus clay (Switzerland). The chevron or herringbone fracture pattern observed in the
Callovo-Oxfordian claystone is similar to what is observed in Boom clay around galleries and
borehole cores (Blümling et al., 2007; Wileveau and Bernier, 2008), but no extensional failure
is observed in this plastic clay. The Opalinus clay is an indurated clay studied in Switzerland
on the Mont Terri site (Jura Canton). This clay exhibits comparable characteristics to the
Callovo-Oxfordian claystone, with similar mineralogical composition, transfer, and mechanical
properties. It features a strong material anisotropy with bedding planes inclined at about 45°
with the horizontal (Martin and Lanyon, 2004). It has been observed for this material that the
development of the fractures is dominated by pre-existing features (tectonic faults), extension,
and bedding plane instabilities (Marschall et al., 2008). The extension is the prevailing mech-
anism of failure resulting from high differential stress and from a lower in situ stress state at
laboratory level than for the Callovo-Oxfordian claystone. Moreover, the material anisotropy is
a crucial factor in the determination of the excavation damaged zone geometry in Opalinus clay
because instabilities, such as bedding slip or buckling, can initiate due to the material weakness
along the bedding planes.
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Fig. 2.6: Conceptual model of the induced fractures in Callovo-Oxfordian claystone around drifts
parallel to the (a) major and (b) minor horizontal principal stresses (according to Armand et al.
(2014)).
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Fig. 2.7: Evolution of the convergence of drifts parallel to the (a) major and (b) minor horizontal
principal stresses.

2.2.2 Permeability evolution

In the fractured zone, the hydraulic permeability is inhomogeneous and can severely increase
up to several orders of magnitude, especially due to the presence of interconnected extensional
fractures (Armand et al., 2014). This increase has been highlighted by measurements (Fig. 2.8)
performed under saturated conditions in boreholes drilled around the galleries in different orien-
tations (Armand et al., 2014). In the fractured zone, these measurements are representative of
the fracture permeability, not of the continuous rock matrix permeability. Three zones can be
defined in Callovo-Oxfordian claystones (Cruchaudet et al., 2010b): an undisturbed zone with a
permeability lower than 10−19 m2, a slightly disturbed zone with a permeability ranging from
10−19 m2 to 10−17 m2, and a highly disturbed zone close to the gallery with a permeability higher
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than 10−17 m2 (increase higher than 2 orders of magnitude). The extents of the zones are de-
tailed in Fig. 2.9 and are superposed to the experimental data in Fig. 2.8. A parallelism between
hydraulic measurements and fracture measurements can be evidenced and the permeability zones
can then be related to the induced shear and tensile fracture zones (Fig. 2.9). Therefore, the
shape of the permeability zones also differs depending on the gallery orientations and the stress
state anisotropy (Armand et al., 2014).
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Fig. 2.8: Evolution of hydraulic permeability along (a) vertical, (b) oblique at 45°, and (c)
horizontal boreholes drilled around a gallery (GED) parallel the minor horizontal principal stress
in Callovo-Oxfordian claystone.
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Fig. 2.9: Extensions of (a) hydraulic permeability and (b) fracture zones measured around a
gallery (GED) parallel to the minor horizontal principal stress in Callovo-Oxfordian claystone.

2.3 Air-rock interaction

When a material is in contact with the atmosphere, transfers between them take place at their
interface. These interface exchanges have to be carefully studied because they can lead to material
drainage, desaturation, and stress modification. Such effects can affect the hydraulic transfer
kinetics as well as the fracturing structure. For porous materials like soils and rocks, liquid and
gaseous transfers can occur and may significantly modify the water saturation, especially close
to the contact interface. The liquid exchange is a seepage flow directed towards the atmosphere
that takes place if the porous surface of the material is fully saturated. Gaseous (water vapour)
transfer occurs when water evaporates at the surface of the material or if water vapour reaches
the contact interface. The latter is realised by fluid transfers (gas flows) inside the material that
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are mainly governed by capillary forces.
At nuclear waste repository scale, air ventilation is performed in the underground galleries

during the excavation and maintenance phases. This ventilation could impact the short-term
behaviour of the underground structures because it may drain the water from the rock. In case
of important drainage, it can even lead to rock desaturation, stress modification, as well as
modification of the fracturing structure close to the drifts. As a consequence, the damaged zone
behaviour could be affected (Matray et al., 2007).

2.3.1 Small-scale drying experiment

Different laboratory experiments are developed on a small scale to study the material evolu-
tion induced by material-atmosphere interaction and to emphasise the effect of shrinkage and
desiccation on cracking (Peron et al., 2009a,b). In classical techniques, derived from chemical
engineering methods, the suction in the material is controlled. One technique is to control the
vapour phase by submitting samples to a relative humidity regulated with salt solutions in a
desiccator (Young, 1967; Delage et al., 1998; Romero et al., 2001). Another technique that re-
produces air circulation is the convective drying test, during which air is blown at the material
surface (Léonard et al., 2005; Ta, 2009; Gerard et al., 2010). Generally, the relative humidity, the
temperature, and the speed of the air are controlled during the drying. For example, Fig. 2.10
shows the result of a drying test that leads to the fracturing of a clay. In addition, an efficient
tool to characterise the development and evolution of cracks during drying tests performed on
small-scale samples is X-ray microtomography coupled to image analysis (Léonard et al., 2002,
2003). It also allows the determination of internal moisture profiles and geometrical changes that
describe the shrinkage process.

Fig. 2.10: Cracks network on the surface of the Romainville clay after drying (Ta, 2009).

2.3.2 Large-scale ventilation experiment

In order to investigate the rock-atmosphere interactions at repository scale, large-scale venti-
lation experiments are performed in underground research laboratories. Among them are the
Ventilation Experiment (VE) carried out at Mont Terri URL (Mayor et al., 2007) and the Sat-
uration Damaged Zone experiment (SDZ) conducted in Andra’s URL (Charlier et al., 2013b;
Guillon, 2011; Pardoen et al., 2012a). The major objective is to characterise the influence of a
controlled ventilation on the hydro-mechanical behaviour of the rock mass and on the hydraulic
transfers taking place around the galleries, especially in the excavation damaged zone. A partic-
ular attention is paid to the material deformation, drainage, and desaturation processes during
the tests.

The considered ventilation experiment is the SDZ test, which will be studied and reproduced
numerically. It is performed at the end of the GED experimental gallery which is oriented parallel
to the minor horizontal principal stress (Fig. 2.11). An experimental zone is isolated from the rest
of the laboratory and is subjected to a controlled ventilation. Different levels of hygrometry are
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applied in order to highlight the effect of drainage and wetting, or of desaturation and possible
resaturation. The experimental zone, presented in Fig. 2.11, is divided in two parts: one with
concrete covering and impervious geotextile on the gallery wall, and another without covering
where the air-rock exchanges can be directly studied. An airlock is also present to isolate the
experimental zone from the rest of the laboratory. The ventilation can be sequenced in different
phases (Fig. 2.12): (1) the first phase corresponds to the global laboratory ventilation before the
airlock closure, (2) once the airlock is closed the ventilation is stopped in the experimental zone
and the exchanges with the GED gallery occur through the excavation damaged zone, later a
controlled ventilation is imposed with hygrometric conditions of (3) 30 % of relative humidity
and 23°C then of (4) 60 % of relative humidity and 22°C. The air temperature T and relative
humidity RH evolutions are monitored in the experimental zone in different gallery sections.
The measurements are illustrated in Fig. 2.12 with the four different ventilation phases.

4.6 m

0.2 m

Concrete covering with
impervious geotextile

Airlock isolated with
two hermetic doors

GED
Experimental

gallery

SDZ
Ventilation
experiment

2 m7.2 m5 m

Fig. 2.11: Geometry of the SDZ experimental zone located at the end of the GED drift in
Callovo-Oxfordian claystone.

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

RH

T

1. 2. 3. 4.

R
el

at
iv

e
h

u
m

id
it

y
 [

%
]

Time [days]

T
em

p
er

at
u

re
[°

C
]

Fig. 2.12: Evolutions of temperature and relative humidity in the SDZ experimental zone.

Several in situ experimental measurements are realised during the test. Only the main exper-
imental observations are presented hereafter, more complete results can be found in (Cruchaudet
et al., 2010a). The pore water pressure evolution inside the rock mass is monitored in different
boreholes having different orientations (Charlier et al., 2013b) as illustrated in Fig. 2.13. The
sensors are set up at different depths and can acquire measurements in a range going from 0
to 10 MPa. The measurements around the experimental zone without covering are illustrated
in Fig. 2.14 and give information on the progressive drainage of the material. One can observe
that the drainage is not important in the far field where the pore water pressures are close to
the initial rock water pressure of 4.5 MPa. It is more important close to the experimental zone
where the measurements are close to the atmospheric pressure (in a 3 m ring). This is due to
the deterioration of the permeability in the damaged zone, not in the far-field rock mass.
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Fig. 2.14: Evolution of pore water pressure in boreholes drilled around the uncovered SDZ
experimental zone for different distances from gallery wall: (a,d) horizontal, (b) oblique at 45°,
and (c) vertical boreholes.

Moreover, the pore water pressures in the horizontal borehole located at the end of the gallery
are higher than the initial pore water pressure of the rock (Fig. 2.15). This is characteristic of
hydro-mechanical coupling engendered by the material anisotropy either of the initial stress state
or of the mechanical behaviour. The analysis of the pore pressure temporal evolution around
the uncovered zone is also performed for different sensors located at the same distance from the
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gallery wall but in boreholes drilled with different orientations (Fig. 2.16). The results indicate
that, at a depth of 4.5 m, pore water pressures are the highest when the dip of the borehole is
45° according to the horizontal plane. At 6 m depth, this is also observed in the short term but
in the long term the pore water pressures in the vertical direction are slightly higher than the
ones at 45° because the drainage is slower in the vertical borehole. On the other hand, the pore
pressures are the lowest in the boreholes drilled in the horizontal plane, with a perpendicular
orientation to the GED gallery. Such observations are characteristic of the material anisotropic
permeability.
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Fig. 2.15: Evolution of pore water pressure in the horizontal borehole drilled at the end of the
GED drift for different distances from gallery wall.
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In the excavation damaged zone, it can be expected that the increase of permeability and
the drainage lead to rock desaturation. Unfortunately, the sensors can not acquire negative
measurements and can not characterise the desaturation. In the long term, the two controlled
ventilation phases (phases (3) and (4) in Fig. 2.12) have only a minor effect on the measured
pore water pressures. The decrease of the pore water pressure measurements in Figs. 2.14 and
2.16 is slightly reduced when the wetting phase with RH = 60 % is applied (phase (4) after 1680
days).

To characterise the desaturation, water content measurements have also been performed on
core samples coming from horizontal boreholes, that were drilled in the experimental zone without
covering. The water content w is a direct measurement of the degree of water saturation Sr,w
through the relations:

w =
Mw

Ms
(2.1)
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Sr,w =
ρs
ρw

1− Φ

Φ
w (2.2)

where Ms is the mass of the solid grains, Mw is the mass of the liquid water, ρs is the solid grain
density, ρw is the water density, and Φ is the material porosity. These different material properties
will be defined in the general framework for unsaturated porous media in section 2.4. The
experimental results are illustrated in Fig. 2.17 (a). They indicate, firstly, a strong desaturation
close to the gallery wall with 3 % ≤ w ≤ 5 % that can extend up to 0.5 m depth, secondly, a
moderated desaturation deeper in the rock, and thirdly, a limited desaturation or no desaturation
deeper than 2 m with 6.7 % ≤ w ≤ 8.2 % for the saturated claystone. The measurements in the
URL show that the desaturation evolution occurs mainly during the excavation phase and the
first interaction with the gallery air. In the long term, the desaturation propagation in the rock
is limited which may be related to low vapour transfers at gallery wall, to fracture closure or to
material sealing / healing. The evolution of the water content at gallery wall is also represented
in Fig. 2.17 (b). The experimental values correspond to the measurements performed the closest
to the gallery wall for each borehole. For three of them (SDZ1285 to 87) the first samples were
taken at about 25 cm depth, and therefore the water content values have been corrected.

Furthermore, a geological survey of the fractured zone as well as measurements of the gallery
convergence are also performed by the Andra in the SDZ experimental zone, after the gallery
excavation.
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Fig. 2.17: Evolution of water content around the SDZ experimental zone in the horizontal direc-
tion: (a) in boreholes and (b) at gallery wall.

2.4 General framework for unsaturated porous media

The modelling of the excavation damaged zone and of the fluid transfers supposes the description
of fractures and the use of a hydro-mechanical model for unsaturated porous media. An advanced
hydro-mechanical framework should be ideally developed, as an anisotropic mechanical model
or a model able to capture permeability evolution by hydro-mechanical coupling. Nevertheless,
the large-scale ventilation experiment that will be reproduced highlights first and foremost fluid
transfer processes in geomaterials. In a first modelling step, the focus is mainly on the reproduc-
tion of these fluid transfer processes in unsaturated porous media. This first approach permits
to acquire a preliminary understanding of the transfer kinetics induced by gallery air ventilation
around the galleries and in the damaged zone. Other aspects such as material desaturation and
air-rock interactions at gallery wall can also be investigated with such approach. A more accurate
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definition of the material behaviour and of the EDZ, with fractures description and permeability
evolution, will be added in further developments.

To describe a general framework for geomaterials, it is commonly assumed that they exhibit
a porous structure which, relying on a mixture theory, is considered as superimposed continua
(Coussy, 1995, 2004). An assembly of solid grains forms the solid skeleton and fluids can fill the
porous space between these grains (Fig. 2.18). Hereafter, the general framework is detailed for
a binary fluid mixture composed of a wetting and a non-wetting fluid corresponding to a liquid
and a gaseous phase, respectively. It is considered that the liquid phase is composed of liquid
water and dissolved air, whilst the gaseous phase is an ideal mixture of dry air and water vapour.

Solid grains

Water

AirCapillary

meniscus

Fig. 2.18: Triphasic porous medium composed of a solid grain skeleton, water, and air.

Unsaturated conditions are considered, meaning that the liquid and gaseous phases partially
occupy the pores (Fig. 2.18). Under these conditions, the fluids distribution is governed by
interface phenomena (surface tensions) between the different phases that occur on a microscopic
scale (Delage and Cui, 2000). These phenomena induce capillary forces which develop between
the solid grains of the material. They are related to the liquid amount that fills the porous
space with an increase of the capillary forces when the porous material desaturates. Such forces
condition the material behaviour as well as the fluid transfers and must be taken into account.

Based on averaging theories (Hassanizadeh and Gray, 1979a,b), Lewis and Schrefler (2000)
proposed the governing equations for the full dynamic behaviour of a partially saturated porous
medium. Hereafter, the balance equations of the hydro-mechanical problem are recalled, then
the constitutive equations of the fluid transfers and mechanical problems are described, with
special emphasis on the different couplings existing between the mechanical and the hydraulic
parts. These equations, valid at any time, are presented for a general framework where the liquid
is water and the gas is air, with the gas pressure assumed non-constant. The balance equations
and the constitutive relations can be nevertheless easily extended for other binary fluid mixtures
of water and other gas species (nitrogen, hydrogen, helium, argon...).

2.4.1 Balance equations

The balance equations of the hydro-mechanical problem under unsaturated conditions are devel-
oped in usual differential local form. These equations consist of the balance of momentum of the
mixture, the solid mass balance equation, and the fluids mass balance equations, both for the
water and the air species. They are developed in updated Lagrangian configuration which corre-
sponds to the current porous material configuration Ω (unit volume). Such formulation is typical
of large deformation problems for which a distinction is realised between the deformed (current)
and the initial configurations. The equations are restricted for quasi-static problem in unsatu-
rated and isothermal conditions. The unknowns of the mechanical and flow problems are the
displacements ui, the pore water pressure pw which is negative in unsaturated case corresponding
to suction, and the gas pressure pg (air).

Balance of momentum of the mixture

The mixture momentum balance equation corresponds to the equilibrium equation of the con-
tinuous medium (Malvern, 1969) composed of the three phases (solid, liquid, and gas). In this
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equation, the interaction forces between fluid phases and grain skeleton cancels. It reads:

∂σij
∂xj

+Gi = 0 (2.3)

where xi are the Cartesian coordinates, σij is the total Cauchy stress field (symmetric tensor),
and Gi is the gravity volume force. The latter is defined as:

Gi = ρ gi (2.4)

where ρ is the homogenised mass density of the mixture and gi is the gravity acceleration vector
of norm g. Developing the mixture homogenised density gives:

ρ = ρs (1− Φ) + Sr,w ρw Φ + Sr,g ρg Φ (2.5)

where Φ is the porosity, ρs is the solid grain density, ρw is the water density (ρw = 1000 kg/m3),
ρg is the gas density, Sr,w is the degree of water saturation (relative saturation), and Sr,g is the
gas degree of saturation. The porosity is defined as:

Φ =
Ωp

Ω
(2.6)

where Ωp is the current porous (voids) volume of the total volume Ω. The degrees of saturation
correspond to the volumetric fractions of fluids occupying the porous space:

Sr,w =
Ωw

Ωp
(2.7)

Sr,g =
Ωg

Ωp
= 1− Sr,w (2.8)

where Ωw and Ωg are the current water and gas volumes of Ω. The balance equation of mixture
momentum becomes:

∂σij
∂xj

+ (ρs (1− Φ) + Sr,w ρw Φ + Sr,g ρg Φ) gi = 0 (2.9)

Solid mass balance equation

The used reference system follows the solid phase; therefore, the solid mass conservation is
necessarily valid:

Ṁs =
∂

∂t
(ρs (1− Φ) Ω) = 0 (2.10)

where Ms is the solid mass inside the current porous material configuration Ω. In this equation
and in the following, the notation ȧ corresponds to the time derivative of any quantity a:

ȧ =
∂a

∂t
(2.11)

Fluids mass balance equations

Following the compositional approach of Panday and Corapcioglu (1989) and Olivella et al.
(1994), the fluid mass balance equations are written for each chemical species, i.e. water and air,
assuming the mass conservation of each one. In this way the terms related to the phase transfer
cancel. The water and air mass balance equations read:

∂fw,i
∂xi

+ Ṁw︸ ︷︷ ︸
Liquid water

+
∂fv,i
∂xi

+ Ṁv︸ ︷︷ ︸
Water vapour

−Qw = 0 (2.12)
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∂fa,i
∂xi

+ Ṁa︸ ︷︷ ︸
Dry air

+
∂fda,i
∂xi

+ Ṁda︸ ︷︷ ︸
Dissolved air

−Qa = 0 (2.13)

where fw,i, fv,i, fa,i, and fda,i are the mass flows, respectively, of liquid water, water vapour,
dry air, and dissolved air; Qw and Qa are the total sink mass terms of water and air; Mw, Mv,
Ma, and Mda are the masses of liquid water, water vapour, dry air, and dissolved air inside the
current porous material configuration Ω. The latter are expressed in rate forms (storage terms)
as follows:

Ṁw =
∂

∂t
(ρw Φ Sr,w Ω) (2.14)

Ṁv =
∂

∂t
(ρv Φ Sr,g Ω) (2.15)

Ṁa =
∂

∂t
(ρa Φ Sr,g Ω) (2.16)

Ṁda =
∂

∂t
(ρda Φ Sr,w Ω) (2.17)

where ρv, ρa, and ρda are the densities of water vapour, dry air, and dissolved air, respectively.
For a unit mixture volume, the above masses variations lead to:

∂fw,i
∂xi

+
∂

∂t
(ρw Φ Sr,w)︸ ︷︷ ︸

Liquid water

+
∂fv,i
∂xi

+
∂

∂t
(ρv Φ Sr,g)︸ ︷︷ ︸

Water vapour

−Qw = 0 (2.18)

∂fa,i
∂xi

+
∂

∂t
(ρa Φ Sr,g)︸ ︷︷ ︸

Dry air

+
∂fda,i
∂xi

+
∂

∂t
(ρda Φ Sr,w)︸ ︷︷ ︸

Dissolved air

−Qa = 0 (2.19)

The mass flows for the different phases and chemical species will be defined in the constitutive
equations (section 2.4.3).

2.4.2 Effective stress definition

The characterisation of the stress state and of the hydro-mechanical coupling implied by the
effect of fluid pressures on the Cauchy total stress field σij must be defined. It is realised by
considering the concept of effective stress (Nuth and Laloui, 2008b) that should represent only
the stresses acting in the solid skeleton, between the solid grains. It constitutes an average stress
over a representative elementary volume of the material that contains its different phases. For
porous materials saturated with water, Terzaghi’s postulate of effective stress reads (Terzaghi,
1936):

σ
′
ij = σij − pw δij (2.20)

where σ′ij is the effective stress field, defined under soil mechanics convention in which compressive
stress is positive, pw is the pore water pressure, and δij is the Kronecker symbol, i.e. the identity
tensor. This expression is only representative of saturated soils with incompressible water and
solid grains. For partially saturated porous materials, Bishop extended this postulate by defining
the effective stress as a function of both liquid and gas pressures in the pores (Bishop, 1959):

σ
′
ij = σij − pg δij + χ s δij (2.21)
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where pg is the gas pressure, σij − pg δij is the net stress, χ is the effective Bishop’s stress
parameter, and s is the matric suction. The latter is related to the capillary effect and corresponds
to the capillary pressure pc:

s = pc = pg − pw (2.22)

The Bishop’s parameter represents the saturation state and varies from 0 in dry state to 1 in fully
saturated state, recovering Terzaghi’s postulate (Eq. 2.20) for χ = 1. Following experimental
studies on unsaturated soils, various authors indicate that the effective stress parameter is linked
to the degree of water saturation χ(Sr,w) (Bishop and Donald, 1961; Jennings, 1960) but depends
also on various factors as soil type, microstructure, and followed stress paths (Bishop and Blight,
1963; Jennings and Burland, 1962). An elementary relationship between them is proposed by
Schrefler (1984) as:

χ = Sr,w (2.23)

although other expressions have been proposed in the literature. Under this most commonly
used assumption, Eq. 2.21 can be rewritten in a simplified form:

σ
′
ij = σij − (Sr,w pw + Sr,g pg) δij (2.24)

which involves the average fluid pressure composed of the partial pressure of each fluid, with
regard to their degree of saturation.

Another aspect to introduce in the effective stress definition is the material compressibility.
For saturated materials, Biot proposed to scale down the effect of pw in Eq. 2.20 as a function
of the relative deformability of the solid structure (Biot, 1941; Biot and Willis, 1957; Skempton,
1960). The latter could be of importance for high stress level and when the solid grain compress-
ibility is not negligible in comparison to the solid skeleton compressibility. The Biot’s effective
stress definition is expressed as:

σ
′
ij = σij − b pw δij (2.25)

where the Biot’s coefficient b represents the compressibility of the solid grains relative to the
skeleton compressibility. It is defined as follows for isotropic materials:

b = 1− K

Ks
(2.26)

where K is the drained bulk modulus of the material and Ks is the bulk modulus of the solid
phase. If the bulk modulus of the porous material is low in comparison to the bulk modulus
of the solid grains then b is close to 1. This may correspond, for instance, to unconsolidated
materials having a high pore compressibility. In opposition, for consolidated rocks with a more
rigid grain skeleton (a higher value of K), the pore compressibility and the effect of pw on σij
are reduced by a value of b < 1. The compressibility of the porous material will be more largely
detailed in section 2.4.4. Moreover, other approaches to scale down the effect of pw in saturated
compressible soils have also been proposed, such as considering change in porosity (Biot, 1955)
or a scaling coefficient that is a combination of porosity and compressibility (Suklje, 1969).

Considering together partial saturation and compressibility effects can be realised presuming
that the assumptions on compressibility hold under unsaturated conditions (Nuth and Laloui,
2008b). The Biot’s stress definition can be formulated under unsaturated conditions by extension
of Eq. 2.24:

σ
′
ij = σij − b (Sr,w pw + Sr,g pg) δij (2.27)

This expression is kept as the effective stress definition.
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2.4.3 Constitutive equations for fluid transfers

The constitutive equations describe the porous media behaviour and are the basis of the hydro-
mechanical model formulation. The equations of the fluid transfers are developed in this section
with emphasis on hydro-mechanical couplings. The mechanical constitutive equations for the
stress-strain behaviour will be described further, in section 2.4.5.

Biphasic fluid transfer model

For the fluid phases, a biphasic flow model is considered for the description of the fluid transport
processes in partially saturated porous media. The mass flows take into account the advection
of each phase using the generalised Darcy’s law and the diffusion of the components within each
phase by Fick’s law. Due to the small amount of dissolved air in the liquid phase, the dissolved
air influence on the liquid phase properties such as viscosity and density is neglected. For the
same reason, the liquid water diffusion within the liquid phase is also neglected. The mass flows
are expressed as:

fw,i = ρw ql,i (2.28)

fv,i = ρv qg,i + iv,i (2.29)

fa,i = ρa qg,i + ia,i (2.30)

fda,i = ρda ql,i + ida,i (2.31)

where ql,i and qg,i are the advective fluxes (speed) of the liquid and the gaseous phases; iv,i, ia,i,
and ida,i are the diffusion fluxes for the water vapour, the dry air, and the dissolved air.

The advection of each phase is described by the generalised Darcy’s law for unsaturated cases.
The permeability evolution with the saturation degree is taken into account by multiplying the
intrinsic permeability by a relative permeability coefficient. Given the small amount of dissolved
air, the liquid mixture advection is defined by the liquid water advection within the porous
medium:

ql,i = qw,i = −kw,ij kr,w
µw

(
∂pw
∂xj

+ ρw gj

)
(2.32)

This advective liquid flux corresponds to the average macroscopic speed of the liquid phase
relative to the solid phase. The gaseous phase advection reads:

qg,i = −kw,ij kr,g
µg

(
∂pg
∂xj

+ ρg gj

)
(2.33)

In the two previous equations kw,ij is the water permeability tensor in saturated conditions, i.e.
the intrinsic permeability tensor; kr,w and kr,g are the water and gas relative permeabilities; µw
and µg are the water and gas dynamic viscosities (µw = 0.001 Pa s).

For anisotropic materials, the general form of the intrinsic permeability tensor requires nine
components for the description of the flow characteristics. This number reduces to six by the
symmetric property of the tensor. Furthermore, geological media exhibiting a stratified structure
are generally transversely isotropic materials. They have identical properties in the bedding
planes which are perpendicular to an axis of symmetry and only two components are necessary
for the description of the flow characteristics: one in the stratification direction and another
perpendicular to the stratification. If the bedding planes are horizontal and the symmetry axis
is vertical, as for numerous sedimentary materials including the Callovo-Oxfordian claystone,
then the two parameters are the horizontal and vertical intrinsic hydraulic permeabilities, kw,h
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and kw,v. For a vertical direction corresponding to the x2 = y coordinate, the anisotropic intrinsic
water permeability tensor reduces to:

kw,ij =

kw,h 0 0
0 kw,v 0
0 0 kw,h

 (2.34)

It is to mention that the intrinsic permeability tensor depends exclusively on the material and
is independent of the considered fluid, in contrast to the hydraulic conductivity which depends
on the fluid characteristics:

Kw,ij =
kw,ij ρw g

µw
(2.35)

The properties of the gaseous phase in Eq. 2.33 remain to be defined. The gaseous phase
being an ideal mixture of dry air and water vapour, its properties depend on both components.
The dynamic viscosity corresponds to:

µg =

(
ρa

ρg µa
+

ρv
ρg µv

)−1

(2.36)

where µa and µv are the dry air and water vapour dynamic viscosities. Similarly, the gaseous
phase density is given by (Pollock, 1986; Gawin et al., 1996):

ρg = ρa + ρv (2.37)

The diffusion of the components within each phase are defined by Fick’s law. The diffusion in
the gaseous mixture dry air-water vapour depends on the gradient of water vapour concentration,
it reads:

iv,i = −Φ Sr,g τ Dv−a ρg
∂

∂xi

(
ρv
ρg

)
= −ia,i (2.38)

The diffusion of dissolved air in liquid water depends on the gradient of dissolved air concentra-
tion, it reads:

ida,i = −Φ Sr,w τ Dda−w ρw
∂

∂xi

(
ρda
ρw

)
(2.39)

where Dv−a and Dda−w are the diffusion coefficients, respectively, in the gaseous mixture (dry
air-water vapour) and for the dissolved air in liquid water; and τ is the tortuosity of the porous
medium, which characterises the path followed by the dissolved air particles between the solid
grains. The diffusion coefficient of the gaseous phase is independent of the considered porous
material but varies with the gas pressure and the absolute temperature T (Philip and de Vries,
1957):

Dv−a = 5.893× 10−6 T 2.3

pg
(2.40)

and Dda−w = 5.03 × 10−9 m2/s for a temperature of 20°C and atmospheric pressure (Gerard,
2011).

Variations of fluids densities

The fluids are assumed to be compressible which implies a variation of the liquid and gas densities.
The compressible fluid is assumed to respect the following relationship (Lewis and Schrefler,
2000):

ρ̇w
ρw

=
ṗw
χw

(2.41)

This predicts an increase of water density as a function of the pore water pressure, defining χw as
the liquid water isotropic bulk modulus (χ−1

w = 5× 10−10 Pa−1). For the gaseous ideal mixture
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of dry air and water vapour, the ideal gas law is assumed. The state equations of perfect gas
(Clapeyron’s equation) and Dalton’s law applied to dry air, water vapour, and moist air yield
(Pollock, 1986; Gawin et al., 1996):

pa =
ρa R T

ma
(2.42)

pv =
ρv R T

mv
(2.43)

pg = pa + pv (2.44)

ρg = ρa + ρv (2.45)

where pv and pa are the water vapour and dry air partial pressures, mv and ma are the molar
masses of the water vapour and of the dry air (mv = 0.018 kg/mol, ma = 0.029 kg/mol), R is
the universal gas constant (R = 8.314 J/molK), and T is the absolute temperature expressed
in Kelvin. The above equations give the gaseous phase density variation in terms of the partial
pressures of the gaseous components.

Equilibrium restrictions

An equilibrium equation for each chemical species is necessary for the partially saturated hydro-
mechanical model. In porous media, if both gaseous and liquid phases are considered in the
pores then both phases of the water species, the water vapour and the liquid water, should be
in equilibrium. The equilibrium restriction equation corresponds to Kelvin’s law which gives the
concentration of water vapour in the gas phase as:

RH =
pv
p0
v

=
ρv
ρ0
v

= exp

(
−stot mv

ρw R T

)
(2.46)

where RH is the relative humidity of the gaseous phase, p0
v is the pressure of saturated water

vapour at the same temperature, pv is the partial pressure of water vapour, ρ0
v is the density of

saturated water vapour, ρv is the density of water vapour, and stot is the total suction which
consists of the sum of matric and osmotic suctions. The matric suction depends on the capillary
effect and corresponds to the capillary pressure (Eq. 2.22), whilst the osmotic suction is related
to differences of solution concentrations and corresponds to the osmotic pressure. By taking into
account only the capillary effects, the relative humidity takes the form:

RH =
pv
p0
v

=
ρv
ρ0
v

= exp

(
−pc mv

ρw R T

)
(2.47)

With this expression, the water vapour saturation pressure p0
v is defined as the vapour pressure

in equilibrium with liquid water pressure if the capillary effects cancel. The saturated vapour
concentration can be obtained by an empirical relationship proposed by Ewen and Thomas
(1989):

ρ0
v =

(
194.4 exp

(
−0.06374(T − 273) + 0.1634× 10−3(T − 273)2

))−1 (2.48)

for temperature range between 293 K and 331 K.
For the air species, the dissolved air in the liquid phase is assumed to be in equilibrium

with the dry air of the gaseous phase by Henry’s law (Weast, 1971). This law states that under
partially saturated conditions, the amount of dissolved air is proportional to the dry air partial
pressure by the relation:

pa = Keq
da(T ) xda (2.49)
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where Keq
da is an equilibrium constant depending on the temperature and xda is the mole fraction

of dissolved air. By assuming the ideal gas law, the equilibrium equation can be rewritten in
terms of the dry air and dissolved air densities. It specifies that the amount of dissolved air is
proportional to the quantity of dry air as follows:

ρda = Ha(T ) ρa (2.50)

where Ha is Henry’s coefficient for dissolved air (Gawin and Sanavia, 2009). This coefficient
depends on temperature, although this influence is neglected under isothermal conditions and
a constant value of Ha = 0.0234 is considered, for a reference temperature of 20°C and an
atmospheric pressure.

Retention and relative permeability curves

Capillary forces develop between the material solid grains if it is partially saturated and affect
the fluid transfers. These forces are related to the quantity of water filling the porous space; they
increase when the porous material desaturates. The material retention behaviour is generally
represented by a retention curve linking the capillary pressure to the degree of water saturation
(or water content), as illustrated in Fig. 2.19. Moreover, this hydraulic constitutive behaviour
plays an important role because retention curve and mechanical behaviour are coupled. Changes
in degree of saturation produce mechanical effects whereas soil deformation modifies the degree
of saturation.

Fig. 2.19: Water retention curve and schematic representation of the saturation stages related
to the matric suction (Nuth and Laloui, 2008a).

Among various analytical expressions available in the literature, the van Genuchten’s model
is used (van Genuchten, 1980):

Sr,w = Sres + (Smax − Sres)

(
1 +

(
pc
Pr

) 1
1−M

)−M
(2.51)

where Pr is the air entry pressure, Smax and Sres are the maximum and residual water degrees of
saturation, andM is a measure of the pore-size distribution which controls the curve shape. The
air entry pressure represents the minimal capillary pressure needed to desaturate the material
pores and the residual saturation is a threshold value below which the water is discontinuously
present in the pores and can only evaporate and diffuse as water vapour (Fig. 2.19).

On the other hand, the fluid flows are mainly controlled by flow parameters as the fluid
permeabilities which are affected by the unsaturated conditions. In fact, the permeabilities
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evolve with the degree of saturation by taking into account relative permeability coefficients
in the generalised Darcy’s law (Eqs. 2.32 and 2.33). A relative permeability curve defined by
Mualem - van Genuchten’s model (Mualem, 1976; van Genuchten, 1980) is used to link the
permeability to the saturation degree. For the water relative permeability it reads:

kr,w =
√
Sr,w

(
1−

(
1− Sr,w.

1
M

)M)2

(2.52)

This expression reproduces the water permeability decrease during drying. On the other hand,
the gas permeability would increase during drying, thereby a similar expression can be used
(Mualem, 1976):

kr,g =
√
Sr,g

(
1− Sr,w.

1
M

)2M
(2.53)

The gas relative permeability is also regularly expressed with a cubic relation as kr,g = S3
r,g

(Gerard, 2011).
The retention and relative permeability curves are available in Fig. 2.30 for the Callovo-

Oxfordian claystone based on a calibration of experimental measurements. Moreover, a synthesis
of the main hydraulic characteristics of the claystone will be presented in section 2.5.3.

2.4.4 Material compressibility

The compressibility of porous materials can influence the fluid flows and engenders hydro-
mechanical couplings through the definitions of effective stress and porosity evolution. For
porous materials, the compressibilities are of three types: the compressibility of the bulk material
C (solid skeleton), the compressibility of the pores Cp, and the compressibility of the solid phase
Cs.

Within the scope of poroelasticity (Detournay and Cheng, 1993), the bulk material compress-
ibility corresponds to the relative change in volume Ω while subjected to a variation of mean
stress σ under drained conditions: ṗw = 0 and σ̇ = σ̇

′ from the Biot’s effective stress definition
of Eq. 2.25. The mean effective stress is defined as:

σ
′

=
σ
′
ii

3
(2.54)

and the bulk material compressibility reads:

C =
1

K
= − 1

Ω

∂Ω

∂σ′
(2.55)

where K is the drained bulk modulus of the material. For isotropic materials it is given by:

K =
E

3(1− 2ν)
(2.56)

where E is the isotropic drained Young’s modulus and ν is the drained Poisson’s ratio. Conse-
quently, the volumetric strain variation of the medium depends linearly on the mean effective
stress by the relation:

σ̇
′

= K ε̇v (2.57)

The rate of the volumetric compaction deformation is given by:

ε̇v = − Ω̇

Ω
(2.58)

and the volumetric strain reads:
εv = εij δij = εii (2.59)
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where εij is the total strain tensor. Under the same conditions, the pore compressibility corre-
sponds to the relative change in porous volume Ωp:

Cp =
1

Kp
= − 1

Ωp

∂Ωp

∂σ′
(2.60)

where Kp is the bulk modulus of the pores. The solid grain compressibility is defined as:

Cs =
1

Ks
= C − Φ Cp (2.61)

where Ks is the bulk modulus of the solid phase. The Biot’s coefficient used in the effective
stress definition of Eq. 2.25 is defined with the above relations for isotropic materials as:

b =
Φ Cp
C

= 1− K

Ks
(2.62)

Because of the different types of compressibility, a porous material and its solid grains can
behave differently. When the solid grain compressibility is neglected Cs << C, the variation
of the total volume corresponds to the variation of the porous volume without deformation of
the solid phase. However, the solid grain compressibility may not be negligible in comparison to
the bulk material compressibility for consolidated materials and high stress environment. The
magnitudes of deformation of the porous material and the solid grains may therefore be very
different and the grains can remain in elastic state while the skeleton is possibly in a plastic
regime because Ks > K.

Furthermore, the solid mass being constant inside a given material volume Ω by solid mass
conservation (Eq. 2.10), the porosity time derivative is deduced:

Φ̇ = (1− Φ)

(
ρ̇s
ρs

+
Ω̇

Ω

)
(2.63)

It depends on the evolution of the solid grain density and of the material volume. For the consid-
ered material and stress level around radioactive waste disposals, the solid grain deformability is
not negligible and the general Biot framework (Biot, 1941) is used to model the hydro-mechanical
coupling between the variations of pore fluid pressures and solid density. Following the ideas of
Biot, Coussy (2004) proposed a thermodynamical framework of the problem for unsaturated
poromechanics. The isotropic variation of solid density is linked to the variation of pore pressure
and mean effective stress (Detournay and Cheng, 1993; Coussy, 2004):

ρ̇s
ρs

=
(b− Φ) (Sr,w ṗw + Sr,g ṗg) + σ̇

′

(1− Φ) Ks
(2.64)

Using the definitions of Eqs. 2.57 and 2.62 leads to the following expression of the porosity time
derivative:

Φ̇ = (b− Φ)

(
Sr,w
Ks

ṗw +
Sr,g
Ks

ṗg +
Ω̇

Ω

)
(2.65)

which is used in the computation of the storage terms of the fluid balance equations (Eqs. 2.18
and 2.19). It introduces a coupling term between the mechanical behaviour and the fluid trans-
fers. Furthermore, it has to be mentioned that the Biot’s theory has been developed only for
elastic materials. Thus, the equations of poroelasticity and the porosity variation of Eq. 2.65
are valid solely under this hypothesis. An extension to poroplasticity, based on thermodynamic
principles, has been proposed by Coussy (1995) who indicates that permanent plastic strain
would engender permanent changes in porosity and in fluid mass content. Taking into account
these permanent changes requires to include the plastic material behaviour, which is complex to
implement and is not included in this work.
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2.4.5 Mechanical constitutive equations

The mechanical behaviour of the Callovo-Oxfordian claystone is envisaged with a classical con-
stitutive elastoplastic model. The objectives of the further numerical modelling are, in a first
approach, to analyse if a classical model allows to reproduce the hydro-mechanical coupling
that are observed experimentally in argillaceous rock, during gallery excavation and ventilation.
The objective here is therefore not to develop a complex mechanical model, although different
developments will be included in the next chapters.

An isotropic elastoplastic model is assumed to reproduce the mechanical behaviour of the
porous media. The elastoplastic constitutive law expressing the relationship between the strain
and effective stress field increments is defined as follows:

σ̃
′
ij = Cijkl ε̇kl (2.66)

where Cijkl is the elastoplastic constitutive tangent tensor for small strains and rotations, ε̇ij is
the Cauchy strain rate, and σ̃′ij is the Jaumann objective effective stress rate. The total strain
rate is defined as:

ε̇ij =
1

2
(Lij + Lji) (2.67)

It corresponds to the symmetric part of the velocity gradient field:

Lij =
∂u̇i
∂xj

(2.68)

with u̇i being the time derivative of the displacement field ui:

ui = xi − xi,0 (2.69)

which corresponds to the difference between current an initial positions. Furthermore, an objec-
tive derivative of the stress field, independent of rigid body rotation, is introduced through the
Jaumann derivative (Jaumann, 1911) to describe large strains and rotations:

σ̃
′
ij = σ̇

′
ij − ωij σ

′
ij + σ

′
ij ωij (2.70)

where σ̇′ij is the effective stress rate and ωij is the spin rate tensor corresponding to the antisym-
metric part of the velocity gradient field Lij :

ωij =
1

2
(Lij − Lji) (2.71)

In the context of elastoplasticity, the total strain rate ε̇ij includes an elastic ε̇eij and a plastic
ε̇pij components:

ε̇ij = ε̇eij + ε̇pij (2.72)

The elastic and plastic theories are defined hereafter for isotropic materials.

Linear elasticity theory

By separating the elastic and plastic components of the strain tensor, a linear elastic relationship
that links the elastic strain rate ε̇eij to the Jaumann effective stress rate σ̃′ij through the Hooke’s
law is expressed:

σ̃
′
ij = Ceijkl ε̇

e
kl (2.73)

ε̇eij = De
ijkl σ̃

′
kl (2.74)

where Ceijkl is the Hooke elastic constitutive tangent tensor that must be symmetric because
of thermodynamic requirement (Love, 1927) and De

ijkl is the drained compliance elastic tensor
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corresponding to the inverse of the Hooke elastic tensor Ceijkl (Love, 1927; Graham and Houlsby,
1983):

De
ijkl =

[
Ceijkl

]−1 (2.75)

For isotropic materials the relation is defined by two constants, E and ν or K and G:

ε̇e11

ε̇e22

ε̇e33

ε̇e12

ε̇e13

ε̇e23


=

1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 1 + ν 0 0

0 0 0 0 1 + ν 0

0 0 0 0 0 1 + ν





σ̃
′
11

σ̃
′
22

σ̃
′
33

σ̃
′
12

σ̃
′
13

σ̃
′
23


(2.76)

with:
G =

E

2(1 + ν)
(2.77)

K =
Ceiijj

9
=

E

3(1− 2ν)
(2.78)

where E is the isotropic drained Young’s modulus, ν is the drained Poisson’s ratio, G is the shear
modulus, and K is the generalised drained bulk modulus of the poroelastic material.

Plasticity theory

An elastoplastic internal friction model with a Van Eekelen yield surface (Fig. 2.20) is used for
the considered material (Van Eekelen, 1980). This model is broadly used in geomechanics for
frictional materials and includes a dependence on the third stress invariant. The yield surface
definition, under soil mechanics convention with positive compressive stress, is:

F p ≡ IIσ̂′ −m
(
Iσ′ +

3 c

tanϕc

)
= 0 (2.79)

where Iσ′ is the first stress invariant, IIσ̂′ is the second deviatoric stress invariant, m is a
parameter of the yield surface, c is the cohesion, and ϕc is the compression friction angle. The
first and second stress invariants are defined as follows:

Iσ′ = σ
′
ij δij = σ

′
ii (2.80)

IIσ̂′ =

√
1

2
σ̂
′
ij σ̂

′
ij (2.81)

where σ̂′ij is the deviatoric part of the effective stress tensor given by:

σ̂
′
ij = σ

′
ij −

σ
′
kk

3
δij (2.82)

The definition of the parameter m is:

m = d1 (1 + d2 sin(3β))η (2.83)

It depends on the Lode angle β (Fig. 2.21) which is given by:

sin(3β) = −3
√

3

2

IIIσ̂′

II3
σ̂′

(2.84)
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where IIIσ̂′ is the third deviatoric stress invariant:

IIIσ̂′ =
1

3
σ̂
′
ij σ̂

′
jk σ̂

′
ki (2.85)

The three parameters d1, d2, and η have to verify the conditions:

d1 > 0 (2.86)

d2 η > 0 (2.87)

−1 < d2 < 1 (2.88)

The parameter η controls the yield surface convexity in the deviatoric plane (Fig. 2.20 (c)) and is
generally chosen equal to -0.229 (default value) to ensure the convexity of the yield surface (Van
Eekelen, 1980). The other coefficients d1 and d2 allow independent choice of the compression
and extension friction angles, ϕc and ϕe:

d1 =
rc

(1 + d2)η
(2.89)

d2 =

(
rc
re

) 1
η − 1(

rc
re

) 1
η

+ 1

(2.90)

where the reduced radii in compression rc and in extension re read:

rc =
2 sin(ϕc)√

3 (3− sin(ϕc))
(2.91)

re =
2 sin(ϕe)√

3 (3 + sin(ϕe))
(2.92)

The yield surface is illustrated in Fig. 2.20 in the stress invariant plane, in the principal effective
stress space, and in the deviatoric plane.

The Van Eekelen criterion is actually built from the Drucker-Prager criterion (for which
m = rc = re) by introducing a dependence on the Lode angle, with the purpose of matching more
closely the Mohr-Coulomb criterion as illustrated in Fig. 2.21. This engenders a lower material
resistance in extension compared to the resistance in compression (rc > re for ϕc = ϕe), which
is characteristic of rock mechanical behaviour. In comparison to the Drucker-Prager criterion,
the distinction introduced between the definition of compression and extension friction angles
avoids an overestimation of the material extension resistance, especially in case of high value of
the compression friction angle (Barnichon, 1998).

Furthermore, the material strength parameters can undergo hardening or softening. The
friction angles and the cohesion are considered to evolve as a function of the Von Mises’ equivalent
deviatoric plastic strain ε̂peq which rate form reads:

˙̂εpeq =

√
2

3
˙̂εpij

˙̂εpij (2.93)

where ˙̂εpij is the deviatoric part of the plastic strain rate tensor:

˙̂εpij = ε̇pij −
ε̇pkk
3

δij (2.94)
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Fig. 2.20: Van Eekelen yield surface with isotropic ϕc hardening and c softening: (a) in the stress
invariant plane, (b) in the principal effective stress space, (c) in the deviatoric plane, and (d)
hyperbolic evolution of ϕc hardening for two values of coefficient Bϕ.

Fig. 2.21: Comparison of the yield surfaces of internal friction models in the deviatoric plane
with influence of the Lode angle (ϕc = 20°).

Isotropic hardening/softening laws (Fig. 2.20 (d)) are introduced with hyperbolic functions (Bar-
nichon, 1998):

c = c0 +
(cf − c0) 〈ε̂peq − decc〉
Bc + 〈ε̂peq − decc〉

(2.95)

ϕc = ϕc,0 +
(ϕc,f − ϕc,0) 〈ε̂peq − decϕ〉

Bϕ + 〈ε̂peq − decϕ〉
(2.96)

ϕe = ϕe,0 +
(ϕe,f − ϕe,0) 〈ε̂peq − decϕ〉

Bϕ + 〈ε̂peq − decϕ〉
(2.97)
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where c0 and cf are the initial and final cohesions, ϕc,0 and ϕc,f are the initial and final com-
pression friction angles, ϕe,0 and ϕe,f are the initial and final extension friction angles, decc and
decϕ are the equivalent deviatoric plastic strain values from which hardening/softening starts,
the coefficients Bϕ and Bc are the equivalent deviatoric plastic strain values for which half of
the hardening/softening of friction angles and cohesion is attained, and 〈 〉 are the Macaulay
brackets with 〈x〉 = x if x ≥ 0 and 〈x〉 = 0 if x < 0. The evolution of the yield surface in case
of friction angle hardening and cohesion softening is detailed in Fig. 2.20.

A non-associated plasticity framework is considered to define the plastic flow and to introduce
the dilatancy of the material. The plastic strain rate is perpendicular to the plastic potential Gp

and is defined as:
ε̇pij = λ̇p

∂Gp

∂σ
′
ij

(2.98)

where λp is the plastic multiplier. The non-associated plastic potential surface is defined similarly
to the plastic loading surface F p:

Gp ≡ IIσ̂′ −mG Iσ′ = 0 (2.99)

where mG is equivalent to m in Eq. 2.83 but introduces dilatancy angles ψc and ψe instead of
ϕc and ϕe in the reduced radii of Eqs. 2.91 and 2.92:

rc,G =
2 sin(ψc)√

3 (3− sin(ψc))
(2.100)

re,G =
2 sin(ψe)√

3 (3 + sin(ψe))
(2.101)

The dilatancy which is introduced in the above expressions is the tendency of a granular material
to dilate (volume increase) as it is sheared under plastic regime. If a material is neither dilatant,
nor contractant, its volume and volumetric strain are constant under shearing ε̇v = 0 which
implies only a deviatoric plastic flow (shearing). This is the case for the considered clayey rock
which is not dilatant, or only very slightly dilatant, with ψ = 0− 0.5 ° as indicated in Table 2.1.

Moreover, the plastic multiplier amplitude is obtained from the coherence (i.e. consistency)
condition stating that the stress state remains on the plastic limit surface during plastic flow:
Ḟ p = 0. This leads to the definition of the elastoplastic constitutive tangent tensor (Eq. 2.66):

Cijkl = Ceijkl − C
p
ijkl = Ceijkl −

∂F p

∂σ
′
ab

Ceabkl C
e
ijcd

∂Gp

∂σ
′
cd

∂F p

∂σ′mn
Cemnop

∂Gp

∂σ′op
− ∂F p

∂κq
dκq
dλp

(2.102)

where Cpijkl is the plastic constitutive tangent tensor and κi are the internal hardening/softening
variables. It can be noted that Cijkl is symmetric only in case of associated plasticity with
F p = Gp and ϕ = ψ.

2.4.6 Boundary conditions

For the finite element formulation of the coupled problem, boundary conditions are required in
addition to the balance equations. The balance equations represent the static equilibrium of a
porous material elementary volume Ω, whilst the boundary conditions represent the equilibrium
of the external surface Γ of the domain Ω (Fig. 2.22). These conditions are necessary to obtain
a well-posed problem.

Mechanical and hydraulic equilibrium conditions have to be defined for any point on the
boundary Γ. It requires to assume that the boundary is regular, which implies the existence and
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Fig. 2.22: Material system with current configuration Ω and boundary conditions.

uniqueness of the boundary normal vector for every point of the boundary. For the mechanical
problem, classical conditions can be imposed displacements and imposed stresses. For these
solicitations, the external traction force per unit area, in the normal direction to the boundary
and acting on a part Γt of the boundary Γ, follows the condition:

ti = σij nj (2.103)

where ni is the normal unit vector to the boundary. For flows or coupled problems, classical
hydraulic boundary conditions can be imposed pressures and imposed fluxes. The condition for
prescribed water flux in the boundary normal direction, on a part Γqw of Γ, reads:

qw + (fw,i + fv,i) ni = 0 (2.104)

and the condition for prescribed normal air flux on a part Γqa of Γ is defined as:

qa + (fa,i + fda,i) ni = 0 (2.105)

where qw and qa are the input water and air masses (positive for inflow) per unit area on Γqw
and Γqa , respectively. An impervious condition is assumed on the rest of the boundary where
the components of the fluid fluxes in the boundary normal direction cancel.

2.5 Ventilation test modelling

In this section, the hydro-mechanical modelling of the in situ gallery air ventilation experiment
SDZ (Saturation Damaged Zone experiment), performed in the underground laboratory of Bure
(Andra), is presented. The modelling is performed in order to study the air-rock interaction
as well as the effects it engenders on the host formation behaviour. A general description of
the experiment and of the experimental measurements has been detailed in the section 2.3.2.
The purpose of this section is not devoted to a full description of the numerical results, but
rather on the emphasis on the main concepts that must be considered in the modelling of the
hydro-mechanical unsaturated behaviour of claystone. Moreover the influence of some modelling
choices on the numerical results is highlighted.

The general hydro-mechanical framework proposed in section 2.4 is considered, which allows
adopting an anisotropic initial stress state and permeability in claystone. In a first modelling
step, the reproduction of fluid transfer processes will be mainly investigated. The increase of the
permeability induced by the hydro-mechanical coupling in the damaged zone is a priori imposed
around the cavity, with a higher permeability than in the undisturbed claystone. A more complex
definition of the EDZ will be investigated in the following chapters. First of all, the type of flow
boundary condition imposed at the tunnel wall is addressed, then the boundary value problem
and the claystone parameters are described, and finally the numerical results are presented.
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In Charlier et al. (2013b), the detailed numerical modelling concerns two in situ experiments:
the SDZ ventilation test and a gas injection test (PGZ1). The second experiment analyses the
impact of gas migration on the rock mass behaviour through a gas injection test performed
from an injection chamber set up in a small borehole. For this particular study, gas flows is of
particular interest. However, for the SDZ ventilation experiment, the water transfers occurring
around galleries are the dominant processes. Therefore, the gas flow problem is not solved
hereafter meaning that the gas pressure and density variations are not considered. A constant
pressure value that corresponds to the atmospheric pressure is assumed, pg = patm = 0.1 MPa,
causing the cancellation of the gaseous phase advection qg,i (Eq. 2.33).

2.5.1 Hydraulic boundary condition at gallery wall

The air-rock interaction is a crucial issue which conditions the drainage kinetics in the rock
formation. At the cavity wall, the pore pressures are first reduced by the drainage, before
vapour exchanges occur. In a second stage, the pore pressures are progressively decreased to
the value corresponding to the air relative humidity (according to Kelvin’s law). To reproduce
the vapour flows occurring at the gallery wall, a classical approach consists in assuming that
the liquid water inside the rock is in equilibrium with the water vapour of the gallery air.
This assumption corresponds to Kelvin’s equilibrium equation (Eq. 2.47) and allows to impose
the suction corresponding to the air relative humidity at the cavity wall (Jia et al., 2008).
Such condition assumes an instantaneous equilibrium between the rock and the air which is
probably too optimistic. The experimental measurements have indeed shown that the pore
pressures in the different sensors remain high and decrease progressively, whereas the air relative
humidity in the gallery is relatively low (section 2.3.2). In addition, the water content in the
rock mass decreases progressively (Fig. 2.17 (b)) before reaching an equilibrium with the imposed
atmospheric conditions in the gallery. These progressive drainage and desaturation seem to imply
that the vapour transfer between the air and the rock is not so rapid. As a consequence, the use
of a classical flow boundary condition inducing significant vapour exchanges would probably not
allow the reproduction of the experimental data. Considering that a thermodynamic equilibrium
is reached between the gallery wall rock and the gallery air in the long term seems to be more
appropriated.

Non-classical condition

A better representation of the fluid exchanges at the gallery wall can be considered by taking
into account the presence of a boundary layer where the rock-atmosphere vapour exchanges
take place. It is proposed to reproduce the exchanges with a non-classical hydraulic boundary
condition at gallery wall (Charlier et al., 2013b; Gerard et al., 2008). This condition implies
that two modes of exchange can occur at the gallery wall of ventilated cavities (Ghezzehei et al.,
2004): water vapour and liquid water exchanges. The total water flow corresponds to the sum
of the two flows (Fig. 2.23):

qw = S̄ + Ē (2.106)

where S̄ and Ē are the seepage flow (liquid water) and the evaporation flow (water vapour),
respectively. The two flows at cavity wall are illustrated in Fig. 2.23 for a constant air ventilation.
The expression of the hydraulic boundary condition for qw is taken into account in the condition
of Eq. 2.104, although the sign convention is opposite here with positive outflow for clarity. In
fact, in case of gallery ventilation, the interaction with the gallery air causes a material drainage
with water flow directed from the rock towards the gallery.

The liquid exchange is a unilateral seepage flow directed towards the gallery that occurs
only when the material porous surface is fully saturated. It avoids unphysical liquid water flows
from the gallery to the rock that are numerically observed in highly dilatant materials when the
atmospheric pressure is imposed at the cavity wall (Gerard et al., 2008). Therefore, a seepage
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Fig. 2.23: Evaporation and seepage flows at gallery wall for a constant air ventilation (Gerard
et al., 2008).

flow exists when the pore water pressure in the rock at gallery wall exceeds the water pressure in
the cavity, pΓ

w ≥ pcavw , and exceeds the atmospheric pressure, pΓ
w ≥ patm. This flow is introduced

by a unilateral boundary condition (Signorini’s type) on the pore water pressure through a ramp
function (Bardet and Tobita, 2002; Zheng et al., 2009):{

S̄ = Kpen
(
pΓ
w − patm

)2
if pΓ

w ≥ pcavw and pΓ
w ≥ patm

S̄ = 0 if pΓ
w < pcavw or pΓ

w < patm
(2.107)

where Kpen is a numerical penalty coefficient for the seepage that must be as large as possible
to respect the unilateral condition (Fig. 2.23). A value of Kpen = 10−10 s3/kg is assumed.

The vapour exchange mode between a porous medium and the air is based on desaturation
kinetics at the interface. It can be considered that the exchanges occur in a boundary layer
existing on the material porous surface (Ghezzehei et al., 2004; Pintado et al., 2009) and that they
are not instantaneous. The boundary layer controls the exchanges and the external conditions
are considered in the layer through a vapour mass transfer coefficient αv. The exchange is
therefore expressed as a function of this coefficient and of a transfer potential. Among different
formulations proposed in the literature, the difference between the vapour density in the rock ρΓ

v

and in the cavity air ρcavv is considered (Nasrallah and Perre, 1988):

Ē = αv
(
ρΓ
v − ρcavv

)
(2.108)

Moreover, the transfer coefficient involved in this expression depends on the external drying
conditions and can be determined from drying flux curves deduced from laboratory drying ex-
periments (Léonard et al., 2005). Nevertheless, in the following modelling, this parameter will
be calibrated to match the experimental results.

Kinetics of drying process

During drying, a material progressively loses water and the drying kinetics can be quantified
by measuring the water mass decrease in a sample subjected to a drying test. The progressive
loss of water mass Mw and the evolution of the temperature at the surface of the sample are
illustrated in Fig. 2.24 (a) and (c). The drying kinetics can also be analysed through the drying
flux curve determined from the water mass loss as follows (Kowalski, 2003):

Ē = −Ṁw

Ad
(2.109)

where Ad is the external surface of the sample submitted to the drying, which could evolve
because of material shrinkage (Léonard et al., 2002). The drying flux curve is represented in
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Fig. 2.24 (b) as a function of the water content w which corresponds to the ratio of water mass
versus solid mass by Eq. 2.1. Three periods of drying can be identified from the curves: (1) a
preheating phase, (2) a constant flux phase, and (3) a decreasing flux phase.
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Fig. 2.24: Theoretical evolutions of (a) water mass, (b) water vapour flux, and (c) temperature
during a drying test.

Firstly, the preheating phase is quite short but is apparent on the drying flux curve (Fig. 2.24
(b)) because of the water content decrease. It corresponds to an increase of the drying flux,
which progressively reaches its maximum value, and to an increase of the surface temperature
from its initial value T0 to the wet-bulb temperature Tw. The latter is a characteristic of the
moist air.

Secondly, during the constant flux phase (linear decrease of Mw), the totality of the heat
supplied by the environment is used to evaporate the liquid water on the sample surface. It is
assumed that the exchanges between the material and the atmosphere take place in a boundary
layer existing at the surface of the material (Kowalski, 2003). They occur at constant temperature
Tw and proceed as long as the water transfers from the inside of the sample towards its surface
are sufficient to maintain the drying flux. It is therefore assumed that the boundary layer remains
saturated with water during the phase of constant drying rate. Accordingly, the heat and vapour
transfers are only affected and limited by external conditions. These conditions include the
characteristics of the air, such as its relative humidity, temperature, and velocity, but also the
characteristics of the surface (Geankoplis, 1993; Nadeau and Puiggali, 1995).

The water vapour exchange is therefore expressed as a function of a transfer coefficient rep-
resenting the external conditions and of a transfer potential. Different formulations are proposed
in the literature for the transfer potential between the atmosphere and the dried material. The
vapour mass transfer coefficient αv can be multiplied by a difference of vapour potential, vapour
pressure, relative humidity, or vapour density (Gerard, 2011). Among these expressions, the
difference between the vapour densities in the material ρΓ

v and in the air ρav (Nasrallah and
Perre, 1988) is considered (Eq. 2.108). The transfer coefficient is assumed to depend only on the
external conditions, which are the relative humidity, temperature, and velocity of the air. It is
determined from the drying rate plateau of the experimental curve (Fig. 2.24 (b) and Eq. 2.109)
under saturated conditions in the boundary layer:

αv =
Ēmax
ρΓ
v − ρav

=

max

(
−Ṁw

Ad

)
ρ0,Γ
v (Tw)−RH ρ0,a

v (Ta)
(2.110)

where ρ0,Γ
v and ρ0,a

v are the saturated water vapour densities of the sample surface and in the air
obtained from Eq. 2.48, RH and Ta are the relative humidity and temperature of the air.

This method has been largely used in chemical engineering, on small-scale samples, and with
severe drying conditions implying high temperature and low relative humidity. Unfortunately,
very few experimental results are available for clay materials and for drying conditions similar
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to the air ventilation of underground galleries. For clay material, Gerard (2011) performed
convective drying tests on Boom clay samples and obtained a value of αv = 0.022 m/s for 50°C,
a low air velocity of 1 m/s, and a relative humidity of 50 %.

Lastly, the constant exchange at the sample surface, i.e. the drying rate plateau, ends once
internal resistances restrict the water outflow. Then, the drainage kinetics enter in the third
phase of Fig. 2.24 with a desaturation of the boundary layer and a decrease of the transfer
potential while drying proceeds up to completion. It results in a non-linear decrease of the mass
of water towards its constant residual value (or dry state), a decrease of the evaporation flux, and
an increase of the temperature towards an equilibrium with the air temperature Ta. In opposition
to the constant drying phase during which the transfers are limited by external conditions, the
transfers at the material surface are reduced by the internal limitations of water mass transfer
during the decreasing flux phase. Moreover, the shrinkage has the effect of reducing the external
surface subjected to drying Ad; consequently, the drying rate of Eq. 2.109 is affected by the
combined effect of internal limitations and shrinkage. The latter can be evaluated by method
such as X-ray microtomography coupled to image analysis (Léonard et al., 2003, 2004).

Boundary finite element

To introduce the flow boundary condition of Eq. 2.106 in a finite element code, classical quadri-
lateral two-dimensional finite elements are needed (Collin, 2003) and are associated with a new
boundary finite element through which the hydraulic exchanges take place (Gerard et al., 2008).
A reduced integration scheme is used in the 2D element in order to avoid shear locking. The
special hydraulic boundary condition is defined by four nodes (Fig. 2.25). The first three nodes
are located on the boundary (N1, N2, and N3). They allow a spatial discretisation of the water
pressure distribution along the boundary. The fourth node (N4) is introduced to define the rel-
ative humidity of the surroundings (as far as they correspond to the d.o.f. of the fourth node).
Its geometrical position does not influence the results. This fourth node is helpful for the mod-
elling of the relative humidity evolution in the SDZ experimental zone. Two Gauss points are
considered for the boundary finite element. The hydraulic flow is computed thanks to Eq. 2.106,
where the vapour density of the surrounding air is computed at the fourth node and the vapour
at the cavity wall is evaluated at the Gauss points. More details on the numerical formulation
of the boundary finite element can be found in Gerard et al. (2008).

Nodes

Gauss points

N1

N2
N3

N4

Fig. 2.25: Two-dimensional finite element and boundary element (Gerard et al., 2008).

This flow boundary condition has already been tested for the modelling of laboratory drying
tests, performed on small-scale soil samples (Gerard et al., 2010), and for the modelling of a
large-scale ventilated gallery with pcavw = patm = 0.1 MPa (Gerard et al., 2008). Hereafter, the
relevance of such flow boundary condition is highlighted on a large scale with the modelling of
an in situ ventilation experiment implying suction in the surrounding rock.
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2.5.2 Boundary value problem

A two-dimensional plane strain state hydro-mechanical modelling of the SDZ experiment is
performed. The section of the tunnel is chosen in the uncovered zone (Fig. 2.11), where most of
the experimental data are available (Fig. 2.13). The geometry of the problem is given in Fig. 2.26
for the GED gallery, where only half of the gallery is considered for symmetry reason. The gallery
has a radius of 2.3 m and an elliptic excavation damaged zone is considered with a higher intrinsic
permeability than the undisturbed clayey rock (a priori defined). The outer limits of the model
are located at 200 m from the centre of the gallery. An isotropic linear elastic-perfectly plastic
model is used for the claystone (no hardening or softening of the strength parameters), whilst
the mechanical behaviour of concrete slab is linear elastic.
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Fig. 2.26: Two-dimensional plane strain state model for the modelling of the gallery air ventilation
test.

The initial conditions in the claystone are a homogeneous water pressure and an anisotropic
initial stress state corresponding to the GED gallery which axis is oriented parallel to the minor
horizontal principal total stress σh (section 2.1):

σx,0 = σH = 1.3 σh = 15.6 MPa

σy,0 = σv = 12 MPa

σz,0 = σh = 12 MPa

pw,0 = 4.5 MPa

where pw,0 is the initial pore water pressure, σy,0 corresponds to the vertical principal total stress,
σz,0 corresponds to the minor horizontal principal total stress, and σx,0 corresponds to the major
horizontal principal total stress.

The normal total stresses and the pore water pressure are imposed constant at the mesh
external boundary. To establish the symmetry, the normal displacements and water flows are
blocked to a value of zero along the symmetry vertical y-axis, that is therefore impervious.
In this problem, the gas pressure remains constant at the atmospheric pressure and isothermal
conditions are considered (T = 293 K), because the temperatures remain relatively constant after
the closure of the airlock. Moreover, the modelling takes into account the hydraulic permeability
anisotropy and gravity is not considered gi = 0.

Concerning the boundary conditions at the gallery wall, the gallery is first drilled then the
ventilation is reproduced. During the excavation, the total radial stress at the cavity wall and the
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water pressure at the environmental node pcavw (corresponding to the surroundings) are progres-
sively decreased from their initial values to the atmospheric pressure. At the end of the drilling,
the ventilation is applied and a constant total radial stress (atmospheric pressure) is imposed at
gallery wall for the rest of the modelling. This stress imposition is representative of unsupported
galleries. The claystone-atmosphere interactions are modelled by imposing at the environmental
node the water pressure corresponding to the air relative humidity and temperature measured
inside the gallery (Fig. 2.12). The water pressure in the gallery is obtained by Kelvin’s law
(Eq. 2.47) with pc = patm − pcavw :

pcavw =
ρw R T

mv
ln (RH) + patm (2.111)

and its evolution is illustrated in Fig. 2.27 for the first 700 days of ventilation. The set up of the
concrete floor is achieved 36 days after the end of the drilling. The closure of the airlock happens
after 230 days, but it does not modify the boundary value problem because its influence on the
gallery hygrometry remains imposed at gallery wall through the boundary condition.
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Fig. 2.27: Evolution of water pressure in the SDZ experimental zone.

For this preliminary modelling, the numerical reproduction of the experiment is realised up
to 700 days of ventilation, with day 0 corresponding to the end of the drilling and the start of the
ventilation. This period corresponds to the uncontrolled ventilation phase (phases (1) and (2)
described in section 2.3.2); the controlled phase will be modelled afterwards with a more precise
definition of the EDZ (see chapter 6).

2.5.3 Hydro-mechanical parameters

The determination of hydro-mechanical parameters of Callovo-Oxfordian claystone is needed for
the modelling of the large-scale unsaturated experiment. The geological context met around
the Andra’s underground research laboratory has been described in section 2.1 together with
a synthesis of typical geomechanical characteristics of the claystone. Hereafter, a synthesis of
the main hydraulic characteristics available in the literature is presented as well. Then, the
parameters chosen for the numerical modelling are exposed.

Mechanical parameters

The mechanical parameters of the different materials (undisturbed claystone, EDZ, and concrete)
used in the constitutive equations are presented in Table 2.2. No differences between undisturbed
claystone and excavation damaged zone are assumed from a mechanical point of view. This
assumption is realised with the purpose of highlighting the hydraulic phenomena induced by
gallery air ventilation, such as transfer kinetics and rock drainage. Another objective is to
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evaluate if a "hydraulic" EDZ (with higher intrinsic permeability) and the hydraulic condition
at gallery wall allow to reproduce the drainage kinetics, through the reproduction of the in situ
pore water pressure measurements in the rock.

Symbol Name Undisturbed EDZ Concrete Unit
claystone

E Young’s modulus 4 4 30 GPa
ν Poisson’s ratio 0.3 0.3 0.3 −
c Cohesion 3 3 − MPa
ϕc = ϕe Friction angles 20 20 − °
ψc = ψe Dilatancy angles 0 0 − °
b Biot’s coefficient 0.6 0.6 1 −
ρ Density 2300 2300 2300 kg/m3

Table 2.2: Mechanical parameters.

Hydraulic parameters

Important relationships have to be precisely determined in order to obtain accurate numerical
predictions of the hydro-mechanical behaviour of the rock mass: the retention curve and the water
permeability evolution with the degree of saturation. Because gas pressure is assumed constant
in the modelling, the gas permeability evolution with the degree of saturation is not detailed.
For more details, please refer to Charlier et al. (2013b). Numerous experimental data exist in the
literature concerning the determination of the retention and water relative permeability curves.
A synthesis of these data is proposed for Callovo-Oxfordian claystone with an emphasis on the
experimental scattering.

The main experimental studies that are used for the determination of the retention curve are
based on the saline solutions methods (Delage et al., 1998). A synthesis of some experimental
data available in literature is presented in Fig. 2.28 (a) where the degree of saturation is plotted
against the suction. Although a lot of experimental data are available for the retention curve,
few experimental studies investigate the behaviour close to the saturation (no data for suction
lower than 2 MPa, which is the range of saline solutions technique), that corresponds to the con-
ditions generally met around the disposal cavities of radioactive wastes. Moreover an important
scattering of the experimental data is observed. It could be explained among other things by
the hysteretic behaviour of the retention curves. Fig. 2.28 (b) shows indeed that a hysteresis can
be introduced according to the hydraulic process imposed to the sample, which can be wetting
or drying path. It is well known that the highest degrees of saturation are covered by a drying
path, whilst the lowest ones are obtained on a wetting curve. It has to be added that most of
the data are obtained on free volume sample. The effect of confining pressure on the retention
curve is thus still not investigated in these experimental studies.

The relation between the water permeability and the degree of saturation is often deduced
from the drying kinetics of samples submitted to evolutions of the surrounding air relative humid-
ity (Fredlund and Rahardjo, 1993). Fig. 2.29 (a) presents the results of some experimental studies
investigating the water permeability evolution of undisturbed Callovo-Oxfordian claystone, with
kw = kw kr,w. The scattering of the experimental data is quite low but the permeability of
saturated samples can vary between two orders of magnitude. It can be explained by anisotropy
of the permeability as shown in Fig. 2.29 (b). The permeability in the direction parallel to the
bedding planes (horizontal) is generally higher than the permeability along the perpendicular
axis (vertical).

Thanks to this bibliographic analysis, a retention curve and a water permeability curve can
be defined, even if the experimental review highlights some data dispersion. These relation-

46



CHAPTER 2. EDZ AND AIR INTERACTION IN ARGILLACEOUS ROCK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

D
e
g

re
e
 o

f 
s
a
tu

ra
ti

o
n

 S
r,

w
[-

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

D
e
g

re
e
 o

f 
s
a
tu

ra
ti

o
n

 S
r,

w
[-

]

Andra, 2009 - LML

Andra, 2009 - Laego

Hoxha & Auvray, 2005

Pham et al., 2007

Zhang & Rothfuchs, 2007

Boulin et al., 2008a/b

Yang, 2008

Drying

1000 1000

Wetting

(b)(a)

Suction s [MPa] Suction s [MPa]

Fig. 2.28: Experimental data for the retention curve of Callovo-Oxfordian claystone classed by
(a) authors and (b) drying or wetting path (Charlier et al., 2013b).
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Fig. 2.29: Experimental data on Callovo-Oxfordian claystone for (a) the water permeability
evolution with the degree of saturation and (b) the anisotropy effect on the water permeability
in saturated conditions (Charlier et al., 2013b).

ships are based on the van Genuchten’s equation (van Genuchten, 1980) detailed in Eqs. 2.51
and 2.52, with parameters calibrated in order to reproduce at best the available experimental
data. The comparison between the experimental data and the relationships used in the modelling
is illustrated in Fig. 2.30.

For the numerical modelling, the main hydraulic characteristics are defined in Table 2.3. It
must be noted that the permeability anisotropy ratio kw,h/kw,v is equal to 3, which corresponds
to previous measurements from Andra. Moreover the permeability is strongly increased in the
excavation damaged zone (Armand et al., 2007). Even if it is known that the principal directions
of anisotropy in the damaged zone do not correspond to the principal directions of the initial
anisotropy (Bossart et al., 2002), the same directions are considered. It could be justified by the
large increase of permeability in the damaged zone and the low anisotropy ratio. The permeability
in the damaged zone is almost homogeneous in comparison with the undisturbed claystone and
the principal directions do not influence the numerical results.
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Fig. 2.30: (a) Retention curve and (b) water permeability curve of Callovo-Oxfordian claystone
based on experimental data fitting of van Genuchten’s model (Charlier et al., 2013b).

Symbol Name Undisturbed EDZ Concrete Unit
claystone

kw,h Horizontal intrinsic water 4× 10−20 4× 10−17 1× 10−18 m2

permeability
kw,v Vertical intrinsic water 1.33× 10−20 1.33× 10−17 1× 10−18 m2

permeability
Φ Porosity 0.18 0.18 0.2 −
τ Tortuosity 0.25 0.25 0.25 −
Pr van Genuchten air entry 15 15 2 MPa

pressure
M van Genuchten coefficient 0.33 0.33 0.35 −
Smax Maximum water degree of 1 1 1 −

saturation
Sres Residual water degree of 0.01 0.01 0.01 −

saturation

Table 2.3: Hydraulic parameters.

2.5.4 Numerical results and discussion

For the hydro-mechanical modelling of the SDZ ventilation test, the non-classical flow boundary
condition reproducing seepage and vapour exchanges at the cavity wall is taken into account.
With the chosen set of materials parameters and a calibration of the vapour mass transfer
coefficient leading to αv = 10−5 m/s, good agreements between experimental measurements and
numerical results are obtained in terms of water pressure kinetics, both in the further and in
the nearest zones (Fig. 2.31). The anisotropic behaviour observed in the pore water pressure
measurements is also well reproduced. Some discrepancies are nevertheless observed, especially
in the horizontal and vertical boreholes (boreholes 1 and 3). It is to mention that in Fig. 2.31 and
later in Fig. 2.32 the drilling phase is not illustrated; thus, the start of the ventilation corresponds
to day 0, whilst it corresponds to day 50 in the experimental data detailed in section 2.3.2.

The discrepancies between the measured and predicted pore pressures can be also explained
by some phenomena not currently reproduced in the modelling. For instance, a 2D plane strain
state model does not allow the reproduction of the axial flows which play an important role in
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Fig. 2.31: Comparison between experimental (full lines) and numerical (symbols) pore water
pressure around the uncovered SDZ experimental zone in (a,d) horizontal, (b) oblique at 45°,
and (c) vertical boreholes (Charlier et al., 2013b).

the damaged zone when the airlock is closed. 2D axisymmetrical and 3D hydraulic modellings
have also been performed in order to reproduce more accurately the fluid transfers and improve
the numerical results. More details are available in Pardoen et al. (2012a,b) and Charlier et al.
(2013a).

On the other hand, numerical water pressures higher than the initial value are observed along
the vertical borehole (borehole 3 in Fig. 2.31 (c)). It can be explained by hydro-mechanical
couplings induced by the anisotropy of the initial stress state, but these overpressures remain
lower than the experimental values observed at the end of the GED gallery (Fig 2.15). These
overpressures may also be characteristic of hydro-mechanical coupling induced by the anisotropy
of the mechanical behaviour. An anisotropic mechanical model could be considered to reproduce
the overpressures and improve the agreement between the measurements and the numerical
results.

The influence of the vapour transfer at cavity wall can also be analysed to better understand
the water transfers. The vapour mass transfer coefficient used in the boundary condition has
a significant influence on the fluid transfers taking place around the gallery. In the modelling,
a low value is used in comparison to coefficients determined on argillaceous material samples
during drying tests (10−2 m/s) by Gerard et al. (2010). This low value implies low transfers
and no desaturation of the claystone around the gallery. Thus, the water vapour exchange at
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the gallery wall is not the predominant transport mechanism (the seepage is) and the ventilation
has a small influence on the pore pressures distribution in the rock mass.

The low fluid transfers challenge the classical imposition at gallery wall. In fact, classical flow
boundary condition, that imposes at the tunnel wall the suction corresponding to the relative
humidity of the cavity air, does not allow a good reproduction of the pore water pressures in the
undisturbed rock as shown in Fig. 2.32 (a). This modelling also illustrates the huge drainage and
desaturation of the excavation damaged zone due to the classical imposition (Fig. 2.32 (b)). The
variations of pore pressures on the curves correspond to the variations of pore pressures imposed
at gallery wall, and therefore to the variations of gallery air relative humidity. Such variations
rapidly influence the drainage kinetics of the EDZ because of the classical imposition at gallery
wall and of the high damaged zone permeability.

Fig. 2.32: Comparison between experimental (full lines) and numerical (symbols) pore water
pressure with imposed suction at the cavity wall in the oblique borehole: (a) drainage in the
rock mass and (b) desaturation of the EDZ (Charlier et al., 2013b).

Concerning the analysis of the rock desaturation process in the EDZ, the water content
measures of Fig. 2.17 are used because the pore pressure sensors can not acquire negative mea-
surements. The last numerical results have indicated that the classical imposition generates huge
drainage, thenceforward an intermediate value of αv = 10−2 m/s similar to the values deter-
mined experimentally (Gerard et al., 2010) is considered. This value leads to a desaturation of
the rock at gallery wall and in the damaged zone as illustrated in Fig. 2.33 (a), which was not
the case for the low value of αv = 10−5 m/s. Fig. 2.33 (b) shows that this desaturation is in
better agreement with what is observed experimentally close to the gallery wall.

The issue about the reproduction of fluid flows around drifts is, as discussed here above,
conditioned by the transfers at cavity wall but also by the definition of the EDZ behaviour.
The latter needs to be improved with an accurate modelling of the hydro-mechanical coupling
occurring in damaged and fractured zones, such as permeability evolution. The extent and
the permeability of the damaged zone are indeed currently imposed at the beginning of the
modelling, whereas the processes are more complex and can be coupled to rock damage and
cracking (Arson and Gatmiri, 2012; Levasseur et al., 2009; Maleki and Poya, 2010; Shao et al.,
2006b; Snow, 1969). Such improvement would allow to better represent the fluid transfers which
conditions the progressive drainage in the far field as well as the desaturation close to the drift.
Even though, the development of a non-classical flow boundary condition is still important to
allow physical explanations of the vapour exchanges at the cavity wall and of the long-term
equilibrium between the rock and the air.

Some mechanical results can also be discussed. Fig. 2.34 illustrates the yield index distribu-
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Fig. 2.33: Rock desaturation at gallery wall (a) for a high and a low values of the vapour mass
transfer coefficient and (b) comparison to experimental measurements of water content.

tion around the gallery at the end of the modelling. The yield index corresponds to the reduced
second deviatoric stress invariant:

Y I =
IIσ̂′

IIp
σ̂′

(2.112)

where IIp
σ̂′

is the second deviatoric stress invariant value at plastic state (on the yield surface)
for an identical value of Iσ′ (current value). The current state of the material is therefore elastic
for Y I < 1 and plastic for Y I = 1. The evolution of the plastic zone extension occurs mainly
during the excavation and its final dimensions are indicated in Fig. 2.34. Even if the damaged
zone remains a priori defined in the model, the plastic zone obtained numerically can still be
compared to the fractured or damaged zone measured in situ (Fig. 2.9). The numerical result
shows that the anisotropy of the initial stress state is sufficient to obtain an elliptic plastic
zone around the GED gallery, as observed experimentally. Moreover, the extent of this domain
corresponds to the one where mixed fractures (tension and shear) are experimentally observed
thanks to borehole core analysis (Table 2.4). Besides, if compared to the damaged zone extent
based on permeability measurements, the plastic zone extent lies between the slightly disturbed
and the highly disturbed zone extents. Considering only the plastic zone would underestimate
the EDZ size, consequently a part of the elastic one should also be considered.

* 1.000E-03

1
.7

 m
1

.3
 m

0.4 m

Yield
index [-]

0

1

Fig. 2.34: Yield index and extension of the plastic zone at the end of the modelling.

Lastly, the diametrical convergence of the gallery (diameter variation) is illustrated in Fig. 2.35
where it is compared to experimental measurements from Armand et al. (2013), for both verti-
cal and horizontal directions. One can observe that, even if the horizontal convergence is well
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Zone Horizontal [m] Vertical Vertical
upward [m] downward [m]
(gallery ceiling) (gallery floor)

Numerical plasticity 0.4 1.3 1.7
Mixed fractures < 0.5 1.27 1.24
Shear fractures < 0.5 2.75 3.70
Highly disturbed permeability 0.5 1.1 1.1
Slightly disturbed permeability 1.1 3.1 3.1

Table 2.4: Comparison between the thickness of the numerical plastic zone and of the measured
fractured and permeability disturbed zones.

reproduced, the vertical one is underestimated and the convergence anisotropy is not captured.
It is evident that the convergence prediction could be improved by taking into account the me-
chanical anisotropy of the rock (elastic modulus, strength parameters...) and by improving the
description of the EDZ with the modelling of fractures.
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Fig. 2.35: Evolution of the (a) vertical and (b) horizontal convergences during and after gallery
excavation, with comparison to experimental measurements in the GED drift.

2.6 Conclusions and outlooks

The hydro-mechanical unsaturated behaviour of Callovo-Oxfordian claystone and the fluid trans-
fers around underground galleries have been investigated through the modelling of an in situ air
ventilation experiment. The modelling mainly consists of a contribution in the understanding of
the rock unsaturated behaviour, especially in the galleries vicinity and in the excavation damaged
zone. It also constitutes an overview of the main aspects and future challenges to consider in
the modelling of the EDZ and of its hydraulic behaviour.

The modelling of the SDZ ventilation test highlights the need of a more accurate reproduction
of the damaged zone, of the hydro-mechanical coupling occurring in it and of the rock mechanical
anisotropy. The major aspects to incorporate in the modelling are:

The fracturing. The actual modelling does not provide information about the rock state
within the damaged zone. Nevertheless, the fracturing process induced by deconfinement must
indubitably be taken into account to better represent the EDZ, including its structure and
extension, as well as the gallery convergence. As far as material rupture is concerned, different
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processes can lead to the failure. They include localised deformation, material damage with
microcracks appearance, and the onset of fractures. An appropriate method for reproducing the
fractures will be developed in chapter 3 with numerical validation in chapter 4.

The mechanical anisotropy. The anisotropic mechanical behaviour of the rock has not been
included in the modelling yet. Besides, this anisotropy is certainly needed to explain the experi-
mental observations of fracturing structure and extent with regard to the anisotropic stress state
and gallery orientations. The introduction of anisotropy will be considered in chapter 5 with
analyses of its influence on fracturing and damaged zone development.

The permeability variation. For now, the permeability inside the damaged zone is a priori
and homogeneously defined, but in reality it is linked to the development and density of fractures
which involve an inhomogeneous permeability distribution. The impact of fracturing on the
transport properties will be addressed in chapter 6 by accounting for a hydraulic permeability
evolution inside the damaged zone. A hydro-mechanical coupling that provides an increase of
the permeability as a function of a mechanical aspect of the fractures (damage, deformation...)
is certainly a way to better reproduce the EDZ and improve the transfer modelling.

The air-rock interaction. The preliminary numerical results show the relevance of a non-
classical flow boundary condition for the reproduction of large-scale rock-atmosphere interaction
problems. The tested condition allows to obtain an appropriate reproduction of the fluid transfers
occurring between the air and the surrounding rock. This condition should be considered for
later air ventilation analyses.
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Chapter 3

Shear strain localisation modelling
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CHAPTER 3. SHEAR STRAIN LOCALISATION MODELLING

Abstract Localised rupture is commonly observed in geomaterials and is frequently preceded
by strain localisation in thin zones or bands. This strain localisation process is therefore a
crucial issue when considering the material rupture and it has been widely investigated both
theoretically and experimentally. This chapter summarises the different aspects related to shear
strain localisation in shear band mode. Firstly, experimental evidences of localised phenomena
are exposed. They are followed by theoretical and numerical tools required to allow a robust
reproduction of the strain localisation. In particular, a regularisation method introducing mi-
crostructure enriched media (second gradient model) is presented for finite element methods. It
takes into account the interactions occurring between the different phases of a biphasic porous
media under saturated conditions. Finally, this method is applied to some typical problems en-
gendering material failure to highlight its interest and limitations. The present chapter is part of
a book about the finite element code Lagamine developed at the University of Liège and about
its applications. The book is currently being drafted.

3.1 Strain localisation in geomaterials

3.1.1 Material rupture

Since the material behaviour and rupture are of importance regarding the design of geotechnical
works for which material can be subjected to strong solicitations, the failure has been widely
investigated in geomechanics. Experimental observations on geomaterial clearly indicate the
appearance of localised ruptures (Desrues, 1984). Theoretically, the concept of rupture surface
is one of the oldest case of material localised failure and was already used in the design of
works and structures few centuries ago (Coulomb, 1773). In some cases, a diffuse mode of
failure can also be observed and it corresponds to homogeneous failure in laboratory tests (Khoa
et al., 2006). Nowadays, it is commonly assumed that localised deformation and damage can
appear in materials prior to the rupture in many situations. In fact, the stress redistribution
can engender damage that can firstly be diffused then localised. Once the damage threshold
is reached, microcracks initiate, then grow, accumulate, and propagate within the material. If
the microcracks coalesce, the distributed damage can further lead to strain localisation and to
the initiation of interconnected fractures by the onset of macrocracks, which provokes a sudden
material rupture (Diederichs, 2003).

The fracturing process instigates discontinuities in the material that can be represented the-
oretically and numerically by various approaches. Two mains categories exist: the continuous
and discrete descriptions of the fractures. The continuous description includes material damage
and strain localisation, while the discrete description actually represents the cracks. In fracture
mechanics, the different fractures can be in tensile or opening mode (mode I), in sliding shear
mode (mode II), in tearing shear mode (mode III), or in mixed-mode (mode I-II, Jenq and Shah
(1988)), as illustrated in Fig. 3.1. In the context of underground waste repository, a particular
attention is paid to the Callovo-Oxfordian claystone for which the fracturing due to the excava-
tion process is dominated by shear fractures in mode II. Following this observation, it is proposed
to consider shear strain localisation as a predictor of the fracturing process. The modelling of
shear strain localisation is a continuous approach that does not explicitly reproduce the fractures
and their discontinuities. Nevertheless, it generally induces the appearance of shear bands and
non-uniform strain distribution that may engender a displacement discontinuity between the
material located on the two sides of a shear band.

3.1.2 Experimental evidences of strain localisation

Strain localisation is frequently observed prior to the material rupture. Starting from a homo-
geneous deformation state, the strain localisation consists in a brutal accumulation of strain
in a limited zone that can lead to cracks and failure (rupture lines). In geomaterials like soils
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Mode II Mode IIIMode I

Fig. 3.1: Standard crack modes.

and rocks it is often considered as a shear strain accumulation in band mode (Desrues, 2005).
Nevertheless, the type of localisation may be of different nature for other materials.

Geomaterials have low tensile strength, thus tensile rupture is arduous to characterise. On
the other hand, plenty of small-scale compression laboratory tests are dedicated to strain locali-
sation (Vardoulakis et al., 1978; Han and Drescher, 1993; Finno et al., 1996, 1997; Alshibli et al.,
2003) and allow to characterise the compression material behaviour up to the rupture. They are
generally realised on axisymmetric triaxial or plane-strain biaxial compression apparatus and
involve special techniques, such as stereophotogrammetry (Desrues, 1984; Desrues and Viggiani,
2004), X-ray microtomography, and three dimensional digital image correlation (Lenoir et al.,
2007), to study the evolution of the strain localisation process. The advantage of biaxial com-
pression experiments is that the localisation process is clearly evidenced, whereas it can remain
hidden inside the sample in triaxial compression tests.

Under compressive regime, the rupture is governed essentially by shear failure and these
experimental studies generally highlight shear strain localisation in band mode (Desrues, 2005)
as illustrated in Fig. 3.2. It is commonly accepted that the shear band establishment corresponds
to a peak stress in the stress-strain global response curve of the specimen (Mokni and Desrues,
1999; Desrues, 2005).
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Fig. 3.2: Formation of shear bands during plane-strain biaxial compression test on sand: (a)
specimen after shearing and (b,c) global response curves for one or two shear bands (according
to Mokni and Desrues (1999) and Alshibli et al. (2003)).

The experimental localisation studies mostly analyse the behaviour of sand and only a few
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are actually available on rocks (Bésuelle et al., 2000). Analysing the formation of fractures and
strain localisation bands in rocks is quite challenging due to their high resistance and brittle
behaviour (quasi-brittle material), thence the development of appropriate apparatus designed to
test this type of material is necessary (Desrues and Viggiani, 2004).

Pre and post-peak behaviours

The localisation process has been deeply studied by Desrues and co-workers (Desrues, 1984;
Desrues and Viggiani, 2004) for many biaxial compression tests. One example of shear band
development in sand is represented in Fig. 3.2 (b) where the load-deformation curve and the in-
cremental fields of shear strain intensity based on stereophotogrammetry are represented before
and after the peak. The experimental results indicate that strain localisation initiates before the
peak stress, generally at simultaneous multiple locations within a large part of the specimen.
These multiple mechanisms of localised deformation are temporary because they are in compe-
tition as the deformation increases and finally one of them takes over the others at peak stress
to complete a full formation of a shear band throughout the specimen.

However, for a perfect material, there is no reason that strain localisation initiates in the
samples and it would deform homogeneously. In reality, the localisation process is generated
because geomaterials exhibit some heterogeneities. The role of material imperfections, be it hard
or weak inclusions, was investigated experimentally by Desrues (1984) and Desrues and Viggiani
(2004). Two main observations were made. First, the inclusion does not affect neither the global
stress-strain response of the specimen nor the peak stress and strain level for the same confining
pressure. Second, the shear band position is dictated by the inclusion and passes through it if
the imperfection is strong enough to act as a strain localisation attractor. In fact, the stress and
strain fields are uniform for a homogeneous specimen, on the other hand an imperfection induces
a non-uniformity of both fields in its vicinity which can be sufficient to act as a nucleation point
for the strain localisation onset.

After the peak stress, the global reaction of the specimen generally exhibits a rapid decrease
followed by whether a constant or a fluctuating reaction. This post-peak regime is dominated
by the shear banding (or fracturing) process, including its structure and evolution. Moreover,
several shear bands can even initiate in a specimen after the first peak (Fig. 3.2 (c)) and complex
shear banding patterns may result of specific condition of the loading or geometry. The strain
localisation as well as the post-localisation or post-peak material behaviour are therefore crucial
and need to be understood and represented properly.

Concerning the thickness of the shear bands, it is governed by the solid grain size for granular
materials (Roscoe, 1970; Vardoulakis and Sulem, 1995). For instance, it ranges generally between
10 to 20 times the average grain size (mean grain diameter) for sands and between 4 to 10 times
for sandstone (El Bied et al., 2002). For fine-grained materials such as marls, clays, and clayey
rocks, the shear bands can be very thin with a width smaller than 50 or 100 µm. Such thin shear
bands are regularly referred as slip surfaces or displacement discontinuities, and extremely thin
widths can even create a confusion between closed shear cracks in mode II (strong discontinuities)
and shear bands (weak discontinuities) as mentioned by Lenoir (2006) and Viggiani et al. (2004).
For the Callovo-Oxfordian claystone, Bésuelle et al. (2006b) performed compression tests on
specimens and analysed the shear banding appearance with X-ray microtomography and three
dimensional digital image correlation. The measurements indicate that the widths of the localised
deformation zones are about 60 to 70 µm.

Hydro-mechanical processes

The strain localisation process has been investigated whether from a purely mechanical point of
view or for hydro-mechanical coupled problems. The pure mechanical aspect is studied on dry or
on globally drained samples at low strain rate whilst the coupled problem is analysed on globally
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undrained or on globally drained samples at fast strain rate. The hydro-mechanical coupling
introduces fluid (liquid water) flows that can have a potential impact on the strain localisation
process (Collin et al., 2009b). This phenomenon is dependent of the problem boundary conditions
and of the material characteristics, both mechanical and hydraulic.

The hydraulic boundary conditions on small-scale laboratory experiments are prescribed on
the samples external faces meaning that the conditions are valid globally but not locally. Under
globally drained conditions, fluid flows are possible and their impact on strain localisation can be
low or non-existent in case of sufficiently high permeability in comparison to the loading velocity
(low strain rate). If pore overpressures are not generated then the experimental observations
correspond to dry conditions and purely mechanical aspect.

Under undrained conditions, overpressures appear in the sample and interactions with the
localisation process are generated. Furthermore, fluid flows can still appear in the sample because
of strain localisation effects, even if they are globally undrained. Among other experiments, the
plane-strain undrained tests performed in Grenoble have highlighted some common features
(Mokni and Desrues, 1999; Roger et al., 1998): strain localisation is observed on loose sand and
is possible for dense (dilatant) sand only when cavitation develops. Before cavitation in the pore
fluid, the localisation is inhibited by the liquid water transfers. This observation undoubtedly
evidences the interaction between fluid and localisation process. Furthermore, the effect of
cavitation on shear banding has been investigated numerically by Sieffert et al. (2014).

3.1.3 Modelling issues

The previous experimental results clearly evidence the necessity of a proper representation of
the strain localisation process in shear band mode for geomaterials. The latter has to account
for strain localisation onset, post-localisation (post-peak) material behaviour, as well as hydro-
mechanical coupling. The shear band modelling has to be robustly addressed both theoretically
and numerically.

3.2 Theoretical concepts

It has been highlighted that shear band formation can occur in geomaterials for many loading
conditions. To reproduce such phenomenon, constitutive laws devoted to the modelling of the
shear band behaviour have to be developed. The constitutive models must be able to predict a
strain localisation in band mode and to reproduce it properly.

3.2.1 Bifurcation and shear banding theory

From a theoretical perspective, the appearance of strain localisation is considered as a bifurcation
phenomenon which can be defined as the loss of uniqueness of a problem solution (Hill, 1958;
Rice, 1976; Chambon and Caillerie, 1999). The bifurcation can be characterised by various modes
such as surface wave (Triantafyllidis, 1980), necking (Hill and Hutchinson, 1975), diffuse loss of
homogeneity (Vardoulakis, 1979, 1981), or shear banding (Rice, 1976). Among them, the focus
is on the analysis of strain localisation in shear band mode.

Bifurcation phenomenon

To illustrate the bifurcation phenomenon, a one-dimensional problem of a bar under uniaxial
tension is considered (Fig. 3.3 (a)). The bar has a length L, a constant section A, and the
tension F is represented by an axial displacement of the bar’s extremity U = ∆L. The material
behaviour depends on a quite simple constitutive law (Fig. 3.3 (b)) that exhibits a reduction of
stress with increasing strain, resulting either of an elastic damage model or of a strain softening
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elastoplastic model. Considering the latter, the first part of the curve constitutes the elastic
behaviour, the second is the plastic behaviour, and σp is the yield stress.

U

F

sp.A

ep.L

(c)

Bifurcation point

er.L

Elastic
unloading

Plastic
loading

Elastic material

Diffuse failure

Localised failure

Ls

F,U

L

(a)

e

s

sp

(b)

ep er

Fig. 3.3: One-dimensional bar under uniaxial tension: (a) schematic representation, (b) local
constitutive behaviour law, and (c) global response.

During the elongation, the load-displacement curve of the global response of the bar (Fig. 3.3
(c)) firstly exhibits a linear behaviour up to σp. Under elastic regime, the response is unique and
the strain distribution is uniform. In elastoplastic softening regime, the global axial force/stress
decreases but, according to the static equilibrium condition, it must remain homogeneous all
along the bar. As a consequence of the strain softening material behaviour, the solution at the
peak stress is not unique and two possibilities can occur at any material point: softening plastic
loading or elastic unloading. In fact, when the strength reduces beyond the peak strength, the
material response can either continue along the plastic loading curve and undergo an increase
of plastic strain, or it can also continue along the elastic unloading curve. Strain softening
may therefore instigate an infinity of localised solutions with non-uniform strain distributions
(Bazant et al., 1984; Benallal and Marigo, 2007; Jirásek and Rolshoven, 2009) and causes a loss
of uniqueness of the post-peak solution.

The ratio of the length Ls under softening plastic loading versus the bar length L can be
defined. Ls

L = 1 corresponds to a diffuse failure during which the bar load decreases linearly
down to zero with a final elongation of Uf = εrL. For 0 < Ls

L < 1, there exist an infinity of
possible localised failures having a final elongation of 0 < Uf < εrL for F = 0. Some of these
solutions exhibit an increase of axial deformation after the peak stress εpL < Uf < εrL, while
others exhibit a decrease of axial deformation 0 < Uf < εpL, such solutions are called snapback
solutions and may cause computational instabilities. Lastly, LsL = 0 is a limit case for which the
material becomes fully elastic after the peak stress. For this solution the load decreases linearly
down to zero without final elongation Uf = 0 and without energy dissipation. Such solution is
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not realistic and will be discussed later.
The previous discussion is also valid for a material under compression or shear, replacing

the tension normal stress by compression normal stress or by shear stress. For compression
experiments (as discussed in section 3.1.2), the loss of uniqueness might result in the development
of shear bands among the different possible types of localised solutions. For such discontinuity,
an elastic unloading is observed outside the shear band while the material remains under plastic
loading inside with a concentration of the plastic strain. As illustrated in Fig. 3.4, the post-peak
behaviour is governed by the degree of softening, i.e. the ratio of shear band thickness Hs versus
the total height of the sample H, and strong discontinuities corresponding to very thin bands
can appear.

Bifurcation point

Diffuse failure : H /H=1s

DH

F

Localised failure : H /H~0s

(strong discontinuity)

(weak discontinuity)
Localised failure : 0<H /H<1s

H

H

s
1

s
3 H

H

Hs

Fig. 3.4: Post-peak behaviour related to the shear band thickness for a specimen under uniaxial
compression (Thakur, 2007).

Rice criterion

Following previous works (Hadamard, 1903; Hill, 1958; Mandel, 1966), a criterion was proposed
by Rice and co-workers (Rudnicki and Rice, 1975; Rice, 1976) for strain localisation in shear
band mode. It analyses the stress state and investigates the possibility of bifurcation appearance
in the stress and strain paths. The shear band theoretical scheme is illustrated in Fig. 3.5 where
the superscripts 0 and 1 denote quantities outside and inside the shear band, respectively. The
following development are based on the hypothesis that shear bands are zero extension lines.
The zero extension condition is a kinematic characteristic of the shear band implying that it has
an indefinite length and no longitudinal deformation (Desrues, 1984, 1987). Moreover, additional
quantities inside the band are independent of the longitudinal band direction.

Q
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Fig. 3.5: Theoretical scheme of a shear band.

At the strain localisation appearance, the stress and strain fields are assumed to be continuous
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on a solid body. The discontinuity appears on the shear band outer surfaces, that is to say on
the interfaces between the shear band and the outer material, for the stress field rate σ̇ij and for
the corresponding velocity gradient field Lij .

Two conditions are required to fulfil the Rice bifurcation criterion. Firstly, a kinematic
condition specifies the discontinuity of the velocity gradient field Lij across the shear band
interfaces in its normal direction:

L1
ij = L0

ij + ςi nj (3.1)

which is equivalent to:

ςi nj =
∂
(
u̇1
i − u̇0

i

)
∂xj

(3.2)

where ni = ∂ξ
∂xi

is the normal unit vector to the shear band, u̇i is the velocity field, and ςi is an
additional velocity gradient field of the shear band that describes the band mode. It is defined
as follows:

ςi =
∂
(
u̇1
i − u̇0

i

)
∂ξ

(3.3)

where ξ is the shear band normal coordinate axis. Secondly, a static condition specifies the
surface equilibrium of the shear band interfaces with the outer material and the discontinuity of
the stress field rate σ̇ij :

ni
(
σ̇1
ij − σ̇0

ij

)
= 0 (3.4)

It implies that the interface traction increments:

ṫi = σ̇ij nj (3.5)

imposed on both sides of the shear band are equal.
In addition to the two previous conditions, a material constitutive law expressing the re-

lationship between the stress and strain field increments remains to be introduced in the Rice
bifurcation criterion. Initially, the criterion was developed for classical material (associated
plasticity) and incrementally linear behaviour. The assumption of linearity is quite strong and
materials generally exhibit elastoplasticity with an incrementally non-linear relationship. The
following constitutive law is considered:

σ̇ij = Cijkl Lkl (3.6)

A first possibility of bifurcation appearance is a continuous bifurcation with continuous con-
stitutive tensor across the shear band:

C0
ijkl = C1

ijkl = Cijkl (3.7)

However, the bifurcation is often discontinuous (Rice and Rudnicki, 1980) which implies plastic
loading inside the shear band and elastic unloading in the outer material. The constitutive tensor
is therefore different outside and inside the shear strain localisation band:

C0
ijkl = Ceijkl , C1

ijkl = Cijkl (3.8)

Considering discontinuous bifurcation and introducing the expression of Eqs. 3.1 and 3.6 in
Eq. 3.4 give:

ni
(
C1
ijkl

(
L0
kl + ςk nl

)
− C0

ijkl L
0
kl

)
= 0 (3.9)

which is a third order equation system where the unknown is the vector ςi. The trivial solution
ςi = 0 is always possible but implies that no shear band can appear with the unique solution
L1
ij = L0

ij . Other non-trivial solutions implying bifurcation can be found for ςi 6= 0. Nonetheless,
the difference between the constitutive tensors inside and outside the shear band complicates
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the bifurcation analysis. Furthermore, it has been demonstrated that the continuous bifurcation
always precedes the discontinuous bifurcation (Rice and Rudnicki, 1980; Simo et al., 1993) thus,
by assuming continuous bifurcation, Eq. 3.9 becomes:

(ni Cijkl nl) ςk = 0 (3.10)

and non-trivial solutions ςi 6= 0 are found if the acoustic tensor determinant is less or equal to
zero (Hill, 1958):

det (ni Cijkl nl) ≤ 0 (3.11)

The solution of this equation gives ni and the orientation of the shear band. This is a necessary
bifurcation condition in shear band mode that corresponds to the first possible bifurcation,
however, this is not a sufficient condition for the appearance of shear band. Furthermore, even
if the continuous bifurcation assumption is a strong one, it has been proved that the previous
criterion remains valid for a classical single-mechanism elastoplastic model to the condition that
Cijkl is the elastoplastic constitutive tensor (Chambon, 1986).

For two-dimensional plane state problems, the condition of Eq. 3.11 can be rewritten in a
fourth order equation:

det(∧jk) = n4
1

(
`4 tan

4Θ + `3 tan
3Θ + `2 tan

2Θ + `1 tanΘ + `0
)
≤ 0 (3.12)

where tanΘ = n2/n1 with Θ being the orientation of the shear band normal with the x1-axis, the
parameters `i depend on the components of Cijkl (Wang, 1993), and ∧jk is the acoustic tensor:

∧jk = ni Cijkl nl (3.13)

The orientation obtained by the bifurcation criterion is a double one which indicates that shear
band can initiate in two conjugate bifurcation directions.

The criterion can be generalised to large strain problems. The elastoplastic constitutive law
has been detailed for small strains and rotations in Eq. 3.6 and can be formulated as follows for
large strains and rotations:

σ̇ij = Aijkl Lkl (3.14)

where Aijkl is the elastoplastic constitutive tangent tensor for large strains and rotations. This
tensor can directly be used instead of Cijkl in the bifurcation criterion. It is obtained by the
modification of Cijkl by the relation:

Aijkl = Cijmn Smnkl −AJijkl (3.15)

where Sijkl and AJijkl are Jaumann’s corrections for large deformations (Wang, 1993).
Furthermore, similar developments can be extended to non-classical (non-associated) elasto-

plasticity. The discontinuous bifurcation condition (Eq. 3.9) remains valid, on the other hand,
the continuous bifurcation assumption can not guarantee to obtain the first possible bifurcation
for these materials. This assumption can nevertheless be generalised and leads to the definition
of lower and upper bounds for the bifurcation criterion (Raniecki and Bruhns, 1981).

In addition to softening, materials can exhibit hardening of their plastic properties which
corresponds to a non-linear elastoplastic behaviour before reaching the peak stress. For associated
plasticity the bifurcation criterion is met only at peak stress or in softening regime while for non-
associated plasticity it can be met for positive hardening (Rudnicki and Rice, 1975). It signifies
that materials not satisfying the plastic normality rule are more inclined to strain localisation and
instability. Nevertheless, elastic unloading occurs only for strain softening behaviour; therefore,
the bifurcation can only be continuous in the hardening regime and discontinuous bifurcation
can be observed after the peak stress.

It should also be pointed out that the previous developments are valid only for pure mechan-
ical analyses, yet it has been shown that the localisation condition depends only on the material
drained properties for hydro-mechanical coupled problems (Loret and Prevost, 1991).
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Deformation band type

The nature of a strain localisation band depends on different factors as the material characteristics
and the loading. Even if localisation bands are commonly called shear bands, they do not deform
automatically in pure shearing. For instance, a shearing with dilatancy is generally observed in
the shear bands for most geomaterials, loose materials can exhibit compacting shear bands and
compaction bands because of their contractive behaviour (Issen and Rudnicki, 2000, 2001), and
dilation bands can also appear for opening mode failure (Bésuelle, 2001; Du Bernard et al., 2002).
Fig. 3.6 illustrates the main band types based on the predominant localised deformation.

Shortening Shear Extension

Compaction band Shear band Dilation band

Fig. 3.6: Deformation band types in porous media depending on the predominant displacement
gradient (Du Bernard et al., 2002).

The type of band can be described thanks to the Rice bifurcation criterion and to the addi-
tional velocity gradient field ςi defined in the kinematic condition (Eq. 3.3). This vector is the
non-trivial solution of Eq. 3.10 which depends on the acoustic tensor ∧jk. For two-dimensional
cases it reads ςi = (∧12;−∧11) (see Wang (1993) for three-dimensional cases). The scalar product
of the normalised (unit) vector of ςi, also called band characteristic vector, and the normal unit
vector ni gives:

s =
ςi
||ς||

ni = cos(αςn) (3.16)

where ||ς|| =
√
∧2

11 + ∧2
12 is the norm of the vector ςi and αςn is the angle between the vectors ςi

and ni. The parameter s describes the discontinuity of the deformation nature and band mode
according to the Table 3.1.

s αςn Deformation nature Band mode

−1 π Pure closing Compaction band
]−1; 0[

]
π
2 ;π

[
Contractive Compacting shear band

0 π
2 Pure shear Pure shear band

]0; 1[
]
0; π2

[
Dilative Dilating shear band

1 0 Pure opening Dilation band

Table 3.1: Characterisation of the type of deformation band.

Shear band orientation

Different theories exist about the shear band orientation based on plasticity or bifurcation theory;
a summary is presented by Desrues (1984). A first theory is the maximal obliquity line of the
stress vector (maximum shear stress at failure) stating that the shear band must be a line tangent
at any point to the facets that satisfy the Coulomb criterion (Coulomb, 1773). This condition is
a static characteristic of the shear band and, following Coulomb’s theory, the orientation of the
shear band is π

4 ±
ϕ
2 with the principal directions of the total stresses.
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Nonetheless, experimental measurements of shear band orientations disagree in many cases
with this orientation. In a synthesis of many years of laboratory research results, Roscoe (1970)
specifies that rupture lines, i.e. the sheared planes, have no reason to coincide with the maximal
obliquity facets of the stress vector but are zero extension lines (Desrues, 1984, 1987). Following
this condition, the shear band orientation is π

4 ±
ψ
2 with the principal directions of the strain rate

and introduces the influence of the dilatancy angle. This second theory is not accepted by all
the authors in the literature and questions raise about the coincidence of maximal obliquity line
with zero extension line, and therefore about the coincidence of the principal directions of the
total stress and strain rate. This engenders the appearance of a concept of uncertainty about
the principal axes directions of these tensors as well as a distinction between local and global
directions and quantities.

Arthur et al. (1977b) and co-workers proposed that the orientation of the shear band can
varies within a certain range defined by the two previous orientation values and that an interme-
diate value π

4 ±
ϕ+ψ

4 can be assumed in some cases. Similar conclusions based on the bifurcation
theory are formulated by other authors such as Vardoulakis (1980) who indicates that the pre-
vious orientation assumed by Arthur et al. (1977b) is valid with ϕ and ψ values at peak stress
(bifurcation).

The definition of the two sets of conjugated shear band orientations Θ with respect to the
minor principal stress can thus be summarised as follows:

|ΘR| ≤ |Θ| ≤ |ΘC | (3.17)

where ΘC and ΘR are Coulomb’s and Roscoe’s angle, respectively:

ΘC = ±
(π

4
+
ϕbif

2

)
(3.18)

ΘR = ±
(
π

4
+
ψbif

2

)
(3.19)

These definitions are valid principally for perfectly-plastic models. In case of hardening non-
associated plasticity, the strain localisation can initiate in the hardening phase before reaching
the peak stress and a unique pair of shear bands exists for an intermediate orientation value of
about (Mehrabadi and Cowin, 1980; Anand, 1983; Shuttle and Smith, 1988):

ΘA = ±
(
π

4
+
ϕbif + ψbif

4

)
(3.20)

These orientations depend on the local behaviour at the initiation of strain localisation which
corresponds to the bifurcation state (Desrues, 1984). Once a shear band is initiated, it propagates
mostly in a straight direction implying that the direction defined locally at initiation is preserved
at the global scale (Desrues, 1984). The shear band orientations are therefore defined with ϕbif
and ψbif which are the mobilised friction and the dilatancy angles at the bifurcation state.

3.2.2 Regularisation methods

The further step is to define an appropriate and robust method that allows to properly model the
strain localisation and shear banding with finite element methods, leading finally to the rupture
in localised mode. Local descriptions of the failure with classical finite element methods are not
efficient in the reproduction of strain localisation because they suffer a mesh dependency (to mesh
size and orientation) as indicated by Pietruszczak and Mróz (1981), Zervos et al. (2001b), Collin
et al. (2009b), and Wu and Wang (2010). This pathological problem is due to the properties of
the underlying mathematical problem.

To illustrate this deficiency, one can go back to the traction and compression examples il-
lustrated in Figs. 3.3 and 3.4. With classical tools, the thicknesses Ls and Hs under softening
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plastic loading are a priori undetermined and a mesh-dependency of the model response is ob-
served as far as the problem is ill-posed. For strong discontinuity (most localised solution), Ls
and Hs reduce to the size of the smallest element and may theoretically tend to cancel for an in-
creasing number of elements (de Borst et al., 1993). Such numerical results can therefore predict
physically inadmissible failure without any consummation of energy.

The evolution of the shear zone width has been studied for complete initial boundary value
problem. For instance, Kotronis et al. (2008) indicate that the zone thickness in a one-dimensional
layer problem remains constant or decreases while same structural behaviour can corresponds to
different solutions (different elastic-plastic zones patterns). The latter also illustrates the defi-
ciencies of classical models under softening regime for which the initial boundary value problem
is not well posed mathematically.

The dependence to the finite element discretisation can be tackled by employing a proper
regularisation technique. Such method has to introduce an internal length scale in the problem
to model the post-localisation behaviour correctly. Two principal categories of enhanced models
exist: one consists in the enrichment of the constitutive law with for instance non-local approaches
(Bazant et al., 1984; Pijaudier-Cabot and Bazant, 1987; Peerlings et al., 1996b; Guy et al., 2012)
or gradient plasticity (Aifantis, 1984; de Borst and Mühlhaus, 1992; Peerlings et al., 1996a), the
other one consists in the enrichment of the continuum kinematics with microstructure effects.
For this second category the microkinematics are characterised at microscale in addition to the
classical macrokinematics (Cosserat and Cosserat, 1909; Toupin, 1962; Mindlin, 1964; Germain,
1973). Additionally, it is to mention that enhanced models restore mesh objectivity but not the
uniqueness of the solution.

Enrichment of the constitutive law

For this theory, the internal length scale is introduced at the level of the constitutive model.
Advanced analyses of localisation phenomena have indicated that constitutive equations with
internal length are one solution to model strain localised pattern properly.

The internal length scale can be introduced by developing non-local definition of internal
variables involved in the material behaviour. The non-local variable v̊ at a material point xi can
be defined as an averaging value of the local variable v in a considered region Ω near that point
(Pijaudier-Cabot and Bazant, 1987; Peerlings et al., 2001), as illustrated in Fig. 3.7.

x1

x2

W

xi

yi

dW

Fig. 3.7: Non-local approach on a representative material volume.

The non-local integral method gives:

v̊(xi) =
1

V

∫
Ω

Ψ v(yi) dΩ (3.21)

V =

∫
Ω

Ψ dΩ (3.22)
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where xi is the coordinate vector of the material point where the non-local variable is considered,
Ω is a representative volume centred in xi, yi is the coordinate vector of the infinitesimal volume
dΩ, and Ψ is a weight function scaling v̊ to v̊ = v for a homogeneous distribution of the variable.
It is generally defined with a Gaussian distribution:

Ψ =
1

(2π)3/2 l3c
exp

(
−||xi − yi||

2

2 l2c

)
(3.23)

which depends on the distance ||xi − yi|| and on a characteristic length parameter lc. This length
parameter, or internal length scale, defines the material volume that significantly contributes to
the non-local variable and is consequently related to the microstructure.

The regularised variable can also be defined explicitly from the local variable v(xi) and
its gradient. In his pioneering works, Aifantis (1984) introduced such gradient in constitutive
equations. The explicit gradient formulation is:

v̊ = v + l
∂2v

∂xi∂xi
(3.24)

where the dependence of v and v̊ on the coordinate vector xi is dropped for simplicity and l has
the dimension of length squared so

√
l can be related to the internal length scale lc introduced

to regularise the model. Because the gradient term is a local quantity, the spatial interaction of
the material points located in the vicinity of v̊ is infinitesimal and the explicit gradient model
is therefore local. This is a main difference with the non-local integral formulation of Eq. 3.21
where the interaction distance is finite and related to the weight function. Moreover, the explicit
gradient formulation can be derived from the non-local integral formulation by introducing gradi-
ent of the internal variable, expanding the local variable v(yi) into a Taylor series (Bazant et al.,
1984; Lasry and Belytschko, 1988; Peerlings et al., 1996a), using the weight function definition
of Eq. 3.23, and neglecting terms above second order (approximation).

The definition of Eq. 3.24 is less suitable in the context of numerical analyses, such as finite
element formulation, because of the explicit dependence of v̊ with its local (second) gradient.
This dependence leads to continuity requirement for the internal variable which has to be a
continuously differentiable function (class C1 function whose derivative is continuous). To avoid
this drawback, an alternative implicit gradient formulation, introducing an approximation of
Eq. 3.21 similar to Eq. 3.24, can be expressed as follows (Peerlings et al., 1996a, 2001):

v̊− l ∂2̊v
∂xi∂xi

= v (3.25)

and enables a continuous definition of v (class C0 function). For the implicit gradient model, the
non-local internal variable is an additional unknown which is solution of the Helmoltz differential
equation 3.25. Solution of this equation can only be found provided that additional boundary
condition on v̊ is specified. The following condition is usually assumed (Lasry and Belytschko,
1988):

∂v̊
∂xi

ni = 0 (3.26)

where ni is the normal unit vector to the external boundary. This condition enables v̊ = v for
homogeneous distribution. In contrast to the explicit formulation, the non-local variable v̊ is
implicitly given as the solution of Eqs. 3.25 and 3.26, and the spatial interaction has a finite
distance that implies a non-local character. The solution is of the same form of the non-local
equation 3.21 with Ψ = Gr and V = 1, Gr being the Green’s function (Zauderer, 1989):

v̊(xi) =

∫
Ω

Gr v(yi) dΩ (3.27)
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Gr =
1

4π l ||xi − yi||
exp

(
−||xi − yi||√

l

)
(3.28)

The implicit gradient model is therefore a special case of the non-local model.
Non-local quantities as well as gradient of internal variables can finally be introduced in

constitutive models. Among other authors, Bazant, Pijaudier-Cabot, and co-workers (Bazant
et al., 1984; Pijaudier-Cabot and Bazant, 1987) proposed a family of constitutive models derived
from non-local damage theory in which a non-local internal variable is used instead of the local
one. For instance, a non-local damage energy release rate obtained by Eq. 3.21 is introduced in
a loading function for damage. Other variables such as non-local equivalent strain are usually
used in damage model (Peerlings et al., 2001).

Enrichment of the kinematics

The previous approaches with enrichment of the constitutive law introduce the effect of mi-
crostructure with non-local or gradient terms but the microstructure itself is not defined precisely.
To this end, the classical kinematics of the continuous medium can be enriched with additional
description of the microstructure kinematics, leading to microstructure continuum medium also
called enriched medium.

For classical continuous medium, a material particle of volume Ω is defined at macroscopic
scale by its (macro) displacement field ui. The classical kinematic fields are the macro-deforma-
tion field:

Fij =
∂ui
∂xj

(3.29)

corresponding to the gradient of the displacement field, the macro-strain field:

εij =
1

2
(Fij + Fji) (3.30)

corresponding to the symmetric part of Fij , and the macro-rotation field:

rij =
1

2
(Fij − Fji) (3.31)

corresponding to the antisymmetric part of Fij . Their rate forms are also commonly used; the
velocity gradient field:

Lij =
∂u̇i
∂xj

(3.32)

the strain rate field:
ε̇ij =

1

2
(Lij + Lji) (3.33)

and the spin rate field:

ωij =
1

2
(Lij − Lji) (3.34)

The more ancient and famous enhanced model was developed by the Cosserat brothers
(Cosserat and Cosserat, 1909) who introduced local rotation degrees of freedom rci in addition to
the displacements of classical continua ui (Fig. 3.8). The Cosserat (or micropolar) elastic contin-
uum theory is mostly suitable for the kinematic description of granular materials. Accordingly,
additional kinematic fields are introduced (Vardoulakis and Sulem, 1995). The deformation due
to the particle rotation, also called micro-rotation (antisymmetric tensor):

rcij = eijk r
c
k (3.35)
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Fig. 3.8: Kinematic degrees of freedom of the Cosserat elastic continuum theory.

where eijk is the alternating tensor, and the gradient of the particle rotation, also called the
curvature:

Kc
ij =

∂rci
∂xj

(3.36)

A relative strain is deduced as the difference between macro-deformation and micro-rotation:

εij = Fij − rcij (3.37)

whose symmetric part coincides with the macro-strain εij and its antisymmetric part with the
difference between the macro and micro-rotation rij − rcij . The latter characterises the relative
rotation of a material point with regard to the rotation of its neighbourhood. Additionally, a
couple stress (torques) tensor associated to the rotations is also added and introduces bending
and torsion at material point. This results in a moment equilibrium equation involving the couple
stresses that comes in addition to the classical (local) momentum balance equation involving the
stress field σij . Moreover, supplementary elastic constants are added in the constitutive equations
which consist of internal length scale parameters related to the microstructure (Vardoulakis and
Sulem, 1995).

In the 1960’s, Toupin (1962) and Mindlin (1964) defined materials with microstructure. A
macro-volume Ω is composed of smaller microscale particles that can be represented by a micro-
volume Ωm, embedded in the material volume Ω (Fig. 3.9). A micro-displacement field umi is
defined independently of the macro-displacement ui and its gradient leads to a micro-deformation
field:

υij =
∂umi
∂xj

(3.38)

which is homogeneous in the micro-volume Ωm but non-homogeneous in the macro-volume Ω.

W

W
m

W,ui

W
m

m
ui

(a) (b)

Fig. 3.9: Kinematics of microstructure continuum: (a) initial configuration and (b) configuration
after external solicitation with relative displacement of the microstructure.

The symmetric and antisymmetric parts of υij correspond to the micro-strain and micro-rotation:

εmij =
1

2
(υij + υji) (3.39)

rmij =
1

2
(υij − υji) (3.40)
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with the micro-rotation corresponding to the rotation components of the Cosserat model rmij = rcij
(Eq. 3.35). Cosserat model is in fact a particular case of microstructure medium. Moreover, the
micro second gradient is defined as:

hijk =
∂υij
∂xk

=
∂2umi
∂xj∂xk

(3.41)

The relative deformation of the microstructure is defined as the difference between the macro
and the micro-deformation fields:

εij = Fij − υij (3.42)

whose symmetric part coincides with the difference between the macro and the micro-strain
εij − εmij and its antisymmetric part with the difference between the macro and micro-rotation
rij − rmij . Moreover, similarly to the Cosserat’s continuum description, additional stresses are
introduced: the microstress, which is an additive stress field associated to the microstructure,
and the double stress.

Later, Germain (1973) introduced the virtual power principle to provide a global framework
for the microstructure continuum formulation. This principle states that, by equilibrium, the
virtual power of all forces acting on a mechanical system is null. In the following, materials with
microstructure defined by Mindlin (1964) and Germain (1973) will be considered.

A large panel of models are developed by adding mathematical constraints to general mi-
crostructure materials. Among them, the second gradient model developed in Grenoble (Cham-
bon et al., 1998, 2001a) will be most particularly used. Yet, the further conclusions could be
generalised to other regularisation techniques.

3.3 Coupled local second gradient model for microstructure me-
dia

The coupled local second gradient model is developed for enriched continuum including mi-
crostructure effects (Chambon et al., 2001a). This model was extended from monophasic to
biphasic porous medium (solid and fluid) by Collin et al. (2006) to highlight the possible in-
teraction of the fluid (liquid water) with the strain localisation process and with the internal
length introduced by the model. The developments proposed by Collin et al. (2006) are recalled
in this section. They account for a medium with incompressible solid grains, under saturated
and isothermal conditions. The solid and fluid phases are considered as immiscible and phase
changes, like evaporation and dissolution, are not taken into account.

As for classical continuum, the material is considered as a porous medium and the balance
equations are based on averaging theories. The unknowns of the coupled problem are the macro-
displacement ui, the micro-deformation field υij (or the micro-displacement field umi by Eq. 3.38),
and the pore water pressure pw. An additional unknown field of Lagrange multipliers λij will be
added for the finite element method implementation.

3.3.1 Balance equations for classical poromechanics

The governing equations of a classical multiphasic porous medium, composed of solid particles
and liquid water under unsaturated conditions, are recalled firstly. These equations have already
been developed in section 2.4 in usual differential local form; however, a weak form is required
for finite element formulation. The balance equations can be written for both phases, or for the
mixture and one of the phases. The second way is chosen in the following developments and the
equations are written in updated Lagrangian configuration. The gas pressure variation is not
considered and, therefore, the gas mass balance equation is not expressed.
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Balance of momentum of the mixture

This equation is obtained in a weak form by the virtual work principle (Germain, 1973). Within
the scope of this principle, the forces and stresses are introduced by the virtual work they
produce for a given class of virtual kinematics. The forces acting on the mechanical system are
the external and internal forces, and, by equilibrium, the principle of virtual work states that
the virtual work of all forces acting on a mechanical system is null for a given time and for any
considered virtual kinematic field.

For the classical kinematic theory of first gradient, the virtual motion is defined with a kine-
matically admissible virtual (macro) displacement field u∗i on a system with current configuration
Ω. The virtual work involves u∗i and its first derivative F ∗ij . The general notations a

∗ corresponds
to the virtual quantity of any quantity a. The virtual work of internal forces reads, for any virtual
quantities:

W ∗int =

∫
Ω

w∗int dΩ =

∫
Ω

σij F
∗
ij dΩ =

∫
Ω

σij ε
∗
ij dΩ (3.43)

where w∗int is the virtual volume work of internal forces and σij is the Cauchy total stress field.
Due to the symmetric property of σij , only the symmetric part ε∗ij of the gradient F

∗
ij is involved

in this equation. The external forces are composed of the gravity volume force Gi = ρ gi, which
act on the whole domain Ω, and of the traction force ti, acting on a part Γt of the boundary Γ
of Ω (Fig. 3.10). Assuming that the boundary Ω is regular, the virtual works of external volume
and contact forces are given by:

W ∗ext,v =

∫
Ω

Gi u
∗
i dΩ (3.44)

W ∗ext,c =

∫
Γt

ti u
∗
i dΓ (3.45)

qw

P

n

W

G

Gqw

Gt

t

GT

T

Fig. 3.10: Material system with current configuration Ω and boundary conditions for the second
gradient model.

Applying the principle of virtual work leads to the weak form of the momentum balance equation:

W ∗int = W ∗ext,v +W ∗ext,c (3.46)

∫
Ω

σij ε
∗
ij dΩ =

∫
Ω

ρ gi u
∗
i dΩ +

∫
Γt

ti u
∗
i dΓ (3.47)

and because this principle holds for any u∗i , the local equilibrium equations, i.e. the momentum
balance equation and the boundary condition (Eqs. 2.3 and 2.103), are deduced inside the domain
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Ω and for any point on the boundary Γ:
∂σij
∂xj

+ ρ gi = 0 (3.48)

ti = σij nj (3.49)

The virtual work principle is thenceforward equivalent to the local equilibrium equations.
Furthermore, the mixture homogenised mass density is given by:

ρ = ρs (1− Φ) + ρw Φ (3.50)

and the effective stress is defined according to Terzaghi’s postulate:

σij = σ
′
ij + pw δij (3.51)

Water mass balance equation

The water mass balance equation is written, in a weak form, in a similar way as the momentum
balance equation. A kinematically admissible virtual pore water pressure field p∗w is considered
and is involved, as well as its first derivative, in internal and external virtual quantities. The
water mass balance equation reads:∫

Ω

(
Ṁw p∗w − fw,i

∂p∗w
∂xi

)
dΩ =

∫
Ω

Qw p∗w dΩ−
∫

Γqw

qw p∗w dΓ (3.52)

whereMw is the water mass inside Ω, fw,i is the water mass flow, Qw is a sink term of water mass,
and qw is the input water mass (positive for inflow) per unit area on a part Γqw of Γ (Fig. 3.10).
They are defined similarly to section 2.4 but for saturated conditions with Sr,w = kr,w = 1 and
for an isotropic intrinsic permeability:

Mw = ρw Φ Ω (3.53)

fw,i = −ρw
kw
µw

(
∂pw
∂xi

+ ρw gi

)
(3.54)

The definitions of the phase density variations and of the porosity evolution are:
ρ̇w
ρw

=
ṗw
χw

(3.55)

ρ̇s = 0 (3.56)

Φ̇ = (1− Φ)
Ω̇

Ω
(3.57)

The latter lead to the time derivative of the water mass per unit mixture volume:

Ṁw = ρw

(
ṗw
χw

Φ +
Ω̇

Ω

)
(3.58)

Because Eq. 3.52 holds for any p∗w, the local equilibrium equations, i.e. the liquid water mass
balance equation and the hydraulic boundary condition, are deduced:

Ṁw +
∂fw,i
∂xi

= Qw (3.59)

qw + fw,i ni = 0 (3.60)

They correspond to Eqs. 2.12 and 2.104 but without considering the gaseous phase.
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3.3.2 Balance equations for microstructure poromechanics

Local second gradient model for monophasic medium

The class of virtual kinematics introduced in the virtual work principle for classical kinematic
theory can be extended in the framework of microstructure continuum theory, by adding a
description of the microstructure kinematics to the classical displacement field. According to
Eq. 3.38, the kinematics at microscale are described by a microkinematic gradient field υij . With
respect to classical continuum mechanics, additional terms are added in the internal virtual work
of a given body (Germain, 1973). The following expression holds for any virtual quantities:

W ∗int =

∫
Ω

(
σij F

∗
ij − τij ε∗ij + Σijk h

∗
ijk

)
dΩ (3.61)

where ε∗ij is the virtual relative deformation of the microstructure:

ε∗ij = F ∗ij − υ∗ij (3.62)

τij is an additional stress associated to the microstructure also called the microstress, h∗ijk =
∂υ∗ij
∂xk

is the virtual micro second gradient, and Σijk is the double stress dual of h∗ijk, which needs an
additional constitutive law introducing the internal length scale. The external virtual work can
be defined as follows:

W ∗ext =

∫
Ω

ρ gi u
∗
i dΩ +

∫
Γσ

(
ti u

∗
i + P ij υ

∗
ij

)
dΓ (3.63)

where P ij is an additional external double surface traction acting on a part ΓT of the boundary
Γ (Fig. 3.10) and Γσ = {Γt ∪ΓT } regroups the classical and additional external solicitations. As
previously, the virtual work principle assumes the equality between internal and external virtual
works and leads to the weak form of the momentum balance equation:∫

Ω

(
σij F

∗
ij − τij

(
F ∗ij − υ∗ij

)
+ Σijk h

∗
ijk

)
dΩ =

∫
Ω

ρ gi u
∗
i dΩ +

∫
Γσ

(
ti u

∗
i + P ij υ

∗
ij

)
dΓ (3.64)

The local equilibrium equations are formulated for the macro and the micro quantities; the local
momentum balance equations are:

∂ (σij − τij)
∂xj

+ ρ gi = 0 (3.65)

∂Σijk

∂xk
− τij = 0 (3.66)

and the boundary conditions are:
ti = (σij − τij)nj (3.67)

P ij = Σijk nk (3.68)

The boundary conditions for the mixture are also enriched with microstructure effects which
leads to non-classical boundary conditions.

In the local second gradient model used in the following, a kinematic constraint is added
in order to obtain a local second gradient continuum medium. No relative deformation of the
microstructure is assumed εij = 0, meaning that the microkinematic gradient is equal to the
macro-deformation:

υij = Fij (3.69)
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As a consequence:
υ∗ij = F ∗ij (3.70)

for the virtual fields. Finally, the principle of virtual work can be rewritten as follows:∫
Ω

(
σij

∂u∗i
∂xj

+ Σijk
∂2u∗i
∂xj∂xk

)
dΩ =

∫
Ω

ρ gi u
∗
i dΩ +

∫
Γσ

(
ti u

∗
i + T i Du

∗
i

)
dΓ (3.71)

where T i is the additional external double force per unit area on ΓT (Fig. 3.10) and the notation
Da denotes the normal derivative of any quantity a:

Da =
∂a

∂xi
ni (3.72)

then:
Du∗i =

∂u∗i
∂xj

nj = F ∗ij nj = υ∗ij nj (3.73)

The local momentum balance equation reads:

∂σij
∂xj

−
∂2Σijk

∂xj∂xk
+ ρ gi = 0 (3.74)

and the boundary conditions are:

ti = σij nj − nk nj DΣijk −
DΣijk

Dxk
nj −

DΣijk

Dxj
nk +

Dnl
Dxl

Σijk nj nk −
Dnj
Dxk

Σijk (3.75)

T i = P ij nj = Σijk nj nk (3.76)

where Da
Dxi

is the tangential derivative of any quantity a:

Da

Dxi
=

∂a

∂xi
− ∂a

∂xj
nj ni (3.77)

The additional boundary condition on T i allows to produce solutions with boundary layers (see
section 3.4.2 and Collin et al. (2009a)).

The local second gradient possess the advantage that the constitutive equations remain local,
with the stress fields σij and Σijk being local quantities. A second gradient extension can
thenceforward be formulated for any classical model.

Coupled local second gradient model

The second gradient theory was extended from monophasic to biphasic medium by Collin et al.
(2006). As for monophasic medium, microstructure effects have to be introduced in the balance
equations of classical poromechanics. According to the previous assumptions, the momentum
balance equation 3.71 remains valid provided ρ and σ′ij are defined according to Eqs. 3.50 and
3.51.

Furthermore, it is assumed that the pore fluid does not have an influence at microscale; there-
fore, pore water pressure variations do not generate microkinematic gradient. Such additional
hypothesis was formulated by Ehlers (Ehlers and Volk, 1998) on a Cosserat model for biphasic
medium. Second gradient effects are only assumed for the solid phase and the water mass balance
equation 3.52 of classical poromechanics is conserved. The governing equations of the coupled
problem are therefore Eqs. 3.71 and 3.52.

As already mentioned for the classical poromechanics, the effect of water on the total stress
is defined according to the effective stress postulate (Eq. 3.51) while on the contrary the double
stress Σijk is independent of the pore water pressure. The double stress is only related to the
solid phase.
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Second gradient constitutive equation

Similarly to classical media for which a constitutive equation linking σ̃′ij to the kinematic history
has been defined (Eq. 2.66), an additional constitutive law has to be defined between the double
stress and the microkinematics. The latter is assumed to be decoupled of the classical first
gradient part and independent of the pore water pressure. However, only a little information is
available on the relation existing between the double stress and the micro-deformation. A linear
elastic mechanical law is chosen for simplicity reason with the purpose of introducing as few
additional parameters as possible. It consists in an isotropic linear relationship involving five
independent parameters derived by Mindlin (1965):

Σ̃ijk = Dijklmn
∂υ̇lm
∂xn

(3.78)

giving the Jaumann double stress rate:

Σ̃ijk = Σ̇ijk + Σljk ωli + Σimk ωmj + Σijp ωpk (3.79)

as a function of the micro second gradient rate ḣijk. Because the physical meaning of the material
parameters composing Dijklmn is not well established, a simplified version introducing only one
parameter has been proposed (Matsushima et al., 2002). For two-dimensional problems, it reads:

Σ̃111

Σ̃112

Σ̃121

Σ̃122

Σ̃211

Σ̃212

Σ̃221

Σ̃222


= D



1 0 0 0 0 1
2

1
2 0

0 1
2

1
2 0 −1

2 0 0 1
2

0 1
2

1
2 0 −1

2 0 0 1
2

0 0 0 1 0 −1
2 −1

2 0

0 −1
2 −1

2 0 1 0 0 0
1
2 0 0 −1

2 0 1
2

1
2 0

1
2 0 0 −1

2 0 1
2

1
2 0

0 1
2

1
2 0 0 0 0 1





∂υ̇11
∂x1
∂υ̇11
∂x2
∂υ̇12
∂x1
∂υ̇12
∂x2
∂υ̇21
∂x1
∂υ̇21
∂x2
∂υ̇22
∂x1
∂υ̇22
∂x2


(3.80)

The constitutive elastic parameter D represents the physical microstructure and the internal
length scale relevant for the shear band width is related to this parameter (Chambon et al.,
1998; Kotronis et al., 2007; Collin et al., 2009a).

For one-dimensional problems, the only components of υij and hijk different from zero are
υ11 = ∂u1

∂x1
and h111 = ∂2u1

∂x21
. Similarly, σ11 and Σ111 are defined as the only components of the

stress fields that dispose of non-zero space gradient. The previous relation simplifies in:

Σ̃ = D
∂2u̇

∂x2
(3.81)

Bifurcation criterion for second gradient model

A bifurcation analysis applied to the second gradient model is proposed by Bésuelle et al. (2006a).
The authors indicate that the bifurcation criterion of the second gradient model is, as for classical
model, a necessary but not sufficient condition for the localisation onset and that it is met after
the bifurcation criterion of the classical model. Thus, the analysis of bifurcation reduces to an
analysis on the classical part of the constitutive model.

3.3.3 Coupled finite element formulation

Numerical implementation

The virtual work formulation of second gradient models can be implemented in a finite element
code. To implement the momentum balance equation of Eq. 3.71, the displacement field has to
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be a continuously differentiable function because second order derivatives of the displacement
field are involved (Zervos et al., 2001b). To fulfil this requirement and avoid such function, the
kinematic restrictions υij = Fij and υ∗ij = F ∗ij are introduced in the momentum balance equation
through a field of Lagrange multipliers λij related to a weak form of the constraint (Chambon
et al., 1998). The field equations of the numerical coupled problem are:∫

Ωt

(
σtij

∂u∗i
∂xtj

+ Σt
ijk

∂υ∗ij
∂xtk

)
dΩt−

∫
Ωt

λtij

(
∂u∗i
∂xtj
− υ∗ij

)
dΩt =

∫
Ωt

ρt gi u
∗
i dΩt+

∫
Γtσ

(
t
t
i u
∗
i + T

t
i υ
∗
ik n

t
k

)
dΓt

(3.82)∫
Ωt

λ∗ij

(
∂uti
∂xtj
− υtij

)
dΩt = 0 (3.83)

∫
Ωt

(
Ṁ t
w p∗w − f tw,i

∂p∗w
∂xti

)
dΩt =

∫
Ωt

Qtw p∗w dΩt −
∫

Γtqw

qtw p∗w dΓt (3.84)

where the notation at corresponds to the current value of any quantity a for a given time t. For
boundary conditions problems, the virtual quantities included in the above equations depend on
the boundary conditions history. Thus, the governing equations and the constitutive equations
have to hold at any time t.

Linearisation of the field equations

Solving the loading process of a boundary conditions problem consists in determining the un-
known fields ui, υij , λij , and pw for which the equilibrium equations 3.82, 3.83, and 3.84 are
valid. Since this system of non-linear equations is a priori not verified for any instant t, the
problem is numerically solved by iterative procedure. It involves a time discretisation over finite
time steps ∆t:

τ = t+ ∆t (3.85)

and an implicit scheme of finite differences for the rate of any quantity a:

ȧτ =
aτ − at

∆t
(3.86)

A full Newton-Raphson method is used to find a solution for the new fields ui, υij , λij , and pw
at the end of each time step which is in equilibrium with the boundary conditions.

Following the approach of Borja and Alarcón (1995), the method aims to define a linear
auxiliary problem deriving from the continuum one. A first configuration Ωt in equilibrium
with the boundary conditions at a given time t is assumed to be known and another Ωτ in
equilibrium at the end of the time step τ = t + ∆t has to be found. The aim of the iterative
numerical procedure is to determine this new configuration at the end of the time step. Firstly, a
configuration which is close to the solution but not at equilibrium is guessed and denoted as Ωτ1.
Both configurations at time t and τ1 are assumed to be known and non-equilibrium forces for
the three considered equations, i.e. the residuals ∆τ1

1 , ∆τ1
2 , and ∆τ1

3 , are defined. The objective
is to find another configuration Ωτ2 close to Ωτ1 for which the non-equilibrium forces vanish.
To obtain the linear auxiliary problem, the field equations for Ωτ2 are subtracted from the field
equations in configuration Ωτ1, after being rewritten in configuration Ωτ1 by using the Jacobian
matrix of the transformation between the two configurations:

F ij =
∂xτ2

i

∂xτ1
j

(3.87)
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and its Jacobian determinant:

det(F ) =

∣∣∣∣∣∂xτ2
i

∂xτ1
j

∣∣∣∣∣ (3.88)

Assuming that gi, ti, qw, and Qw are independent of the different unknown fields (displacement
and pore water pressure), and that T i vanishes give:

∫
Ωτ1

∂u∗i
∂xτ1

l

(
στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il

)
+
∂υ∗ij
∂xτ1

l

(
Στ2
ijk

∂xτ1
l

∂xτ2
k

det(F )− Στ1
ijl

)
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

(
λτ2
ij

∂xτ1
l

∂xτ2
j

det(F )− λτ1
il

)
− υ∗ij

(
λτ2
ij det(F )− λτ1

ij

)
dΩτ1

−
∫

Ωτ1

u∗i
(
ρτ2 det(F )− ρτ1

)
gi dΩτ1 = −∆τ1

1

(3.89)

∫
Ωτ1

λ∗ij

((
∂uτ2

i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

)
−
(
υτ2
ij det(F )− υτ1

ij

))
dΩτ1 = −∆τ1

2 (3.90)

∫
Ωτ1

p∗w

(
Ṁ τ2
w det(F )− Ṁ τ1

w

)
− ∂p∗w
∂xτ1

l

(
f τ2
w,i

∂xτ1
l

∂xτ2
i

det(F )− f τ1
w,l

)
dΩτ1 = −∆τ1

3 (3.91)

By making the two configurations tend towards each other, the variations between them can be
defined for any quantity a as:

daτ1 = aτ2 − aτ1 (3.92)

The balance equations can be rewritten by taking into account these variations. The complete
development of the linearisation of the field equation system and of the resulting linear auxiliary
problem is exposed by Collin et al. (2006).

Spatial discretisation

In finite element methods, each continuum body is discretised by finite elements and the above
field equations are spatially discretised for each of them. For the second gradient model, the
discretisation is realised by using two-dimensional plane-strain isoparametric finite elements.
These elements are composed of eight nodes for the displacement field ui and the pore water
pressure pw, four nodes for the microkinematic gradient field υij , and one node for the Lagrange
multiplier field λij (Fig. 3.11). Quadratic serendipity shape functions (Zienkiewicz and Taylor,
2000) are used for ui and pw interpolations whereas linear shape functions are used for υij and
λij is assumed constant.

The balance equations of the coupled finite element problem (linear auxiliary problem) have
to be rewritten in matricial form to define the local stiffness matrix of an element:∫

Ωτ1

[
U∗,τ1

(x1,x2)

]T [
Eτ1

] [
dU τ1

(x1,x2)

]
dΩτ1 = −∆τ1

1 −∆τ1
2 −∆τ1

3 (3.93)
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Fig. 3.11: Finite element used for the spatial discretisation of the coupled local second gradient
model: (a) current quadrilateral element and (b) parent element (Collin et al., 2006).

where
[
dU τ1

(x1,x2)

]
is the vector of the unknown increments of nodal variables in the current

element configuration:

[
dU τ1

(x1,x2)

]
25×1

=

[
∂duτ1

1

∂xτ1
1

∂duτ1
1

∂xτ1
2

∂duτ1
2

∂xτ1
1

∂duτ1
2

∂xτ1
2

duτ1
1 duτ1

2

∂dpτ1
w

∂xτ1
1

∂dpτ1
w

∂xτ1
2

dpτ1
w

∂dυτ1
11

∂xτ1
1

∂dυτ1
11

∂xτ2
2

∂dυτ1
12

∂xτ1
1

...
∂dυτ1

22

∂xτ1
2

dυτ1
11 dυ

τ1
12 dυ

τ1
21 dυ

τ1
22 dλ

τ1
11 dλ

τ1
12 dλ

τ1
21 dλ

τ1
22

]T
(3.94)[

U∗,τ1
(x1,x2)

]
is a vector having the same structure with the corresponding virtual quantities:

[
U∗,τ1

(x1,x2)

]
1×25

=

[
∂u∗1
∂xτ1

1

∂u∗1
∂xτ1

2

∂u∗2
∂xτ1

1

∂u∗2
∂xτ1

2

u∗1 u
∗
2

∂p∗w
∂xτ1

1

∂p∗w
∂xτ1

2

p∗w
∂υ∗11

∂xτ1
1

∂υ∗11

∂xτ2
2

∂υ∗12

∂xτ1
1

...
∂υ∗22

∂xτ1
2

υ∗11 υ
∗
12 υ

∗
21 υ

∗
22 λ

∗
11 λ

∗
12 λ

∗
21 λ

∗
22

] (3.95)

and
[
Eτ1

]
is the current element stiffness (tangent) matrix defined as follows:

[
Eτ1

]
25×25

=



Eτ1
14×4

04×2 Kτ1
WM4×3

04×8 04×4 −I4×4

Gτ1
12×4

02×2 Gτ1
22×3

02×8 02×4 02×4

Kτ1
MW3×4

03×2 Kτ1
WW3×3

03×8 03×4 03×4

Eτ1
28×4

08×2 08×3 Dτ1
8×8 08×4 08×4

Eτ1
34×4

04×2 04×3 04×8 04×4 I4×4

Eτ1
44×4

04×2 04×3 04×8 −I4×4 04×4


(3.96)

The matrices
[
Eτ1

1

]
,
[
Eτ1

2

]
,
[
Eτ1

3

]
,
[
Eτ1

4

]
, and

[
Dτ1

]
are the same as the ones used in the

local second gradient model for monophasic medium by Chambon and Moullet (2004) (
[
Dτ1

]
=

Dijklmn in Eqs. 3.78 and 3.80).
[
Kτ1
WW

]
is the classical stiffness matrix of a flow problem,

[
Kτ1
MW

]
and

[
Kτ1
WM

]
are matrices of the coupling between the flow and the mechanical problems detailed

by Collin et al. (2006). Moreover,
[
Gτ1

1

]
and

[
Gτ1

2

]
are related to the contribution of gravity

volume force.
The finite element spatial discretisation of the linear auxiliary problem is introduced in

Eq. 3.93 by using transformation matrices
[
T τ1

]
and [B] that connect the current element vector
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[
dU τ1

(x1,x2)

]
to the parent element vector

[
dU τ1

(κ1,κ2)

]
and to the nodal variables

[
dU τ1

Node

]
:

[
dU τ1

(x1,x2)

]
=
[
T τ1

] [
dU τ1

(κ1,κ2)

]
=
[
T τ1

]
[B]
[
dU τ1

Node

]
(3.97)

The matrices [B] and
[
T τ1

]
contain the interpolation functions and their derivatives. Moreover,

the vector
[
U∗,τ1

(x1,x2)

]
is related to

[
U∗,τ1
Node

]
in the same manner.

The integration in Eq. 3.93 can be expressed for each parent element as follows:∫
Ωτ1

[
U∗,τ1

(x1,x2)

]T [
Eτ1

] [
dU τ1

(x1,x2)

]
dΩτ1 =

[
U∗,τ1
Node

]T [
kτ1
] [
dU τ1

Node

]
(3.98)

where
[
kτ1
]
is the local element stiffness matrix:

[
kτ1
]

=

1∫
−1

1∫
−1

[B]T
[
T τ1

]T [
Eτ1

] [
T τ1

]
[B] det(Jτ1) dκ1 dκ2 (3.99)

with det(Jτ1) the determinant of the Jacobian matrix of the transformation between the parent
(κ1, κ2) and the current (x1, x2) elements:

det(Jτ1) =

∣∣∣∣∂xτ1
i

∂κj

∣∣∣∣ (3.100)

The residual terms are also computed locally for each element and define the elementary out of
balance force vector

[
f τ1
OB

]
:

−∆τ1
1 −∆τ1

2 −∆τ1
3 =

[
U∗,τ1
Node

]T [
f τ1
OB

]
(3.101)

Global solution

Once the elementary stiffness matrices and out of balance force vectors are computed, they are
assembled to obtain the global stiffness matrix

[
Kτ1

]
and the global out of balance force vector[

F τ1
OB

]
of the whole continuum. The linear auxiliary system is solved by computing:[

Kτ1
] [
δU τ1

Node

]
= −

[
F τ1
OB

]
(3.102)

where
[
δU τ1

Node

]
is the global correction vector of the nodal degrees of freedom. The current

configuration is actualised by adding the corrections to their respective current values. The new
current configuration is closer to the well-balanced configuration and its equilibrium is checked,
leading to a new iteration or to the end of the loading step of the iterative procedure.

3.4 Applications

The following examples demonstrate the interest of using the presented theoretical tools and point
out their limitations. Three typical problems are studied: a one-dimensional bar in traction, a
two-dimensional thick-walled cylinder under radial stress, and a two-dimensional small-scale
material specimen subjected to plane-strain compression. These problems allow understanding
how the internal length scale is introduced in second grade model. When a strain-softening
constitutive law is used for the first gradient part, they also permit to analyse the regularisation
properties of the coupled local second gradient model for the strain localisation process.
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3.4.1 One-dimensional bar in traction

A simple example of a one-dimensional bar in traction was already discussed in section 3.2.1
for classical monophasic medium. It has been shown that the problem is ill-posed due to strain
softening and that physically inadmissible failure could occur if elastic unloading is too important.

A second grade model is used hereafter to find analytical solutions of the boundary value
problem corresponding to the uniaxial traction of a bar. A one-dimensional second grade elasto-
plastic model is used by Chambon et al. (1998) and is illustrated in Fig. 3.12. It is composed of
two parts, the first and second grade, defined with two internal stress fields σ and Σ being the
usual normal stress in the bar and the second order stress, respectively. The model assumes no
coupling between the first and second part.

e [-]

s [Pa]

sp

ep er

A1 A2

∂x²

(a) (b)

Fig. 3.12: Constitutive model for a bar in traction: (a) first grade and (b) second grade parts.

As previously (Fig. 3.3), the first grade constitutive equation is bilinear and involves first
derivatives of the displacement field with respect to the space variable x, which corresponds to
the strain under small strain assumption ε = ∂u

∂x . The two linear parts are characterised by elastic
and softening plastic domains, the latter allows strain localisation. It is given in incremental form
under small strain assumption by:

Elastic : 0 < ε < εp , σ̇ = A1 ε̇
P lastic : εp < ε < εr , σ̇ = A2 ε̇

(3.103)

where A1 is the elastic slope, A2 is the softening slope which is negative, εp is the limit between
the elastic and the softening plastic domains, and εr reads:

εr = εp

(
1− A1

A2

)
(3.104)

The second grade constitutive equation is a linear elastic law involving second derivatives ∂2u
∂x2

and that is independent of the first grade term:

Σ̇ = D
∂2u̇

∂x2
(3.105)

It corresponds to Eq. 3.81 for small strain assumption.
Based on the virtual power method (Germain, 1973), the balance equation of the one-

dimensional second grade medium is:

∂σ

∂x
− ∂2Σ

∂x2
= 0 (3.106)

It can also be obtained from Eq. 3.74 by neglecting the gravity volume force. Integrating this
equilibrium equation and using Eqs. 3.103 and 3.105 lead to the general differential equation:

A1/2 u−D
∂2u

∂x2
= N1/2 x+A1/2 K (3.107)
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which gives the following analytical solutions by integration:

Elastic : u =
N1

A1
x+K︸ ︷︷ ︸

Classical

+K cosh($1 x) +K sinh($1 x)︸ ︷︷ ︸
Microstructure

, $2
1 = A1

D > 0
(3.108)

Plastic : u =
N2

A2
x+K︸ ︷︷ ︸

Classical

+K cos($2 x) +K sin($2 x)︸ ︷︷ ︸
Microstructure

, −$2
2 = A2

D < 0
(3.109)

where no solutions are considered for ε > εr; K, K, and K are constants for a given part of the
bar, i.e. for a given elastic or plastic solution; the normal stress N1 is constant along the bar:

N1 = σ − ∂Σ

∂x
(3.110)

and N2 corresponds to:
N2 = N1 + εp (A2 −A1) (3.111)

Moreover, the classical solution and the contribution of the microstructure are clearly evidenced.
Particular solutions are studied by Chambon et al. (1998) for the considered problem. For the

boundary conditions, a displacement is imposed at one end while the other end is fixed (Fig. 3.3
(a)) and additional limits conditions are necessary for the second grade part with the double
stresses imposed equal to zero on both bar ends:

x = 0 : u = 0, Σ = 0
x = L : u = U, Σ = 0

(3.112)

As long as the loading implies an average strain in the bar U/L smaller than εp, the strain
remains homogeneous all along the bar. If the average strain reaches εp (bifurcation point) and
tends to exceed it, then softening plastic loading or elastic unloading are both possible, leading
to non-unique solutions. For this case (U/L > εp), the bar can be divided in hard zones with
ε < εp corresponding to elastic unloading and soft zones with ε > εp corresponding to localisation
(dilation) bands under softening plastic loading. Each solution is given either by Eq. 3.108 or by
Eq. 3.109 and the complete solution is an assembly of the unloading and loading parts. Different
solutions that correspond to various number and positions of the localisation bands are possible.
The finite number of solutions depends on the material parameters and on the bar length. For
instance, a general case of 2n+ 1 parts alternately hard and soft with whether both soft or both
hard outer sides has a localisation bands length given by:

tanh

(
$1

(
L

2n
− Ls

2

))
= −

√
−A1

A2
tan

(
$2

Ls
2

)
(3.113)

where L is the length of the bar:
L = n (Lh + Ls) (3.114)

Ls is the length of each inner soft part corresponding to the strain localisation band width, and
Lh is the length of each inner hard part. The outer parts are half the size of the inner ones. An
example of possible solutions is illustrated in Fig. 3.13 for a given set of material parameters. Four
different post-peak solutions are available: a homogeneous one (solution 1) and three localised
solutions (solutions 2, 3, and 4) having different patterns. The non-uniqueness of the solution to
this second grade boundary value problem is clearly visible.
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(a) (b)

Fig. 3.13: Global behaviour of a bar in traction: (a) global reaction F as a function of the global
deformation U/L and (b) strain ε as a function of the coordinate x (Matsushima et al., 2002).

Furthermore, a wavelength is implicitly defined by the second gradient approach from Eq. 3.109
for a soft solution (ε > εp):

λ =
2π

$2
= 2π

√
− D
A2

(3.115)

where:

$−1
2 =

√
− D
A2

(3.116)

can be considered as the internal length scale of the softening loading regime. It is an indicator
of the localisation band width but does not provide its exact value because it corresponds to
the period of only the soft part (Kotronis et al., 2008). Similarly, a second internal length is
implicitly defined from Eq. 3.108 for a hard solution (ε < εp):

$−1
1 =

√
D

A1
(3.117)

and corresponds to the unloading regime of the first gradient part. The solution Ls of Eq. 3.113
(and of other possible solutions) remains constant as long as the modulus ratios D/A1 and
D/A2 remain constant. This implies that the strain localisation is correctly regularised for the
considered one-dimensional problem.

Numerical solutions of this problem are also obtained with small or large strain finite elements
analyses (Matsushima et al., 2000, 2002). As illustrated in Fig. 3.13, the results correspond to
the above analytical solution. Moreover, the mesh size independence is proved provided that a
sufficiently high number of elements is used.

3.4.2 Two-dimensional thick-walled cylinder under radial stress

Analytical axisymmetric solutions of a thick-walled cylinder problem (hollow cylinder) are pro-
posed by Collin et al. (2009a) for a media enhanced with microstructure and involving second
gradient model. The thick-walled cylinder is represented in Fig. 3.14 in Cartesian and cylindrical
coordinates (r, θ, z) with orthonormal basis (er, eθ, ez). More details on strain gradient theory
for orthogonal curvilinear coordinates are available in Zhao and Pedroso (2008). The material
domain is comprised between two coaxial cylinders with radii Rint and Rext and can be subjected
to internal or external pressures. Only radial displacement ur depending on r are considered for
this boundary value problem.

Isotropic linear elastic laws are used for both the classical and the second gradient parts of the
model (Eqs. 2.76 and 3.80). The second gradient law remains valid for any system of orthogonal
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(a)

int

ext

(b)

Fig. 3.14: Definition of the thick-walled cylinder problem in (a) Cartesian and (b) cylindrical
coordinates (Collin et al., 2009a).

coordinates, including the cylindrical ones. It is noteworthy to mention that the use of a linear
elastic law, without damage or strain softening, for the first gradient part of the model prevents
strain localisation. Nonetheless, microstructure effects can still be generated in elastic solutions.

The balance equation of the problem is obtained by expressing Eq. 3.74 in cylindrical coor-
dinates and by neglecting the gravity volume force:

∂ (r σrr)

∂r
− σθθ +

1

r

∂ (r (Σθθr + Σθrθ + Σrθθ))

∂r
− ∂2 (r Σrrr)

∂r2
= 0 (3.118)

The constitutive equations of both stress fields can be included in this expression. It leads to
the ordinary differential equation:

∂

∂r

(
1

r

∂ (r ur)

∂r
−$−2

3

1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ (r ur)

∂r

)))
= 0 (3.119)

which is a fourth order equation for ur where $−1
3 is an internal length scale that governs the

material behaviour for the thick-walled problem:

$−1
3 =

√
D

M
(3.120)

The expression of Eq. 3.119 is general and involves only one elastic parameter for both first and
second gradient parts, M and D, with:

M =
E (1− ν)

(1 + ν)(1− 2ν)
(3.121)

being the elastic P-wave modulus. The problem solution is obtained by integration:

ur = c1 r +
c2

r︸ ︷︷ ︸
Classical

+ c3 B
I (1, r$3) + c4 B

K (1, r$3)︸ ︷︷ ︸
Microstructure

(3.122)

where BI(1, r$3) and BK(1, r$3) are the modified Bessel functions (Abramowitz and Stegun,
1972) and ci are constants.

Particular solutions can be found for prescribed boundary conditions at the inner or outer
boundaries. Collin et al. (2009a) mostly studied two cases to highlight the effect of boundary
conditions for the double forces: firstly, a natural boundary condition without double forces,
and secondly a non-zero condition. The first condition with T r = 0 on both boundaries implies
that the microstructure has no effect on the elastic solution because the constants c3 and c4

cancel. The solution therefore corresponds to a classical elastic medium. To exhibit effects of
the microstructure, the more general isotropic linear relation for the second gradient law from
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(Mindlin, 1965) must be used with the tensor Dijklmn in Eq. 3.78 defined with five parameters.
On the other hand, microstructure effects are generated for the second condition with T r 6= 0
and the solution depends on the internal length scale $−1

3 . The imposed double stresses have an
influence on the macrostresses that is more pronounced close to the boundary with an area of
influence which decreases with decreasing internal length scale. This clearly exhibit a boundary
layer effect.

Analytical solution for softening elastoplasticity is not developed by Collin et al. (2009a);
thus, the analysis of strain localisation is not performed for the current problem. However,
hollow cylinder tests have been numerically reproduced with finite element method and similar
enhanced model to exhibit strain localisation pattern during the drilling (François et al., 2014).
The mesh-independence and the non-uniqueness of the solution have also been investigated for
borehole drilling by Sieffert et al. (2009) and Marinelli et al. (2014).

3.4.3 Two-dimensional specimen under compression

After the previous analytical solutions of simple problems, finite element modelling of two-
dimensional plane-strain compression tests is considered. These tests have been widely repro-
duced on small-scale specimens to emphasise the strain localisation effects.

Among various authors, the results obtained by Collin et al. (2009b) for a uniaxial compres-
sion are principally developed hereafter. A sketch of the boundary value problem in plane-strain
state is illustrated in Fig. 3.15. The vertical displacement ua of the sample upper surface (smooth
and rigid boundary) is progressively increased during the test with a constant loading strain rate
to model the vertical compression. The vertical displacement of the bottom surface is blocked
(rigid boundary) and the displacement of the central node is blocked in both directions to avoid
rigid body displacement.

u
a

H/2

H

Fig. 3.15: Sketch of the plane-strain compression test.

Classical medium

Mechanical modelling are performed for classical medium without regularisation method. The
used first gradient constitutive law is an elastoplastic strain-softening model similar to the one
described in section 2.4.5. Some differences are nevertheless considered: an associated softening
plasticity (ϕ = ψ, F p = Gp), a Drucker-Prager yield criterion (without dependence on the Lode
angle), no hardening of the friction angle, and a different cohesion softening function (Collin
et al., 2009b).

A homogeneous response of the specimen is studied firstly. The global response is detailed
in Fig. 3.16 (a) where one can observe a first linear elastic behaviour, then a non-linear plastic
behaviour before peak stress including cohesion softening, and finally a plastic behaviour with
decrease of the global load response. As discussed in section 3.2.1, the Rice criterion is relevant
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for a single-mechanism classical elastoplastic model such as the studied one and the solution
of Eq. 3.12 gives the orientation of the first possible shear band occurrence. The Rice criterion
det(∧jk) evolution is presented during the increasing loading history in Fig. 3.16 (b) as a function
of tanΘ, Θ being the orientation of the shear band normal with the loading vertical axis, i.e.
the shear band orientation with the horizontal direction. The criterion is positive as long as
the behaviour is elastic and even for elastoplastic loading until the bifurcation is predicted.
For a certain load, the bifurcation criterion is met at every material point and two symmetric
(conjugate) bifurcation directions are predicted with an orientation of Θ = ±60° close to ΘC =
ΘR = ΘA. This bifurcation point corresponds to the peak stress on the global response curve
and to the start of the load response reduction for associated plasticity. Further, a range of
possible orientations is even predicted for an increasing load and corresponds to non-unique
possible solutions.
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Fig. 3.16: Uniaxial compression: (a) global specimen response curves and (b) Rice criterion at
several loading steps for the homogeneous solution (Collin et al., 2009b).

For a perfect sample, although softening plasticity is considered, the strain localisation is
not triggered automatically and the numerical solution may remain homogeneous even after the
bifurcation criterion is met. In reality, the localisation process is generated because geomaterials
specimens exhibit some heterogeneities. Different numerical procedures are available to force
the occurrence of strain localisation. The most used one is the introduction of an imperfection,
such as disturbing force, material imperfection, or geometrical defect (Charlier et al., 1997;
Matsushima et al., 2002; Zhang et al., 2001). The modification of numerical parameters, such as
time step size and sequences can also be performed (Marinelli et al., 2014; Sieffert et al., 2009). A
third method that will be discussed later is a random initialisation of characteristics (Chambon
et al., 2001b).

Among these procedures, Collin et al. (2009b) introduced a material imperfection in the
bottom left finite element of the sample under compression. Initially the strain field in the
sample is homogeneous, and once the bifurcation criterion is met, the imperfection instigates
the development of a shear band across the specimen. The strain localisation as well as its
dependency to the mesh size is illustrated in Fig. 3.17 for classical finite element method. The
localised solution is therefore non-homogeneous, with the shear band under plastic loading and
the outer material under elastic unloading. The global sample response is detailed in Fig. 3.16
(a) where a rapid decrease of the global reaction is observed once the shear band establishes. The
shear band appearance corresponds therefore to the curve peak load (or peak stress) as concluded
from laboratory evidences in section 3.1.2. The latter also indicate that a material inclusion can
act as a strain localisation attractor, which is confirmed by the numerical results. The non-
uniqueness issue of the problem after the bifurcation point has consequently been addressed by
the imperfection inclusion which leads to one post-bifurcation solution.
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(a) (b) (c)

Fig. 3.17: Localised patterns represented by deviatoric deformation for classical material: meshes
of (a) 50, (b) 190, and (c) 325 elements.

Microstructure enhanced medium

To fix the pathological mesh sensitivity, the local second gradient model is incorporated in the
modelling with the second gradient constitutive law given by Eq. 3.80. The strain localisation
pattern induced by the imperfection is illustrated in Fig. 3.18 with the Gauss integration points
under softening plastic loading (red squares). This representation permits to measure the shear
band width and to notice that it is constant no matter the element size, implying that the shear
strain localisation is mesh-independent. Thus, the strain localisation is correctly regularised
thanks to the internal length scale introduced by the second grade model. It is also the case
for unstructured mesh (Bésuelle et al., 2006a) and for biphasic porous medium under saturated
condition, using the coupled local second gradient model (Collin et al., 2006).

(a) (b) (c)

Fig. 3.18: Localised patterns represented by the plastic zone for microstructure material: meshes
of (a) 200, (b) 450, and (c) 800 elements.

Nonetheless, the regularisation of the strain localisation process is obtained provided that
the second gradient elastic modulus D is characterised to represent the shear bands properly. As
already mentioned, the internal length scale inherent to the second gradient mechanical law is
related to this constitutive parameter. The value of D should be evaluated based on experimental
measurements of shear band thickness for the considered material. From a modelling point of
view, a better numerical precision of the post-localisation plastic behaviour within the bands is
obtained if a few elements (at least three) compose the shear band width (Bésuelle et al., 2006a).
This remark is valid for any regularisation technique including second gradient model but also
gradient plasticity and non-local formulation.

Non-uniqueness of the solution

The non-uniqueness of the post-peak solution of an initial boundary value problem can be studied
using special techniques. In fact, instead of using a material imperfection, localised solutions can
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be found for a perfect material by using random initialisation of the strain rate field (nodal veloc-
ity) or of material characteristics at the beginning of the iterative procedure. This technique has
been mainly proposed by Chambon and co-workers (Chambon et al., 2001b) who developed an
algorithm to search several eventual localised solutions by random initialisation. This algorithm
has been adapted to second-gradient models by Chambon and Moullet (2004).

Numerical modelling of compression tests performed with the second gradient model illus-
trates the non-uniqueness of localised solutions of the same initial boundary value problem (Bé-
suelle et al., 2006a). The random initialisation is adopted for the increment of nodal quantities[
dU τ1

Node

]
(Eq. 3.97) related to the values obtained at the end of the preceding time step. The

obtained non-homogeneous solutions are detailed in Fig. 3.19 (a) where the different solutions
exhibit one to three bands with a possible reflection on the top and bottom faces of the sample
because of the imposed vertical displacement. The results indicate that the band thickness is
reproducible even if the localisation pattern is different in terms of bands position and number.

(a) (b)

Fig. 3.19: Example of localised solutions for compression test obtained after a random initiali-
sation: (a) plastic zone and (b) global response curve (Bésuelle et al., 2006a).

As previously, the strain localisation occurring at bifurcation point is due to strain softening
behaviour and possible elastic unloading. Fig. 3.19 (b) illustrates the global response curves that
are different of those in Fig. 3.16 because a different first gradient law is used. These curves are
grouped in packages characterised by the number of deformation bands. It is evident that the
higher the band number, the closer the curves are to the homogeneous plastic case. A similar
conclusion was drawn from the bar in traction studied by Chambon et al. (1998).

3.5 From strain localisation to rupture

When a material is subjected to strong solicitations, strain localisation is only one of the steps
towards the material rupture. To properly reproduce the complete material rupture it would
be necessary to take into account the different steps leading to rupture (section 3.1.1): first the
material damage, then the strain localisation, the onset of fractures, and lastly the additional
property modifications inside the fractures.

The material damage by microcracking is a continuous approach that corresponds to the
degradation of the material elastic or plastic strength characteristics leading to a non-linear
mechanical response. Different damage models exist in the context of continuum damage me-
chanics from purely macroscopic, continuous, and phenomenological approaches (Chaboche and
Lemaitre, 1985; Kachanov, 1958; Krajcinovic, 1996) to multi-scale or micromechanical approaches.
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For continuum micromechanics, microstructure effects on the material properties are included
in the models (Budiansky and O’connell, 1976; Horii and Nemat-Nasser, 1983; Kachanov, 1993)
and microcrack-induced damage can be developed (Levasseur et al., 2013; Zhu et al., 2008). All
these damage models consist of one way of reproducing the complex process of microcracking by
preserving the continuity of the description (continuous cracks). Moreover, the strain localisa-
tion phenomenon is a natural consequence of softening damage laws even if the strain softening
behaviour is not a necessary condition for strain localisation appearance. Therefore, damage
models can be introduced in continuous finite element methods involving strain localisation pro-
vided that the latter is represented properly.

The continuous approaches do not actually represent the cracks and a natural representation
of a fracture is to consider it in a discrete manner. This type of discontinuity can even be
considered in an undamaged material. The representation of such discontinuity can be traced
back to the pioneering work of Griffith (1921) on linear elastic fracture mechanics developed
for brittle materials and later to the works of Irwin (1948) and Orowan (1949) who included
plastic consideration for material exhibiting ductility. If important yielding appears around the
cracks as in ductile materials, linear elastic fracture mechanics is not applicable and elastic-plastic
fracture mechanics has to be considered. In numerical approaches, the fractures can be modelled
by various techniques. Some techniques that are regularly employed for discontinuous fracture
modelling with finite element methods are the cohesive zone method (Barenblatt, 1962; Dugdale,
1960; Xu and Needleman, 1994), remeshing methods (Bouchard et al., 2003), discontinuous mesh,
interface or contact elements (Zhong and Mackerle, 1992), and extended finite element methods
(X-FEM, Moës et al. (1999)).

Besides the mechanical aspects discussed through continuous and discontinuous fracturing,
the fracture behaviour is also dominated by hydro-mechanical property changes. In fact, the
fracturing process induces important modifications in flow and transport properties. For instance,
the water permeability can drastically increase of several orders of magnitude in fractured zones.
This type of property modification can be introduced in finite element methods. Once more,
different approaches exist to model the influence of the fracturing on permeability, from classical
approaches based on fracture aperture (Snow, 1969; Witherspoon et al., 1980) to more complex
theories based on hydraulic properties damage (Dormieux and Kondo, 2004; Barthélémy, 2009).
Strain localisation effects can also be linked to hydraulic property modification in the shear
strain localisation bands. A dependency of the permeability with a mechanical parameter, such
as strain or plastic deformation for instance, can be investigated.

The material damage and discrete fracture descriptions will not be addressed and are men-
tioned only to give the general context of fracturing. However, strain localisation and its coupling
with permeability evolution will be studied.

3.6 Conclusions and outlooks

Among the various methods for reproducing fracturing, shear strain localisation in band mode is
considered. The displacement field is obviously discontinuous across fractures and shear banding
modelling is able to reproduce this discontinuity in the sense that strain localisation induces non-
uniform strain distribution. The elastic unloading outside the shear band and the concentration
of the plastic strain inside result in a displacement jump between the outer material located on the
two sides of a shear band even if the modelling remains continuous within the band. Consequently,
such approach is mostly efficient for the reproduction of shear fractures in materials dominated
by this type of failure, which is generally the case for high in situ stress environment (Diederichs,
2003), and for compressive regime. On the other hand, it is evident that additional mechanisms
would be necessary for the reproduction of other type of fractures.

A regularisation technique based on the second gradient model has been detailed and em-
ployed to properly reproduce localised phenomena with finite element methods. The above
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results point out that the method allows to numerically model the post-localisation behaviour of
geomaterials. It leads to mesh-independence but do not restore the uniqueness of the solution
to boundary value problems.

Furthermore, rocks and soils are porous materials for which the porous volume is not always
totally filled with water and whose solid phase may be deformable under considerable stress.
Additionally, sedimentary materials frequently exhibit anisotropic properties and, in case of rock
fracturing, they can also undergo hydraulic property modifications as permeability increase in the
fractures. For underground drilling in rocks, the challenge in term of strain localisation modelling
is to be able to represent the impacts of these different aspects on the post-failure material
behaviour and on the development of shear banding around galleries. The coupled local second
gradient model has therefore to be extended in order to enlarge its application to unsaturated
anisotropic rocks. Consequently, the unsaturated conditions will be added in the second gradient
model together with the permeability anisotropy and the solid grain compressibility (with Biot’s
coefficient). Then, the constitutive laws have to be improved with mechanical anisotropy and
intrinsic permeability evolution. The mechanical anisotropy will be added on both elastic and
plastic mechanical behaviours and its effect on strain localisation will be highlighted. Lastly,
the intrinsic water permeability variation will be related to strain localisation effects which is a
crucial issue when considering the modelling of excavation damaged zone around galleries.
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Abstract The prediction of the excavation damaged zone extent and fracturing structure re-
mains a major issue especially in the context of underground nuclear waste storage. It is proposed
to reproduce the excavation fractured zone in Callovo-Oxfordian claystone by considering the
development of shear strain localisation bands with the coupled local second gradient model.
Firstly, the model is extended to unsaturated conditions and the compressibility of the solid
grains as well as the hydraulic permeability anisotropy are incorporated. Then, a gallery exca-
vation is numerically modelled in order to reproduce the development of fractures at the scale
of the nuclear waste repository. The gallery ventilation process is also reproduced to investigate
the air-rock interaction and the desaturation of the rock. A particular attention is therefore paid
to the prediction of the fractured zone extent, to the fracturing structure, and to the influence
of the gallery ventilation. The main objectives are to model the fractures by considering shear
strain localisation bands, and to investigate if an isotropic mechanical model reproduces the in
situ measurements accurately. This type of modelling, especially at large repository scale and
including solid grain compressibility as well as rock desaturation, has not been widely performed
and constitutes a major novelty. The numerical modelling and its results are available in the
scientific paper of Pardoen et al. (2015a).

Article Pardoen, B., Levasseur, S., and Collin, F. (2015). Using Local Second Gradient Model
and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone.
Rock Mech Rock Eng, 48(2):691-714. doi: 10.1007/s00603-014-0580-2.

4.1 Coupled local second gradient model for unsaturated medium
with compressible solid grains

Until now, the modelling performed with the coupled second gradient model has been limited
mainly to small-scale applications as biaxial compression tests. In term of strain localisation, a
challenge consist in investigating if this numerical method is appropriate for the reproduction of
shear bands on a large scale. The purpose, for the deep geological repository of nuclear wastes,
is to examine if the method can accurately reproduce the fracturing pattern observed around
underground structures with shear banding.

In the Callovo-Oxfordian claystone, the fractured structure around galleries develops prefer-
entially in the horizontal or vertical direction depending on the anisotropy of both stress state and
material properties (section 2.2.1). As a first large-scale approach including strain localisation,
an isotropic mechanical model is used for the Callovo-Oxfordian claystone with the objective
of analysing if the appearance of fractures during the drilling of galleries is governed by the
anisotropy of the in situ stress state in the gallery section. The drilling of a gallery oriented par-
allel to the minor horizontal principal stresses with an anisotropic stress state in its section will
therefore be modelled. So far, the numerical modelling of gallery drilling with the second gradi-
ent model has highlighted strain localisation but was essentially limited to mechanical analyses
with isotropic initial stress state (Fernandes, 2009; Sieffert et al., 2009).

Moreover, during the operational phases (maintenance and repository) of underground repos-
itory that follow the excavation phase, an air ventilation is performed inside the galleries to
control the air relative humidity and temperature. This ventilation induces fluid transfers and a
desaturation of the rock that must be taken into account in the coupled second gradient model.
Finally, for argillaceous rocks that are overconsolidated because of a high stress level, the com-
pressibility of the solid grains must be considered. These aspects require to develop further the
second gradient model.

The coupled local second gradient model developed by Collin et al. (2006) for biphasic porous
medium can be extended to unsaturated materials with compressible solid grains. Hereafter, the
unsaturated conditions are taken into account and the compressibility of the solid grains is intro-
duced through the Biot’s coefficient. Additionally, the permeability anisotropy is incorporated in

95



CHAPTER 4. FRACTURE MODELLING WITH SHEAR STRAIN LOCALISATION

the model to better represent the water flows, even if the mechanical behaviour remains isotropic.
These novelties are implemented in the non-linear finite element code Lagamine (University of
Liège). The sign convention for the stress and strain fields is therefore chosen in accordance
with the convention of the finite element code, which is the material mechanic convention with
positive tensile stress and strain. This convention is only used for the numerical developments.

4.1.1 Balance equations

In order to properly model the shear strain localisation in geomaterials, classical poromechanics
have been enriched with microstructure poromechanics. It permits to regularise the strain lo-
calisation problem by restoring the mesh-independence of the solution. The balance equations
of the coupled local second gradient model for biphasic medium have been developed in the
framework of microstructure continuum theory in section 3.3.2. The equations are obtained in
usual differential local form and in a weak form by the virtual work principle (Germain, 1973).
They include a description of the kinematics at microscale which leads to supplementary terms
that come in addition to those of the classical continuum mechanics.

The momentum balance equation reads in a weak form:∫
Ω

(
σij

∂u∗i
∂xj

+ Σijk

∂υ∗ij
∂xk

)
dΩ =

∫
Ω

ρ gi u
∗
i dΩ +

∫
Γσ

(
ti u

∗
i + T i υ

∗
ij nj

)
dΓ (4.1)

In differential local form, it becomes:

∂σij
∂xj

−
∂2Σijk

∂xj∂xk
+ ρ gi = 0 (4.2)

and the boundary conditions are:

ti = σij nj − nk nj DΣijk −
DΣijk

Dxk
nj −

DΣijk

Dxj
nk +

Dnl
Dxl

Σijk nj nk −
Dnj
Dxk

Σijk (4.3)

T i = P ij nj = Σijk nj nk (4.4)

In these equations the stress-strain relations are defined independently for the first and second
gradient parts of the model. The first gradient constitutive law is an elastoplastic relationship
defined as:

σ̃
′
ij = Cijkl ε̇kl (4.5)

and the second gradient constitutive law defined at microscale is a linear elastic relationship that
links the double stress to the microkinematics (Mindlin, 1965):

Σ̃ijk = Dijklmn
∂υ̇lm
∂xn

(4.6)

The momentum balance equation remains valid for unsaturated conditions and compressible
solid grains provided that their influences are taken into account in the expression of the different
terms. Among those terms the mixture homogenised mass density ρ and the total stress field
σij are influenced. In fact, ρ depends on the amount of water Mw inside the porous material
configuration Ω and the total stress field is related to the effect of water through the effective
stress definition. They will be defined in the material behaviour description of section 4.1.2.

However, the double stress Σijk is not modified. It is assumed that the pore fluid does not
have an influence at microscale; consequently, Σijk is independent of the pore water pressure.
Additionally, the second gradient constitutive equation is decoupled of the classical first gradient
part of the model. Thus, neither the partial saturation nor the solid grain compressibility have
an influence on the double stress.
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Moreover, the classical and the second gradient boundary conditions on the external traction
forces ti and T i defined in Eqs. 4.3 and 4.4 remain valid. ti is related to the stress field σij which
is modified by the introduced aspects of the material behaviour; however, T i is linked solely to
Σijk which is not affected.

The modification of the terms of the water mass balance equation must also be considered.
The equation reads in a weak form:∫

Ω

(
Ṁw p∗w − fw,i

∂p∗w
∂xi

)
dΩ =

∫
Ω

Qw p∗w dΩ−
∫

Γqw

qw p∗w dΓ (4.7)

It corresponds to the balance equation for classical poromechanics because second gradient effects
are assumed solely for the solid phase and the pore fluid does not have an influence at microscale.
As a consequence, the variations of pore water pressure do not engender microkinematic gradient
(Ehlers and Volk, 1998). In differential local form, the water mass balance equation and the
hydraulic boundary condition are:

Ṁw +
∂fw,i
∂xi

= Qw (4.8)

qw + fw,i ni = 0 (4.9)

Once more, these equations are valid for compressible solid grains, partial saturation, and
anisotropy of the intrinsic water permeability provided that their influences are taken into ac-
count. The time derivative of the water mass Ṁw inside Ω and the mass flow of water fw,i are
affected and will be defined in section 4.1.2. Ṁw depends on the amount of water in Ω and on
the porosity of the material, whilst fw,i depends both on the intrinsic and relative permeabilities
through Darcy’s law. The other terms, the sink term of water mass Qw and the input water mass
qw on the porous material boundary, are linked to the other quantities through the equilibrium
equation but do not need additional developments.

4.1.2 Material behaviour

The principal constitutive equations of the porous material behaviour, including partial satura-
tion effect, solid grain compressibility, and anisotropic permeability are detailed hereafter.

Partial saturation

For unsaturated conditions the water mass inside a porous material volume Ω corresponds to:

Mw = ρw Φ Sr,w Ω (4.10)

and its time derivative corresponds to:

Ṁw = ρ̇w Φ Sr,w Ω + ρw Φ̇ Sr,w Ω + ρw Φ Ṡr,w Ω + ρw Φ Sr,w Ω̇ (4.11)

This amount of water, which depends on the degree of water saturation Sr,w, leads to the following
mixture homogenised mass density:

ρ = ρs (1− Φ) + Sr,w ρw Φ (4.12)

The fluid isotropic compressibility follows the relation:

ρ̇w
ρw

=
ṗw
χw

(4.13)
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and the water advective flow for anisotropic hydraulic permeability is given by Darcy’s law:

fw,i = −ρw
kw,ij kr,w

µw

(
∂pw
∂xj

+ ρw gj

)
(4.14)

where kr,w is the water relative permeability.
The fluid mass and fluid flows are mostly governed by the water retention property of the

material and by its hydraulic permeability. Both of them are related to the partial water satura-
tion and a relative permeability coefficient is introduced in the generalised Darcy’s law. Among
various possible analytical expressions, the water retention and relative permeability curves are
given by van Genuchten’s and Mualem’s models (Mualem, 1976; van Genuchten, 1980):

Sr,w = Sres + (Smax − Sres)

(
1 +

(
pc
Pr

) 1
1−M

)−M
(4.15)

kr,w =
√
Sr,w

(
1−

(
1− Sr,w.

1
M

)M)2

(4.16)

where Pr is the air entry pressure, Smax and Sres are the maximum and residual water degrees of
saturation,M is a model coefficient, and pc is the capillary pressure. In the absence of gaseous
phase, it yields:

pc = s = −pw (4.17)

The time derivative of the degree of water saturation is involved in the time derivative of the
water mass (Eq. 4.11) and can be related to the pore water pressure by:

Ṡr,w =
∂Sr,w
∂pw

ṗw (4.18)

The dependence of Sr,w on pw is obviously related to the considered model and gives, for the van
Genuchten’s expression:

∂Sr,w
∂pw

=
(Smax − Sres) M

(1−M)P
1

1−M
r

(
1 +

(
−pw
Pr

) 1
1−M

)M+1
(−pw)

M
1−M (4.19)

The relative permeability being dependant on the saturation degree, its time derivative can be
linked to Ṡr,w and to ṗw as follows:

k̇r,w =
∂kr,w
∂Sr,w

Ṡr,w =
∂kr,w
∂Sr,w

∂Sr,w
∂pw

ṗw (4.20)

where:

∂kr,w
∂Sr,w

=
1

2
√
Sr,w

(
1−

(
1− S

1
M
r,w

)M)2

+ 2
√
Sr,w

(
1−

(
1− S

1
M
r,w

)M)1(
1− S

1
M
r,w

)M−1

S
1
M−1
r,w

(4.21)
for the considered model.

Anisotropy of the intrinsic permeability

The advective flow of water (Eq. 4.14) depends on the anisotropic characteristics of the material
through the anisotropic intrinsic permeability. For anisotropic materials and by symmetry of
the tensor, the intrinsic permeability tensor kw,ij requires six components to describe the flow
characteristics. However, materials commonly exhibit limited forms of anisotropy and stratified
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geomaterials require only two parameters for the description of the water flow. For horizontal
layering in the plane (x1,x3), the intrinsic hydraulic permeability tensor is defined with the
horizontal and vertical permeabilities, kw,h and kw,v, as follows:

kw,ij =

kw,h 0 0
0 kw,v 0
0 0 kw,h

 (4.22)

Compressibility of the solid grains

The material compressibility is defined within the scope of poroelasticity (Detournay and Cheng,
1993) and is based on the different compressibilities of a porous material (section 2.4.4). Those
are: the compressibility of the bulk material C (solid skeleton), the compressibility of the pores
Cp, and the compressibility of the solid phase Cs (rock matrix) with Cs < C. The different types
of compressibility induce different behaviours of the rock matrix and of the porous material.
They can deform differently and the porous material may enter plastic state while the solid grains
remain elastic. In the general Biot framework (Biot, 1941), the Biot’s coefficient is expressed by:

b =
Φ Cp
C

= 1− K

Ks
(4.23)

as a function of the drained bulk modulus of the material K and the bulk modulus of the solid
phase Ks. This coefficient represents the relative deformability of the solid grains with regard
to the solid skeleton (Biot, 1941; Biot and Willis, 1957; Skempton, 1960). Biot proposed for
the effective stress definition to use b as a scaling factor that reduces the effect of pw on σij
due to a reduction of pore compressibility. The Biot’s stress definition can be formulated under
unsaturated conditions presuming that the assumptions on compressibility hold under these
conditions (Nuth and Laloui, 2008b):

σij = σ
′
ij − b Sr,w pw δij (4.24)

The latter expression includes the effect of partial saturation on the effective stress field (tensile
stress is positive).

For the solid phase behaviour, the isotropic solid density variation is linked to the variations
of pore water pressure and mean effective stress by (Detournay and Cheng, 1993; Coussy, 2004):

ρ̇s
ρs

=
(b− Φ)Sr,w ṗw − σ̇

′

(1− Φ) Ks
(4.25)

The time derivative of the porosity is obtained by solid mass conservation Ṁs = 0 and reads:

Φ̇ = (1− Φ)

(
ρ̇s
ρs

+
Ω̇

Ω

)
= (1− Φ)

(
(b− Φ)Sr,w ṗw − σ̇

′

(1− Φ) Ks
+

Ω̇

Ω

)
(4.26)

Furthermore, the time derivative of the water mass in Eq. 4.11 becomes by including the fluid
compressibility, the porosity variation, and by considering a unit mixture volume:

Ṁw = ρw

(
ṗw
χw

Φ Sr,w +
ṗw
Ks

(b− Φ) S2
r,w +

(
Ω̇

Ω
− σ̇

′

Ks

)
Sr,w + Φ Ṡr,w

)
(4.27)

The above expressions can be rewritten under poroelastic assumption:

σ̇
′

= K ε̇v = K
Ω̇

Ω
(4.28)
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and using the Biot’s coefficient expression of Eq. 4.23. The equations become:

ρ̇s
ρs

=
(b− Φ)Sr,w ṗw −K

Ω̇

Ω
(1− Φ) Ks

(4.29)

Φ̇ = (b− Φ)

(
Sr,w
Ks

ṗw +
Ω̇

Ω

)
(4.30)

Ṁw = ρw

(
ṗw
χw

Φ Sr,w +
ṗw
Ks

(b− Φ) S2
r,w + b

Ω̇

Ω
Sr,w + Φ Ṡr,w

)
(4.31)

It is to recall that Biot’s theory and the equations of poroelasticity are valid only for an elastic
behaviour of the material. Extending these equations to poroplasticity (Coussy, 1995) with
permanent changes in fluid mass content and in porosity requires to include the plastic material
behaviour, which is complex to implement and is not included in this work.

Finally, the governing equations 4.1 and 4.7 of the coupled problem are valid provided ρ, σij ,
Ṁw, and fw,i are defined according to Eqs. 4.12, 4.24, 4.27 (or 4.31), and 4.14, respectively.

4.1.3 Coupled finite element formulation

Numerical implementation

For numerical application, the equilibrium equations 4.1 and 4.7 of the second gradient model
are implemented in a finite element code. The non-linear field equations of the coupled problem
that must hold at any time t read (see section 3.3.3):∫

Ωt

(
σtij

∂u∗i
∂xtj

+ Σt
ijk

∂υ∗ij
∂xtk

)
dΩt−

∫
Ωt

λtij

(
∂u∗i
∂xtj
− υ∗ij

)
dΩt =

∫
Ωt

ρt gi u
∗
i dΩt+

∫
Γtσ

(
t
t
i u
∗
i + T

t
i υ
∗
ik n

t
k

)
dΓt

(4.32)∫
Ωt

λ∗ij

(
∂uti
∂xtj
− υtij

)
dΩt = 0 (4.33)

∫
Ωt

(
Ṁ t
w p∗w − f tw,i

∂p∗w
∂xti

)
dΩt =

∫
Ωt

Qtw p∗w dΩt −
∫

Γtqw

qtw p∗w dΓt (4.34)

The kinematic restrictions of the second gradient model for the kinematic fields and their virtual
quantities:

υij = Fij (4.35)

υ∗ij = F ∗ij (4.36)

are introduced through a field of Lagrange multipliers λij in Eqs. 4.32 and 4.33 (Chambon et al.,
1998).

Linearisation of the field equations

Solving the equilibrium problem consists in determining the unknown fields ui, υij , λij , and pw for
which the non-linear field equations 4.32, 4.33, and 4.34 are valid. The numerical implementation
of these equations for finite element method requires the linearisation of the equation system.
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The field equations are a priori not verified for any instant t; consequently, the numerical
resolution is realised by iterative procedure involving a time discretisation over finite time steps
∆t:

τ = t+ ∆t (4.37)

and an implicit scheme (finite differences) for the rate of any quantity a:

ȧτ =
aτ − at

∆t
(4.38)

The iterative procedure uses a Newton-Raphson scheme to find a solution in equilibrium with
the boundary conditions at the end of each time step. A configuration Ωt in equilibrium with
the boundary conditions at time t is assumed to be known and a second one Ωτ in equilibrium
at the end of the time step has to be found. Firstly, a configuration Ωτ1 not at equilibrium
is guessed which leads to non-equilibrium forces (∆τ1

1 , ∆τ1
2 , and ∆τ1

3 ) for the field equations.
Another configuration at the end of the time step Ωτ2, close to Ωτ1 and for which the non-
equilibrium forces cancel, has to be determined. Subtracting the balance equations of the two
configurations, rewriting the equations for Ωτ2 in Ωτ1 configuration, assuming that gi, ti, qw,
and Qw are independent of the different unknown fields, and assuming that T i vanishes give:

∫
Ωτ1

∂u∗i
∂xτ1

l

(
στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il

)
+
∂υ∗ij
∂xτ1

l

(
Στ2
ijk

∂xτ1
l

∂xτ2
k

det(F )− Στ1
ijl

)
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

(
λτ2
ij

∂xτ1
l

∂xτ2
j

det(F )− λτ1
il

)
− υ∗ij

(
λτ2
ij det(F )− λτ1

ij

)
dΩτ1

−
∫

Ωτ1

u∗i
(
ρτ2 det(F )− ρτ1

)
gi dΩτ1 = −∆τ1

1

(4.39)

∫
Ωτ1

λ∗ij

((
∂uτ2

i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

)
−
(
υτ2
ij det(F )− υτ1

ij

))
dΩτ1 = −∆τ1

2 (4.40)

∫
Ωτ1

p∗w

(
Ṁ τ2
w det(F )− Ṁ τ1

w

)
− ∂p∗w
∂xτ1

l

(
f τ2
w,i

∂xτ1
l

∂xτ2
i

det(F )− f τ1
w,l

)
dΩτ1 = −∆τ1

3 (4.41)

where det(F ) is the Jacobian determinant of the transformation between the two configurations:

det(F ) =

∣∣∣∣∣∂xτ2
i

∂xτ1
j

∣∣∣∣∣ (4.42)

By making the two configurations tend towards each other, the variations between them can
be defined by finite differences for any quantity a as:

daτ1 = aτ2 − aτ1 (4.43)

They read for the unknown fields:

duτ1
i = dxτ1

i = xτ2
i − xτ1

i (4.44)

dυτ1
ij = υτ2

ij − υτ1
ij (4.45)
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dλτ1
ij = λτ2

ij − λτ1
ij (4.46)

dpτ1
w = pτ2

w − pτ1
w (4.47)

Including the Biot’s effective stress definition for unsaturated materials of Eq. 4.24 and the
stress-strain rates constitutive relations of Eqs. 4.5 and 4.6 gives:

dστ1
ij = στ2

ij − στ1
ij = dσ

′τ1
ij − b Sτ1

r,w dpτ1
w δij (4.48)

dσ
′τ1
ij = σ

′τ2
ij − σ

′τ1
ij = Cijkl

∂duτ1
k

∂xτ1
l

(4.49)

dΣτ1
ijk = Στ2

ijk − Στ1
ijk = Dijklmn

∂dυτ1
lm

∂xτ1
n

(4.50)

The variations of the phase densities can be linearised from Eqs. 4.13 and 4.25:

dρτ1
w = ρτ2

w − ρτ1
w = ρτ1

w

dpτ1
w

χw
(4.51)

dρτ1
s = ρτ2

s − ρτ1
s = ρτ1

s

(
b− Φτ1

)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
(4.52)

and they lead to the variations of porosity and mixture density by Eqs. 4.26 and 4.12:

dΦτ1 = Φτ2 − Φτ1 =
(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
dΩτ1

Ωτ1

)
(4.53)

dρτ1 = ρτ2 − ρτ1 = dρτ1
s

(
1− Φτ1

)
− ρτ1

s dΦτ1 + dSτ1
r,w ρτ1

w Φτ1 + Sτ1
r,w dρτ1

w Φτ1 + Sτ1
r,w ρτ1

w dΦτ1

(4.54)
with:

dετ1
v =

dΩτ1

Ωτ1
=
∂duτ1

i

∂xτ1
i

(4.55)

The variations of the water mass storage term and of the water flow can also be linearised:

dṀ τ1
w = Ṁ τ2

w − Ṁ τ1
w (4.56)

df τ1
w,i = f τ2

w,i − f τ1
w,i (4.57)

Their developments use Eqs. 4.27 and 4.14 and are available in the appendix A. Their final
forms depend on the variations of water saturation dSr,w and relative permeability dkr,w that
are obtained from Eqs. 4.18 and 4.20:

dSτ1
r,w = Sτ2

r,w − Sτ1
r,w =

∂Sτ1
r,w

∂pτ1
w

dpτ1
w (4.58)

dkτ1
r,w = kτ2

r,w − kτ1
r,w =

∂kτ1
r,w

∂Sτ1
r,w

dSτ1
r,w =

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

dpτ1
w (4.59)

and are related to the chosen retention and relative permeability curves.
Moreover, the Jacobian matrix F ij of the transformation between the two configurations

Ωτ1 and Ωτ2 is approximated by using a Taylor expansion and by retaining only the linear
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approximation (Chambon and Moullet, 2004), meaning that the terms of degree greater than
one are discarded:

F ij =
∂xτ2

i

∂xτ1
j

=
∂
(
xτ1
i + duτ1

i

)
∂xτ1

j

≈ δij +
∂duτ1

i

∂xτ1
j

(4.60)

The Jacobian determinant becomes:

det(F ) =

∣∣∣∣∣∂xτ2
i

∂xτ1
j

∣∣∣∣∣ ≈ 1 +
∂duτ1

i

∂xτ1
i

(4.61)

Similarly and by applying the limit τ2 = τ1, the inverse relation yields:

∂xτ1
i

∂xτ2
j

=
∂
(
xτ2
i − duτ1

i

)
∂xτ2

j

≈ δij −
∂duτ1

i

∂xτ2
j

≈ δij −
∂duτ1

i

∂xτ1
j

(4.62)

The balance equations can be rewritten by taking into account the variations defined pre-
viously, by making the two configurations tend towards each other, which leads to the limit
τ2 = τ1, and by neglecting terms of order higher than one. The complete algebraic devel-
opments of the linearisation of the field equation system and of the resulting linear auxiliary
problem are available in the appendix A. The results are presented hereafter in a matricial form
related to the spatial discretisation of the finite element method.

Element stiffness matrix

For the finite element method, continuum bodies are spatially discretised with finite elements.
For the second gradient model, the type of two-dimensional finite element that is used has been
detailed previously in section 3.3.3 and Fig. 3.11. Such discretisation implies that the balance
equations are valid for each element. A convenient formulation of the coupled linear auxiliary
problem is to write the equations in matricial form in order to define the local stiffness matrix
of an element: ∫

Ωτ1

[
U∗,τ1

(x1,x2)

]T [
Eτ1

] [
dU τ1

(x1,x2)

]
dΩτ1 = −∆τ1

1 −∆τ1
2 −∆τ1

3 (4.63)

where
[
dU τ1

(x1,x2)

]
is the vector of the unknown increments of nodal variables (Eq. 3.94),

[
U∗,τ1

(x1,x2)

]
is the vector of the virtual quantities (Eq. 3.95), and

[
Eτ1

]
is the element stiffness matrix defined

as follows:

[
Eτ1

]
25×25

=



Eτ1
14×4

04×2 Kτ1
WM4×3

04×8 04×4 −I4×4

Gτ1
12×4

02×2 Gτ1
22×3

02×8 02×4 02×4

Kτ1
MW3×4

03×2 Kτ1
WW3×3

03×8 03×4 03×4

Eτ1
28×4

08×2 08×3 Dτ1
8×8 08×4 08×4

Eτ1
34×4

04×2 04×3 04×8 04×4 I4×4

Eτ1
44×4

04×2 04×3 04×8 −I4×4 04×4


(4.64)

Among the different submatrices composing
[
Eτ1

]
, the matrices

[
Eτ1

1

]
,
[
Eτ1

2

]
,
[
Eτ1

3

]
,
[
Eτ1

4

]
, and[

Dτ1
]
are identical to the ones used in the local second gradient model for monophasic medium

by Chambon and Moullet (2004). In the present development, only the submatrices modified by
the unsaturated conditions, by the compressibility of the solid grains, or by the anisotropy of the
intrinsic water permeability are of interest. These submatrices are related to the flow problem,[
Kτ1
WW

]
, to the coupling between the flow and the mechanical problems,

[
Kτ1
MW

]
and

[
Kτ1
WM

]
,
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and to the gravity volume force,
[
Gτ1

1

]
and

[
Gτ1

2

]
. They are detailed below under poroelastic

assumption.
The stiffness matrix of the flow problem is expressed as:

[
Kτ1
WW

]
3×3

=


ρτ1
w

kτ1
w,11k

τ1
r,w

µw
ρτ1
w

kτ1
w,12k

τ1
r,w

µw
Kτ1
WW1,3

ρτ1
w

kτ1
w,21k

τ1
r,w

µw
ρτ1
w

kτ1
w,22k

τ1
r,w

µw
Kτ1
WW2,3

0 0 Kτ1
WW3,3


(4.65)

where:

Kτ1
WW1,3

= ρτ1
w

kτ1
w,1j

µw

kτ1
r,w

χw

(
∂pτ1

w

∂xτ1
j

+ 2ρτ1
w gj

)
+ ρτ1

w

kτ1
w,1j

µw

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
(4.66)

Kτ1
WW2,3

= ρτ1
w

kτ1
w,2j

µw

kτ1
r,w

χw

(
∂pτ1

w

∂xτ1
j

+ 2ρτ1
w gj

)
+ ρτ1

w

kτ1
w,2j

µw

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
(4.67)

Kτ1
WW3,3

=
ρτ1
w

χw

ṗτ1
w

χw
Φτ1 Sτ1

r,w +
ρτ1
w

χw ∆t
Φτ1 Sτ1

r,w + 2
ρτ1
w

Ks

ṗτ1
w

χw

(
b− Φτ1

) (
Sτ1
r,w

)2
+ ρτ1

w

ṗτ1
w

χw
Φτ1

∂Sτ1
r,w

∂pτ1
w

− ρτ1
w

Ks

ṗτ1
w

Ks

(
b− Φτ1

) (
Sτ1
r,w

)3
+ 2 ρτ1

w

(
b− Φτ1

) ṗτ1
w

Ks
Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

+
ρτ1
w

Ks ∆t

(
b− Φτ1

) (
Sτ1
r,w

)2
+
ρτ1
w

χw
b

Ω̇τ1

Ωτ1
Sτ1
r,w + ρτ1

w b
Ω̇τ1

Ωτ1

∂Sτ1
r,w

∂pτ1
w

+
ρτ1
w

χw
Φτ1 Ṡτ1

r,w +
ρτ1
w

Ks

(
b− Φτ1

)
Sτ1
r,w Ṡτ1

r,w +
ρτ1
w

∆t
Φτ1

∂Sτ1
r,w

∂pτ1
w

(4.68)

The stiffness matrices of the coupling between the flow and the mechanical problems are:

[
Kτ1
WM

]
4×3

=


0 0 −b Sτ1

r,w

0 0 0
0 0 0
0 0 −b Sτ1

r,w

 (4.69)

[
Kτ1
MW

]
3×4

=


Aτ1

111 f τ1
w,2 +Aτ1

121 Aτ1
112 −f τ1

w,1 +Aτ1
122

−f τ1
w,2 +Aτ1

211 Aτ1
221 f τ1

w,1 +Aτ1
212 Aτ1

222

Cτ1 + Ṁ τ1 0 0 Cτ1 + Ṁ τ1

 (4.70)

where:

Aτ1
ijk = −ρτ1

w

kw,ij k
τ1
r,w

µw

∂pτ1
w

∂xτ1
k

(4.71)

Cτ1 = ρτ1
w

ṗτ1
w

χw

(
b− Φτ1

)
Sτ1
r,w − ρτ1

w

ṗτ1
w

Ks

(
b− Φτ1

) (
Sτ1
r,w

)2
+ ρτ1

w

(
b

∆t
− Ω̇τ1

Ωτ1

)
Sτ1
r,w + ρτ1

w

(
b− Φτ1

)
Ṡτ1
r,w

(4.72)
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The matrices related to the contribution of gravity volume force are defined as follows:

[
Gt1
]
2×4

=

[
−ρτ1

w S
τ1
r,wg1b 0 0 −ρτ1

w S
τ1
r,wg1b

−ρτ1
w S

τ1
r,wg2b 0 0 −ρτ1

w S
τ1
r,wg2b

]
(4.73)

[
Gτ1

2

]
2×3

=


0 0 −ρ

τ1
w

Ks

(
b− Φτ1

)
(Sτ1
r,w)2g1 −

ρτ1
w

χw
Φτ1Sτ1

r,wg1 − ρτ1
w Φτ1

∂Sτ1
r,w

∂pτ1
w

g1

0 0 −ρ
τ1
w

Ks

(
b− Φτ1

)
(Sτ1
r,w)2g2 −

ρτ1
w

χw
Φτ1Sτ1

r,wg2 − ρτ1
w Φτ1

∂Sτ1
r,w

∂pτ1
w

g2

 (4.74)

If gravity is not taken into account, then they are null matrices and the terms including gi also
cancel in Kτ1

WW1,3
and Kτ1

WW2,3
.

4.2 Constitutive models and parameters

The constitutive models and their parameters are required to study the numerical application of
a gallery drilling in the Callovo-Oxfordian claystone. The hydro-mechanical description of the
material behaviour includes a mechanical model for the classical first gradient part related to the
macrostructure, a mechanical model for the second gradient part related to the microstructure,
and a hydraulic model to reproduce the water flows in unsaturated porous media. A relatively
simple isotropic mechanical law is used for the first gradient model to explore its aptitude to
reproduce shear banding around galleries when coupled to a microstructure approach. It is
calibrated based on experimental results of compression tests performed on the Callovo-Oxfordian
claystone.

The convention of soil mechanics with positive compressive stress is used in the further
modelling. The material mechanic convention was only used for the numerical developments
added in the finite element formulation.

4.2.1 Hydraulic model

The hydraulic model for partially saturated porous media has already been described. It takes
into account the water advection by Darcy’s law (Eq. 4.14) as well as water retention and
relative permeability evolutions (Eqs. 4.15 and 4.16). The hydro-mechanical parameters have
been summarised in chapter 2 and the hydraulic parameters needed for the model are detailed
in Table 4.1.

Symbol Name Value Unit

kw,h Horizontal intrinsic water permeability 4× 10−20 m2

kw,v Vertical intrinsic water permeability 1.33× 10−20 m2

Φ Porosity 0.18 −
Pr van Genuchten air entry pressure 15 MPa
M van Genuchten coefficient 0.33 −
Smax Maximum degree of water saturation 1 −
Sres Residual degree of water saturation 0.01 −
µw Water dynamic viscosity 0.001 Pa s
χ−1
w Water compressibility 0 Pa−1

Table 4.1: Hydraulic parameters.
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4.2.2 First gradient mechanical model

The mechanical model used for the clayey rock is an isotropic and non-associated elastoplastic
internal friction model with linear elasticity and a Drucker-Prager yield criterion:

F p ≡ IIσ̂′ −m
(
Iσ′ +

3 c

tanϕc

)
= 0 (4.75)

It is similar to the criterion described in section 2.4.5 without dependence on the Lode angle and
it introduces hardening of the friction angle as well as softening of the cohesion. The elastic and
plastic mechanical parameters are detailed in Table 4.2.

Symbol Name Value Unit

E Young’s modulus 4 GPa
ν Poisson’s ratio 0.3 −
b Biot’s coefficient 0.6 −
ρ Density 2300 kg/m3

ψc Dilatancy angles 0.5 °
ϕc,0 Initial friction angle 10 °
ϕc,f Final friction angle 20 °
Bϕ Friction angle hardening coefficient 0.002 −
decϕ Friction angle hardening shifting 0 −
c0 Initial cohesion 3 MPa
cf Final cohesion 0.3 MPa
Bc Cohesion softening coefficient 0.003 −
decc Cohesion softening shifting 0.01 −

Table 4.2: Mechanical parameters.

The softening material behaviour has to be defined to allow the reproduction of shear banding.
Small-scale compression laboratory experiments have been discussed in section 3.1.2. The results
indicate the predominant role of shear bands and fractures in the post-peak regime.

A first approach is to consider the material as homogeneous, for which the peak stress and
post-peak behaviour can be represented by the softening of strength parameters in the constitu-
tive model. The friction angle and the cohesion define the plastic criterion; however, for granular
materials, it can be assumed that the friction angle does not decrease significantly in the post-
peak regime. On the other hand, the cohesion is affected and a lower residual value is generally
observed. As a consequence, the residual strength is mostly affected by the cohesion which is
therefore chosen as the softening variable, and no softening of the friction angle is assumed.

Experimental data on Callovo-Oxfordian claystone are required to calibrate the strength
parameters. From a database provided by the Andra, it has been possible to realise a synthesis
of compression tests results performed in the geomechanical unit C, located between -476 m and
-515 m depth, which corresponds to the main level of the underground research laboratory. The
synthesis of test results and their modelling are detailed in the report Pardoen et al. (2011).
For a first calibration, five triaxial shear tests have been chosen. They were performed at a
confining pressure close to σ3 = 10 MPa (between 8.5 MPa and 11.5 MPa), perpendicular
to the bedding planes, and in undrained conditions. The Table 4.3 details the selected triaxial
compression tests. The results are illustrated in Fig. 4.1 where ε1 is the axial strain, q is the
deviatoric stress corresponding to the difference between the axial stress σ1, and the confining
stress σ3:

q = σ1 − σ3 (4.76)

106



CHAPTER 4. FRACTURE MODELLING WITH SHEAR STRAIN LOCALISATION

and p′ is the mean effective stress:

p
′

= σ
′

=
σ
′
ii

3
=
σ
′
1 + 2σ

′
3

3
(4.77)

Two of the tests, those with the smallest confinements, were performed with an initial pore water
pressure of about 2 MPa, while the others were realised with an initial pore pressure of about
4.5 MPa that corresponds to the in situ pore pressure.

Symbol Name 1 2 3 4 5 Unit

Borehole EST104 EST104 EST104 EST104 EST104
Sample number EST02318 EST02336 EST02448 EST02318 EST02336
Laboratory ANTEA ANTEA ANTEA ANTEA ANTEA
Average depth 476.2 479.0 499.5 476.2 479.0 m
Diameter 40 40 40 40 40 mm
Height 46 67 55 80 64 mm
Test type1 ICUC ICUC ICUC ICUC ICUC −

α Orientation of 0 0 0 0 0 °
the loading2

σ3 Confinement 8.6 8.7 9.2 11.3 11.5 MPa
ε̇ Strain rate 0.001 0.001 0.001 0.001 0.001 %/min
w Water content 5.7 6.4 7 6.2 7.8 %
Sr,w Water degree of 94 86 97.1 100 97 %

saturation
pw,0 Initial pore 1.8 2.1 4.5 4.8 4.5 MPa

water pressure
1ICUC = isotropic consolidation, undrained compression.
2α is the angle between the compression direction and the normal to the bedding planes.

Table 4.3: Triaxial compression tests selected for a first calibration of the mechanical model.

On the curves, one can observe that the pre-peak behaviour is not linear which can be related
to the damage of elastic properties or to the hardening of plastic properties. Damage of material
characteristics is not taken into account in the model; then, the pre-peak behaviour can be
captured by friction angle hardening. The peak stress appears at about ε1 ≈ 1 %, while the pore
water pressure decrease starts slightly earlier. The post-peak behaviour highlights a material
strength decrease that will be captured by cohesion softening. Moreover, the global decrease
of pore water pressure as well as the engendered increase of effective stress can be related to a
slightly dilatant behaviour.

Following these observations, the tests can be numerically reproduced by finite element
method to calibrate the model. A hydro-mechanical modelling in two-dimensional axisymmetric
state under undrained conditions is performed without the initial consolidation phase. The indi-
vidual modellings are not discussed here and only one global modelling is presented for this first
calibration, with σ3 = 10 MPa and pw,0 = 4.5 MPa. The numerical results, with and without
cohesion softening, are compared to the experimental results in Fig. 4.1 where a satisfactory
matching is obtained for the parameters detailed in Table 4.2. Achieving a good matching both
on the stress global response and on the pore water pressure is not straightforward; thus, a
particular attention is paid to the curve q/p′ versus ε1 that includes both aspects.

The main drawback of the homogeneous approach of the material behaviour is that it does
not take into account any cracks or strain localisation effect. However, it is proposed to predict
the fracturing process numerically with shear strain localisation. The global post-peak (post-
localisation) response of the material therefore depends on the strain localisation process and
its calibration requires information about the shear banding structure. More particularly, shear
band pattern, orientations, number, thickness, and evolution would be necessary. Unfortunately,
such information is rarely available, especially for rocks.
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Fig. 4.1: Calibration of the mechanical parameters based on triaxial compression tests for a
homogeneous material behaviour.

Nevertheless, the strain localisation has to be triggered to model shear banding. It is well
known that a softening behaviour provides the conditions for strain localisation and may instigate
an infinity of localised solutions (section 3.2.1; Benallal and Marigo (2007); Bésuelle et al. (2006a);
Jirásek and Rolshoven (2009); Kotronis et al. (2008)). The softening parameters values (cf , Bc,
and decc) might therefore be adapted for that purpose. For the gallery excavation problem,
preliminary calculations have indicated that the deformation around the gallery due to the drilling
are globally lower than in compression laboratory tests. As a consequence, the introduction of a
cohesion softening without delay (no shifting) is necessary to trigger the shear strain localisation.
For the following modelling of gallery excavation, the same softening parameters cf and Bc will
be kept, however decc = 0.

4.2.3 Second gradient mechanical model

The second gradient mechanical law has been recalled in Eq. 4.6. It depends on one constitutive
elastic modulus D (Eq. 3.80) that represents the microstructure and characterises the internal
length scale of the second gradient model. Its value is chosen to represent the shear bands and the
post-localisation behaviour properly. In fact, the strain localisation process for second gradient
material is mesh-independent, but the post-localisation behaviour is better modelled if at least
three elements compose the shear band width. The selected value is D = 5 kN .
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4.3 Modelling of gallery excavation

The processes of underground drilling and induced shear strain localisation in claystone are
investigated at large scale. Papanastasiou and Vardoulakis (1992) were the first to present a
numerical analysis of progressive localisation around excavated cavity in rock with Cosserat
microstructure. Analogous two-dimensional hydro-mechanical modelling is performed with the
coupled local second gradient model for a microstructure medium.

Many studies on claystone have been performed with two-dimensional isotropic mechanical
models. Our purpose is to investigate if this type of model can reproduce the in situ observations
and measurements by incorporating the fracture modelling with strain localisation. However, the
coupling with permeability is not addressed in the fractures; therefore, the zone that develops
around the gallery is called excavation fractured zone, the excavation damaged zone being related
to irreversible hydro-mechanical property changes.

Furthermore, gallery air ventilation is also reproduced to highlight air-rock interaction, water
drainage, and their effects on the shear banding structure. The reproduced ventilation is theo-
retical with constant air relative humidity inside the gallery and classical imposition at gallery
wall.

It should be pointed out that regularisation techniques have already been used for this type
of problem. They generate results that are mesh-independent but these theories do not restore
the uniqueness of the solution for the gallery excavation problem (Fernandes, 2009; Sieffert et al.,
2009). These remarks are valid for any application of regularisation methods.

4.3.1 Numerical model

A hydro-mechanical modelling of a gallery excavation is performed in two-dimensional plane
strain state. The modelled gallery corresponds to the GED gallery of the Andra’s URL oriented
parallel to the minor horizontal principal total stress σh and having a radius of 2.3 m. The initial
pore water pressure and anisotropic stress state are:

σx,0 = σH = 1.3 σh = 15.6 MPa

σy,0 = σv = 12 MPa

σz,0 = σh = 12 MPa

pw,0 = 4.5 MPa

A schematic representation of the models, the meshes, and the boundary conditions is detailed
in Fig. 4.2. Two meshes are used: a full gallery and a quarter of a gallery. The mesh extension
of the full gallery is 120 m, both horizontally and vertically, and the spatial discretisation is
performed with a total of 29040 nodes and 7440 elements. Assuming symmetry along the x
and y-axes, only one quarter of the gallery can be discretised. In this case, the mesh extension
is 60 m, both horizontally and vertically, and the discretisation is performed with a total of
9801 nodes and 2480 elements. For both meshes, the initial stresses and pore water pressure
are imposed at the mesh external boundary (drained boundary) and the meshes have a more
refined discretisation close to the gallery. To establish the symmetry, the normal displacements
and the normal water flows are blocked to a value of zero along the symmetry axes, which are
therefore impervious. Nonetheless, as mentioned by Zervos et al. (2001a), a special care must
be brought to the kinematic boundary conditions required to establish the symmetry. Due to
the existence of gradient terms in the equilibrium equations, higher order constraints have to be
characterised in addition to the classical boundary condition on the normal displacements. This
second kinematic condition requires that the radial displacement ur must be symmetric on both
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sides of the symmetry axes. This implies that the normal derivative of ur, with respect to the
tangential (orthoradial) direction θ, has to cancel:

∂ur
∂θ

= 0 (4.78)

which is equivalent to:

x− axis :
∂ux
∂y

= 0 (4.79)

y − axis :
∂uy
∂x

= 0 (4.80)

Furthermore, natural boundary conditions for the double forces, T i = 0, are assumed on the
different boundaries and gravity is not taken into account.
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(b)
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Fig. 4.2: Schematic representation of the models used for the modelling of a gallery excavation:
(a) full gallery and (b) quarter of a gallery.

The gallery excavation can now be considered. It is modelled by decreasing during 5 days
the total stresses and the pore water pressure at the gallery wall from their initial values to the
atmospheric pressure of 100 kPa. After the excavation, the calculation is extended to 1000 days
under constant total radial stress, to highlight possible long-term effects (Fig. 4.3). This stress
imposition is representative of unsupported galleries. In the context of deep geological repository,
different supports and coverings of the gallery walls are envisaged depending on the host material
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properties. They can be rigid liner made of concrete slabs, flexible liner made of sliding arches
with bolting and concrete covering, or the galleries can be unsupported for stiff materials. The
two latter are envisaged for the galleries drilled in the Callovo-Oxfordian claystone. Furthermore,
the geological surveys of fracturing as well as the gallery air ventilation experiment are performed
in uncovered zones.

To model the air ventilation inside the gallery, a classical flow boundary condition is assumed
and imposes the suction corresponding to the relative humidity of the cavity air at the tunnel
wall. Two cases are considered for the air inside the gallery (Fig. 4.3). In the first case, there
is no ventilation inside the gallery; thus, the air is saturated with water vapour and this max-
imum concentration corresponds to RH = 100 %. According to Kelvin’s law (Eq. 2.47), the
corresponding pore water pressure at the gallery wall is the atmospheric pressure pw = 100 kPa.
The pore water pressure is then maintained constant after the end of the excavation and the
claystone will remain almost saturated. In the second case, air ventilation is taken into account,
since ventilation is usually realised in the galleries composing underground structures. It may
drain the water from the rock, desaturate it, and modify the structure, the fracturing pattern,
as well as the size of the fractured zone. Air ventilation can thus be modelled in order to observe
its effects on the rock material. A theoretical ventilation, with constant air relative humidity,
is envisaged to obtain a first outlook of the ventilation effect on shear banding. The air which
is injected in the gallery is dryer than previously and a lower relative humidity of 80 % with
a temperature of 25 °C (T = 298.15 K) are considered. Following Kelvin’s law, this humidity
corresponds to a pore water pressure at gallery wall of pw = −30.7 MPa. To reach this value,
the decrease of pw is performed in two steps: firstly, it decreases from its initial value to the
atmospheric pressure during the excavation (5 days), and then an initiation phase of ventilation
is considered (5 days) to reach the final value. After this initiation phase, a constant ventilation
is maintained.

The imposed boundary conditions at gallery wall, for total stresses and pore water pressure
evolutions, are presented in Fig. 4.3 for the two considered cases. It is worth mentioning that the
ventilation effect on the shear banding is therefore represented by the hydro-mechanical model.
In fact, the ventilation influences the pore water pressures and the effective stresses, which then
influence the shear strain localisation structure and behaviour.
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Fig. 4.3: Imposed total stresses and pore water pressure at the gallery wall for the modelling of
a gallery excavation with and without air ventilation.

The main purpose of this numerical modelling is to represent the fractures with shear strain
localisation and to reproduce, as well as possible, the in situ measurements and observations
with an isotropic mechanical model.
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4.3.2 Influence of in situ stress and permeability anisotropies

Creation and evolution of the fractured zone can be observed through the evolution of shear
strain localisation. The latter is not a priori assured to be symmetric around the gallery and
many solutions could emerge (Sieffert et al., 2009). To avoid any early symmetry assumption, the
excavation of a full gallery is firstly modelled in isotropic conditions assuming σx,0 = σy,0 = σz,0 =
15.6 MPa and kw,h = kw,v = 4 × 10−20 m2. The calculation is performed with incompressible
solid grains b = 1 and no ventilation. With a circular gallery and such isotropic state, it is not
possible to trigger the shear strain localisation and the deformation remains diffuse as shown in
Fig. 4.4 (a). This figure presents the numerical results at the end of the excavation in terms of
plastic zone, represented by the plastic loading integration points (red squares), and Von Mises’
equivalent deviatoric total strain, i.e. total deviatoric strain:

ε̂eq =

√
2

3
ε̂ij ε̂ij (4.81)

where ε̂ij is the deviatoric total strain field calculated from the total strain tensor εij :

ε̂ij = εij −
εkk
3

δij (4.82)

Strain localisation can be triggered through the introduction of an imperfection in the material
as illustrated in Fig. 4.4 (b). The imperfection consists of weaker elements with lower initial
cohesion, c0 = 2 MPa, located at the gallery wall.

(a) 

(b) 

Fig. 4.4: Deformation and plasticity at the end of excavation for a full gallery and a full isotropic
rock state: (a) without material imperfection and (b) with material imperfection.

However, in case of anisotropic stress state of the rock with σx,0 = 15.6 MPa and σy,0 =
σz,0 = 12 MPa, the shear strain localisation appears without adding an imperfection in the rock.
Fig. 4.5 illustrates the evolution of the strain localisation around the gallery, during and after
the drilling. The numerical results that are presented are the total deviatoric strain, the plastic
zone, and the deviatoric strain increment which represents the band activity:

κeq =
˙̂εeq dt∫
˙̂εeq dt

(4.83)
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Fig. 4.5: Evolution of strain localisation during and after gallery excavation (5 days of excava-
tion), for a full gallery and for a rock having anisotropic hydraulic permeability and anisotropic
stress state.

113



CHAPTER 4. FRACTURE MODELLING WITH SHEAR STRAIN LOCALISATION

The modelling exhibits a symmetric chevron fracture pattern around the gallery similar to in situ
observations for galleries parallel to σh (see Fig. 2.6 (b)). The chevron fractures appear during
the excavation and are mainly concentrated above the gallery because of the material anisotropic
stress state. On the contrary, introducing only the anisotropy of the intrinsic water permeability
with kw,h = 4× 10−20 m2 and kw,v = 1.33× 10−20 m2 does not lead to strain localisation unless
an imperfection is introduced. It means that the appearance and shape of the strain localisation
are mainly due to mechanical effects linked to the anisotropic stress state. The shear banding
zone develops preferentially in the direction of the minor principal stress in the gallery section.

4.3.3 Influence of second gradient boundary condition

The previous modelling highlights that the anisotropic stress state of the Callovo-Oxfordian
claystone is at the origin of a symmetry in the localisation pattern around the gallery. Then, it
would be convenient, in the following, to consider only a quarter of a gallery. However, in the
context of second gradient theory, a boundary condition of higher order should be considered
in addition to the classical boundary condition of constrained displacement perpendicular to
the boundary (Zervos et al., 2001a). This second kinematic condition specifies that the normal
derivative of the radial displacement has to cancel on the symmetry axes.

To illustrate the necessity of this second gradient boundary condition, the strain localisation
pattern of Fig. 4.5 is compared to the pattern obtained on a quarter of a gallery. The modelling
on a quarter of a gallery is computed with the specific second gradient boundary condition, and
with b = 1 and no ventilation as previously. In Fig. 4.6, one can observe that using the second
gradient boundary condition produces a shear strain localisation pattern that is similar to the
full-gallery results. Thus, it is confirmed that, for calculation simplicity and symmetry reasons,
a quarter of a gallery can be adopted for future modelling, provided that the specific second
gradient boundary condition is used.

(a) (b) 

Fig. 4.6: Comparison of the strain localisation pattern at the end of the calculation for the
modelling of: (a) a full gallery and (b) a quarter of a gallery with the second gradient boundary
condition.

4.3.4 Influence of Biot’s coefficient

Even if strain localisation seems to be mainly controlled by mechanical effects, hydraulic condi-
tions can also impact the shear banding pattern. Here, the focus is on the influence of Biot’s
coefficient for the case without ventilation. In the first calculation, it is assumed that the solid
grains are incompressible, which implies b = 1 (Fig. 4.7). In the second calculation, a value of
b = 0.6 is used, which corresponds to the compressibility of solid grains commonly admitted for
the Callovo-Oxfordian claystone (Fig. 4.8). Comparison of Figs. 4.7 and 4.8 indicates that the
Biot’s coefficient significantly influences the shear band pattern. With a value of 0.6, less bands
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Fig. 4.7: Evolution of strain localisation during and after gallery excavation (5 days of excava-
tion), without gallery ventilation and for a Biot’s coefficient value of 1.
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Fig. 4.8: Evolution of strain localisation during and after gallery excavation (5 days of excava-
tion), without gallery ventilation and for a Biot’s coefficient value of 0.6.
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appear and the shear strain localisation is delayed. In fact, the strain remains diffuse until the
fourth day of the excavation; nonetheless, the localisation appears before the end of the excava-
tion. This can be explained by examining the stresses close to the gallery. At the gallery wall,
the total stresses and the pore water pressure are imposed. Consequently, following the Biot’s
effective stress definition for unsaturated materials of Eq. 4.24, the lower the Biot’s coefficient,
the higher the effective compressive stress at the gallery wall. This implies that the rock close
to the gallery wall is more resistant and that the shear strain localisation appears later.

For the last simulation with b = 0.6, the extent of the fractured zone in the rock, measured
from the gallery wall up to the distance where strain localisation bands (total deviatoric strain)
are observed, is detailed in Table 4.4. Comparing it to the measured values of Fig. 2.6 (b)
provided by Armand et al. (2014) indicates an overestimation of the extent of the shear fracture
zone. Nevertheless, these in situ experimental measurements are average values along the GED
gallery, and maximal values of the fractured zone extent are also available in Armand et al.
(2014) and in Cruchaudet et al. (2010b). The latter are detailed in Table 4.4, and the extent of
the numerical shear banding zone is in a satisfactory agreement with the maximal extent of the
shear fracture zone.

Zone Horizontal [m] Vertical upward [m] Vertical downward [m]
(gallery ceiling) (gallery floor)

Numerical shear banding 0.5 4.6 4.6
Mixed fractures 0.5 1.7 2.0
Shear fractures 0.8 3.9 5.1

Table 4.4: Comparison between the thickness of the numerical shear strain localisation zone
and the maximal extents of the fractured zones around a gallery (GED) parallel to the minor
horizontal principal stress.

Moreover, Fig. 4.9 illustrates the type of shear band obtained from the Rice bifurcation
criterion (Table 3.1). At the end of excavation, the values of the parameter s inside the shear
bands indicate that the strain localisation zones are whether compacting or dilating shear bands.
The bands are in a dilative mode on the sides of the gallery and in a contractive mode above
(and below) the gallery.

Fig. 4.9: Shear band type at the end of gallery excavation for a Biot’s coefficient value of 0.6.

4.3.5 Influence of gallery ventilation

The modelling that is considered now includes the initial anisotropies, a Biot’s coefficient value
of 0.6, and the gallery ventilation. The drilling phase is not influenced by the ventilation,
and the same results as in Fig. 4.8 are obtained until 5 days of computation. The results
obtained after the excavation, displayed in Fig. 4.10, indicate that the suction imposed at the wall
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strongly influences the results. Following the effective stress definition, the higher the suction,
the higher the effective stress (Fig. 4.15). As noted before, this involves that the material is
more resistant, and in this case, becomes elastic again close to the gallery. This inhibits the
shear strain localisation around the gallery.

Fig. 4.10: Evolution of strain localisation after gallery excavation, with gallery ventilation and
for a Biot’s coefficient value of 0.6.

Various numerical results, coming from the gallery wall and the rock mass, are interpreted
hereafter in order to emphasize the influence of the gallery air ventilation. The results come from
the selected cross-sections and observation points on gallery wall that are presented in Fig. 4.11.
The vertical cross-section goes through the shear bands and the results along it will highlight the
effects of strain localisation, which is not the case for the horizontal cross-section. Furthermore,
the results are compared for the cases considering (RH = 80 %) or not (RH = 100 %) the
ventilation.

Firstly, the evolution of pore water pressure for the vertical and horizontal cross-sections
is detailed in Fig. 4.12. In the rock mass, an increase of pressure is observed in the vertical
direction and a decrease is observed in the horizontal direction up to a radial distance of about
30 m. These overpressures are related to hydro-mechanical coupling induced by the anisotropy of
the initial stress state. The influence of the strain localisation bands is visible vertically but not
horizontally. It is illustrated by the fluctuations of the pore water pressure in limited zones, with
a decrease in the shear band. The influence of the shear band can be mostly observed during
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45°

inclined

Vertical

Horizontal

Fig. 4.11: Positions of cross-sections and gallery wall observation points.

the first 50 days of calculation then it tends to vanish. This is due to the strain increment inside
the bands (band activity) and the hydro-mechanical coupling. As expected, the influence of the
ventilation is marked close to the gallery wall, but tends to disappear deeper in the rock.
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Fig. 4.12: Evolution of pore water pressure along (a) vertical and (b) horizontal cross-sections,
after gallery excavation.

Secondly, the evolution of the degree of water saturation along the cross-sections is illustrated
in Fig. 4.13. For the modelling without ventilation, the influence of the strain localisation bands
activity is also visible in the vertical direction, in the short term. Nevertheless, the claystone
remains almost saturated at the gallery wall and fully saturated after a distance of 3 m in the rock.
For the modelling with ventilation, a strong desaturation is observed close to the wall. Fig. 4.14
illustrates the evolution of the degree of water saturation at the gallery wall and displays the
desaturation more clearly.

Thirdly, the stress paths at the gallery wall are detailed in Fig. 4.15 where q is the deviatoric
stress:

q =
√

3 IIσ̂′ (4.84)

and p′ is the mean effective stress. As mentioned before, in the case of ventilation, the effective
stresses are much higher due to the suction. This explains the difference between the stress paths
of the modelling with and without ventilation, after the end of the drilling phase.

Fourthly, Fig. 4.16 illustrates the displacements evolution along the vertical and horizontal
cross-sections. In the vertical direction, a strong influence of the strain localisation bands is
observed close to the gallery, until the end of the calculation, while it is not the case horizon-
tally because the cross-section does not go through the localisation bands. For the modelling
without ventilation, the displacements are important during the excavation and keep increasing
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Fig. 4.13: Evolution of the degree of water saturation along (a) vertical and (b) horizontal
cross-sections, after gallery excavation.
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Fig. 4.15: Stress paths at the gallery wall, during and after gallery excavation.

afterwards, in both directions. When ventilation is applied, the displacements do not increase
much after the excavation. This can also be observed in the evolution of the gallery convergence
in Fig. 4.17 where a comparison with experimental results, from the same gallery of the Andra’s
URL, is presented. These results come from measurement sections named OHZ120 A, B, and
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C that are performed in the GED gallery (Armand et al., 2013) and were already exposed in
Fig. 2.7. One can observe that vertical convergence is captured by our model quite well; on the
contrary, horizontal convergence is overestimated.
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Fig. 4.16: Evolution of displacements along (a) vertical and (b) horizontal cross-sections, after
gallery excavation.
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Fig. 4.17: Evolution of the (a) vertical and (b) horizontal convergences during and after gallery
excavation, with comparison to experimental results.

All these results are evidences that noticeable differences exist whether ventilation is applied
or not. For the modelling with ventilation, pw remains negative close to the gallery (Fig. 4.12),
the effective stresses increase after the excavation (Fig. 4.15) and the material becomes elastic
again. Consequently, the desaturation of the rock close to the gallery inhibits the shear strain
localisation (Fig. 4.10), which has the effect of restricting further deformation. On the contrary,
without ventilation, pw close to the gallery wall increases after the excavation (Fig. 4.12), the
effective stresses reduce (Fig. 4.15) and the material remains partly plastic close to the gallery
(Fig. 4.8). This increases the deformation and the gallery convergence (Fig. 4.17).

Concerning the prediction of convergence in the short term, an anisotropy in a ratio of
three is observed on in situ measurements of horizontal and vertical convergences (Fig. 4.17).
If the problem is studied with an isotropic model, without considering strain localisation but
modelling the gallery ventilation, then the horizontal convergence is correctly reproduced but
the vertical convergence is not (Fig. 4.18). Similar results are obtained by Plassart et al. (2013).
Consequently, this type of approach fails to reproduce the in situ measurements, which indicates
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that the fracturing and strain localisation processes permit to explain the convergence anisotropy.
The creation of fractures, globally above the gallery due to the material anisotropic stress state,
increases both the vertical and the horizontal convergences (Fig. 4.17). A good prediction of
the vertical convergence is obtained but the horizontal convergence is overestimated. In that
direction, the proximity of the shear bands induces excessive deformations. In the long term,
the delayed deformations that are observed in situ might be explained by consolidation or creep
effects. In contrast to this, when gallery ventilation is reproduced, the material close to the
gallery wall becomes elastic again which restricts the plastic deformation and convergence in the
long term.
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Fig. 4.18: Evolution of the (a) vertical and (b) horizontal convergences during and after gallery
excavation, with comparison to experimental results, for a modelling without strain localisation
and including gallery ventilation.

Moreover, it is well known that the fracturing structure varies when considering another initial
stress state or another gallery direction for the considered host material (Armand et al., 2014).
The modelled gallery, drilled in the Callovo-Oxfordian claystone, is oriented in the direction of
the minor horizontal principal stress, which leads to an anisotropic initial stress state in the
gallery section. Since no other mechanical anisotropy is considered, this anisotropic initial stress
state permits the appearance of shear strain localisation. Considering a gallery oriented parallel
to the major horizontal principal stress would lead to a quasi-isotropic initial stress state (very
low anisotropy) in the gallery section. Unfortunately, this type of initial stress state does not
permit the strain localisation appearance for an isotropic mechanical behaviour. In this case, the
anisotropic rock behaviour should also be considered to model the fractures with shear bands.

4.4 Conclusions and outlooks

Following evidences of shear fractures, the second gradient theory is used to properly model
the fractures around galleries with strain localisation in shear band mode. The theory is suc-
cessfully extended to biphasic porous media under unsaturated conditions, and the solid grain
compressibility is taken into account through the Biot’s coefficient.

By using the second gradient model, the excavation fractured zone around a gallery in clay-
stone is fairly well reproduced. Within this zone, the modelling provides information about
the fracturing structure and its evolution that are in good agreement with in situ observations
and measurements. In fact, fracturing represented by strain localisation bands develops during
the gallery excavation and the modelling exhibits a chevron fracture pattern around the gallery.
This pattern and the extent of the shear strain localisation zone correspond fairly well to fracture
observations and measurements, with a significantly larger extent in the direction of the minor
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principal stress in the gallery section. The anisotropy of the convergence and the differences
between results in the horizontal and vertical directions can be well explained by the material
anisotropic stress state as well as by the strain localisation bands. Furthermore, even if important
changes occur during the drilling, transient and long-term effects are observed after it.

The impacts of shear strain localisation bands and gallery ventilation on pore water pressures,
degree of saturation, and displacements are highlighted. Regarding the influence of the gallery
ventilation, a desaturation is observed close to the gallery wall and tends to disappear deeper in
the rock mass where the claystone remains fully saturated. Moreover, the gallery convergence is
reproduced with its anisotropy, its long-term evolution, and the influence of the rock desaturation.
The anisotropic convergence is related to the strain localisation bands whose pattern is mostly
dictated by the material anisotropic stress state. Despite the good reproduction of the vertical
convergence, the horizontal convergence has still to be improved.

To further enhance the modelling, the rock behaviour and its properties changes still need
to be better addressed. From a mechanical point of view, the anisotropic and viscoplastic be-
haviours of the material should be taken into account. The anisotropic behaviour may permit
the development of strain localisation for a gallery having a quasi-isotropic initial stress state in
its section. Time-dependent effects, such as viscoplasticity and creep deformations, may allow to
improve the long-term behaviour of the material and the reproduction of the convergence increase
when gallery ventilation is performed. On the other hand, characterising the influence of the
rock fracturing or damage on the hydraulic properties remains a major issue. More precisely, it
is necessary to develop a more accurate modelling of the hydro-mechanical coupling that occurs
in the excavation damaged zone.
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Shear banding in cross-anisotropic rock
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CHAPTER 5. SHEAR BANDING IN CROSS-ANISOTROPIC ROCK

Abstract Sedimentary geomaterials such as rocks frequently exhibit cross-anisotropic proper-
ties and their behaviour depends on the direction of loading with respect to their microstructure.
As far as material rupture is concerned, localised deformation in shear band mode appears gen-
erally before cracks and material failure. The influence of cross-anisotropy on the shear strain
localisation remains an important issue that needs to be investigated. To do so, a constitutive
elasto-viscoplastic cross-anisotropic model, that includes anisotropy of both elastic and plastic
characteristics, is defined. For the plastic part of the model, the anisotropy of a strength pa-
rameter is introduced with a microstructure fabric tensor. Then, the fractures are modelled
in Callovo-Oxfordian claystone with finite element method by considering the development of
shear strain localisation bands, and by using an enriched model to reproduce the shear banding
properly. The cross-anisotropy influence on shear banding is studied through numerical applica-
tions of small and large-scale geotechnical problems that engender fractures. The two considered
applications are a plane-strain biaxial compression test and an underground gallery excavation.
The numerical results provide information about the influence of cross-anisotropy on the appear-
ance and development of shear bands. It has been noticed, among other observations, that the
material strength vary with the loading direction and that the development and shape of the
excavation fractured zone developing around a gallery is strongly influenced by the anisotropic
characteristics. Furthermore, rock materials may exhibit time-dependent or delayed plastic de-
formation that could be of importance for the long-term behaviour of underground structures.
The material viscosity is consequently included in the modelling to reproduce the increase of
deformation and gallery convergence in the long term. The details of the shear banding mod-
elling in cross-anisotropic rocks are available in the research articles of Pardoen et al. (2015c)
and Pardoen and Collin (2016).

Articles .
Pardoen, B., Seyedi, D. M., and Collin, F. (2015). Shear banding modelling in cross-

anisotropic rocks. Int J Solids Struct, 72:63-87. doi: 10.1016/j.ijsolstr.2015.07.012.
Pardoen, B. and Collin, F. (2016). Modelling the influence of strain localisation and viscosity

on the behaviour of underground drifts drilled in claystone. Comput Geotech, in press, doi:
10.1016/j.compgeo.2016.05.017.

5.1 Anisotropy features and influence on fractures

Various geomaterials, like soils and rocks, are sedimentary materials that feature an anisotropic
behaviour and different responses depending on the loading direction. The first type of anisotropy
is the inherent anisotropy that is related to the initial fabric of the particles assembly (Casagrande
and Carillo, 1944; Arthur and Menzies, 1972; Ochiai and Lade, 1983). For sedimentary materials,
a layered structure is observed because they were usually deposited vertically in a succession of
layers and were subjected to stress. Over time, this structure can lead to the creation of weakness
planes called bedding planes due to metamorphism or diagenetic processes (Blümling et al., 2007).
From a theoretical point of view and due to this structural arrangement, the anisotropic prop-
erties of such materials exhibit a certain type of symmetry with a symmetry axis and isotropic
properties in the (bedding) planes perpendicular to this axis (Abelev and Lade, 2004). This type
of material is said to be transversely isotropic or cross-anisotropic (Amadei, 1983), and their
behaviour and response to external solicitations depend on the loading direction with respect to
their microstructure. A second possible type of anisotropy is an induced anisotropy that results
of the loading and deformation following the material deposition (Arthur et al., 1977a; Abelev
and Lade, 2004). During material loading, applied stresses may in fact engender a modification
of the solid particles spatial arrangement which can lead to anisotropic material behaviour (Oda
et al., 1985). Induced anisotropy was firstly observed by Casagrande and Carillo (1944) in rela-
tion to soils shear failure and it can develop in materials having pre-existing inherent anisotropic
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features as well as in inherent isotropic materials.
Since the material behaviour and failure constitute crucial issues in many geotechnical prob-

lems, various theories and failure criteria have been developed for these anisotropic materials
(Graham and Houlsby, 1983; Duveau et al., 1998; Abelev and Lade, 2004; Lade, 2007). The
influence of cross-anisotropy on the material behaviour, on the shear strain localisation, and on
the fractures has been investigated by different authors whether on a small or on a large scale.
At small scale, Abelev and Lade (2003) and Lade et al. (2008) performed different tests on sand
with rotation of principal stress axes with regard to the isotropic planes of the material. They
concluded that the material strength (peak stress value) as well as the shear band inclination
and pattern may vary with the direction of loading (Fig. 5.1). Among other authors, Tejchman
et al. (2007) analysed the effect of fabric anisotropy on the shear strain localisation and on the
stress-strain behaviour, during plane-strain compression tests performed on cohesionless granu-
lar materials. They concluded that the peak stress amplitude varies with the direction of the
bedding planes, while it has only a minor influence on the shear zone thickness and inclination.
However, most of the laboratory experiments on strain localisation analyse sandy materials and
only a few are realised on rocks. At large scale, the material cross-anisotropy may also influence
the development of fractures around underground galleries as indicated by Armand et al. (2014)
and Marschall et al. (2008). This influence has been discussed previously in section 2.2.1. It is
to recall that the fracturing pattern and its extension in Callovo-Oxfordian claystone depend on
the stress state anisotropy, and that fractures even develop for galleries having a quasi-isotropic
stress state in their sections. It suggests that the anisotropic characteristics of the material may
play a paramount role in the onset of fractures.

Fig. 5.1: Shear banding patterns observed on true triaxial tests performed on Santa Monica
beach sand for various material orientations (Abelev and Lade, 2003).

In the following, the influence of the material cross-anisotropic features on the fracturing,
modelled with shear strain localisation bands, will be principally analysed. It will be investigated
with finite element method for a cross-anisotropic rock, both on a small and on a large scales.
Firstly, the constitutive elasto-viscoplastic and cross-anisotropic model is detailed in section 5.2.
The anisotropy is taken into account in the model both in the elastic and plastic behaviours.
For the plasticity, the anisotropy of a strength parameter (the material cohesion) is introduced
with a second order microstructure fabric tensor, which is a measure of the material fabric
that describes the spatial distribution of the considered strength parameter (Pietruszczak and
Mroz, 2000; Pietruszczak et al., 2002). The cohesion therefore specifies the effect of the loading
orientation relative to the material microstructure directions. Then, once the model is described,
the different parameters are calibrated based on experimental data (section 5.3).
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Finally, the influence of cross-anisotropy on shear strain localisation is investigated in rock
with hydro-mechanical numerical applications. A plane-strain biaxial compression test and the
excavation of an underground gallery are considered among various geotechnical problems gen-
erating fractures. Concerning the biaxial compression, the appearance of shear banding and its
orientation will be investigated, as well as the effect of bedding planes rotation. For the gallery
excavation modelling, a particular attention is paid to the development of an excavation frac-
tured zone around the gallery due to material anisotropy. This development is analysed firstly
in case of initial isotropic stress state, then for a major stress in the gallery axial direction.

The main novelties consist firstly in the introduction of the material inherent anisotropy and
viscosity in finite element method involving coupled second gradient approach, and secondly in
the reproduction of strain localisation with rock anisotropy influence on a large scale, around a
gallery.

5.2 Cross-anisotropic elasto-viscoplastic constitutive model

The mechanical constitutive model is defined by an elasto-viscoplastic model taking into account
the transversely isotropic behaviour of the material, in both elastic and plastic behaviours. For
the first gradient part, an anisotropic mechanical model is developed from the isotropic one
described in section 2.4.5. In addition, viscosity effects are introduced in the model with time-
dependent plastic strain. For the second gradient part of the model, the constitutive law remains
isotropic but the influence of the anisotropy of the first gradient part on the linearisation of
the balance equations is exposed. Lastly, for the hydraulic model, the anisotropy of hydraulic
properties that has already been included in Darcy’s equation is recalled.

5.2.1 First gradient mechanical model

The elasto-viscoplastic relation for the stress-strain relationship is expressed in rate (incremental)
form as follows:

σ̃
′
ij = Cijkl ε̇kl (5.1)

where ε̇ij is the strain rate, Cijkl is the constitutive tensor, and σ̃
′
ij is the Jaumann objective

effective stress rate. The pore fluid pressure effect on the Cauchy total stress field σij is char-
acterised by taking into account the anisotropy of Biot’s coefficients and the partial saturation
effect. The Biot’s stress definition for unsaturated and anisotropic materials yields:

σij = σ
′
ij + bij Sr,w pw (5.2)

where σ′ij is the effective stress field, Sr,w is the degree of water saturation, pw is the pore water
pressure, and bij is the Biot’s anisotropic tensor (see Eqs. 5.22 and 5.42).

Viscosity is taken into account by assuming that the plastic strain is composed of a time-
independent instantaneous strain εpij but also of a time-dependent creep strain εvpij . Consequently,
the total strain rate is partitioned in an elastic ε̇eij , a plastic ε̇

p
ij , and a viscoplastic ε̇vpij components:

ε̇ij = ε̇eij + ε̇pij + ε̇vpij (5.3)

The elastic and plastic behaviours are defined in the following for anisotropic materials, which
means that the elastoplastic properties depend on the coordinate axes to which the properties
are referred and therefore depend on the orientation. Furthermore, as the plastic strain, the
viscoplastic strain is described by a loading function, a viscoplastic potential, and a hardening
law.
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Linear elasticity theory

The linear elastic theory is based on the Hooke’s law:

σ̃
′
ij = Ceijkl ε̇

e
kl (5.4)

where ε̇eij is the elastic strain rate and Ceijkl is the elastic stiffness tensor of the drained mate-
rial, which is anisotropic for anisotropic materials (Graham and Houlsby, 1983). This tensor is
composed of 36 components that reduce, because of symmetry, to 21 independent parameters
that are necessary to fully describe the material anisotropic elasticity. Generally, materials show
limited forms of anisotropy. For instance, an orthotropic elastic material has three mutually or-
thogonal symmetry planes and a cross-anisotropic material exhibits parallel isotropic planes with
a vertical axis of symmetry (Lekhnitskii, 1963). The planes of material symmetry are described
in Fig. 5.2 for these two types of anisotropic materials.

Planes of material
symmetrye2

e3

e1

e2

e3

e1

(a) (b)

Fig. 5.2: Anisotropic materials: (a) orthotropic anisotropy and (b) transverse isotropy.

In case of orthotropy and cross-anisotropy, the properties are related to the orthotropic (and
orthogonal) coordinate axes e1, e2, and e3, and the (e1,e2,e3) space represents the orthotropic
configuration (Amadei, 1983) as illustrated in Fig. 5.3. These orthotropic coordinate axes may
not correspond to the global coordinate axes (x,y,z) and the change of reference system is charac-
terised by the rotations around the orthotropic axes. In Fig. 5.3, only one rotation around the e3

axis is illustrated since this isotropic planes rotation will be analysed in numerical applications.
However, rotations around the other orthotropic axes can be envisaged in three-dimensional
problems.

The Hooke’s stress-strain relation is formulated in the orthotropic axes as follows:

]σ̃
′
ij = Ceijkl

]ε̇ekl (5.5)

]ε̇eij = De
ijkl

]σ̃
′
kl (5.6)

where the notation ] denotes a quantity in the orthotropic axes and De
ijkl is the elastic compliance

tensor corresponding to the inverse of the matrix Ceijkl. For orthotropy, the behaviour of the
material is described by 9 independent parameters: E1, E2, E3, ν12, ν13, ν23, G12, G13, G23. The
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e3

l1

l2

l3

e2

y

x

z=e3

e1

a

(a)

#
s32’

#
s31’

#
s33’

e2

e1

(b)

#
s22’

#
s21’

#
s23’

#
s12’

#
s11’

#
s13’

Fig. 5.3: Principal and orthotropic axes for a representative elementary volume exhibiting cross-
anisotropy: (a) rotation of the isotropic planes, (b) stress state in the orthotropic configuration
and generalised loading vector.

elastic relation is defined as follows:

]ε̇e11

]ε̇e22

]ε̇e33

]ε̇e12

]ε̇e13

]ε̇e23



=



1

E1
−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1

E2
−ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1

E3
0 0 0

0 0 0
1

2 G12
0 0

0 0 0 0
1

2 G13
0

0 0 0 0 0
1

2 G23





]σ̃
′
11

]σ̃
′
22

]σ̃
′
33

]σ̃
′
12

]σ̃
′
13

]σ̃
′
23



(5.7)

and the equality below must be satisfied due to the symmetry of the tensor:

νij
Ei

=
νji
Ej

(5.8)

which corresponds to:

ν12

E1
=
ν21

E2
,

ν13

E1
=
ν31

E3
,

ν23

E2
=
ν32

E3
(5.9)

Moreover, thermodynamic considerations require that the energy stored in a material configu-
ration Ω undergoing deformation must be positive for elastic materials (Lekhnitskii, 1963). The
strain energy per unit volume reads:

1

2
]ε̇eij

]σ̃
′
ij =

1

2
]ε̇eij

]ε̇ekl C
e
ijkl =

1

2
]σ̃
′
ij
]σ̃
′
kl D

e
ijkl > 0 (5.10)

This quadratic form of the strain energy function is positive definite if the conditions below are
satisfied:

1− ν12 ν21 > 0 , 1− ν13 ν31 > 0 , 1− ν23 ν32 > 0 (5.11)

1− ν12 ν23 ν31 − ν21 ν13 ν32 − ν12 ν21 − ν13 ν31 − ν23 ν32 > 0 (5.12)
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E1 > 0 , E2 > 0 , E3 > 0 (5.13)

G12 > 0 , G13 > 0 , G23 > 0 (5.14)

By inverting the compliance matrix:

Ceijkl =
[
De
ijkl

]−1 (5.15)

the elastic stiffness tensor and the Hooke’s law read:

]σ̃
′
11

]σ̃
′
22

]σ̃
′
33

]σ̃
′
12

]σ̃
′
13

]σ̃
′
23



=



1− ν23 ν32

E2 E3 Υ

ν21 + ν31 ν23

E2 E3 Υ

ν31 + ν21 ν32

E2 E3 Υ
0 0 0

ν12 + ν13 ν32

E1 E3 Υ

1− ν13 ν31

E1 E3 Υ

ν32 + ν12 ν31

E1 E3 Υ
0 0 0

ν13 + ν12 ν23

E1 E2 Υ

ν23 + ν21 ν13

E1 E2 Υ

1− ν12 ν21

E1 E2 Υ
0 0 0

0 0 0 2 G12 0 0

0 0 0 0 2 G13 0

0 0 0 0 0 2 G23





]ε̇e11

]ε̇e22

]ε̇e33

]ε̇e12

]ε̇e13

]ε̇e23



(5.16)

with:
Υ =

1− ν12 ν21 − ν13 ν31 − ν23 ν32 − 2 ν12 ν23 ν31

E1 E2 E3
(5.17)

For cross-anisotropy, the number of independent parameters needed to describe the material
elasticity decreases to 5: E‖, E⊥, ν‖‖, ν‖⊥, G‖⊥, where the subscripts ‖ and ⊥ indicate, respec-
tively, the directions parallel and perpendicular to the isotropic planes. Considering (e1,e3) as
the orientation of the isotropic planes (bedding planes for sedimentary materials) and e2 as the
normal to these planes lead to the following definition of the elastic compliance matrix:

]ε̇e11

]ε̇e22

]ε̇e33

]ε̇e12

]ε̇e13

]ε̇e23



=



1

E‖
−
ν⊥‖

E⊥
−
ν‖‖

E‖
0 0 0

−
ν‖⊥

E‖

1

E⊥
−
ν‖⊥

E‖
0 0 0

−
ν‖‖

E‖
−
ν⊥‖

E⊥

1

E‖
0 0 0

0 0 0
1

2G‖⊥
0 0

0 0 0 0
1

2G‖‖
0

0 0 0 0 0
1

2G⊥‖





]σ̃
′
11

]σ̃
′
22

]σ̃
′
33

]σ̃
′
12

]σ̃
′
13

]σ̃
′
23



(5.18)

The symmetry of the tensor imposes:

ν⊥‖

E⊥
=
ν‖⊥

E‖
(5.19)

The shear modulus in the isotropic planes is obtained as follows:

G‖‖ =
E‖

2(1 + ν‖‖)
(5.20)
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and the other shear moduli are equal because of the symmetry of the stress and strain tensors:

G‖⊥ = G⊥‖ (5.21)

As previously, the elastic stiffness tensor can be obtained by inverting the matrix of Eq. 5.18 or
by replacing the subscripts 1, 2, and 3 by ‖, ⊥, and ‖ in Eqs. 5.16 and 5.17. Lastly, for isotropic
materials, the elastic properties are independent of the direction and the previous relations
reduces to those of Eqs. 2.76 to 2.78.

Another important aspect of the anisotropic elasticity is the compressibility of the solid
grains. It is expressed through Biot’s symmetric tensor which is defined for anisotropic material
as follows (Cheng, 1997):

]bij = δij −
Ceijkk
3 Ks

(5.22)

where δij is the Kronecker symbol and Ks is the bulk modulus of the solid phase. This expression
adopts the micro-homogeneity and micro-isotropy assumptions (Cheng, 1997) for which Ks is
homogeneous and isotropic at grain scale. The generalised Biot’s coefficient reads:

b =
bii
3

=
]bii
3

= 1− K

Ks
(5.23)

where K is the generalised drained bulk modulus of the poroelastic material:

K =
Ceiijj

9
(5.24)

For orthotropic materials, the definition of Eq. 5.22 is valid in the orthotropic axes and reduces
to a diagonal matrix expressed as follows:

]bij =

]b11 0 0
0 ]b22 0
0 0 ]b33

 (5.25)

Following the Biot’s tensor definition of Eq. 5.22, the Biot’s coefficients can be expressed as:

]b11 = 1− Ce1111 + Ce1122 + Ce1133

3 Ks
= 1− 1− ν23 ν32 + ν21 + ν31 ν23 + ν31 + ν21 ν32

3 E2 E3 Υ Ks
(5.26)

]b22 = 1− Ce2211 + Ce2222 + Ce2233

3 Ks
= 1− ν12 + ν13 ν32 + 1− ν13 ν31 + ν32 + ν12 ν31

3 E1 E3 Υ Ks
(5.27)

]b33 = 1− Ce3311 + Ce3322 + Ce3333

3 Ks
= 1− ν13 + ν12 ν23 + ν23 + ν21 ν13 + 1− ν12 ν21

3 E1 E2 Υ Ks
(5.28)

with Υ defined in Eq. 5.17. For cross-anisotropic materials with isotropic planes oriented parallel
to (e1,e3), it becomes:

]bij =

b‖ 0 0

0 b⊥ 0
0 0 b‖

 (5.29)

b‖ = 1−
2 Ce‖‖‖‖ + Ce‖‖⊥⊥

3 Ks
= 1−

1 + ν‖‖ + ν‖‖ ν⊥‖ + ν⊥‖

3 E‖ E⊥ Υ Ks
(5.30)

b⊥ = 1−
2 Ce⊥⊥‖‖ + Ce⊥⊥⊥⊥

3 Ks
= 1−

1− ν2
‖‖ + 2 ν‖⊥ + 2 ν‖⊥ ν‖‖

3 E‖ E‖ Υ Ks
(5.31)

133



CHAPTER 5. SHEAR BANDING IN CROSS-ANISOTROPIC ROCK

Υ =
1− ν2

‖‖ − 2 ν⊥‖ ν‖⊥
(
1 + ν‖‖

)
E2
‖ E⊥

(5.32)

with identical coefficients values in the isotropic planes direction. For isotropic materials, the
Biot’s coefficients reduce to:

bij = b δij (5.33)

with:

b = 1− K

Ks
(5.34)

K =
E

3(1− 2ν)
(5.35)

Because the Hooke’s law is formulated in the orthotropic axes (Eqs. 5.5 and 5.6) and the
stress field is formulated in the global axes (Eq. 5.2), a change of coordinate reference system
has to be computed. It is characterised by the three Euler’s angles αi corresponding to rotations
around the three orthotropic axes ei. The matrix of rotation is defined as:

Rij =

 cosα2 cosα3 −cosα2 sinα3 sinα2

cosα1 sinα3 + sinα1 sinα2 cosα3 cosα1 cosα3 − sinα1 sinα2 sinα3 −sinα1 cosα2

sinα1 sinα3 − cosα1 sinα2 cosα3 sinα1 cosα3 + cosα1 sinα2 sinα3 cosα1 cosα2


(5.36)

If only a rotation α around e3 is considered (Fig. 5.3), as in two-dimensional problems for
instance, the rotation matrix reduces to:

Rij =

cosα −sinα 0
sinα cosα 0

0 0 1

 (5.37)

To obtain the elastic strain tensor rate in the orthotropic axes from the one expressed in the
global axes, the change of reference system is defined as:

]ε̇eij = Rik Rjl ε̇
e
kl (5.38)

Once the stress state is calculated in the orthotropic axes with Hooke’s law (Eq. 5.5) it can be
reformulated in the global axes by reversing the rotation:

σ̃
′
ij = Rki Rlj

]σ̃
′
kl (5.39)

With the above transformations, the stress state can be expressed in both systems:

σij = σ
′
ij + bij Sr,w pw (5.40)

]σij = .]σ
′
ij + .]bij Sr,w pw (5.41)

provided that an identical transformation is realised for the Biot’s tensor:

bij = Rki Rlj
]bkl (5.42)

134



CHAPTER 5. SHEAR BANDING IN CROSS-ANISOTROPIC ROCK

Plasticity theory

The plasticity theory is equivalent to the one detailed in section 2.4.5. For the considered
material, it consists of a non-associated elastoplastic internal friction model with a Van Eekelen
yield surface. In addition to the anisotropic elastic behaviour detailed in the previous section,
the plastic behaviour and the strength parameters of the material can also be anisotropic and
therefore depend on loading direction and material structure orientation. Various failure criteria
for anisotropic materials have been developed and different ways are possible to introduce the
structural inherent rock anisotropy in the mechanical constitutive model, and to couple it to
strain localisation approach.

Duveau et al. (1998) classified these failure criteria in two main categories: the continuous
and the discontinuous criteria. For the continuous approaches (Hill, 1950; Boehler and Sawczuk,
1977), the mathematical description of the inherent anisotropy can be realised with strength
variation related to strength tensors, to the type of material symmetries (axes of symmetry),
and including stress dependency. To describe the material fabric, the anisotropy has also been
formulated by invoking the notion of microstructure fabric tensor (Pietruszczak and Mroz, 2000;
Lade, 2007). Moreover, the strength anisotropy can be described in an empirical manner by the
determination of evolution laws, as a function of loading orientation, for the strength parameters
of isotropic criteria (Jaeger, 1971). For the discontinuous approaches, the emphasis is put on
the description of the failure process and on the related physical mechanisms. These theories
envisage discontinuous weakness planes (Jaeger, 1960) and assume, for cross-anisotropic rocks,
that fracture of the bedding planes or of the rock matrix can occur and are defined by different
failure criteria. Other criteria postulate the existence of a critical plane (weakest orientation)
along which the failure criterion reaches a maximum (Walsh and Brace, 1964; Hoek and Brown,
1980).

Among the different manners of introducing the anisotropy, the fabric tensor concept is con-
sidered. It introduces a second order microstructure tensor which is a measure of the material
fabric. This tensor can characterise the arrangement of intergranular contacts (particles assem-
bly), or can describe the spatial distribution of voids, cracks, and material strength parameters,
as proposed in homogeneous problems by Chen (2009), Chen et al. (2010), Pietruszczak and
Pande (2001), and Pietruszczak et al. (2002).

For anisotropic cohesive-frictional materials and the considered plastic criterion, both cohesive
and frictional characteristics could depend on the orientation as considered by Pietruszczak and
Mroz (2001) for instance. In the stress invariant plane (Fig. 2.20 (a)), a modification of the
cohesion engenders a shifting of the yield surface parallel to the initial surface which means that
the strength variation does not evolve with the mean effective stress. A modification of the friction
angle engenders an increase of the slope of the yield surface meaning that the strength variation
depends on the mean effective stress. To clarify if the strength dependence on the loading
orientation evolves with increasing mean stress, the material resistance should be analysed from
laboratory compression tests for various orientations and various confining pressures. However,
such results are not always available in a sufficient number to precisely define the strength
evolution of a given material. In the following, uniaxial compression tests on Callovo-Oxfordian
claystone are mainly used to calibrate the anisotropy of the plastic material behaviour and it is
assumed that the strength variation depends mainly on the orientation, not on the mean stress.
As a consequence, only the cohesion anisotropy is envisaged.

Hereafter, the material cohesion anisotropy is defined with a second order microstructure
fabric tensor aij describing the cohesion spatial distribution. It characterises the initial fabric
of the material and its eigenvectors correspond to the principal material microstructure axes,
i.e. the orthotropic axes ei. The cohesion corresponds to the projection of this tensor on a
generalised unit loading vector li that characterises the loading direction relative to the material
microstructure orientations (Pietruszczak and Mroz, 2000, 2001; Chen et al., 2010). As detailed
in Fig. 5.3, each component of li corresponds to the stress resultant acting on facets of normal
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ei and is defined as follows:

li =

√
]σ
′2
i1 + .]σ

′2
i2 + .]σ

′2
i3

]σ
′
jk.

]σ
′
jk

(5.43)

where ]σ
′
ij is expressed in reference to the material orthotropic axes. Therefore, the cohesion

specifies the effect of the load orientation relative to the material axes (Pietruszczak et al., 2002;
Pietruszczak, 2010):

c0 = aij li lj (5.44)

where c0 is the initial cohesion before softening. It can also be expressed by employing the
deviatoric part of the microstructure fabric tensor (Kanatani, 1984):

c0 = c̄ (1 +Aij li lj) (5.45)

Aij =
âij
c̄

=
aij
c̄
− δij (5.46)

c̄ =
aii
3

(5.47)

where c̄ is a microstructure parameter, Aij is a traceless symmetric tensor, Aii = 0, and âij is
the deviatoric part of the microstructure tensor aij :

âij = aij −
akk
3

δij (5.48)

The above expression of Eq. 5.45 can be generalised by considering higher order tensors:

c0 = c̄
(

1 +Aij li lj + b1 (Aij li lj)
2 + b2 (Aij li lj)

3 + ...
)

(5.49)

where b1, b2... are constants.
Considering orthotropy and referring the problem to the material axes imply Aij = 0 for

i 6= j with Aii = A11 +A22 +A33 = 0 and the projection of Aij on the loading vector is:

Aij li lj = A11 l
2
1 +A22 l

2
2 +A33 l

2
3 (5.50)

Moreover, for an isotropic stress state l1 = l2 = l3 =
√

1/3 by Eq. 5.43 which leads to
Aij li lj = Aii/3 = 0 by Eq. 5.50 and to c0 = c̄ by Eq. 5.49. Consequently, c̄ is the cohesion
of the orthotropic material subjected to an isotropic loading. Considering cross-anisotropy im-
plies A11 = A33 = A‖ and A22 = −A11 − A33 = −2A‖ if the isotropic planes are parallel to
(e1,e3), with A‖ being the component of the microstructure operator Aij in the isotropic planes.
This yields:

Aij li lj = A‖
(
1− 3 l22

)
(5.51)

where l2 is the component of li acting on a facet parallel to the isotropic planes. The late
expression for cohesion of Eq. 5.49 becomes:

c0 = c̄
(

1 +A‖
(
1− 3 l22

)
+ b1 A

2
‖
(
1− 3 l22

)2
+ b2 A

3
‖
(
1− 3 l22

)3
+ ...

)
(5.52)

where the constants c̄, A‖, b1, b2... can be obtained from experimental data and laboratory tests.
The above definition of the cohesion is related to the initial material cohesion, before soften-

ing. The cohesion softening is given by:

c = c0 +
(cf − c0) 〈ε̂peq − decc〉
Bc + 〈ε̂peq − decc〉

(5.53)
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and has already been described in Eq. 2.95. More information about the different softening
parameters is available in the section 2.4.5. Because c0 evolves due to the material fabric and
to the loading, it is more appropriate for the cohesion softening to define a final cohesion that
evolves in the same manner by:

cf =
c0

ξc
(5.54)

where ξc is the ratio of the cohesion softening.

Viscoplasticity theory

Creep deformations may be important to take into account for the long-term feasibility analysis
of deep geological repository of nuclear radioactive wastes. Such deformations are introduced
with the objective of analysing if a viscoplastic mechanism could improve the reproduction of the
increase of gallery convergence in the long term. The approach is basic and involves one simple
mechanism for the creep behaviour which is defined independently of the plastic behaviour. It
is based on the development proposed by Jia et al. (2008) and Zhou et al. (2008) who analysed
the viscoplastic behaviour of the Callovo-Oxfordian claystone.

Viscoplasticity is introduced by considering that the material viscosity implies a time-depen-
dent plastic strain εvpij corresponding to a delayed plastic deformation (Perzyna, 1966). The
time development of deformation can be related to the progressive evolution of the material
microstructure or to mechanical properties degradation (damage) that are due to diverse chemical
and physical processes (Shao et al., 2003, 2006a). Different processes with different time scales
may exist and lead to different viscoplastic flow mechanisms; nevertheless, only one isotropic
mechanism is considered hereafter.

Based on the work of Jia et al. (2008) and Zhou et al. (2008), a viscoplastic flow mechanism
is introduced with a yield function F vp and a potential Gvp. The viscoplastic loading surface
and potential surface are given by:

F vp ≡
√

3 IIσ̂′ − α
vp g (β) R̄

√
Avp

(
Cvp +

Iσ′

3R̄

)
= 0 (5.55)

Gvp ≡
√

3 IIσ̂′ − (αvp − βvp) g (β) R̄

(
Cvp +

Iσ′

3R̄

)
= 0 (5.56)

where Iσ′ is the first stress invariant, IIσ̂′ is the second deviatoric stress invariant, R̄ is a normal-
ising parameter taken as equal to the uniaxial compressive strength R̄ = Rc, Avp is an internal
friction coefficient defining the curvature of the viscoplastic loading surface, Cvp is a constant
cohesion coefficient that denotes the material cohesion in saturated condition, βvp is a viscoplas-
tic potential parameter, and g (β) is a function allowing to take into account the influence of the
Lode angle on the viscoplastic loading surface (g (β) = 1 for simplicity reason). Moreover, the
consistency condition does not hold for viscoplasticity; thus, the yield function can be positive
F vp ≥ 0.

Both the yield and potential functions are controlled by a delayed viscoplastic hardening
function αvp which generates isotropic hardening and describes the increase of the internal friction
coefficient related to the viscoplastic loading surface. It is defined as:

αvp = αvp0 + (1− αvp0 )
εvpeq

Bvp + εvpeq
(5.57)

where αvp0 is the initial threshold for the viscoplastic flow, Bvp is a parameter controlling the
evolution of αvp, and εvpeq is the equivalent viscoplastic strain, i.e. the generalised viscoplastic
distortion. The rate of the equivalent viscoplastic strain is given by:

ε̇vpeq =

√
2

3
˙̄εvpij ˙̄εvpij (5.58)
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where the viscoplastic distortion reads (Jia et al., 2008):

˙̄εvpij = ε̇vpij − ε̇
vp
kk δij (5.59)

The viscoplastic flow rule is defined as follows (Perzyna, 1966):

ε̇vpij = γ

〈
F vp

R̄

〉N ∂Gvp

∂σ
′
ij

(5.60)

where γ is the fluidity coefficient that depends generally on the temperature T , N is a parameter
which describes the creep curve shape, and 〈 〉 are the Macaulay brackets with 〈x〉 = x if x ≥ 0
and 〈x〉 = 0 if x < 0. The following function is used for the fluidity:

γ = γ0 exp
(
− γ1

R T

)
(5.61)

where γ0 is the fluidity value at a reference temperature, R is the gas constant, T is the absolute
temperature expressed in Kelvin, and γ1 is a parameter controlling the influence of temperature
on the material viscosity. However, the temperature is assumed constant and a value of T =
293 K (20 °C) is adopted.

It has to be mentioned that, in the proposed approach, the plastic and creep deformations are
separately treated and two different models are used to describe the deformation mechanisms.
The plastic and viscoplastic loading surfaces are not defined with an identical mathematical
expression and similar internal variables. Yet, the plastic and viscoplastic strains are both related
to the plastic behaviour of the material and differ by the time scales at which they develop.
Consequently, for this type of approach, the physical explanation of the creep mechanism is
not clearly established. In contrast to this classical approach exist unified approaches for which
the plastic and viscoplastic deformations are treated in a similar manner (Zhou et al., 2008).
Nonetheless, a classical approach is valid as long as the viscoplastic loading surface remains
inside the plastic one.

The two surfaces are illustrated in the stress invariants plane in Fig. 5.4 for different values
of the hardening function αvp. It is observed for αvp = 0 that the viscoplastic loading surface
corresponds to a second deviatoric stress invariant equal to zero, IIσ̂′ = 0. Such case is possible
only if instantaneous viscoplastic mechanism is envisaged at very low deviatoric stress, without
initial threshold for the viscoplastic flow, αvp0 = 0. It generates viscoplastic flow F vp > 0 and
deformation ε̇vpij > 0 as soon as the deviatoric stress is not equal to zero. For αvp > 0, viscoplastic
deformations are generated if the current stress state is located outside the viscoplastic loading
surface (no consistency condition for viscoplasticity), which causes an increase of αvp and the
hardening of the surface. The viscoplastic flow reduces and stops if the current stress state is
located inside the surface, which can be achieved by hardening or modification of the stress state.

Plastic loading surface

IIs’

F =0
p

Is’

F  =0
vp

=0a
vp

Viscoplastic loading

>0a
vp

surface with hardening

Current stress state

F  >0
vp

(a
vp
≥0)

Fig. 5.4: Viscoplastic surface hardening.
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5.2.2 Second gradient mechanical model

As already mentioned in section 3.3.2, only a little information is available on the second gradient
constitutive equation (Eq. 3.78); thus, the linear elastic law remains isotropic. However, the
anisotropy of the first gradient model may have an influence on the balance equations and on
their linearisation.

The constitutive tensor Cijkl is involved in the definition of the first gradient constitutive
law (Eq. 5.1) and in the matrix

[
Eτ1

1

]
composing the element stiffness matrix

[
Eτ1

]
(Eq. 4.64).

Nevertheless, the expression of
[
Eτ1

1

]
remains unchanged (no additional terms) even if Cijkl

is anisotropic (Chambon and Moullet, 2004). The Biot’s tensor is also anisotropic and the
poroelastic relation:

σ̇
′

= Kε̇v (5.62)

assumed in the field equation linearisation of the second gradient model (section 4.1.3), remains
valid by considering the relations of Eqs. 5.22 to 5.24. Moreover, the time derivative of the solid
density is related to the variations of pore water pressure as well as of mean effective stress, and
involves the Biot’s coefficient. Nonetheless, the relation:

ρ̇s
ρs

=
(b− Φ)Sr,w ṗw + σ̇

′

(1− Φ) Ks
(5.63)

remains valid provided that b is the generalised Biot’s coefficient (Eq. 5.23). It is also the case
for related relationships as the porosity time derivative for instance. Therefore, the different
matrices composing

[
Eτ1

]
remain identical except

[
Kτ1
WM

]
which becomes:

[
Kτ1
WM

]
4×3

=


0 0 −b11 S

τ1
r,w

0 0 0
0 0 0
0 0 −b22 S

τ1
r,w

 (5.64)

due to the effective stress definition of Eq. 5.2.

5.2.3 Hydraulic model

The anisotropy of hydraulic properties has already been included in Darcy’s equation with the
anisotropic intrinsic water permeability tensor kw,ij (Eq. 4.14). For anisotropic materials, the
general form of the intrinsic permeability tensor requires nine components to describe the flow
characteristics, which reduce to six by symmetry of the tensor. For orthotropic materials, the ten-
sor reduces to a diagonal matrix with three independent parameters that refer to the orthotropic
axes:

]kw,ij =

]kw,11 0 0
0 ]kw,22 0
0 0 ]kw,33

 (5.65)

For cross-anisotropic materials, it is defined by two parameters in the directions parallel and
perpendicular to the isotropic planes:

]kw,ij =

kw,‖ 0 0

0 kw,⊥ 0
0 0 kw,‖

 (5.66)

Since the above permeability tensor is related to the orthotropic axes, a change of reference
system gives it in the global axes:

kw,ij = Rki Rlj
]kw,ij (5.67)

If the isotropic planes are horizontal, as for various sedimentary geomaterials with stratified
structure, then the permeabilities correspond to the horizontal and vertical ones: kw,‖ = kw,h
and kw,⊥ = kw,v as in Eq. 4.22.
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5.3 Calibration of model parameters

The Callovo-Oxfordian claystone is a sedimentary material that exhibits horizontal or quasi-
horizontal bedding planes; thus, the main orientations of anisotropy are located in the horizontal
isotropic planes and along the vertical direction. It goes without saying that the calibration of
the claystone parameters has to take into account these preferential material directions. In this
section, the anisotropic and elasto-viscoplastic mechanical parameters are calibrated by assuming
a homogeneous material without strain localisation as in previous calibration (section 4.2). Lo-
calised solutions with shear banding will be interpreted in the numerical modelling of section 5.4.
The anisotropic hydraulic parameters have already been defined for the considered claystone with
kw,‖ = kw,h and kw,⊥ = kw,v, and will only be summarised without further investigations.

5.3.1 Elastic parameters

To evaluate the anisotropic elastic parameters, compression experiments have been realised on
samples for different loading directions with regard to the orientation of the isotropic planes
(Fig. 5.5). The loading direction is defined by the angle α between the normal to the bedding
planes and the axial (vertical) direction of loading. For a loading with stress acting in the i
direction, the Young’s modulus is the ratio of the stress to the strain in the i direction:

Ei =
σi
εi

(5.68)

whilst the Poisson’s ratio is the ratio of strain in the j direction to the strain in the i direction:

νij = −εj
εi

(5.69)

The indexes i and j are not doubled in the latter expressions to avoid confusion with summation
index. By adequately placing strain gauges on the samples, a loading perpendicular to the
bedding planes (α = 0°) allows to determine E⊥ and ν⊥‖, a parallel loading (α = 90°) provides
E‖ and ν‖‖, and an inclined loading provides G‖⊥ (Amadei, 1983). Such determination requires
that the anisotropic directions are clearly apparent and known beforehand.

x=e1

y=e2

z=e3

y y=-e1

e2

z=e3 z=e3

x

e1

a

x=e2

a=0° 0°<a<90° a=90°

Strain
gauges

Fig. 5.5: Samples under axial compression with different orientations of the isotropic planes.

Following the reference document of Andra (2005b) and the technical report of Charlier et al.
(2008) that detail the behaviour of the Callovo-Oxfordian claystone, the ratio of Young’s modulus
parallel and perpendicular to the bedding planes ranges from 1.05 to 1.4, with average values
of about E⊥ = 4 GPa, E‖ = 5 GPa, and E‖/E⊥ = 1.25. For the other anisotropic elastic
parameters, a certain dispersion is observed and a clear tendency is not straightforward. The
values that are finally chosen are detailed in Table 5.1. Moreover, the Biot’s coefficient in the
orientation of the bedding planes corresponds to the isotropic value used previously b‖ = 0.6
which gives Ks = 8.88 GPa and b⊥ = 0.64 by Eqs. 5.30 and 5.31.
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Symbol Name Value Unit

E‖ Parallel Young’s modulus 5 GPa

E⊥ Perpendicular Young’s modulus 4 GPa
G‖⊥ Shear modulus 1.63 GPa

ν‖‖ Poisson’s ratio 0.24 −
ν‖⊥ Poisson’s ratio 0.33 −
b‖ Parallel Biot’s coefficient 0.60 −
b⊥ Perpendicular Biot’s coefficient 0.64 −
ρs Solid grain density 2750 kg/m3

Table 5.1: Anisotropic elastic mechanical parameters.

5.3.2 Plastic parameters

The calibration of the plastic parameters is realised based on experimental data provided by
the Andra in the context of the benchmark named "Transversal action - Models" (Seyedi et al.,
2012, 2013) and on additional compression tests (Andra, 2005b; Charlier et al., 2008; Yang et al.,
2013). The different experimental results are detailed in this section together with the calibration
of the numerical model.

Hardening and softening

The hardening and softening plastic behaviour of the Callovo-Oxfordian claystone is calibrated
based on triaxial compression tests. The reference tests are performed at different confining
pressures, under a relative humidity of 90 %, and are assumed to be realised under undrained
conditions. Their characteristics and results are available in Table 5.2 and Fig. 5.6, where ε1

is the axial strain, ε3 is the lateral strain, and q is the deviatoric stress corresponding to the
difference between the axial stress σ1 and the confining stress σ3:

q = σ1 − σ3 (5.70)

The tests are numerically reproduced by finite element method, with a hydro-mechanical
modelling in two-dimensional axisymmetric state. The value RH = 90 % corresponds to
pw = −14.2 MPa by Kelvin’s law and to Sr,w = 81 % by the retention curve of the mate-
rial. As previously (section 4.2), the material is considered with an isotropic plasticity (no co-
hesion anisotropy) and as homogeneous in a first approach. The pre-peak non-linear behaviour
is controlled by friction angle hardening and the post-peak behaviour is represented by cohesion
softening. Because the material is subjected to compression, either a Drucker-Prager or a Van
Eekelen yield criterion can be used without affecting the results and only the compressive re-
sistance is calibrated. The calibration results for each individual triaxial compression test are
available in Fig. 5.6 and Table 5.2 where one can observe that the values of cf are widely scat-
tered. Therefore, only the friction angle hardening will be included in the following calibrations
for homogeneous material; the cohesion softening will be introduced later to model shear banding
(section 5.4). Nevertheless, the average values are kept at this stage and a global calibration
with this set of parameters is illustrated in Fig. 5.6 without softening. In that figure are also
detailed the results for an anisotropic plasticity which will be discussed further.

Extensional properties

The extensional material properties are evaluated from triaxial extension tests that are performed
at constant mean stress:

σ =
σii
3

(5.71)
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Symbol Name Triax 01 Triax 02 Triax 03 Triax 04 Triax 05 Average Unit

Laboratory LML LML LML LAEGO LAEGO
RH Relative humidity 90 90 90 %
ε̇ Strain rate 1× 10−6 1× 10−6 1× 10−6 20× 10−6 3.5× 10−6 s−1

σ3 Confining pressure 12 12 6 2 12 MPa
α Orientation of 0 90 0 0 0 °

the loading

ψc Dilatancy angle 0.5 0.5 0.5 0.5 0.5 0.5 °
ϕc,0 Initial compression 10 10 10 10 6 10 °

friction angle
ϕc,f Final compression 23 22 24 23 24 23 °

friction angle
Bϕ Friction angle 0.0010 0.0015 0.0007 0.0005 0.0015 0.0010 −

hardening coefficient
decϕ Friction angle 0 0 0 0 0 0 −

hardening shifting
c0 Initial cohesion 4 4 4 4.5 5 4.2 MPa
cf Final cohesion 1 0.04 0.04 1 2.5 0.04− 2 MPa
Bc Cohesion softening 0.001 0.0005 0.002 0.002 0.001 0.001 −

coefficient
decc Cohesion softening 0.016 0.014 0.007 0.004 0.015 0.011 −

shifting

Table 5.2: Triaxial compression tests and calibration of plastic parameters for elastoplastic me-
chanical model.

Two test results are analysed, one with σ = 12 MPa and another with σ = 13 MPa, for an
axial load perpendicular to the bedding planes and assuming a relative humidity of RH = 90%
as well as undrained conditions (as for the triaxial compression tests). During these tests, the
axial load decreases and the confining pressure increases; therefore, the extension is in the axial
direction. The modelling is performed with both the Drucker-Prager and the Van Eekelen plastic
criteria, for an isotropic plasticity, and with the average parameters of Table 5.2. The numerical
results without cohesion softening are illustrated in Fig. 5.7 where they are compared to the
experimental results. Using the Van Eekelen model instead of the Drucker-Prager model improves
the fitting by avoiding an overestimation of the material resistance. In fact, the resistance in
extension is lower than in compression with the Van Eekelen model, which is not the case for the
Drucker-Prager criterion. This validates the use of the Van Eekelen criterion for the following
numerical applications. The final friction angles in compression and extension are equal but
the initial friction angle in extension is decreased to better match the experimental curves:
ϕe,f = ϕc,f = 23°, ϕe,0 = 7°, and ϕc,0 = 10°. The dilatancy angles in compression and extension
are also equal ψc = ψe = 0.5°.

Anisotropy of cohesion

The anisotropic plastic parameters for the cohesion in Eq. 5.52 are determined from compression
tests (Andra, 2005b; Charlier et al., 2008; Yang et al., 2013) which results indicate that the ma-
terial strength varies upon the loading orientation α. For a triaxial compression, this orientation
is linked to the loading vector component l2 by the relation:

l2 =

√
σ2

3 sin
2α+ σ2

1 cos
2α

2 σ2
3 + σ2

1

(5.72)

which reduces to:
l2 = cosα (5.73)
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Fig. 5.6: Fitting of triaxial compression tests for elastoplastic mechanical model.

for a uniaxial compression. For this type of compression, the cohesion and the uniaxial compres-
sive strength Rc are linked by:

c =
1− sinϕc,f
2 cosϕc,f

Rc + b Sr,w pw tanϕc,f (5.74)

based on a Drucker-Prager criterion and on the effective stress definition. The cohesion values
for different orientations can be obtained from mean uniaxial compressive strengths detailed by
Charlier et al. (2008): Rc,0° = Rc,⊥ = 23.5 MPa, Rc,30° = 18.7 MPa, Rc,90° = Rc,‖ = 20.6 MPa.
It is assumed that the samples are slightly desaturated (Sr,w = 95% from Charlier et al. (2008)),
ϕc,f = 23° (Table 5.2), the generalised Biot’s coefficient value is b = 0.61, and pw is obtained
from the retention curve of the material. This leads to c0° = c⊥ = 6.3 MPa, c30° = 4.8 MPa,
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Fig. 5.7: Fitting of triaxial extension tests for elastoplastic mechanical model.

c90° = c‖ = 5.4 MPa. The constants of the second order microstructure fabric tensor can
therefore be calculated: c̄ = 4.1MPa, A‖ = 0.117, b1 = 14.24, and b2 = 0 as well as higher
order terms. For these parameters, the evolution of the cohesion with orientation is illustrated in
Fig. 5.8 with a minimum value about α = 45° which is consistent with experimental observations
on other cross-anisotropic argillaceous rock (Niandou et al., 1997; Valès et al., 2004). Moreover,
the influence of the cohesion anisotropy amplitude on the shear banding appearance will be
discussed in the numerical modelling.

0

1

2

3

4

5

6

7

90 60 30 0

c
[M

P
a]

a [°]

0

1

2

3

4

5

6

7

0 0.25 0.5 0.75 1

c
[M

P
a]

l2 [-]

c0°

c30°

c90°

c
c30°

c90°

c0°

c

(a) (b)

Fig. 5.8: Evolution of the cohesion (a) as a function of the angle between the normal to the
bedding planes and the direction of loading and (b) as a function of the loading vector.

To validate these anisotropic parameters, the triaxial compression tests used to determine
the hardening and softening parameters can be modelled with the anisotropic model. Only one
global fitting is performed with the Van Eekelen criterion and without softening; the results are
available in Fig. 5.6. Among the five triaxial compression tests, the resistance is overestimated
only for the compression test performed parallel to the bedding planes. To improve this, the
value of the cohesion parallel to the bedding planes c90° can be decreased without altering the re-
production of the compression tests performed perpendicularly to the bedding. Nevertheless, the
reduction of the cohesion c90° leads to a cohesion evolution that does not correspond to classical
measured values for the considered material because it does not exhibit a lower value around
α = 45° anymore. Besides, only one compression test performed parallel to the stratification is
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modelled here which does not capture the dispersion of laboratory results. On the other hand,
the anisotropic cohesion parameters determined from the uniaxial compression tests come from
a large number of laboratory tests. Consequently, the first set of parameters seems to better suit
for the material and is kept.

5.3.3 Viscoplastic parameters

As for the plastic parameters, the viscoplastic parameters are determined based on experimental
data provided by the Andra in the context of the benchmark "Transversal action - Models".
Additionally, typical values of viscoplastic parameters for the Callovo-Oxfordian claystone under
-450 m depth are available in Jia et al. 2008. Those parameters come from a particular fitting
procedure and are therefore adjusted based on the provided reference creep tests. These creep
tests are performed at a confining pressure of 12 MPa and at different constant stress deviators
to highlight creep deformation in the long term. The stress deviators q = σ1 − σ3 correspond to
50 %, 75 %, and 90 % of a considered deviatoric peak stress of 34MPa, which gives 17, 25.5, and
30.6 MPa. Once again, a relative humidity of 90 % is considered however drained conditions
are assumed due to the long-term testing procedure. To reproduce the constant stresses in the
different directions, the tests are numerically modelled at small scale with a three-dimensional
structure corresponding to one cubic finite element. A hydro-mechanical modelling is realised,
with the average values of Table 5.2 for the friction angle hardening parameters and no cohesion
softening.

To calibrate the different parameters, the value of the initial threshold for the creep defor-
mation αvp0 has to be identified firstly. It should be determined at the onset of irreversible creep
strains during compression tests but, in practice, it is not simple to define such point precisely.
It is therefore assumed that creep strains start at low deviatoric stress for hard clay (Zhou et al.,
2008) and two types of fitting are analysed. First, in agreement with instantaneous viscoplastic
deformation mechanism, a value of αvp0 = 0 is chosen and leads to an initial viscoplastic flow
F vp0 =

√
3 IIσ̂′ ,0 by Eq. 5.55. The initial second deviatoric stress invariant and viscoplastic

flow cancel only in case of initial isotropic effective stress state. Second, anticipating the further
modelling of a gallery excavation in Callovo-Oxfordian claystone, its initial anisotropic stresses
and pore water pressure are considered. In order to avoid an initial viscoplastic flow in the rock
mass, F vp0 = 0, the value of αvp0 is chosen as (Eq. 5.55):

αvp0 =

√
3 IIσ̂′ ,0

g (β)Rc

√
Avp

(
Cvp +

Iσ′ ,0
3Rc

) (5.75)

where the values of the parameters come from Jia et al. (2008): g(β) = 1, Rc = 21 MPa,
Avp = 2.62, Cvp = 0.03; and the initial stress invariants, Iσ′ ,0 and IIσ̂′ ,0, are determined from
the initial in situ effective stress state of the argillaceous rock. In the context of the Andra’s
benchmark, the recommended anisotropic total stress state and pore water pressure are:

σv = 12.7 MPa

σh = 12.4 MPa

σH = 1.3 σh = 16.12 MPa

pw = 4.7 MPa

where σv is the vertical principal total stress, σh is the minor horizontal principal total stress,
and σH is the major horizontal principal total stress. In that case, the initial threshold for the
viscoplastic flow is αvp0 = 0.142. Finally, global calibrations are realised for the two cases for which
the final values of the viscoplastic parameters are available in Table 5.3 and the correspondences
with the experimental data are illustrated in Fig. 5.9.
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Symbol Name Value Unit

Tests Laboratory LAEGO
description RH Relative humidity 90 %

σ3 Confining pressure 12 MPa
q Stress deviator 17, 25.5, 30.6 MPa

Global Rc Uniaxial compressive strength 21 MPa
parameters Avp Internal friction coefficient 2.62 −

Cvp Cohesion coefficient 0.03 −
βvp Viscoplastic potential parameter 1.1 −
g(β) Influence of the Lode angle 1 −

Parameters for αvp0 Initial threshold for the viscoplastic flow 0 −
F vp0 = IIσ̂′ ,0 γ0 Reference fluidity 500 s−1

γ1 Temperature parameter 63× 103 J/mol
N Creep curve shape parameter 6.6 −
Bvp Viscoplastic hardening function parameter 11.0× 10−3 −

Parameters for αvp0 Initial threshold for the viscoplastic flow 0.142 −
F vp0 = 0 γ0 Reference fluidity 700 s−1

(in situ) γ1 Temperature parameter 57× 103 J/mol
N Creep curve shape parameter 5.0 −
Bvp Viscoplastic hardening function parameter 7.5× 10−3 −

Table 5.3: Calibration of viscoplastic parameters for elasto-viscoplastic mechanical model.
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Fig. 5.9: Fitting of creep tests for elasto-viscoplastic mechanical model.
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5.3.4 Final parameters

The final parameters are detailed in Table 5.4 for the elasto-viscoplastic model with the Van
Eekelen yield criterion. The values of the softening parameters (ξc = c0/cf , Bc, and decc) will
be defined later for the numerical applications with the purpose of triggering strain localisation.
For the viscoplasticity, the set of parameters with initial threshold for the viscoplastic flow
(αvp0 = 0.142) and avoiding initial in situ creep deformations in the claystone (F vp0 = 0) is kept.

Symbol Name Value Unit

Hydraulic kw,‖ Parallel intrinsic water permeability 4× 10−20 m2

parameters kw,⊥ Perpendicular intrinsic water permeability 1.33× 10−20 m2

Φ Porosity 0.173 −
Pr van Genuchten air entry pressure 15 MPa
M van Genuchten coefficient 0.33 −
Smax Maximum degree of water saturation 1 −
Sres Residual degree of water saturation 0.01 −
µw Water dynamic viscosity 0.001 Pa s
χ−1
w Water compressibility 5× 10−10 Pa−1

Elastic E‖ Parallel Young’s modulus 5 GPa

parameters E⊥ Perpendicular Young’s modulus 4 GPa
G‖⊥ Shear modulus 1.63 GPa

ν‖‖ Poisson’s ratio 0.24 −
ν‖⊥ Poisson’s ratio 0.33 −
b‖ Parallel Biot’s coefficient 0.60 −
b⊥ Perpendicular Biot’s coefficient 0.64 −
ρs Solid grain density 2750 kg/m3

Plastic η Van Eekelen yield surface convexity parameter −0.229 −
parameters ψc = ψe Dilatancy angles 0.5 °

ϕc,0 Initial compression friction angle 10 °
ϕc,f Final compression friction angle 23 °
ϕe,0 Initial extension friction angle 7 °
ϕe,f Final extension friction angle 23 °
Bϕ Friction angle hardening coefficient 0.001 −
decϕ Friction angle hardening shifting 0 −
c̄ Cohesion for isotropic loading 4.1 MPa
A‖ Cohesion parameter 0.117 −
b1 Cohesion parameter 14.24 −

Viscoplastic Rc Uniaxial compressive strength 21 MPa
parameters Avp Internal friction coefficient 2.62 −

Cvp Cohesion coefficient 0.03 −
βvp Viscoplastic potential parameter 1.1 −
g(β) Influence of the Lode angle 1 −
αvp0 Initial threshold for the viscoplastic flow 0.142 −
γ0 Reference fluidity 700 s−1

γ1 Temperature parameter 57× 103 J/mol
N Creep curve shape parameter 5.0 −
Bvp Viscoplastic hardening function parameter 7.5× 10−3 −

Table 5.4: Elasto-viscoplastic parameters for the Callovo-Oxfordian claystone.
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5.4 Numerical applications

Two numerical applications are modelled for a cross-anisotropic rock, namely the Callovo-Oxfor-
dian claystone, in order to highlight the effect of properties’ anisotropy on shear banding appear-
ance. The shear strain localisation is properly reproduced thanks to the coupled local second
gradient model defined in the preceding chapters (sections 3.3 and 4.1). Firstly, a plane-strain
biaxial compression test is modelled on a small-scale material specimen, and secondly, an un-
derground gallery drilling is reproduced on a large scale. Two values of 0.5 N and 5 kN are
used for the second gradient elastic modulus D, for the compression test and for the gallery
excavation, respectively. These values allow to properly represent shear banding with a good
numerical precision of the post-localisation behaviour within the shear bands.

5.4.1 Modelling of biaxial compression test

A plane-strain biaxial compression test under undrained conditions is reproduced numerically.
Various studies have already been performed for this type of loading, from laboratory testing to
numerical modelling (Han and Drescher, 1993; Finno et al., 1997; Collin et al., 2006; Bésuelle
et al., 2006a; Tejchman et al., 2007). In the following, the objective is to highlight the effects
of anisotropy and understand the appearance of shear strain localisation in a small material
specimen. Only saturated conditions are considered, meaning that the liquid phase (water) fully
occupies the pores, and the material viscosity is not taken into account because of the relatively
short duration of the compression test.

Numerical model

The representation of the hydro-mechanical model with its boundary conditions is detailed in
Fig. 5.10. The considered sample has a height of 50 mm and a width of 20 mm with a zero initial
pore water pressure, the normal water flows are blocked to a value of zero along the sample
boundaries which makes them impervious (globally undrained sample), and a constant confining
pressure is applied. Experimental studies indicate that a high confinement delays the appearance
of strain localisation and therefore implies a larger vertical deformation and a higher peak stress
to reach the localisation appearance (Mokni and Desrues, 1999). Nonetheless, the investigation
of different confinements is not treated and only one confining pressure of σx = 6 MPa is
considered.
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Fig. 5.10: Numerical model used for the modelling of a plane-strain biaxial compression test
performed on a cross-anisotropic rock.

To model the vertical compression, the vertical displacement of all nodes of the sample’s
upper surface is progressively increased during the test with a constant loading strain rate of
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1×10−6 s−1 up to 1.5 mm, which corresponds to a total vertical strain of εy = 0.03. The vertical
displacement of all nodes of the bottom surface is blocked and the displacement of the central node
is blocked both in the vertical and horizontal directions to avoid rigid body displacement. Such
boundary conditions correspond to top and bottom smooth boundaries. When cross-anisotropy
is considered, the orientation of the material isotropic planes is defined by the angle α between
the vertical loading direction and the normal to the isotropic planes. This angle corresponds to
the Euler’s angle in the rotation matrix of Eq. 5.37.

The parameters of the cohesion softening are defined to trigger the strain localisation and
are a ratio of cohesion softening of ξc = 2, a cohesion softening coefficient of Bc = 0.03, and
a cohesion softening shifting of decc = 0.011. This shifting permits to delay the appearance of
strain localisation and of the peak stress in the global stress-strain response curve of the specimen.
Although cohesion softening is considered, strain localisation is not automatically triggered in
a small material sample subjected to a biaxial compression. To ease the localisation onset, a
material imperfection is included in the specimen and consists of an element (Fig. 5.10) having
a constant cohesion of c̄ = 4.1 MPa (Table 5.4). It is to recall that a material imperfection
does not affect the global stress-strain responses of the specimen during a biaxial plane-strain
compression for the same confining pressure (Desrues, 1984; Desrues and Viggiani, 2004).

Anisotropy effect and strain localisation

Because a low elastic anisotropy is considered, it has only a small influence on the global reaction
of a specimen biaxially loaded. Therefore, a cross-anisotropic elasticity with horizontal isotropic
planes (α = 0°) is taken into account and the effect of plastic anisotropy is investigated. The
evolution of the global deviatoric stress:

q = σy − σx (5.76)

with the vertical strain εy is detailed in Fig. 5.11 for an isotropic (c0 = c̄ = 4.1MPa, A‖ = b1 = 0)
and an anisotropic plasticity (c̄ = 4.1 MPa, A‖ = 0.117, and b1 = 14.24 from Table 5.4). The
homogeneous solution without cohesion softening (ξc = 1) and the localised solution are detailed
for both cases.

0.015 0.02 0.025 0.03

Isotropic plasticity, homogeneous

Anisotropic plasticity, homogeneous
Anisotropic plasticity, localised
Plasticity
Bifurcation
Shear band analyses

Isotropic plasticity, localised

ey [-]

q
 [

M
P

a]

0

5

10

15

20

25

0 0.005 0.01

1 2

3
4

Fig. 5.11: Stress-strain curves for isotropic and cross-anisotropic plasticity with horizontal
isotropic planes.

For the homogeneous solutions, the material is initially in an elastic state up to a deformation
where plasticity is observed all over the specimen, which corresponds to the crosses on the stress-
strain curves. In the plastic domain, the increase of the deviatoric stress is due to the friction
angles hardening. If the isotropic and anisotropic homogeneous solutions are compared, one
can observe an increase of the material global resistance due to the anisotropy of the cohesion
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and its evolution during the loading. When the isotropic planes are horizontal and an isotropic
confinement followed by a vertical loading is applied, the global loading tends to be more and
more perpendicular to the bedding. In this case the cohesion evolves from its original value c̄,
corresponding to an isotropic loading with loading vector component l2 =

√
1/3 = 0.58, towards

the right hand side of the curve detailed in Fig. 5.8. The evolution of the cohesion in the specimen
can be described more accurately by studying one element (element 1 in Fig. 5.14). Only one
element needs to be analysed so far because the considered solutions are homogeneous and the
evolutions of its cohesion, loading vector, and yield index are represented in Fig. 5.15. The
increase of cohesion is clearly noticeable in Fig. 5.15 (a) when anisotropy is taken into account
because the loading vector component l2 increases from 0.58 to 0.88 during the loading (Fig. 5.15
(b)), which affects the cohesion value (Eq. 5.52). The yield index is defined as the reduced second
deviatoric stress invariant:

Y I =
IIσ̂′

IIp
σ̂′

(5.77)

where IIσ̂′ is the current second deviatoric stress invariant and IIp
σ̂′

corresponds to the value for
which the material enters plastic state for an identical value of the current first stress invariant
Iσ′ . The current state of the material is therefore elastic for Y I < 1 and plastic for Y I = 1. One
can observe in Fig. 5.15 (c) for the homogeneous solutions that the material becomes rapidly
plastic and remains plastic up to the end of the loading whether cross-anisotropic plasticity is
taken into account or not.

To trigger strain localisation the cohesion softening (ξc = 2, Bc = 0.03, and decc = 0.011)
and the material imperfection are added to the previous modelling. The evolution of the global
deviatoric stress with the vertical strain (Fig. 5.11) exhibits different zones: an elastic zone, a
pre-peak plastic zone without reaching the bifurcation criterion, a pre-peak plastic zone where
the bifurcation criterion is reached, and a post-peak plastic zone. In homogeneous plastic state,
the friction angle increases due to hardening before the peak stress is reached. The possibility
of localisation occurrence is then derived from the solutions of the characteristic equation of the
bifurcation criterion (Eq. 3.11). For associated plasticity the bifurcation criterion is met only at
peak stress but for non-associated plasticity, which is assumed here, it can be met for positive
hardening and shear banding can occurs in the hardening regime (Rudnicki and Rice, 1975). The
pre-peak hardening plastic regime can thus be divided in two parts: one in which the bifurcation
criterion is not reached and another where it is reached all over the specimen (after the triangles
on the stress-strain curves) and where strain localisation can initiate even if the specimen still
remains homogeneously plastic. The latter corresponds to continuous bifurcation as described
in the Rice criterion development in section 3.2.1.

In order to understand the evolution of the shear band activity during the biaxial loading,
different shear band analyses are performed for the anisotopic case. Theses analyses are indicated
with dots on the stress-strain curve of Fig. 5.11 and are detailed in Fig. 5.12 where the deviatoric
strain increment, the plastic zone, the nodal velocity norm, and the pore water pressure are
illustrated. The deviatoric strain increment κeq represents the band activity:

κeq =
˙̂εeq dt∫
˙̂εeq dt

(5.78)

with ε̂eq being the equivalent total deviatoric strain:

ε̂eq =

√
2

3
ε̂ij ε̂ij (5.79)

The plastic zone represents the plastic loading integration points, and the nodal velocity norm
corresponds to the norm of the nodal displacement rates:

||v|| =
√
u̇2
x + u̇2

y (5.80)
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The velocity is represented on the deformed mesh and the global movements in the specimen are
indicated with arrows.

Fig. 5.12: Appearance of strain localisation before peak stress and complete formation of a shear
band after peak stress for cross-anisotropic material with horizontal isotropic planes.

The analyses of shear band once the bifurcation is reached but before the peak stress can be
observed for εy = 0.0060 (1) and εy = 0.0075 (2) in Fig. 5.12. The results in terms of deviatoric
strain increment indicate clearly that different shear bands appear and are in competition at this
stage. Still, the plasticity remains homogeneous and the velocity norms are globally directed
downwards which indicate that these shear bands are not fully formed yet. Furthermore, the
material imperfection dictates the shear band position which passes through it. In fact, the stress
field is uniform for a uniform specimen and the bifurcation criterion is reached simultaneously
in the whole specimen. On the other hand, an imperfection induces a non-uniformity of the
stress field in its vicinity which can be sufficient to reach first the bifurcation criterion (only in

151



CHAPTER 5. SHEAR BANDING IN CROSS-ANISOTROPIC ROCK

the imperfection), and then the material imperfection acts as a nucleation point for the strain
localisation onset.

Once the cohesion softening starts, one of the shear bands outweighs the others and fully
develops. The peak stress corresponds then to the appearance of a fully formed shear band
throughout the specimen. The full formation of the shear band can be observed in Fig. 5.12
for εy = 0.0090 (3) and εy = 0.0105 (4) by the concentration of deviatoric strain and plasticity
inside the shear band. After the peak, a rapid drop of the deviatoric stress is observed (Fig. 5.11)
due to the cohesion softening and to the elastic unloading of the elements located outside the
shear band, the elements inside the band remain plastic. As already mentioned in previous
chapters, the strain softening behaviour (reduction of deviatoric stress with increase of plastic
strain) causes a loss of uniqueness of the post-peak solution due to the possible elastic unloading.
An infinity of localised solutions with non-uniform strain distributions may occur at the peak
stress bifurcation point and even if a material imperfection might act as a strain localisation
attractor, it does not restore the uniqueness of the solution. Further, the strong decrease of the
specimen global reaction is followed by a plateau with a quasi-constant deviatoric stress value.

The same type of shear strain localisation results have been obtained experimentally by
Desrues (1984) and Desrues and Viggiani (2004) for many biaxial compression tests. Their
results have been discussed in section 3.1.2 and Fig. 5.13 illustrates a supplementary example
of shear banding development in sand, with stress-strain curve and incremental fields of shear
strain intensity. The experimental results highlight multiple initiations of strain localisation
before the peak stress, with temporary localisation mechanisms being in competition, and a
complete formation of a shear band at peak stress, which passes through the material inclusion if
the imperfection is strong enough. The latter observations are confirmed by the numerical results.
Unfortunately, as mentioned in section 3.1.2, only a few experimental analyses of shear strain
localisation are available for rocks like the Callovo-Oxfordian claystone. Besides, the resaturation
conditions are generally not the same as the ones of the developed modelling; consequently,
comparison is not straightforward and only qualitative comparisons are proposed.
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Fig. 5.13: Stress-strain curve and incremental fields of shear strain intensity based on stereopho-
togrammetry in sand (according to Desrues and Viggiani (2004)).

Going back to the numerical results, the shear strain localisation band exhibits a reflexion on
the bottom surface of the sample; consequently, the material is divided in three zones or blocks
with different types of movements (see the nodal velocity norm in Fig. 5.12). Firstly, the bottom
right zone is blocked due to the constrained displacements in both directions imposed on the
central node of the bottom surface. Secondly, the major central zone is pushed downwards and
slides along the bottom right zone in the bottom left direction. Lastly, the bottom left zone can
move only in the left direction because it is blocked in the vertical direction. The same types of
block displacements along the shear bands are observed on experimental results (Desrues, 1984;
Desrues and Viggiani, 2004).
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Fig. 5.12 also illustrates the evolution of the pore water pressure during the localisation
process. Initially, the pore pressure is nil in the sample, then it evolves during the loading
and a uniform variation is expected under undrained conditions. As long as the deformation is
uniform within the sample, the pore pressure remains uniform as well. Once strain localisation
and non-uniformity appear, one can observe a slight variation of the pore pressure across the
sample. Before the peak stress (εy < 0.0086), the pressure remains quasi-uniform and globally
increases. After the peak stress, a vertical gradient tends to appear with lower values in the
localised zone that may be due to dilatancy effect. The material dilatancy angle is very low
(ψ = ψc = ψe = 0.5° in Table 5.4) so such phenomenon should be limited; nevertheless, it can
also be due to the kinematics related to localisation process. Nonetheless, the pore pressure
variations remain low across the whole sample.

Moreover, as the results of Fig. 5.11 indicate, the peak stress amplitude q and position εy
of the localised solutions are different when plastic anisotropy is taken into account. The peak
resistance of the specimen is higher when considering cohesion anisotropy and the global vertical
deformation required to reach this peak is lower. This is due to the homogeneous evolution of
the specimen cohesion before the peak stress (Fig. 5.15 (a)). After the peak stress (εy > 0.0086),
the evolution of cohesion is not homogeneous anymore and, consequently, different elements
in the specimen have to be analysed to capture this non-homogeneous evolution. The three
elements of Fig. 5.14 have been chosen: element 1 is the same central element as considered for
the homogeneous solutions and is located outside the shear band, element 2 is located inside
the shear band, and element 3 is located on the interface between the shear band and the outer
material. The evolution of cohesion, loading vector, and yield index of those three elements are
detailed in Fig. 5.15.

Fig. 5.14: Elements chosen for the analysis of cohesion evolution during biaxial compression test.

The element 1 is located outside the shear band and does not remain plastic after it fully
develops. Plastic deformation is not accumulated after the peak stress because of this elastic
unloading, and the cohesion decreases only a little regarding the homogeneous solution due to
the modification of loading orientation (l2 slightly decreases after the peak) and to the cohesion
anisotropy. The element 2 is located inside the shear band and remains plastic which engenders
an accumulation of plastic deformation and a strong cohesion decrease due to softening. A slight
part of the cohesion decrease is still due to the cohesion anisotropy; thenceforward, the cohesion
is affected by material softening as well as anisotropic characteristics. For the element 3, the
cohesion evolves quite differently than for the two other elements. In fact, this element is located
at the interface between the shear band and the outer material but the position of this interface
is not fixed during the loading, it slightly evolves due to the band activity. Then, the element
3 can be located inside or outside the shear band which implies plastic or elastic state and an
intermittent accumulation of plastic strain causing cohesion softening. Besides this, the stress
state and the loading vector component l2 evolve in element 3 after the full development of the
shear band which modifies the cohesion due to its anisotropy. As for element 2, both material
softening and anisotropy contribute to the cohesion evolution.
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Fig. 5.15: Evolutions of (a) cohesion, (b) loading vector, and (c) yield index for isotropic and
cross-anisotropic plasticity with horizontal isotropic planes.

Isotropic planes rotation

To highlight the effect of cross-anisotropy, the biaxial compression can be performed for different
orientations of the isotropic planes. For α = 45°, the obtained stress-strain curve and the
evolution of the shear band pattern are detailed in Fig. 5.16 and Fig. 5.17, respectively. Different
shear band analyses are again realised for different vertical deformations during the biaxial
loading. They are indicated with dots on the stress-strain curve. As observed previously, strain
localisation appears before the peak stress when the bifurcation criterion is met (εy = 0.0075
(1)) and one shear band fully develops once the peak stress is reached (εy = 0.0090 (2)). In
comparison with the loading of a specimen having horizontal isotropic planes, the results are
globally the same except that the pattern of strain localisation at its onset varies, the peak stress
value is lower, and the post-peak behaviour exhibits variations of the deviatoric stress.

The two first differences are once more due to the anisotropy of the cohesion and its evolution
during the loading (Fig. 5.8). In fact, when the isotropic planes are not horizontal and the vertical
loading is performed, the cohesion evolves from c̄ towards cα and in this case c45° is about the
lowest cohesion value, which leads to a lower peak stress value. c45° is also very close to the initial
cohesion value c̄ thenceforward the modification of cohesion in the specimen during the loading
is very low and the imperfection, with its constant cohesion value of c̄, is of minor importance.
This minor imperfection is not strong enough to act as a strain localisation attractor and more
multiple mechanisms of localised deformation appear at the onset of localisation (εy = 0.0075 (1)
in Fig. 5.17). After the competition process among the different localised structures, the shear
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Fig. 5.16: Stress-strain curve for cross-anisotropic plasticity with isotropic plane orientation of
α = 45°.

band that outweighs the others does not pass by the imperfection. It suggests that a material
imperfection has to be strong enough to act as a localisation attractor, and in case of strong
imperfection only one well-defined shear band passing by the imperfection could be triggered
without any competition process. The same conclusions were drawn by Desrues and Viggiani
(2004) based on experimental results.

The variation of the deviatoric stress in the post-peak behaviour is due to the plastic loading
of the elements located inside the shear band and to the elastic unloading of the elements located
outside. An increase of the global response force corresponds to an increase of the shear band
activity. From εy = 0.0210 (3) to εy = 0.0225 (4) it is observed that a second shear band appears
next to the principal one causing a slight increase of the plastic zone size and of the specimen
response. Then, a decrease of the global response force is observed and corresponds to a decrease
of the shear band activity. For εy = 0.0240 (5) only one shear band and a slight decrease of
the plastic zone size are observed with elastic unloading of the elements outside the shear band.
The same behaviour is observed for the other increases and decreases of the deviatoric stress (see
εy = 0.0255 (6), 0.0270 (7), and 0.0285 (8) in Fig. 5.17). Experimentally, a consequent drop of
the global stress response in the post-peak regime corresponds to the emergence of a new shear
band across the whole specimen (Fig. 3.2 (c)) which is not observed on the numerical result
for the considered material and the smooth boundary conditions. Nonetheless, experimental
techniques, such as digital image correlation, have revealed the evolution of strain localisation
during the entire duration of the tests and point out that variations of band activity as well as
competition between the emerging shear bands are observed for diverse materials (Viggiani and
Desrues, 2004; Thakur, 2007).

Various orientations of the isotropic planes ranging from 0° to 90° are also considered in
order to deeper analyse the isotropic planes rotation effect and the obtained stress-strain curves
are detailed in Fig. 5.18. One can observe that the elastic response varies in function of the
elastic modulus anisotropy; E‖ being larger than E⊥ in a ratio of 1.25 (see Table 5.4) leads to
a steeper slope as α increases. Concerning the plastic response, the peak stress values evolve
with the cohesion which is the lowest around 45° (Fig. 5.8) and the post-peak regime is similar
to what has already been observed, with or without variations of the deviatoric stress. The final
shear band patterns at εy = 0.03 are detailed in Fig. 5.19 in terms of total deviatoric strain
ε̂eq (Eq. 5.79). A reflexive shear band is observed on the bottom surface of the specimen for 0°
and 90°, and only one band is observed in the middle of the specimen for the other intermediate
orientations. The rupture and deformation of the specimen have already been discussed through
the movements of material blocks in case of a reflexive shear band. For a shear band going across
the specimen, the bottom zone is blocked because of the constrained displacements and the top
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Fig. 5.17: Characterisation of the post-localisation regime by shear band activity for cross-
anisotropic material with isotropic plane orientation of α = 45°.
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block slides on it in the bottom right or left direction depending on the orientation of the shear
band. It can also be observed that the position of the shear band varies with the isotropic plane
orientation but not the number of bands, neither their orientations with the horizontal direction.
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Fig. 5.18: Stress-strain curves for cross-anisotropic material with isotropic plane orientations
ranging from α = 0° to 90°.

Fig. 5.19: Shear band patterns for cross-anisotropic material with isotropic plane orientations
ranging from α = 0° to 90°.

The shear band pattern is also affected by the boundary conditions and the different patterns
that are observed are characteristic of smooth boundary conditions, on the top and bottom
surfaces of the sample. For frictional and rough boundaries, respectively, with friction or blocked
horizontal displacement, a compression cone generally appears in the sample which undergoes
barrel distortion before strain localisation and fractures appear. The influence of smooth and
rough boundary conditions on the development of shear bands has been numerically studied for
biaxial compression tests in a recent study by Gao and Zhao (2013). The results indicate that
a single shear band is generally observed for smooth boundary conditions, as in the results of
Fig. 5.19, whilst cross shear band appears for rough boundary conditions.

Shear band orientation

The shear band orientation theories have been detailed in section 3.2.1 with three possible ori-
entations with respect to the minor principal stress:

ΘC = ±
(π

4
+
ϕbif

2

)
(5.81)

ΘA = ±
(
π

4
+
ϕbif + ψbif

4

)
(5.82)
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ΘR = ±
(
π

4
+
ψbif

2

)
(5.83)

These orientations are Coulomb’s, Arthur’s, and Roscoe’s angles, and the orientation of the
shear band Θ provided by the numerical results can be related to these orientations. The angles
are defined with respect to the minor principal stress direction which is oriented horizontally
during the biaxial compression. The observed orientation for the localised results with horizontal
isotropic planes (α = 0°) is about Θ = 47° and, even if anisotropic parameters are included in
the model, this orientation does not depend on them. At bifurcation state, ϕbif = 17.5° (inside
the shear band when it is initiated) and ψbif = 0.5° which give ΘR = 45.3°, ΘA = 49.5°, and
ΘC = 53.8°. The numerical result lies between the lower bound of Roscoe’s angle ΘR and the
intermediate value ΘA. Other values of dilatancy angle (ψ = ψc = ψe) are investigated and lead
to a modification of the shear band orientation as illustrated in Fig. 5.20. The evolution of ϕbif ,
ΘR, ΘA, ΘC , as well as the evolution of the shear band orientation obtained numerically Θ is
detailed in Fig. 5.21 for the considered dilatancy angles. The numerical results highlight that
the shear band orientation increases with the dilatancy angle and that it is close to ΘR for low
values of ψ and close to ΘA for higher values.

Fig. 5.20: Evolution of shear band patterns and orientations with dilatancy angle at the end of
the compression test for cross-anisotropic material with horizontal isotropic planes.

The orientation obtained by considering bifurcation theory can also be investigated. The
solution of Eq. 3.11 gives the components of the normal vector to the shear band and its orien-
tation with the isotropic planes, which are horizontal in this case. The shear band directions at
the end of the compression test are detailed in Fig. 5.20 with an enlargement for two elements
located on different parts of the band. The orientations obtained by the bifurcation criterion
indicate that shear band can initiate in two conjugate directions at every material point but only
one shear band fully develops at the global specimen scale. Moreover, these orientations on each
element correspond to the global shear band direction.
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Fig. 5.21: Evolution of shear band orientation with dilatancy angle for cross-anisotropic material
with horizontal isotropic planes.

5.4.2 Modelling of gallery drilling for isotropic initial stress state

The modelling of a gallery drilling in rock is performed in two-dimensional plane-strain state with
hydro-mechanical coupling. The main objective is to highlight the effects of material anisotropy
on the appearance of shear strain localisation at large scale, around an underground gallery. A
particular attention is paid to the development of the excavation fractured zone due to material
anisotropy with initial isotropic stress state. The excavation phase is mainly studied so long-term
effects through material viscosity are not included in the modelling and saturated conditions are
assumed.

Numerical model

The claystone cross-anisotropy with horizontal bedding planes (α = 0°) is considered; however, an
initial isotropic stress state is firstly envisaged to highlight only the effect of material anisotropy
on the development of shear bands around the gallery:

σx,0 = σy,0 = σz,0 = 12 MPa

pw,0 = 4.7 MPa

where σx,0, σy,0, σz,0 are the initial total stresses and pw,0 is the initial pore water pressure.
The numerical model of a 2.6 m radius gallery is represented schematically in Fig. 5.22 with
the mesh structure and the boundary conditions. Only one gallery quarter is discretised by
assuming symmetry along the x and y-axes with a mesh extension of 50 m in both directions.
The discretisation is realised with a total of 4880 elements, 19521 nodes, and a more refined
discretisation close to the gallery. Concerning the boundary conditions, the initial pore water
pressure and total stresses are imposed constant at the mesh external boundaries. To establish
the symmetry, the normal displacements and the normal water flows are blocked to zero along
the symmetry axes (impervious axes), and the second gradient boundary condition of Eqs. 4.78
to 4.80 is taken into account.

Now that the initial state, the geometry and the boundary conditions are defined, the gallery
excavation can be characterised. It is performed with the convergence-confinement method which
is an approximation method for tunnelling that allows to transform a whole three dimensional
study of tunnel excavation in a two dimensional study in plane-strain state (Bernaud and Rousset,
1992), based on an identical gallery convergence assumption. The effect of the excavation front
progress is taken into account by applying a fictive pressure σΓ

r (total radial stress) on the
gallery wall that depends on the proximity of the excavation front to the studied gallery section,
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Fig. 5.22: Numerical model used for the modelling of a gallery excavation in cross-anisotropic
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as detailed in Fig. 5.23. A deconfinement rate ζ ranging from 0 to 1 is defined by Panet and
Guellec (1974):

σΓ
r = (1− ζ)σr,0 (5.84)

where σr,0 is the initial pressure on the gallery wall that corresponds to the initial isotropic stress
in the material.
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Fig. 5.23: Deconfinement rate during gallery excavation (Panet and Guenot, 1982).

The deconfinement rate depends on various parameters and its analytical determination is
beyond the scope of the present modelling. Among different theories (Bernaud and Rousset,
1992; Carranza-Torres and Fairhurst, 2000), the deconfinement curve given by Panet and Guenot
(1982) is used and is detailed in Fig. 5.24 where 1−ζ depends on the ratio of the distance between
the excavation front and the studied section z by the gallery radius r. The deconfinement rate
can also be expressed as a function of time if the rate of excavation is known. Hereafter, a rate
of one gallery radius (2.6 m) per week is considered implying that the excavation front crosses
the studied section after one week (7 days) and that the excavation is fully completed after three
weeks (21 days). The evolution of the deconfinement rate with time is detailed in Fig. 5.24.

The decrease of pore water pressure at gallery wall pΓ
w during the drilling has to be considered

as well because a hydro-mechanical modelling is performed. A deconfinement rate ζw ranging
from 0 to 1 can be defined in the same manner as for the total radial stress:

pΓ
w = (1− ζw) pw,0 (5.85)
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Fig. 5.24: Deconfinement curves for the total radial stress and for the pore water pressure during
gallery excavation.

where pw,0 is the initial pore water pressure on the gallery wall that corresponds to the initial
pore water pressure in the material.

The approach of Panet and Guellec (1974) was originally validated for dry isotropic materials
and its generalisation to anisotropic rock under saturated conditions is not straightforward.
During the drilling, pore overpressures are usually observed in the rock ahead of the excavation
front and are characteristic of hydro-mechanical coupling induced by the anisotropy, whether
of the stress state or of the rock mechanical behaviour. Nonetheless, for the sake of simplicity,
a linear decrease of pore water pressure is assumed during the excavation (no overpressures)
and a uniform deconfinement rate is considered for the total radial stress (Eq. 5.84). The pore
water pressure is assumed to decrease rapidly when the excavation front crosses the studied
section, from one day before the front up to one day after (Fig. 5.24) with a final value of
zero. More accurate definitions of the deconfinement rates would need to be validated with
three-dimensional excavation computations; nevertheless, these developments are beyond the
objectives of this modelling.

As in previous modelling of gallery excavation, the deformation around the gallery are lower
than in compression tests and the introduction of a stronger cohesion softening without shifting
is necessary for the onset of shear banding. The softening parameters are ξc = 5, Bc = 0.003,
and decc = 0.

Anisotropy effect and strain localisation

The onset of fractures and strain localisation around galleries depend on the material anisotropy.
The previous numerical modelling of section 4.3.2 indicates that for an isotropic material with an
isotropic initial stress state, shear strain localisation is not triggered during the drilling unless a
material imperfection is used (Fig. 4.4). The numerical results also indicate that, an anisotropic
stress state in the plane perpendicular to the gallery axis (gallery section) is a predominant factor
that leads to the triggering of strain localisation and to the creation of the excavation fractured
zone during the drilling (Collin and Pardoen, 2013; Pardoen et al., 2015a; Salehnia et al., 2015).
The fractured zone has an elliptical shape with a significantly larger extent in one direction,
depending on the stress anisotropy. This direction coincides with the minor principal stress in
the gallery section

Nevertheless, the development of a fractured zone has been observed in some materials,
such as the Callovo-Oxfordian claystone, even for isotropic or quasi-isotropic stress state in the
gallery section (Armand et al., 2014). In this case, it seems necessary to consider the material
anisotropy. To do so, the elastic cross-anisotropy is taken into account (Table 5.4) and, since the
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bifurcation criterion as well as the strain localisation can be reached only when the material is in
plastic state, the plastic anisotropy is analysed through the cohesion anisotropy. Different cases
are considered from an isotropic cohesion of 4.1 MPa to the anisotropic parameters detailed in
Table 5.4. Two other cohesion anisotropies are considered between those two cases which leads
to a total of four sets of anisotropic cohesion parameters detailed in Table 5.5. The evolutions
of the cohesion with the loading vector component l2 are detailed in Fig. 5.25.

Symbol Name Isotropy Anisotropy Anisotropy Anisotropy Unit
set 1 set 2 set 3

c̄ Cohesion for 4.1 4.1 4.1 4.1 MPa
isotropic loading

A‖ Cohesion parameter 0 −0.007 0.049 0.117 −
b1 Cohesion parameter 0 1105 50.93 14.24 −

Table 5.5: Various sets of anisotropic cohesion parameters for gallery excavation.

Isotropy
Anisotropy, set 1
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Fig. 5.25: Various evolutions of the cohesion as a function of the loading vector.

The shear band patterns obtained at the end of the excavation in case of horizontal bedding
are detailed in Fig. 5.26 for the different sets of cohesion parameters. The illustrated results are
the total deviatoric strain, the plastic zone, and the cohesion. For the isotropic cohesion, one can
observe that the deformation and the plastic zone are diffuse around the gallery with a quasi-
circular extension of about one gallery radius (2.6 m) in the rock. Actually, it is slightly wider
in the horizontal direction due to the elastic anisotropic properties. The plasticity engenders
cohesion softening around the gallery which is also diffuse. For the set 1 of anisotropic cohesion
parameters, the plastic zone remains almost circular around the gallery with the same extent and
the total deviatoric strain as well as the cohesion softening concentrate in an inclined direction
at about 45° with the horizontal. For the set 2 of anisotropic cohesion parameters, the strain
localisation is triggered during the excavation in an inclined direction and shear bands in chevron
pattern develop with elastic unloading outside the bands. The plasticity, the total deviatoric
strain, and the cohesion softening concentrate within the shear bands. For the set 3 of anisotropic
cohesion parameters, the strain localisation starts earlier with the same type of shear banding
pattern but with a larger number of bands, located preferentially in the horizontal direction, and
a larger concentration of deformation.

Looking at all the results indicates that, in case of isotropic stress state, the material plastic
anisotropy is a predominant factor leading to the appearance of strain localisation in shear band
mode around a gallery during its excavation. In fact, the excavation process does not lead to
strain localisation unless a sufficient material anisotropy is considered.
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Fig. 5.26: Shear strain localisation at the end of excavation for the different sets of anisotropic
cohesion parameters.

The preferential development of shear bands in the inclined and horizontal directions can be
explained by the evolution of the cohesion. To better illustrate this cohesion evolution, three
elements on gallery wall have been considered and are illustrated in Fig. 5.27. For the anisotropic
cohesion parameters of set 3, the evolutions of cohesion, loading vector, and yield index of those
elements are detailed in Fig. 5.28. The cohesion evolution depends only on anisotropic effect
when the element is in elastic state, and it depends on both anisotropic and softening effects
when the element is in plastic state.

While the radial stress decreases and vanishes at gallery wall during the excavation, the
orthoradial stress increases. This implies that the loading tends to be horizontal above and below
the gallery which corresponds to a loading parallel to the horizontal isotropic planes. Then, the
loading vector component l2 decreases and the cohesion increases by evolving from its original
value c̄ towards the left hand side of the cohesion curve in Fig. 5.25. It is in fact observed in
Fig. 5.28 (b) that l2 decreases towards a value of zero above the gallery (vertical direction) which
leads to an increase of the cohesion before plasticity is reached, then softening engenders the
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Fig. 5.27: Elements on gallery wall chosen for the analysis of cohesion evolution during excavation.
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Fig. 5.28: Evolutions of (a) cohesion, (b) loading vector, and (c) yield index during the excavation
for the set 3 of anisotropic cohesion parameters.

following cohesion decrease. On the contrary, the loading tends to be vertical or perpendicular
to the horizontal isotropic planes on both left and right sides of the gallery, causing an increase
of l2 and an evolution of the cohesion from c̄ towards the right hand side of the cohesion curve.
On this side of the curve, the cohesion decreases slightly before reaching its lowest value and
may finally increase for an important increase of l2. This can be observed in Fig. 5.28 (a) for the
element located on the side of the gallery (horizontal direction). Nevertheless, the increase of l2
is limited because the stress in the gallery axial direction does not cancel during the excavation
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(Eq. 5.43); thus, the increase of cohesion before reaching plasticity and softening is lower than
above the gallery. Concerning the element in the inclined direction (at 45° with the horizontal),
l2 remains almost constant, the cohesion remains low in the elastic regime and decreases rapidly
in plastic regime due to softening.

This analysis of the cohesion indicates that the material is weaker in the inclined direction
and the strain localisation is therefore initiated in that direction (Fig. 5.26). Furthermore,
the material strengthening above and below the gallery leads to a preferential development of
plasticity as well as strain localisation in the horizontal direction. The material plastic anisotropy
is thus the cause of the excavation fractured zone shape and extent.

The development of the shear bands during the excavation can be considered more thoroughly
for the anisotropic cohesion parameters of set 3. The evolution of the deviatoric strain increment,
the total deviatoric strain, the plastic zone, the nodal velocity norm (with the global movements
in the rock indicated with arrows), and the pore water pressure are illustrated in Figs. 5.29 and
5.30, for different instants during the excavation. One can observe that the strain localisation
is initiated before 1 − ζ = 0.08 (15.4 days) with different shear bands that are in competition
(see the deviatoric strain increment in Fig. 5.29) but not fully developed (see the total deviatoric
strain and the plastic zone in Fig. 5.29). At this stage, the deformation slightly concentrates
around the gallery in an inclined direction and it is observed that the velocity norms are greater
for a direction lying between 25° and 45° with the horizontal direction (Fig. 5.30). Later, two
shear bands fully develop before 1 − ζ = 0.04 (16.8 days) with elastic unloading in the outer
material (Fig. 5.29). The elastic unloading appears at 1 − ζ = 0.057 or 16.2 days in Fig. 5.28.
The position and shape of the shear bands create a block of rock between them that tends
to "unhook" from the gallery wall and to converge rapidly towards the gallery center (see the
velocity and the global movements in Fig. 5.30). Finally, a supplementary shear band propagates
with a reflection on the symmetry x-axis before the end of the excavation 1− ζ = 0 (21 days). It
creates a second block that converges rapidly towards the gallery center. These different stages
of the unloading with the initiation of strain localisation, the full development of some shear
bands, and the varying shear band activity are similar to what has been observed in the biaxial
compression test results.

Fig. 5.30 also illustrates the pore water pressure evolution during the excavation and the
strain localisation process. A drainage progressively develops in the vicinity of the gallery due
to the imposed hydraulic boundary condition at gallery wall. Negative pore pressures and pore
pressures higher than the initial value are observed as a result of hydro-mechanical coupling and
shear bands activity. The pore pressure variations in the rock remain low due to the low value
of dilatancy angle.

Furthermore, the shear band mode is presented in Fig. 5.31 at the end of the excavation. The
type of localisation band is described thanks to the Rice bifurcation criterion and to an additional
velocity gradient field of the shear band ςi (Eq. 3.3), which characterises the discontinuity of the
velocity between the band and the outer material (Rice, 1976; Rudnicki and Rice, 1975). The
discontinuity band nature is defined by the parameter s (Eq. 3.16) according to the Table 3.1.
Globally, dilating shear bands are observed in Fig. 5.31.
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Fig. 5.29: Development of shear strain localisation during the excavation for the set 3 of
anisotropic cohesion parameters: deviatoric strain increment, total deviatoric strain, and plastic
zone.
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Fig. 5.30: Development of shear strain localisation during the excavation for the set 3 of
anisotropic cohesion parameters: velocity norm and pore water pressure.

Fig. 5.31: Shear band type at the end of gallery excavation for the set 3 of anisotropic cohesion
parameters.
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Gallery convergence

The shear band development inevitably influences the convergence of the gallery. The conver-
gence is defined by the variation of the gallery diameter and is investigated in three directions:
the horizontal, the vertical, and the inclined direction at 45°. It is illustrated in Fig. 5.32 for the
anisotropic cohesion parameters of set 3, both for localised and homogeneous solutions, and for
different time scales.
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Fig. 5.32: Evolution of gallery convergence (a) during excavation, (b) after excavation, and (c)
comparison to experimental measurements in the long term.

The homogeneous solution is obtained if the appearance of strain localisation is avoided which
can be done by increasing the second gradient elastic modulus D. This solution exhibits therefore
a diffuse plastic zone and a quasi-isotropic convergence. In contrast, an anisotropic convergence
is obtained for the localised solution that reproduces the development of shear bands. This
anisotropy can be explained by relating the strain localisation results of Figs. 5.29 and 5.30 to
the convergence of Fig. 5.32 (a) during the excavation period. In fact, it is observed that the
convergence at 45° increases more rapidly than the other convergences from 12.5 days. This
increase can be related to the appearance of strain localisation and to the increase of nodal
velocities towards the gallery center in the inclined direction (visible at 15.4 days in Fig. 5.30).
Around 16.5 days, a slight fluctuation in the convergence curves is observed especially in the 45°
direction. It corresponds to the complete development of the shear bands and to the movement
towards the gallery center of the block located between them (visible at 16.8 days in Fig. 5.30).
Around 20 days, a strong variation of the horizontal convergence is observed which corresponds
to the appearance of the supplementary shear band and supplementary block that converges
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rapidly (visible at 21 days in Fig. 5.30).
At the end of excavation, the convergence at 45° is still greater than the two other conver-

gences but they can evolve afterwards because of hydro-mechanical coupling and shear band
activity that influence the different block movements. The modelling has then been extended
under constant zero total radial stress and zero pore water pressure at gallery wall. The resulting
convergences (Fig. 5.32 (b)) are greater than for the homogeneous case and highlight a strong
anisotropy with an important horizontal convergence. This indicates that the block at gallery
wall located in the horizontal direction continues to move significantly towards the gallery center
after the end of excavation, which is due to the progressive drainage of the rock around the gallery
and to hydro-mechanical coupling. An increase of convergence after the end of excavation has
also been observed in Fig. 4.17 for a gallery oriented parallel to the minor horizontal principal
stress in Callovo-Oxfordian claystone, but the increase is much greater in that case.

The convergences can be compared to in situ experimental measurements that are performed
in the French underground research laboratory (Armand et al., 2013; Guayacan-Carrillo et al.,
2015). A drift (GCS) oriented parallel to the major horizontal principal stress and having a
quasi-isotropic stress state of 12 MPa in its section is considered. For the different convergence
measurement sections (GCS-OHZ170B to G, see Fig. 2.7 (a)), the experimental results indicate
that the convergence is anisotropic and that it increases in the long term (Fig. 5.32 (c)). The
major convergence is measured in the horizontal direction which corresponds to the location
of the fractures around this gallery (Fig. 2.6 (a)). The convergence measurement sections are
installed inside the gallery just after the excavation front which implies that the beginning of the
measurements corresponds to the seventh day of the numerical modelling. Thus, the numerical
convergences in Fig. 5.32 (c) are detailed only from that time, excluding the rock deformation
that develops before. One can observe that both horizontal and vertical convergences are well
reproduced, with a small overestimation of the vertical convergence in the short term. For re-
producing the convergence increase in the long term the viscosity effect and creep deformations
must be taken into account. It has to be added that the comparison between the numerical and
experimental results should be regarded with some reserve because the modelling is performed
for an initial isotropic stress state, without the major principal stress in the gallery longitudi-
nal direction. The anisotropic stress state will be included in section 5.4.3 where the gallery
convergence will be analysed as well.

Isotropic plane rotation

The gallery excavation is also modelled with isotropic planes oriented in another direction than
the horizontal. Such bedding plane orientation does not correspond to the Callovo-Oxfordian
claystone; nevertheless, this modelling is realised in order to investigate the influence of isotropic
planes rotation on shear banding. An inclination of 45° is chosen. It corresponds for instance to
the stratification orientation of the Opalinus clay, which is another low-permeability geological
formation envisaged for nuclear waste repository in Switzerland on the Mont Terri site. The
characteristics of the Callovo-Oxfordian claystone remain nonetheless used.

The symmetry assumed with a quarter of a gallery is not valid anymore for other orientations
than horizontal (α = 0°) and vertical (α = 90°). A full gallery has to be modelled and is
represented schematically in Fig. 5.33 with the bedding planes oriented at α = 45°. The mesh
extension is 100 m, the discretisation is realised with a total of 7440 elements and 29040 nodes,
and a more refined discretisation close to the gallery. The initial stresses and pore water pressure
are imposed at the mesh external boundary.

For the considered bedding plane orientation, the deviatoric strain increments obtained when
strain localisation appears are represented in Fig. 5.34. The strain localisation in band mode
appears between the deconfinement rate values of 1 − ζ = 0.04 and 1 − ζ = 0.02, just before
the end of the excavation. At 1 − ζ = 0.04, the deformation is not homogeneous but remains
quite diffuse. At 1 − ζ = 0.02, the shear bands have developed and a chevron pattern is once

169



CHAPTER 5. SHEAR BANDING IN CROSS-ANISOTROPIC ROCK

sy,0 w,0p

y

sx,0

w,0p
x

100 [m]

sx,0

w,0p

sy,0 w,0p

1
0
0
 [

m
]

constant pore water
pressure (p )w,0

Constant total stress
( , )x,0 y,0s s

Constrained
displacement

Drained boundary with
e2

a=45°

Fig. 5.33: Numerical model used for the modelling of a gallery excavation in cross-anisotropic
rock with bedding planes inclined at α = 45°.

more observed. The influence of cross-anisotropy and bedding planes rotation is clearly visible
on these results with a localised pattern that develops symmetrically around the bedding planes
direction at 45°.

Fig. 5.34: Development of shear strain localisation illustrated with deviatoric strain increment,
during the excavation and with bedding planes inclined at α = 45°.

The solution of Fig. 5.34 is obtained for a chosen set of computational numerical parame-
ters. Restarting the computation from 1 − ζ = 0.04 but with a modification of the numerical
parameters, such as increasing the time step size and decreasing the precision of equilibrium
parameters for the iterative procedures, provides the solution of Fig. 5.35 at 1 − ζ = 0.02. The
strain localisation pattern is quite different than the previous one thence such numerical proce-
dure highlights the non-uniqueness of the solution for the gallery excavation problem. In fact, as
discussed in chapter 3, regularisation methods based on the second gradient model do not restore
the uniqueness of the solution to boundary value problems. Other solutions can be obtained with
different numerical procedures to force the occurrence of strain localisation, such as including
material imperfections. Actually, among the different possible solutions, some modes are more
frequent than others (Marinelli et al., 2014; Sieffert et al., 2009). A study on this particular point
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would be interesting to realise.

Fig. 5.35: Development of shear strain localisation illustrated with deviatoric strain increment,
during the excavation, with bedding planes inclined at α = 45°, and with a modification of the
numerical parameters.

5.4.3 Modelling of gallery drilling with major stress in the axial direction

The previous modelling of a gallery excavation highlights how the material anisotropy influences
the strain localisation appearance in case of an isotropic initial stress state. When considering the
Callovo-Oxfordian claystone, its anisotropic stress state must also be taken into account because
it influences the fracturing structure. This stress anisotropy has already been considered for a
gallery oriented parallel to the minor horizontal principal stress σh but not for a gallery parallel
to the major horizontal principal stress σH . For a gallery parallel to σh, the results of section 4.3
indicate that the initial stress state anisotropy in the gallery section controls the fracturing
appearance and pattern, for an isotropic mechanical behaviour of the rock. For a gallery parallel
to σH , the major stress is in the axial direction and the stress state is quasi-isotropic in the
gallery section, which requires an anisotropic mechanical behaviour of the material to exhibit
strain localisation during the excavation. The results may be similar to those obtained for a full
isotropic initial stress state but the major horizontal (axial) stress may still influence the shear
banding.

The following modelling has been performed in the context of the Andra’s benchmark "Trans-
versal action - Models". Additional informations are available in the reference document of Seyedi
et al. (2013) and in the technical report of Pardoen et al. (2014a).

Numerical model

A hydro-mechanical modelling of the gallery drilling is performed in two-dimensional plane strain
state with the numerical model of Fig. 5.22 and horizontal isotropic bedding planes. The gallery
that is considered is the GCS gallery of the Andra’s URL (Fig. 2.2) oriented parallel to σH and
having a radius of 2.6 m. Following the Andra’s recommendations, the initial anisotropic total
stress state and pore water pressure are:

σx,0 = σh = 12.4 MPa

σy,0 = σv = 12.7 MPa

σz,0 = σH = 1.3 σh = 16.12 MPa
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pw,0 = 4.7 MPa

The boundary conditions at gallery wall, recommended by the Andra, are illustrated in Fig. 5.36.
The excavation is performed in a total of 28 days, with the excavation front crossing the studied
section after 14 days. The average rate of the excavation is about 2 m per week. The total radial
stress follows a uniform deconfinement curve adapted from the convergence-confinement method
and considers a flexible liner at gallery wall after the excavation. The latter is modelled by
maintaining a total radial stress of 0.3 MPa at gallery wall after the drilling. A linear decrease
of the pore water pressure without overpressures is again assumed during the drilling, with a
rapid decrease from its original value to zero when the drilling front crosses the studied section
(from one day before the front up to one day after). Then, after the excavation, a zero constant
pore water pressure is maintained on the gallery wall. It means that the air inside the gallery
remains fully saturated with water vapour after the excavation, which corresponds to an air
relative humidity of RH = 100 % by Kelvin’s law (Eq. 2.47). This consists of a classical flow
boundary condition assuming an instantaneous hydraulic equilibrium between the liquid water
inside the rock and the water vapour of the cavity air.
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Fig. 5.36: Deconfinement curves for the total radial stress and for the pore water pressure during
the excavation of a gallery parallel to the major horizontal principal stress.

Concerning the material behaviour, the anisotropic mechanical model is used with horizontal
bedding planes, and the softening parameters allowing shear strain localisation appearance are
ξc = 10, Bc = 0.003, and decc = 0. In addition to the previous modelling, the material viscosity
is introduced with the elasto-viscoplastic model to account for long-term deformation of the rock.
To avoid an initial viscoplastic flow in the rock mass caused by its initial anisotropic effective
stress state, the set of viscoplastic parameters of Table 5.4 is used, with F vp0 = 0 and αvp0 = 0.142.
The viscosity effects are mainly apparent in the long term, after the gallery excavation, and the
elasto-viscoplastic model will be tested for different sets of viscoplastic parameters to highlight
their influences on deformation and gallery convergence.

Furthermore, unsaturated conditions are also considered but their impact is very limited be-
cause the claystone remains almost saturated in the absence of gallery air ventilation. The clay-
stone desaturation around a gallery has been analysed in previous modelling (see section 4.3.5).
The results indicate that a slight desaturation can appear close to the drift wall due to hydro-
mechanical coupling and to the influence of the strain localisation process (Fig. 4.13). The rock
desaturation will not be discussed hereafter, but the pore water pressure evolution will.

Shear banding pattern

As for the full isotropic stress state, the anisotropic model allows the appearance of shear strain
localisation around the gallery. The plastic zone and total deviatoric strain evolutions are il-
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Fig. 5.37: Development of shear banding around a gallery parallel to the major horizontal prin-
cipal stress: total deviatoric strain and plastic zone.

lustrated in Fig. 5.37 where one can observe the appearance and the development of the shear
bands before the end of the excavation (28 days). The complete formation of shear bands occurs
between 19.6 and 25 days that correspond to 1− ζ = 0.067 and 1− ζ = 0.024, respectively. The
shear band pattern is similar to the one of Fig. 5.29 with a development even more pronounced
in the horizontal direction due to the initial anisotropic stress state, and to the major stress in
the gallery axial direction. The full shear band pattern is recomposed by symmetry in Fig. 5.38
and the observed shape is in good agreement with the experimental measurements of the shear
fracture pattern and extent around the gallery, as illustrated in Fig. 2.6 (a). The extent of the
numerical shear banding zone is compared to the in situ measurements in Table 5.6 which in-
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dicates a satisfactory agreement. The shear banding zone extent lies between the mixed (shear
and tensile) fracture zone and the shear fracture zone.

Fig. 5.38: Shear banding around a gallery parallel to the major horizontal principal stress.

Zone Horizontal left [m] Horizontal right [m] Vertical [m]

Numerical shear banding 3 3 0
Mixed fractures 1.4 1.4 < 0.5
Shear fractures 4.7 4.5 < 0.5

Table 5.6: Comparison between the thickness of the numerical shear strain localisation zone
and the extents of the fractured zones around a gallery (GCS) parallel to the major horizontal
principal stress.

Gallery convergence

The diametrical convergence of the gallery is illustrated in Fig. 5.39 and compared to experimen-
tal measurements of the GCS gallery convergence (Armand et al., 2013). Because the convergence
measurement sections are installed after the excavation front, the beginning of the measurements
corresponds to the 14th day of the numerical modelling. Two numerical convergences are detailed
in Fig. 5.39: one from the beginning of the calculation (day 0) that includes the rock deformation
developing before the excavation front crosses the studied section, and another from the excava-
tion front (day 14) that corresponds only to the gallery convergence. The numerical modelling
captures correctly the convergences for both directions; nonetheless, the viscosity effects seems
to remain limited in the long term.

In the Andra’s URL, displacement measurements in the rock mass around galleries are also
realised in addition to diametrical convergence measurements. They are performed with borehole
extensometers drilled from the considered gallery or from a pre-existing gallery. These exten-
someters record the radial displacements between the gallery rock wall (tip of the extensometer)
and the anchors located at different depths in the rock formation. These measurements permit
to quantify the displacement and the deformation of the rock.

The first borehole extensometer that is studied was drilled in the context of a mine-by ex-
periment. The latter is a state-of-the-art project that aims to characterise the various impacts
of underground drilling on the rock (Armand et al., 2013). Before the GCS drift was excavated,
different instrumented boreholes were drilled from surrounding galleries towards the location of
the future drift, as illustrated in the set up of the GCS mine-by test in Fig. 5.40. These boreholes
contain extensometers, pore pressure sensors, and inclinometers. Among them, the borehole ex-
tensometer OHZ1501 was drilled horizontally from the GAT gallery, located 30 m away from
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Fig. 5.39: Evolution of the convergence of a gallery parallel to the major horizontal principal
stress in (a) horizontal and (b) vertical directions.

the GCS location, and the different anchors are set up from the GAT drift wall up to 30 m in
the rock as illustrated in Fig. 5.41. The measurements of radial displacements between the GAT
drift wall and the anchors are available in (Armand et al., 2013). They can be easily transformed
in radial displacements between the GED drift wall and the anchors by assuming that the anchor
located at 30 m depth from the GAT drift wall corresponds to the GED drift wall. The second
borehole extensometer that is considered is the OHZ1707. It is drilled vertically upward from a
gallery measurement section that is installed inside the GCS gallery during its drilling progress,
which means just after the excavation front. The different anchors are set up from the GCS drift
wall up to a depth of about 30 m in the claystone (Fig. 5.41 (b)).

Fig. 5.40: Set up of the mine-by experiment around the GCS gallery in Andra’s URL with pore
pressure measurements in blue, extensometers in green, and inclinometers in red (Armand et al.,
2013).

In the numerical modelling, the relative radial displacement between any location and the
gallery wall corresponds to:

∆ur = ur − uΓ
r (5.86)

where ur and uΓ
r are the current radial displacements of a considered material point and of the

gallery wall for the same orientation. The relative radial displacements are compared to the
experimental measurements for both boreholes in Fig. 5.42 where:

∆ux = ux − uΓ
x (5.87)
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∆uy = uy − uΓ
y (5.88)

and the different distances from the gallery wall correspond to the anchors of the extensometers.
The numerical results are detailed only after the excavation front crosses the studied gallery
section: from 14 days in Fig. 5.42 (a) and from 17.4 days in Fig. 5.42 (b). The latter time
corresponds to the position of the second borehole, in fact it was drilled 1.2 m behind the gallery
front, which corresponds to 17.4 days in the convergence confinement curve of Fig. 5.36. As for
the gallery convergence, the displacements are satisfactorily reproduced unless for the long-term
horizontal displacements.

The increases of convergence and relative displacements in the long term can be reproduced
by adjusting the viscoplastic parameters of Table 5.4. In fact, these parameters come from exper-
imental data fitting based on laboratory creep tests (section 5.3.3) that last a hundred days, not a
thousand days like the in situ experimental measurements around the underground gallery. Dif-
ferent sets of viscoplastic parameters are tested and their results in terms of gallery convergence
are illustrated in Fig. 5.43. They are compared to experimental measurements from the 14th
day of the numerical excavation. Firstly, comparing the results with the viscoplastic parameters
based on the creep tests to the results without taking into account material viscosity indicates
that these parameters generate only a limited long-term deformation. In fact, the numerical
curves for both convergences are relatively close in the long term. The viscoplastic parameters
must be adapted to increase the long-term deformation and have a better reproduction of the
gallery convergence. Increasing the parameter Bvp will slow down the evolution of the function
αvp (Eq. 5.57) as well as the hardening of the viscoplastic loading surface (Fig. 5.55). This will
have the effect of increasing the viscoplastic flow and deformation (Eq. 5.60). Multiplying by
ten this parameter (Bvp = 7.5 × 10−2) leads to larger long-term deformations and to a better
match with the in situ measurements of convergences, in both horizontal and vertical directions
(Fig. 5.43). The convergences from the beginning of the calculation (day 0) are also displayed in
Fig. 5.43 for this last set of viscoplastic parameters.

The relative radial displacements for the two borehole extensometers are reproduced with
this new set of viscoplastic parameters. Fig. 5.44 illustrates that the prediction of the horizontal
displacements is improved, but the prediction of the vertical displacements is deteriorated. The
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latter were already well reproduced in Fig. 5.42 (b) so increasing the viscosity can only deteriorate
the agreement with the experimental measurements of the vertical borehole. Nevertheless, this
borehole extensometer concerns only one measurement section in the GCS gallery while the
convergence measurements in Fig. 5.43 are related to several measurement sections, which make
them more reliable in a general sense.
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Pore water pressure

The pore water pressure in the rock is measured in the context of the mine-by experiment of
the GCS gallery (Fig. 5.40). Among the different boreholes dedicated to pore water pressure
measurements the OHZ1521 and OHZ1522 are analysed. These boreholes were drilled from
the GAT gallery in inclined orientations (not perpendicular to the gallery axis): the borehole
OHZ1521 is located in a horizontal plane (Fig. 5.41 (a)) and the borehole OHZ1522 is inclined
also in the vertical direction. The positions of the different sensors projected in the drift cross-
section plane are illustrated in Fig. 5.45. For all these sensors, the experimental measurements
and the numerical results obtained with the viscoplastic parameters of Table 5.4 are compared in
Figs. 5.46 and 5.47, for different time scales. It is to recall that, after the excavation, the numerical
computation is performed with a zero constant pore water pressure at drift wall (RH = 100 %).

OHZ1522

OHZ1521

5.3m
4.3m

3.9m
3.8m

4.2m

1.1m

1.9m4.8m9.9m

Fig. 5.45: Projection in the GCS drift section of the positions of the pore water pressure sensors
around the drift, with radial distances to the gallery wall.
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The experimental measurements in the horizontal direction (Fig. 5.46 (a) and (b)) indicate
an increase of the pore water pressure as the excavation front get closer to the sensors, then
pore pressure dissipation is observed in the rock once the excavation front crosses the sensors
positions. These pore overpressures in the rock ahead of the excavation front result of hydro-
mechanical coupling linked to the material anisotropy, principally of the stress state but also
of the material characteristics. The pore pressure dissipation and stabilisation with the gallery
hygrometry is more rapid close to the gallery, especially in the damaged zone where the perme-
ability is important because of the interconnected extensional fracture network. Unfortunately,
the measurements can not capture the possible desaturation of the excavation damaged zone be-
cause the sensors can acquire only positive measurements. In the far distance, the dissipation is
delayed and restricted by the low material permeability as well as by the distance to the gallery.

The numerical results exhibit overpressures in the short term as well (Fig. 5.46 (a)) but the
increase starts later than for the experimental measurements and its amplitude is smaller. It is
related to the hydraulic boundary condition applied at gallery wall (Fig. 5.36) which consists of a
linear decrease without overpressures from day 13 to day 15. The decrease of pore pressure after
the excavation is also reproduced but is underestimated (Fig. 5.46 (a) and (b)). An increase of
the pore water pressure even appears close to the gallery because of hydro-mechanical coupling,
before the long-term drainage of the rock (Fig. 5.46 (c)).
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Fig. 5.46: Evolution of the pore water pressure around the gallery for the horizontal borehole
OHZ1521: (a) short, (b) medium, and (c) long term.

For the other borehole located above the gallery, there are almost no overpressures before
the pore pressure dissipation, as illustrated in the experimental measurements of Fig. 5.47 (a)
and (b). When compared to the measurements in the horizontal borehole, this clearly evidences
the hydro-mechanical coupling effects linked to the material anisotropy. Fig. 5.47 (c) shows that
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a slight decrease of the pore pressure is reproduced by the numerical modelling but it is again
underestimated after the excavation, even if a long-term drainage appears in the rock.
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Fig. 5.47: Evolution of the pore water pressure around the gallery for the inclined borehole
OHZ1522: (a) short, (b) medium, and (c) long term.

To better reproduce the pore pressure decrease and accentuate the drainage in the rock, the
increase of permeability in the damaged zone must be modelled. Indeed, the flow kinetics in
the rock are mainly controlled by the hydraulic permeability of the material. Consequently, a
higher permeability in the excavation damaged zone will engender a stronger drainage of the
rock. Among different possibilities, and because the fractures are represented with shear bands,
strain localisation effects on the intrinsic permeability evolution can be considered. Linking
the intrinsic permeability to a mechanical parameter, such as strain or plastic deformation, will
generate modifications of the hydraulic properties in the damaged zone and especially in the
shear strain localisation bands. Another possibility to accentuate the drainage is to consider
the hygrometry of the gallery air. In fact, an air saturated with water vapour can not generate
a desaturation of the rock surrounding the gallery. If the air is dryer (RH < 100%) after the
excavation, it induces a stronger drainage and a possible desaturation of the excavation damaged
zone. Such aspects have been discussed in chapter 2 through the effect of a ventilation experiment
performed inside an experimental gallery (GED) of the Andra’s underground research laboratory.
The modelling of the air-rock interaction at gallery wall is also relevant because an instantaneous
equilibrium between the water vapour of the cavity air and the liquid water inside the rock may
not be assumed beforehand. Therefore, the pore water pressure corresponding to the relative
humidity of the gallery air may not be imposed directly on the drift wall (classical imposition).

The aspects of permeability modification, gallery air hygrometry, and air-rock interaction
must be considered simultaneously to accurately reproduce the drainage as well as the possible
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material desaturation, during gallery excavation and maintenance phases.

5.5 Conclusions and outlooks

The influence of cross-anisotropic properties on the development of shear banding has been high-
lighted for geomechanical applications on rock. A cross-anisotropic model including anisotropy
of the elastic and plastic behaviours is used together with an enriched model, the coupled local
second gradient model, that allows to reproduce the shear strain localisation correctly.

The shear banding appearance and development are well reproduced on small rock specimens
subjected to plane-strain biaxial compression. The material strength (peak stress amplitude) as
well as the shear banding pattern vary according to the loading direction with respect to the
microstructure (bedding planes) orientation. The post-peak behaviour is also investigated and
an evolution of the shear banding activity is observed.

On a large scale, the development of an excavation fractured zone composed of shear bands
around an underground gallery is also controlled by the material anisotropy. Previously, it
has been shown that the anisotropy of the stress state in the gallery section is a predominant
factor leading to shear bands onset and to the elliptical shape of the excavation damaged zone,
with a significantly larger extent in the direction of the minor principal stress. In case of initial
isotropic stress state, the anisotropy of the plastic material behaviour is the prevailing factor that
governs the strain localisation onset and the banding pattern (shape, location, and orientation).
Different amplitudes of anisotropy have been considered for the material cohesion and strain
localisation in shear bands appears around the gallery only if a sufficient anisotropy amplitude is
considered. This anisotropy is also the origin of the anisotropic shape of the excavation fractured
zone that displays a larger extent in the direction of the lower material resistance. Furthermore,
the numerical results also indicate that the shear bands appearance and pattern are the cause of
the convergence anisotropy. Lastly, the viscosity effects have been analysed and they permit to
reproduce the convergence and deformation increases in the long term. Such creep deformations
have been studied because they may also be important to take into account for the long-term
feasibility analysis of deep geological repository of nuclear radioactive wastes.

Nonetheless, the change of the rock properties in the fractured zone still need to be improved
with a more accurate description of the hydro-mechanical coupling. An evolution of the hydraulic
permeability around the gallery can be added in the model by considering strain localisation effect
and a dependency with a mechanical parameter.
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Abstract The flow transfers occurring around underground galleries are of paramount im-
portance when envisaging the long-term sustainability of underground structures for nuclear
waste disposal. These transfers are mainly conditioned by the behaviour of the surrounding
material and by its interaction with the gallery air. The hydro-mechanical behaviour of the
excavation damaged zone, which develops around galleries due to the drilling process, is thence-
forward critical because it is composed of fractures having a significant irreversible impact on
flow characteristics and transfer kinetics. Besides, the material interaction with the gallery air
may engender water drainage and desaturation. Thus, a gallery air ventilation experiment, pre-
ceded by its excavation, is numerically modelled in an unsaturated argillaceous rock to study
its influence on the hydraulic transfers. The fractures are numerically represented with shear
strain localisation bands by means of a microstructure enriched model including a regularisa-
tion method. The impact of fracturing on the transport properties is addressed by associating
the intrinsic permeability increase with mechanical deformation, which is amplified in the strain
localisation discontinuities. Such dependence permits to reproduce a significant permeability in-
crease of several orders of magnitude in the excavation damaged zone, in agreement with available
experimental measurements. After the excavation, the hydraulic transfers are studied through
the reproduction of a gallery air ventilation experiment (SDZ) that implies drainage and desat-
uration of the surrounding material. These transfers depend on liquid water and water vapour
exchanges at gallery wall that are introduced through a non-classical boundary condition. The
model prediction successfully captures the drainage and desaturation kinetics of the undisturbed
and damaged rock. The numerical modelling and results are available in the research article of
Pardoen et al. (2016).

Article Pardoen, B., Talandier, J., and Collin, F. Permeability evolution and water transfer
in the excavation damaged zone of a ventilated gallery. Int J Rock Mech Min Sci. under review.

6.1 Hydro-mechanical behaviour of the excavation damaged zone

In the context of long-term nuclear waste management, the deep underground repository of high-
level radioactive waste is envisaged in geological media having good confining characteristics.
The behaviour of the surrounding material has to be precisely characterised in order to assess
the long-term sustainability of the underground structures. It is significantly influenced by the
drilling process and by the interaction between the material and the gallery air. On one hand, the
drilling leads to the appearance of cracks or fractures concentrated in an Excavation Damaged
Zone (EDZ) that develops around galleries. On the other hand, the interaction with air may
engender drainage and desaturation. Both of these aspects modify the transport properties of
the underground material.

As previously, the behaviour of the Callovo-Oxfordian claystone is envisaged. It is a low
permeability rock exhibiting a transversely isotropic behaviour and which is envisaged for deep
underground repository of nuclear wastes in France (Andra, 2005a).

6.1.1 Increase of permeability

Nowadays, it is commonly assumed that underground drilling process engenders cracks and
eventually fractures (Diederichs, 2003) that deteriorate the hydro-mechanical properties of the
surrounding host material. These property deteriorations take place in the EDZ located around
the galleries which is affected by important modifications of the material flow characteristics,
such as permeability increase as illustrated in Fig. 6.1 (Armand et al., 2007; Bossart et al., 2002;
Emsley et al., 1997; Tsang and Bernier, 2004; Tsang et al., 2005).

Since a low hydraulic conductivity is required to ensure a safe long-term disposal, the hydro-
mechanical behaviour of the EDZ is a major issue because it may constitute a preferential flow
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(a) (b)

Fig. 6.1: Excavation damaged zone around a gallery in Opalinus clay: (a) mechanical fracturing
and (b) permeability change (Bossart et al., 2002).

path for radionuclide migration (Blümling et al., 2007). Consequently, the characterisation of
the material transport properties and of the transfer kinetics that occur around galleries still
need to be investigated. These properties depend mainly on the fracturing process and on
the hydraulic permeability increase it engenders. The hydro-mechanical characteristics of the
surrounding geological formation are evaluated thanks to experimental measurements performed
in the Underground Research Laboratories (URL). These laboratories have been developed to
investigate the suitability of host formations for nuclear waste disposal and to evaluate the
repository feasibility (Delay et al., 2007, 2010).

For the Callovo-Oxfordian claystone, the EDZ, the development of fractures, and the evo-
lution of permeability around underground cavities have been detailed in section 2.2. The ex-
perimental measurements indicate that induced extension and shear fractures are detected in
the proximity of the galleries composing the Andra’s URL, with a severe increase of hydraulic
permeability in the fractured zones. Furthermore, the damaged zone shape differs depending on
the induced fracture network which is related to the orientations of the galleries and to the stress
state anisotropy (Armand et al., 2014) as illustrated in Fig. 6.2.

Around the experimental gallery named GED, which is oriented parallel to the minor horizon-
tal principal stress σh, the permeability increase has been highlighted by measurements (Fig. 6.3)
performed under saturated conditions in boreholes that are drilled in different orientations (Ar-
mand et al., 2014). Three zones have been be defined: an undisturbed zone with kw < 10−19 m2

far from the gallery, a slightly disturbed zone with 10−19 m2 < kw < 10−17 m2, and a highly
disturbed zone close to the gallery with kw > 10−17 m2. The extents of the zones are detailed
in Fig. 6.3 and in Fig. 6.4 with a parallelism between hydraulic and fracture measurements.
Moreover, the permeability is not homogeneous in the damaged zone and the measurements in
the fractured zone are representative of the fracture permeability, not of the permeability of the
continuous rock matrix.

6.1.2 Gallery air ventilation

The flow transfers are also conditioned by the interaction with the gallery air. At the scale of
nuclear waste repository, air ventilation is usually realised in the underground galleries during
the excavation and the maintenance phases. This ventilation can affect the behaviour of the
surrounding material and of the underground structures by draining the water from the rock.
If the drainage is important, it can even engender rock desaturation, stress modification, and a
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Fig. 6.2: Conceptual model of the induced fractures in Callovo-Oxfordian claystone around drifts
parallel to the (a) major and (b) minor horizontal principal stresses (according to Armand et al.
(2014)).
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Fig. 6.3: Evolutions of hydraulic permeability along (a) vertical, (b) oblique at 45°, and (c)
horizontal boreholes drilled around a gallery (GED) parallel the minor horizontal principal stress
in Callovo-Oxfordian claystone.

modification of the fracturing structure close to the galleries. As a consequence, the behaviour
of the damaged zone could be impacted (Matray et al., 2007).

Large-scale experiments of gallery air ventilation are realised in the URL to characterise the
air-rock interaction. Among them, the Saturation Damaged Zone experiment (SDZ) is conducted
in the GED gallery of the Andra’s URL (Charlier et al., 2013b; Guillon, 2011; Pardoen et al.,
2012a) to analyse the influence of a controlled ventilation on the Callovo-Oxfordian claystone.
During the experiment, the hydro-mechanical behaviour and the hydraulic transfers of the rock,
including the drainage and desaturation processes, are studied. The ventilation experiment has
been detailed in section 2.3.2. It is performed at the end of the GED gallery, in an experimental
zone isolated from the rest of the laboratory (Fig. 2.11). A part of this zone is uncovered to allow
direct exchanges between the air and the rock. The controlled ventilation consists of different
levels of constant hygrometry with the purpose of exhibiting the effects of drainage and wetting,
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Fig. 6.4: Extensions of (a) hydraulic permeability and (b) fracture zones measured around a
gallery (GED) parallel to the minor horizontal principal stress in Callovo-Oxfordian claystone.

or of desaturation and possible resaturation. The different ventilation phases are (Fig. 6.5): (1)
a global laboratory ventilation before the insulation of the experimental zone, (2) no ventilation
with exchanges between the GED gallery and the SDZ zone occurring through the EDZ, (3) a
controlled ventilation with an air relative humidity of RH = 30 %, and (4) of RH = 60 %. The
air temperature T and relative humidity RH evolutions are monitored in the experimental zone
in different gallery sections. The measurements are illustrated in Fig. 6.5 with the four different
ventilation phases.
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Fig. 6.5: Evolutions of temperature and relative humidity in the SDZ experimental zone.

Various experimental measurements are realised during the test, around the uncovered exper-
imental zone (Fig. 6.6). They consist mainly of pore water pressure (Fig. 6.18) and water content
(Fig. 6.19) measurements. They allow to quantify the progressive drainage and the desaturation
of the rock which are limited in the far field and increase close to the gallery. Furthermore, frac-
tures and gallery convergence measurements are performed after the gallery excavation (Figs. 6.2
(b) and 2.7 (b)).

6.1.3 Modelling issues

The observations mentioned here above clearly indicate the need for a modelling of the excavation
damaged zone and of its interaction with the gallery air. The first step is to consider the exca-
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Fig. 6.6: Position of the pore water pressure sensors around the SDZ experimental zone with
depths measured from the gallery wall (Charlier et al., 2013b).

vation process and the development of the EDZ with fractures induced by rock deconfinement.
Considering the modelling of the fracturing process, shear strain localisation is considered as a
precursor to fractures. In fact, material rupture is generally preceded by localised deformation in
shear band mode (Desrues, 2005) that can lead to material damage, microcracks, and fractures.
Moreover, shearing is the principal failure mechanism for the Callovo-Oxfordian claystone; thus,
shear bands are used to predict the appearance of fractures numerically. In the previous chapters,
the excavation fractured zone around galleries has been modelled with shear banding. However,
the irreversible impact of the fracturing on flow characteristics has not been addressed in the
EDZ yet.

The second modelling step concerns the reproduction of the hydraulic property evolutions
and inhomogeneity inside the damaged zone. In fact, the definition of the EDZ behaviour needs
to be improved with an accurate modelling of the hydro-mechanical coupling occurring in the
damaged and fractured zones. The evolution of permeability within the EDZ can be associated
to the macroscopic description of the strain localisation discontinuities. It will be addressed with
a hydro-mechanical coupling which involves a strain-dependent evolution of the material intrin-
sic permeability. Considering the fractured rock as a continuous medium at the macroscale, the
intrinsic hydraulic permeability evolution will be reproduced through a dependence to the me-
chanical deformation. Such evolution will engender a more pronounced increase of permeability
inside the fractures (shear bands) due to strain localisation effect.

Another aspect that can be influenced by the cracking and the material damage is the wa-
ter retention property. The damage process in porous materials can modify the pore network
morphology, the permeability, the water retention curve, and the gas breakthrough pressure
(Arson and Pereira, 2013; M’Jahad et al., 2015; Pereira and Arson, 2013). An additional hydro-
mechanical coupling could therefore be introduced by considering an evolution of the retention
curve with the deformations (Gerard, 2011; Olivella and Alonso, 2008). For such approach, it is
assumed that the increase of the pore size generates a decrease of the air entry pressure, i.e. the
minimal capillary force needed to desaturate the material. It results in an amplification of the
desaturation in fractured zones for a given capillary pressure (matric suction).

The third step is the modelling of the ventilation of the gallery air. The SDZ experiment in
the experimental zone without covering is reproduced after the gallery excavation. Firstly, the
air-rock interaction is characterised with a non-classical hydraulic boundary condition at gallery
wall, taking into account liquid water and water vapour transfers (Gerard et al., 2008). Secondly,
the air ventilation is reproduced with a particular focus on the analysis of the rock drainage and
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desaturation. This ventilation experiment has already been studied in section 2.5 (Charlier et al.,
2013b) but with a basic definition of the EDZ and only for the uncontrolled ventilation phase
(phases (1) and (2)). The previous definition of the EDZ did not take into account neither
the description of the fractures nor the hydro-mechanical coupling involved in the evolution of
permeability. The EDZ and its extent were a priori defined in the numerical model with a higher
homogeneous intrinsic permeability than in the undisturbed claystone, whereas the processes are
more complex and can be coupled to rock damage and cracking. The focus was principally on a
first understanding of the fluid transfer processes. Hereafter, the permeability evolution will be
investigated with a more elaborate description of hydro-mechanical coupling, especially within
the EDZ. In fact, the coupling between mechanical deformation, permeability, and hydraulic flow,
which was not taken into account in earlier modelling, is indubitably of paramount importance
to obtain an adequate representation of the hydro-mechanical behaviour of the EDZ.

6.2 Constitutive models

The modelling of underground drilling and ventilation requires a hydro-mechanical model de-
scribing the constitutive equations of the coupled problem for an unsaturated porous media. This
model is composed of a first gradient mechanical part (macrostructure), including viscosity and
the transversely isotropic properties of the rock, a second gradient mechanical part (microstruc-
ture), introducing an internal length scale for the description of the shear bands, and a hydraulic
part, which defines the liquid phase transfers under unsaturated condition. The constitutive
models are the same as those used in the precedent chapters and are recalled succinctly.

A proper reproduction of the shear bands is still realised by using the coupled local second
gradient model for microstructure media (enriched model with regularisation method). The
development of the balance equations of this model have been detailed previously in section 3.3.2
and are not recalled. The non-linear field equations are available in Eqs. 4.32, 4.33, and 4.34.

As mentioned in section 6.1, the hydraulic flow kinetics around the galleries are conditioned
by permeability evolution and air-rock interaction. The modification of the permeability in
the damaged zone as well as the fluid transfer at gallery wall must still be taken into account.
They will be described later in the numerical sections 6.3 and 6.4. Furthermore, the influence
of the variation of the intrinsic water permeability on the coupled finite element formulation is
developed.

6.2.1 First gradient mechanical model

The elasto-viscoplastic relation between the stress and strain fields is defined as:

σ̃
′
ij = Cijkl ε̇kl (6.1)

The stress field is defined for unsaturated anisotropic materials with compressible solid grains
by:

σij = σ
′
ij + bij Sr,w pw (6.2)

The viscosity is taken into account by assuming that the total strain rate is partitioned in an
elastic, a plastic, and a viscoplastic components:

ε̇ij = ε̇eij + ε̇pij + ε̇vpij (6.3)

The elastic and plastic behaviours are defined in the following for transversely isotropic materials,
which properties are related to the material axes and depend on the orientation. Both plastic
and viscoplastic strains are described by loading functions, potentials, and hardening laws.
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Linear elasticity theory

Anisotropic geomaterials often exhibit limited forms of anisotropy such as orthotropy or trans-
verse isotropy, i.e. cross-anisotropy (Lekhnitskii, 1963). For these types of anisotropy, the mate-
rial characteristics are associated to the orthotropic axes (e1,e2,e3) (Amadei, 1983). The Callovo-
Oxfordian claystone exhibits a transverse isotropy with horizontal bedding planes as detailed in
Fig. 6.7, and only this material configuration is modelled numerically hereafter. For this orien-
tation, the orthotropic axes correspond to the global coordinate axes ei = xi; thus, a change
of coordinate reference system is not required. The notation ] used in chapter 5 to denote a
quantity in the orthotropic axes is omitted for simplicity.

e2=y

e1=x

e3=z

l1

l2

l3

s22
’

s21
’

s23
’

s12
’

s11
’

s13
’

s32
’

s31
’

s33
’

Fig. 6.7: Material axes, stress state, and generalised loading vector li for a representative ele-
mentary volume of a transversely isotropic material with horizontal isotropic planes.

For transversely isotropic materials with isotropic planes oriented along (e1,e3), the effective
stress and the elastic strain rates are linked by the Hooke’s law as follows:

ε̇e11
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(6.4)

where: ν⊥‖

E⊥
=
ν‖⊥

E‖
(6.5)

G‖‖ =
E‖

2(1 + ν‖‖)
(6.6)

G‖⊥ = G⊥‖ (6.7)

The elasticity is characterised by 5 independent parameters describing the material behaviour
in the directions perpendicular ⊥ and parallel ‖ to the isotropic planes: E‖, E⊥, ν‖‖, ν‖⊥, G‖⊥.
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The compressibility of the solid grains is described by the symmetric Biot’s tensor as follows
(Cheng, 1997):

bij = δij −
Ceijkk
3 Ks

=

b‖ 0 0

0 b⊥ 0
0 0 b‖

 (6.8)

Plasticity theory

The plastic model is an internal friction model with a Van Eekelen yield surface (Van Eekelen,
1980) and a non-associated plasticity. The plastic loading surface, plastic potential surface, and
plastic flow (plastic strain rate) are given by:

F p ≡ IIσ̂′ −m
(
Iσ′ +

3 c

tanϕc

)
= 0 (6.9)

Gp ≡ IIσ̂′ −mG Iσ′ = 0 (6.10)

ε̇pij = λ̇p
∂Gp

∂σ
′
ij

(6.11)

The friction angles and the cohesion can undergo an isotropic softening or hardening introduced
with hyperbolic functions (Barnichon, 1998):

c = c0 +
(cf − c0) 〈ε̂peq − decc〉
Bc + 〈ε̂peq − decc〉

(6.12)

ϕc = ϕc,0 +
(ϕc,f − ϕc,0) 〈ε̂peq − decϕ〉

Bϕ + 〈ε̂peq − decϕ〉
(6.13)

ϕe = ϕe,0 +
(ϕe,f − ϕe,0) 〈ε̂peq − decϕ〉

Bϕ + 〈ε̂peq − decϕ〉
(6.14)

The plastic behaviour anisotropy is defined for the cohesion by means of a second order mi-
crostructure fabric tensor Aij . The latter represents the material fabric and describes the spa-
tial distribution of the strength parameter. Besides, the cohesion also depends on the load-
ing direction with regard to the material microstructure orientation (Pietruszczak et al., 2002;
Pietruszczak, 2010). For transversely isotropic materials with isotropic planes parallel to (e1,e3),
it is given by:

c0 = c̄
(

1 +A‖
(
1− 3 l22

)
+ b1 A

2
‖
(
1− 3 l22

)2) (6.15)

where l2 is the component of the generalised unit loading vector li acting on a facet parallel to
the isotropic planes as illustrated in Fig. 6.7. The vector li corresponds to the stress resultant
on the material facets (Pietruszczak and Mroz, 2000, 2001; Chen et al., 2010) and is defined by:

li =

√
σ
′2
i1 + σ

′2
i2 + σ

′2
i3

σ
′
jk σ

′
jk

(6.16)

Viscoplasticity theory

The viscoplastic flow mechanism is introduced with the following loading surface, potential sur-
face, and viscoplastic flow (viscoplastic strain rate):

F vp ≡
√

3 IIσ̂′ − α
vp g (β) R̄

√
Avp

(
Cvp +

Iσ′

3R̄

)
= 0 (6.17)
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Gvp ≡
√

3 IIσ̂′ − (αvp − βvp) g (β) R̄

(
Cvp +

Iσ′

3R̄

)
= 0 (6.18)

ε̇vpij = γ

〈
F vp

R̄

〉N ∂Gvp

∂σ
′
ij

(6.19)

where Avp is an internal friction coefficient, Cvp is a constant cohesion coefficient, R̄ = Rc is a
normalising parameter taken as equal to the uniaxial compressive strength, g (β) is a function
allowing to take into account the influence of the Lode angle (g (β) = 1 for simplicity), βvp

is a viscoplastic potential parameter, γ is the fluidity coefficient (Eq. 5.61), and N is a creep
parameter. The surfaces F vp and Gvp are both controlled by a delayed viscoplastic hardening
function αvp (Jia et al., 2008; Zhou et al., 2008) which takes the form:

αvp = αvp0 + (1− αvp0 )
εvpeq

Bvp + εvpeq
(6.20)

where αvp0 is the initial threshold for the viscoplastic flow, Bvp is a parameter controlling the
evolution of αvp, and εvpeq is the equivalent viscoplastic strain (Eq. 5.58).

6.2.2 Second gradient mechanical model and coupled finite element formu-
lation

The second gradient constitutive law is related to the microkinematics and links the double stress
rate to the micro second gradient rate (section 3.3.2):

Σ̃ijk = Dijklmn
∂υ̇lm
∂xn

(6.21)

It depends on an elastic modulus D (Eq. 3.80) which characterises the internal length scale of
the second gradient model.

In addition to the developments of the second gradient model realised in the previous chapters,
the variation of the intrinsic water permeability will be added in section 6.3.3. The latter has
an influence on some terms of the balance equations of the coupled local second gradient model
(Eqs. 4.32, 4.33, and 4.34) and on their linearisation for the finite element formulation (see
section 3.3.3, section 4.1.3, and appendix A for the complete details). The time derivative of
the intrinsic permeability obviously depends on the chosen evolution law and on the considered
evolution parameters. If it varies according to a set of parameters mi and with the pore water
pressure, the time derivative of the intrinsic water permeability reads:

k̇w,ij =
∂kw,ij
∂mk

ṁk +
∂kw,ij
∂pw

ṗw (6.22)

The dependence on the pore water pressure can for instance be linked to the effect of porosity
variation if the Biot’s coefficient is lower than 1 (Eq. 4.26). The variation form of Eq. 6.22 for
the linearisation of the field equations reads:

dkτ1
w,ij = kτ2

w,ij − kτ1
w,ij =

∂kτ1
w,ij

∂mτ1
k

dmτ1
k +

∂kτ1
w,ij

∂pτ1
w

dpτ1
w (6.23)

The local stiffness matrix of an element
[
Eτ1

]
(Eq. 4.64), which is involved in the linear

auxiliary problem (Eq. 4.63) of the finite element formulation, is modified by the evolution of

the intrinsic permeability. If it depends on the pore water pressure then
∂kτ1w,ij
∂pτ1w

6= 0 and the
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terms Kτ1
WW1,3

and Kτ1
WW2,3

(Eqs. 4.66 and 4.67) of the submatrix of the flow problem
[
Kτ1
WW

]
(Eq. 4.65) take the forms:

Kτ1
WW1,3

= ρτ1
w

kτ1
w,1j

µw

kτ1
r,w

χw

(
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w
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j
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w gj

)
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w
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w,1j

µw
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r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

(
∂pτ1

w
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j

+ ρτ1
w gj

)

+ ρτ1
w
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r,w

µw
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w,1j

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

) (6.24)

Kτ1
WW2,3

= ρτ1
w

kτ1
w,2j

µw

kτ1
r,w

χw
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∂pτ1

w

∂xτ1
j

+ 2ρτ1
w gj
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+ ρτ1
w

kτ1
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µw

∂kτ1
w,2j

∂pτ1
w

(
∂pτ1

w
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j

+ ρτ1
w gj

) (6.25)

The other terms of the stiffness matrix of the flow problem are not affected.
If the intrinsic permeability evolution depends on parameters linked to the displacement field

u̇i, as the strain field for instance, therefore the first part of Eq. 6.22 becomes for each parameter
m:

∂kw,ij
∂m

ṁ =
∂kw,ij
∂m

∂m

∂εkl
ε̇kl =

∂kw,ij
∂εkl

∂u̇k
∂xl

(6.26)

It can be rewritten in variation form as:

∂kτ1
w,ij

∂mτ1 dmτ1 =
∂kτ1

w,ij

∂ετ1
kl

∂duτ1
k

∂xτ1
l

(6.27)

where
∂kτ1w,ij
∂ετ1kl

6= 0 depends on the evolution law for kw,ij and on the link between the evolution
parameters and the strain field. The matrix of the mechanic influence on the fluid (Eq. 4.70)
becomes:

[
Kτ1
MW

]
3×4

=


Aτ1

111 f τ1
w,2 +Aτ1

121 Aτ1
112 −f τ1

w,1 +Aτ1
122

−f τ1
w,2 +Aτ1

211 Aτ1
221 f τ1

w,1 +Aτ1
212 Aτ1

222

Cτ1 + Ṁ τ1 0 0 Cτ1 + Ṁ τ1

+
[
Kτ1
k

]
(6.28)

where Aτ1
ijk and Cτ1 are defined in Eqs. 4.71 and 4.72, and

[
Kτ1
k

]
is a matrix that considers

the evolution of the intrinsic permeability. The terms of this matrix differ depending on the
intrinsic permeability evolution. By considering an evolution with the strain tensor as described
in Eq. 6.27, the matrix is defined as follows:

[
Kτ1
k

]
3×4

= ρτ1
w

kτ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)


∂kτ1
w,1j

∂ετ1
11

∂kτ1
w,1j

∂ετ1
12

∂kτ1
w,1j

∂ετ1
21

∂kτ1
w,1j

∂ετ1
22

∂kτ1
w,2j

∂ετ1
11

∂kτ1
w,2j

∂ετ1
12

∂kτ1
w,2j

∂ετ1
21

∂kτ1
w,2j

∂ετ1
22

0 0 0 0

 (6.29)

where j is a summation index. The other submatrices that composes the element stiffness matrix[
Eτ1

]
of Eq. 4.64 are not modified.
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6.2.3 Hydraulic model

The liquid phase transfer by advection in anisotropic porous media is defined by Darcy’s law:

fw,i = −ρw
kw,ij kr,w

µw

(
∂pw
∂xj

+ ρw gj

)
(6.30)

For transversely isotropic materials with horizontal bedding planes, the anisotropic tensor of
intrinsic water permeability kw,ij is defined by two values in the horizontal and vertical directions:
kw,‖ = kw,h and kw,⊥ = kw,v (Eqs. 5.66 and 4.22).

The unsaturated behaviour of the material is reproduced by defining a water retention and
a relative permeability curves from van Genuchten’s and Mualem’s models (Mualem, 1976; van
Genuchten, 1980) as in Eqs. 4.15 and 4.16.

6.2.4 Parameters

The parameters for the Callovo-Oxfordian claystone are detailed in Table 6.1. The evolution of
the anisotropic cohesion with the loading orientation is represented in Fig. 6.8 (Pardoen et al.,
2015c). The parameters for the cohesion softening and for the viscosity correspond to those used
for the gallery drilling in chapter 5. The viscoplastic parameters were calibrated to reproduce
the long-term convergence of a gallery (GCS) parallel to the major horizontal principal stress
σH (see section 5.4.3).
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Fig. 6.8: Evolution of the cohesion (a) as a function of the angle between the normal to bedding
planes and the direction of loading and (b) as a function of the loading vector.

6.3 Excavation and permeability evolution

As mentioned previously, when considering deep underground repository of nuclear wastes, there
is a need for a more accurate modelling of the EDZ and the gallery air ventilation effect on the
flow transfers that take place around the galleries. Consequently, a hydro-mechanical modelling
of the SDZ ventilation test, preceded by the gallery excavation, is realised in two-dimensional
plane-strain state. As a first step, the drilling process and the EDZ development are modelled.
During the excavation, the major objectives are to characterise the development of fractures
induced by rock deconfinement and the modification of the hydraulic properties. The fractures
are represented with shear banding and the permeability evolution is addressed with a strain-
dependent relation. The SDZ experiment will be reproduced in the second part of the numerical
modelling, in section 6.4.
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Symbol Name Value Unit

Hydraulic kw,‖,0 Initial parallel intrinsic water permeability 4× 10−20 m2

parameters kw,⊥,0 Initial perpendicular intrinsic water permeability 1.33× 10−20 m2

Φ Porosity 0.173 −
Pr van Genuchten air entry pressure 15 MPa
M van Genuchten coefficient 0.33 −
Smax Maximum degree of water saturation 1 −
Sres Residual degree of water saturation 0.01 −
µw Water dynamic viscosity 0.001 Pa s
χ−1
w Water compressibility 5× 10−10 Pa−1

Elastic E‖ Parallel Young’s modulus 5 GPa

parameters E⊥ Perpendicular Young’s modulus 4 GPa
G‖⊥ Shear modulus 1.63 GPa

ν‖‖ Poisson’s ratio 0.24 −
ν‖⊥ Poisson’s ratio 0.33 −
b‖ Parallel Biot’s coefficient 0.60 −
b⊥ Perpendicular Biot’s coefficient 0.64 −
ρs Solid grain density 2750 kg/m3

D Second gradient elastic modulus 5 kN

Plastic η Van Eekelen yield surface convexity parameter −0.229 −
parameters ψc = ψe Dilatancy angles 0.5 °

ϕc,0 Initial compression friction angle 10 °
ϕc,f Final compression friction angle 23 °
ϕe,0 Initial extension friction angle 7 °
ϕe,f Final extension friction angle 23 °
Bϕ Friction angle hardening coefficient 0.001 −
decϕ Friction angle hardening shifting 0 −
c̄ Cohesion for isotropic loading 4.1 MPa
A‖ Cohesion parameter 0.117 −
b1 Cohesion parameter 14.24 −
ξc Ratio of cohesion softening 5 −
Bc Cohesion softening coefficient 0.003 −
decc Cohesion softening shifting 0 −

Viscoplastic Rc Uniaxial compressive strength 21 MPa
parameters Avp Internal friction coefficient 2.62 −

Cvp Cohesion coefficient 0.03 −
βvp Viscoplastic potential parameter 1.1 −
g(β) Influence of the Lode angle 1 −
αvp0 Initial threshold for the viscoplastic flow 0.142 −
γ0 Reference fluidity 700 s−1

γ1 Temperature parameter 57× 103 J/mol
N Creep curve shape parameter 5.0 −
Bvp Viscoplastic hardening function parameter 7.5× 10−2 −

Table 6.1: Elasto-viscoplastic parameters for the Callovo-Oxfordian claystone.
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6.3.1 Numerical model

The considered rock is the Callovo-Oxfordian claystone which is a transversely isotropic material
with horizontal bedding planes and an initial anisotropic stress state. The hydraulic transfers
are studied through the SDZ experiment; consequently, the considered gallery is the GED drift
where the experiment is performed and which is oriented parallel to the minor horizontal principal
stress σh. For this drift, the initial anisotropic stress state and pore water pressure are:

σx,0 = σH = 1.3 σh = 15.6 MPa

σy,0 = σv = 12 MPa

σz,0 = σh = 12 MPa

pw,0 = 4.5 MPa

where pw,0 is the initial pore water pressure and σx,0, σy,0, σz,0 are the initial total stresses. The
stress state in the gallery section is anisotropic for this gallery orientation.

The modelling considers the SDZ experimental zone without covering and only one gallery
quarter by symmetry. The mesh geometry and boundary conditions are illustrated in Fig. 6.9.
To establish the symmetry, the symmetry x and y-axes are considered as impervious (no normal
water flow) and the normal displacement as well as the normal derivative of the radial displace-
ment cancel along these axes. At the mesh external boundaries, the normal total stress and the
pore water pressure are imposed constant. Furthermore, natural boundary conditions for the
double forces, T i = 0, are assumed on the different boundaries and gravity is not taken into
account.

sy,0 w,0p

60 [m]

sx,0

pw,06
0

 [
m

]

x

Constant total stress
( , )x,0 y,0s s

Constrained
displacement
perpendicular to
the boundary

Constrained normal
derivative of the radial
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Fig. 6.9: Numerical model and boundary conditions used for the modelling of a gallery excavation
and ventilation.

The gallery excavation is performed with a convergence-confinement method (Panet and
Guenot, 1982) that implies decreasing stresses at gallery wall, with the excavation front crossing
the studied section after one week (Fig. 6.10). The pore water pressure in the gallery is assumed
to decrease rapidly to the atmospheric pressure of patm = 0.1 MPa when the excavation front
crosses the studied section.

6.3.2 Gallery excavation

The appearance of strain localisation during the excavation has been studied for the same gallery
and stress state in section 4.3. The results indicate that, for an isotropic material, the appearance
and shape of the strain localisation are mainly controlled by the anisotropy of the stress state.
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Fig. 6.10: Deconfinement curves for the total stresses and for the pore water pressure during
gallery excavation.

The shear banding zone develops preferentially in the direction of the minor principal stress
in the gallery section σv, which corresponds to the vertical direction. On the other hand, the
influence of the anisotropy of the material behaviour on the development of shear banding around
galleries has also been studied but for an isotropic stress state in the gallery section. The results
presented in the sections 5.4.2 and 5.4.3 indicate that, for such stress state, the strain localisation
pattern strongly depends on the anisotropic plastic properties of the rock. The shear banding
zone develops preferentially in the direction of lower material resistance, which corresponds to
the 45° and the horizontal orientations. As a consequence, if both anisotropic characteristics of
the rock are considered for the drilling of the GED gallery, the shape of the shear banding zone
is governed by two antagonistic effects related to the material anisotropy. In fact, the anisotropy
of the stress state favours a development of the shear bands in the vertical direction, while the
anisotropy of the material behaviour favours a development in the horizontal direction.

A first modelling of the excavation phase that takes into account both material and stress
anisotropies is realised. The result at the end of the drilling is illustrated in Fig. 6.11 with the
shear strain localisation bands around the gallery in terms of plastic zone, represented by the
plastic loading integration points, and of Von Mises’ equivalent deviatoric total strain. The latter
is defined as:

ε̂eq =

√
2

3
ε̂ij ε̂ij (6.31)

where ε̂ij is the deviatoric part of the total strain tensor:

ε̂ij = εij −
εkk
3

δij (6.32)

During the drilling the deformation and the plastic zone develop firstly in a diffuse manner
around the gallery. Then, before the end of the excavation, strain localisation appears in the
vicinity of the gallery with the material under plastic loading in the shear bands (concentration
of plastic strain) and an elastic unloading in the outer material. One can observe that the
shear band pattern develops in the vertical direction which still corresponds to the shape of
the excavation damaged zone determined around the GED gallery with in situ experimental
measurements (Figs. 6.2 (b) and 6.4). This demonstrates that, for a gallery having an initial
anisotropic stress state in its section, the effect of the stress state anisotropy is the predominant
factor that leads to the directional development of the fractured zone during the drilling. The
influence of the anisotropy of the material behaviour seems secondary.

The solution of Fig. 6.11 is the "natural" solution that is obtained due to the different material
anisotropies. However, regularisation methods such as the second gradient model do not restore
the uniqueness of the solution to a boundary value problem. Different numerical procedures
can be employed to force the occurrence of strain localisation and to create various solutions
for the gallery excavation problem. A first procedure consists in introducing an imperfection,
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Fig. 6.11: Localisation zone at the end of excavation: (a) plastic zone and (b) total deviatoric
strain.

which can be a disturbing force, a material imperfection, or a geometrical defect (Charlier et al.,
1997; Matsushima et al., 2002; Zhang et al., 2001). Other methods consider the modification of
numerical parameters (Marinelli et al., 2014; Sieffert et al., 2009) or a random initialisation of
characteristics (Chambon et al., 2001b).

In reality, the strain localisation and fracturing processes are generated because geomaterials
are not homogeneous and exhibit heterogeneities. Therefore, the procedure which is the most
used to trigger the strain localisation consists in introducing material imperfections. As discussed
in the previous chapters, it has been shown both experimentally (Desrues, 1984; Desrues and
Viggiani, 2004) and numerically (Collin et al., 2009b; Pardoen et al., 2015a,c) that a material
inclusion may dictate the shear band position (which passes through it) if it is strong enough
to act as a strain localisation attractor. In fact, the imperfection generates a non-uniformity of
the stress and strain fields in its vicinity which can be sufficient to reach first the bifurcation
criterion in the imperfection. Then, the material imperfection acts as a nucleation point for the
strain localisation onset. Yet, if the material imperfection is not strong enough or if it does not
enter plastic state, then it will not behave as a strain localisation attractor.

For underground excavations, the drilling process inevitably generates supplementary defects
in the rock at gallery wall, in addition to the pre-existing material imperfections. These defects
may obviously have an important impact on the location of the fracture appearance. To reproduce
this random scattering of rock defects, some defects are placed at gallery wall and are scattered
all around the gallery as illustrated in Fig. 6.12 (a). They consist of weaker elements that have
a constant cohesion of c̄ = 4.1 MPa (Table 6.1). The numerical results in Fig. 6.12 (b) and (c)
present the pattern of shear strain localisation bands around the gallery at the end of drilling.
The strain localisation remains concentrated above the gallery but the pattern is quite different
than the one in Fig. 6.11 which illustrates the non-uniqueness of the solution.

The reproduction of both mechanical and hydraulic experimental measurements (realised
around the gallery) with strain localisation in shear bands is quite complex because the two
aspects are coupled and influence each other. Different configurations of defects have been tested
and the mechanical and hydraulic data have been analysed simultaneously. The configuration
of Fig. 6.12 (a) allows a good reproduction of both mechanical and hydraulic measurements;
consequently, the results that are exposed in the following concern only this configuration of
material defects.

6.3.3 Evolution of the intrinsic hydraulic permeability

Modelling the hydraulic property evolution and inhomogeneity inside the damaged zone is a
crucial issue when considering rock drainage and desaturation. Different approaches exist to
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Fig. 6.12: Localisation zone at the end of excavation for a gallery with defects on its wall: (a)
material imperfections, (b) plastic zone, and (c) total deviatoric strain.

take into account the influence of deformation or fracturing on the hydraulic permeability.
For porous materials, a first well-known approach is the Kozeny-Carman relationship that

links the intrinsic hydraulic permeability to the porosity (Chapuis and Aubertin, 2003). However,
it is commonly assumed in soil mechanics that this relation is approximately valid for sands but
not for clay materials; thus, this relation is not commonly used (Chapuis and Aubertin, 2003).
Other relations linked to the porosity can be studied; nevertheless, using a variation with the
porosity highlights volumetric deformation effects which remain low for slightly dilatant material
such as the studied claystone.

Another possible approach is to consider rock damage and the appearance of microcracks in
the material with a coupling between microcracking and permeability (Arson and Gatmiri, 2012;
Maleki and Poya, 2010). In fact, damage in rock is related to the formation of a network of
cracks that can constitute preferential flow paths in the material. The damage by microcracking
process (initiation, growth, accumulation, propagation, and coalescence of microcracks) is repre-
sented in damage models by the degradation of the material characteristics, either mechanical or
hydraulic. Different damage models exist in the context of continuum damage mechanics from
purely macroscopic (phenomenological) and continuous approaches to multi-scale (micromechan-
ical) approaches. For instance, models with multi-scale and homogenisation approaches of per-
meability evolution are developed (Barthélémy, 2009; Dormieux and Kondo, 2004) and applied
to the excavation damaged zone in rock (Levasseur et al., 2013). The macroscopic homogenised
permeability of a heterogeneous material depends on the permeability of the solid matrix as
well as on the permeability and shape of the microcracks. Numerical results indicate that a
significant permeability increase of several orders of magnitude can be obtained in the EDZ that
develops around boreholes. Nonetheless, rock damage is not incorporated in the present study
and another type of permeability evolution must be computed.

Microcracking process can lead to the coalescence of microcracks. When this happens, the
distributed damage becomes localised which engenders strain localisation and later the onset of
interconnected fractures. The latter are also called macrocracks and can be of different types such
as tensile or shear. For tensile fractures, it can be assumed that the fracture opening leads to a
permeability increase in the fractures direction (anisotropic permeability increase) and therefore
that the traction is an important factor leading to preferential flow paths. The evolution of
permeability can be described as a function of the crack normal stress or as a function of the
crack aperture (Olsson and Barton, 2001) and density. Traditionally, the hydraulic flows in rock
joints have been expressed with a cubic law under the parallel plates approach (Witherspoon
et al., 1980). Macroscopic (Snow, 1969) and, more recently, multi-scale (Dormieux and Kondo,
2004) approaches have also been used. For macroscopic approaches, the evolution of the fracture
opening can be linked to the tensile strain in the normal direction to the crack (Chen et al.,
2007; Liu et al., 1999; Olivella and Alonso, 2008; Shao et al., 2006b). Such method has been
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applied to underground borehole drilling for an indurated clay (Levasseur et al., 2010), namely
the Opalinus clay, with anisotropic permeability and which prevailing mechanism of fracture in
the excavation damaged zone is extension (Marschall et al., 2008). The numerical results indicate
that the size of the EDZ, based on the predicted permeability increase, is overestimated if the
tensile strain includes both plastic and elastic parts. However, considering only the plastic zone
underestimates the size of the EDZ (Levasseur et al., 2010; Tsang et al., 2005); thus, it seems
necessary to consider the plastic zone and a part of the elastic one to better reproduce the EDZ
extent.

For the Callovo-Oxfordian claystone, shearing is the principal failure mechanism around the
galleries at the underground laboratory level because of the high in situ stress (Armand et al.,
2014). In the developed numerical approach, the shear fractures are represented at macroscale
by shear strain localisation in band mode. Thus, because the permeability is not homogeneous
in fractured zones, one way to model its increase is to introduce a permeability modification that
considers a dependency with the deformation. This type of hydro-mechanical coupling takes into
account the effects of strain localisation and will engender a permeability increase that is more
pronounced inside the shear bands.

Considering the fractured rock at macroscale as a continuous medium, a strain-dependent
isotropic evolution of the hydraulic permeability tensor is taken into account based on a power
(cubic) formulation:

kw,ij = kw,ij,0
(
1 + βper 〈γper〉3

)
(6.33)

where kw,ij,0 is the initial intrinsic water permeability tensor, βper is an evolution parameter, 〈 〉
are the Macaulay brackets, and γper is a deformation parameter for which different expressions
are envisaged hereafter. For such evolution the time derivative of the permeability reads:

k̇w,ij =
∂kw,ij
∂εkl

ε̇kl =
∂kw,ij
∂εkl

∂u̇k
∂xl

(6.34)

where:
∂kw,ij
∂εkl

=
∂kw,ij
∂γper

∂γper
∂εkl

= kw,ij,0 3 βper γ
2
per

∂γper
∂εkl

(6.35)

with ∂γper
∂εkl

depending on the expression of γper. The expression of Eq. 6.35 can be used in
Eqs. 6.26 to 6.29.

For the different expressions of γper that are considered, the evolutions of the intrinsic per-
meability tensor are illustrated in Fig. 6.13 along the horizontal axis (x-axis), the vertical axis
(y-axis), and a 45° inclined direction (oblique cross-section). The permeability variation is anal-
ysed at the end of the excavation because the main part of the material deformation around a
gallery appears during the excavation.

Firstly, the volumetric deformation is used:

γper = εv =
εii
3

(6.36)

The results in Fig. 6.13 (a) are detailed for βper = 1014. One can observe that the permeability
increases of several orders of magnitude around the gallery, especially in the shear bands where
the deformation is concentrated. In the horizontal direction, no shear bands are crossed by the
x-axis (see Fig. 6.12); then, the increase remains quite diffuse and expands too deeply in the
rock formation, in comparison with the experimental data of Figs. 6.3 and 6.4. The volumetric
deformation remains low for a slightly dilatant material and an important value of βper has been
used to reproduce a permeability increase of several orders of magnitude.

Secondly, to emphasize shear strain effect, the deformation parameter can be taken as equal
to the equivalent deviatoric total strain (Eq. 6.31):

γper = ε̂eq (6.37)

201



CHAPTER 6. PERMEABILITY EVOLUTION AND WATER TRANSFER

The results for βper = 1010 in Fig. 6.13 (b) show a more important increase of the permeability
in the shear bands but it increases too deeply in the rock in all directions.

Thirdly, to consider only the plastic deformation in the permeability evolution, γper in Eq. 6.33
can be taken as the Von Mises’ equivalent deviatoric plastic strain:

γper = ε̂peq (6.38)

which rate form reads:
˙̂εpeq =

√
2

3
˙̂εpij

˙̂εpij (6.39)

where ˙̂εpij is the deviatoric part of the plastic strain rate tensor:

˙̂εpij = ε̇pij −
ε̇pkk
3

δij (6.40)

The results for βper = 1010 are illustrated in Fig. 6.13 (c). The expand of the permeability increase
is satisfactory in the vertical and the oblique directions but it does not increase sufficiently
in the horizontal direction in comparison to the experimental measurements of Fig. 6.3 (c).
This would lead to an underestimation of the drainage in that direction. Moreover, if the
permeability increase is too much concentrated inside the shear bands then the EDZ does not
expand sufficiently and the drainage in the claystone would be underestimated, because the rock
mass outside the shear bands is not be affected (Pardoen et al., 2014a,b).

An appropriate solution may be an intermediate case between considering all the deformation
and only the plastic one. To consider the plastic deformation and a part of the elastic one, the
Eq. 6.33 is adapted as follows:

kw,ij = kw,ij,0

(
1 + βper 〈Y I − Y Ithr〉 ε̂eq.3

)
(6.41)

where Y I is the yield index and Y Ithr is a threshold value below which the intrinsic permeability
variation is not considered. The yield index is defined as the reduced second deviatoric stress
invariant:

Y I =
IIσ̂′

IIp
σ̂′

(6.42)

with Y I < 1 if the current state of the material is elastic and Y I = 1 for plastic state (on the
yield surface). Furthermore, following Eq. 6.41, the intrinsic permeability could decrease if the
yield index or the equivalent deviatoric strain decreases by elastic unloading. Such phenomenon
could be related to fracture closure or to material sealing / healing but it is not treated in the
present development. Thus, to avoid a decrease of the permeability, the latter is the maximal
value between the current and the last computed permeabilities, for every computation step of
the resolution of the finite element method with τ = t+ ∆t:

kτw,ij = max(ktw,ij , k
τ
w,ij) (6.43)

The results for βper = 1010 and Y Ithr = 0.95 illustrated in Fig. 6.13 (d) show a permeability
increase in a quite good agreement with the experimental measurements for all the directions
(Figs. 6.3 and 6.4). The permeability evolution during the excavation and the comparison to
experimental data are illustrated in Fig. 6.14 where a good match is observed. As a consequence,
plastic deformation and a limited part of the elastic one allow a good reproduction of the EDZ
extent. The relations of Eqs. 6.41 and 6.43 with βper = 1010 and Y Ithr = 0.95 will consequently
be kept for the following modelling. For this permeability evolution, the permeability distribution
of the ratio kw,ij/kw,ij,0 around the gallery is represented at the end of excavation in Fig. 6.15
(logarithmic scale). An increase of at least 2 orders of magnitude inside the shear bands is
obtained.
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Fig. 6.13: Intrinsic water permeability at the end of excavation for permeability evolutions with:
(a) volumetric deformation, (b) deviatoric total strain, (c) deviatoric plastic strain, and (d)
deviatoric strain with yield index threshold.

It is to mention that the evolution which is considered in Eq. 6.41 is isotropic and will conserve
the initial directions of anisotropy and the permeability ratio kw,‖/kw,⊥ = 3 (Table 6.1). This
ratio corresponds to previous measurements from Andra. Nonetheless, the principal directions of
anisotropy in the excavation damaged zone do not correspond to the principal directions of the
initial anisotropy (Bossart et al., 2002). The permeability increase is indeed more important in
the longitudinal direction of the cracks and fractures which engenders an anisotropic modification
of the permeability. The fact that the initial directions of anisotropy are kept can be justified
by the important increase of permeability in the damaged zone with regard to the low ratio
of anisotropy. In fact, the water transfers are principally affected by the important increase of
permeability in the EDZ. Consequently, the principal directions of anisotropy should not influence
the numerical results significantly.

6.4 Ventilation and air-rock interaction

The next step of the modelling consists in applying, after the excavation, an air ventilation in the
underground gallery that corresponds to the SDZ ventilation experiment. In previous modelling
of this experiment (section 2.5), the EDZ was a priori defined in the numerical model with
a higher intrinsic permeability than the undisturbed host rock and without description of the
fractures. Now, the fracture description as well as the permeability evolution and inhomogeneity
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Fig. 6.14: Evolutions of the intrinsic water permeability and comparison to experimental mea-
surements along (a) vertical, (b) oblique at 45°, and (c) horizontal directions.

Fig. 6.15: Distribution of the ratio kw,ij/kw,ij,0 in logarithmic scale for the intrinsic water per-
meability at the end of excavation.

in the EDZ have been taken into account. The following challenge is to analyse whether the
introduced hydro-mechanical coupling and EDZ description allow to reproduce the drainage and
desaturation provoked in the surrounding media by the air ventilation. The principal objectives
of the modelling of the SDZ test are to characterise, firstly, the air-rock transfers at gallery wall,
and secondly, the influence of a controlled gallery ventilation on the clayey rock behaviour. The
same numerical model and material parameters are indeed used hereafter, with the identical
configuration of material defects at gallery wall as in Fig. 6.12 (a).

204



CHAPTER 6. PERMEABILITY EVOLUTION AND WATER TRANSFER

6.4.1 Hydraulic boundary condition at gallery wall

The interaction between air and rock certainly conditions the drainage kinetics in the rock for-
mation. The pore water pressure in the rock decreases during the excavation and the ventilation
and, in the long term, a thermodynamic equilibrium is reached between the gallery wall rock
and the gallery air. Experimental measurements have shown that the drainage and desaturation
are progressive which seems to imply that the vapour transfer between the air and the rock is
not instantaneous (section 2.3.2).

Both classical and non-classical flow boundary conditions at gallery wall have been tested
for the reproduction of the SDZ experiment in section 2.5. The classical condition assumes an
instantaneous equilibrium between the liquid water inside the rock and the water vapour of the
gallery air by Kelvin’s equilibrium equation:

RH =
pv
p0
v

=
ρv
ρ0
v

= exp

(
−stot mv

ρw R T

)
(6.44)

where RH is the relative humidity of the air inside the cavity, p0
v is the pressure of saturated

water vapour at the same temperature, pv is the partial pressure of water vapour, ρ0
v is the

density of saturated water vapour (Eq. 2.48), ρv is the density of water vapour, stot is the total
suction, mv is the molar mass of the water vapour (mv = 0.018 kg/mol), ρw is the water density
(ρw = 1000 kg/m3), R is the universal gas constant (R = 8.314 J/molK), and T is the absolute
temperature of the air (expressed in Kelvin). By taking into account only the capillary effects
(matric suction) with the capillary pressure being pc = patm − pcavw , the water pressure in the
cavity pcavw which is imposed at gallery wall takes the form:

pcavw =
ρw R T

mv
ln (RH) + patm (6.45)

The results obtained with this condition indicate that it does not allow a good reproduction of
the measurements of pore water pressures around the gallery (Fig. 2.32 in section 2.5.4). The
classical imposition at gallery wall is therefore not appropriated to reproduce the water transfers,
and a non-classical mixed hydraulic boundary condition at gallery wall is more relevant for the
reproduction of large-scale rock-atmosphere interaction problems.

As a consequence, the exchanges between the cavity and the rock are modelled with a non-
classical mixed hydraulic boundary condition at gallery wall (Charlier et al., 2013b; Gerard et al.,
2008). This condition has been developed previously and is succinctly recalled here; for more
details, please refer to section 2.5.1. The condition considers that two types of exchange happen
at the gallery wall of ventilated cavities (Ghezzehei et al., 2004): liquid water S̄ and water vapour
Ē. The total water flow is defined as (Fig. 6.16):

qw = S̄ + Ē (6.46)

where S̄ and Ē are the seepage and evaporation flows.
The vapour exchange mode assumes the existence of a boundary layer on the porous surface of

the cavity (Ghezzehei et al., 2004; Pintado et al., 2009). This exchange occurs when a difference
between the vapour density in the rock ρΓ

v and in the cavity air ρcavv exists (Nasrallah and Perre,
1988):

Ē = αv
(
ρΓ
v − ρcavv

)
(6.47)

Moreover, the vapour exchange is not instantaneous and is governed by the external conditions
(relative humidity, temperature, and velocity of the air) which are considered in the boundary
layer through a vapour mass transfer coefficient αv.

The exchange of liquid water is an unilateral seepage flow directed towards the gallery. It
takes place only when the surface of the material is saturated. That is to say that a seepage flow
exists when the pore water pressure in the rock at gallery wall is larger than the water pressure
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in the cavity and the atmospheric pressure: pΓ
w ≥ pcavw and pΓ

w ≥ patm. This flow is introduced
by a unilateral boundary condition on pw with a ramp function (Bardet and Tobita, 2002; Zheng
et al., 2009): {

S̄ = Kpen
(
pΓ
w − patm

)2
if pΓ

w ≥ pcavw and pΓ
w ≥ patm

S̄ = 0 if pΓ
w < pcavw or pΓ

w < patm
(6.48)

where Kpen is a numerical penalty coefficient for the seepage that must be as large as possible
to respect the unilateral condition (Fig. 6.16). A value of Kpen = 10−10 s3/kg is assumed.

pw

G

patmpw

cav

qw

Evaporation

Seepage with
ramp function

Seepage for ideal
unilateral condition

Fig. 6.16: Evaporation and seepage flows at gallery wall for a constant air ventilation (Gerard
et al., 2008).

6.4.2 Air ventilation

Once the excavation front has reached the studied section during the drilling, it is assumed that
the gallery air remains saturated with water vapour because the gallery is not ventilated yet. It
means that the air relative humidity is of 100 % and the water pressure in the cavity corresponds
to the atmospheric pressure by Eq. 6.45. The evolution of pcavw during the excavation phase is
illustrated in Fig. 6.10. During the ventilation, the water pressure and the water vapour density
in the cavity correspond to the relative humidity of the cavity air by Kelvin’s law (Eq. 6.44).
The density of water vapour corresponds to:

ρcavv = RH ρ0
v (6.49)

and the water pressure is obtained by Eq. 6.45. It is calculated from the experimental mea-
surements of the air relative humidity and temperature inside the GED gallery (Fig. 6.5) and
is depicted in Fig. 6.17. Finally, the gallery hygrometry is imposed at gallery wall through the
non-classical hydraulic boundary condition (Eqs. 6.46 to 6.48).

Moreover, an initiation phase of ventilation is performed after the excavation (between 21
and 50 days) to avoid applying the ventilation instantaneously. During this phase the water
pressure in the gallery air decreases from the atmospheric pressure to the first measured value.

6.4.3 Results

The first result that can be analysed is the claystone progressive drainage which occurs due
to the ventilation. In Fig. 6.18 is illustrated the comparison between numerical results and
experimental measurements of the evolution of the pore water pressure around the drift. The
measurements were realised in boreholes drilled around the uncovered SDZ experimental zone
and for different distances from gallery wall (Fig. 6.6). A close correspondence is obtained in
the different directions for a value of αv = 10−3 m/s. The pore overpressures observed after the
excavation in the vertical direction (Fig. 6.18 (c)) result of hydro-mechanical couplings mainly
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Fig. 6.17: Evolution of water pressure in the SDZ experimental zone.

related to the anisotropy of the initial stress state. In this direction, the matching with the
experimental data is slightly less good which may be related to the lower vertical permeability
and to the positions of the shear bands that condition the intrinsic permeability evolution. The
vapour mass transfer coefficient αv has indeed an influence on the drainage and its value is chosen
to obtain a good reproduction of the experimental data. The chosen value is relatively close to
the measurements performed on argillaceous material samples during drying tests (10−2 m/s)
by Gerard et al. (2010). Moreover, the two controlled ventilation phases (phases (3) and (4) in
Fig. 6.17) do not have a visible effect on the numerical results, in the long term.

The pore water pressure sensors being unable to acquire negative measurements, other mea-
surements should be taken into account to characterise the EDZ desaturation. The measurements
of water content w performed around the experimental zone can be used (see Fig. 6.19 and sec-
tion 2.3.2 for more comments on them). The water content is a direct measurement of the degree
of water saturation through the relation Sr,w = ρs

ρw
1−Φ

Φ w . The numerical and experimental
results are illustrated in Fig. 6.19 (a) for eight boreholes drilled shortly after the excavation (less
than 220 days) and in Fig. 6.19 (b) for five boreholes drilled later (between 2 and 4.25 years).
Even if a quite important dispersion of the experimental measurements is visible, a good re-
production is obtained numerically, especially in the short term. An important evolution of the
desaturation close to the cavity is reproduced during the excavation and the ventilation initiation
phases (before 50 days). In the long term and because of the gallery ventilation, the numerical
results highlight a decrease of the water content corresponding to a progressive desaturation by
evaporation at gallery wall. Nonetheless, it is observed experimentally that the desaturation
propagation in the rock is limited after the excavation which may be due to low vapour transfers
at gallery wall, to fracture closure, or to material sealing / healing. These two last phenomena
are not addressed in the present analysis; consequently, the comparison in the long term should
be regarded with some reserve.

The evolutions of the degree of saturation and water content at gallery wall, in the horizontal
direction, are represented in Fig. 6.20. The numerical results of water content are compared to
the experimental measurements performed the closest to the gallery wall for each horizontal bore-
hole. A good reproduction of the desaturation is obtained. Besides, the effect of the controlled
ventilation phases is more pronounced on the numerical results of water content at gallery wall
than it was on the pore water pressure in the rock mass. In fact, the ventilation effect is more
marked closer to the gallery, especially in the damaged zone where the permeability is important
and where desaturation occurs. A decrease of Sr,w and w is observed on the numerical results
during the ventilation phase with RH = 30 % (phase (3) between 1130 and 1680 days), with
values around w = 2.8 % and Sr,w = 0.4. An increase is observed during the last phase with
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Fig. 6.18: Comparison between experimental and numerical pore water pressure in boreholes
for different distances from gallery wall: (a,d) horizontal, (b) oblique at 45°, and (c) vertical
boreholes.
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Fig. 6.19: Evolution of water content in the horizontal direction with comparison to experimental
measurements in (a) short term up to 220 days and (b) long term from 2 to 4.25 years.

RH = 60 % (phase(4)), with values around w = 3.6 % and Sr,w = 0.5. The resaturation of the
rock is thenceforward not observed for the considered values of imposed relative humidity.

In addition to the permeability evolution in the EDZ, the drainage kinetics in the rock
formation is significantly conditioned by the air-rock interaction and the transfers at gallery
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Fig. 6.20: Evolutions of (a) saturation degree and (b) water content at gallery wall in the
horizontal direction with comparison to experimental measurements.

wall. The evolutions of the different flows and of the cumulative total flow are represented in
Fig. 6.21 for the complete gallery (total circumference). The seepage flow S̄ can be considered at
first. During the excavation, the claystone is initially fully saturated; then, once the pore water
pressure decreases in the gallery air (between 6 and 8 days, Fig. 6.10), it becomes smaller than
the pore water pressure in the rock which engenders a seepage flow directed towards the gallery
(Fig. 6.21 (a)). After the excavation, the ventilation is applied and the pore water pressure
in the rock decreases progressively. It leads to a desaturation of the gallery wall (pΓ

w < patm)
which cancels the seepage flow (Fig. 6.21 (a) and (b)). On the other hand, the evaporation
flow Ē remains low during the excavation, as long as the rock at gallery wall remains saturated
(Fig. 6.21 (a)). Once the ventilation is initiated, the gallery wall desaturates and a vapour
flow directed towards the gallery appears to ensure a thermodynamic equilibrium. During the
ventilation initiation phase (between 21 and 50 days), the pore water pressure in the gallery air
decreases from the atmospheric pressure to about -130 MPa. This generates important gradients
and a rapid increase of the evaporation flow. Later, the vapour exchange decreases until the
equilibrium is reached between the air and the rock (Fig. 6.21 (b)).
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Fig. 6.21: Evolutions of flows and total cumulative flow at gallery wall for the complete gallery:
(a) in the short term and (b) in the long term.

The two transfer processes are decoupled in the sense that the total flow qw corresponds to
the seepage during the excavation and to the vapour flow during the ventilation. Nevertheless,
the evaporation process is dominant and the cumulative total flow is mainly composed of evap-
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oration. The vapour mass transfer coefficient αv controlling the vapour transfer at gallery wall
has indubitably a significant influence. A low value implies low vapour transfers and low rock
desaturation, while a high value implies important vapour transfers, drainage, and desaturation
of the rock.

Once more, the effect of the controlled ventilation phases is noticeable at gallery wall, on the
vapour transfers (Fig. 6.21 (b)). The uncontrolled ventilation phase (phase (2) between 280 and
1130 days) displays an average relative humidity of 50 % (Fig. 6.5); then, when the humidity
decreases to 30 % in the next ventilation phase, it results in a decrease of ρcavv and in an increase
of Ē (Eqs. 6.49 and 6.47). The inverse effect is observed for the last ventilation phase when RH
increases.

Another result that can be discussed is the gallery convergence (variation of the gallery di-
ameter). It could have been discussed earlier because most part of the convergence is due to the
excavation process but the ventilation and the viscoplasticity have an impact on the long-term
convergence. For the considered gallery, the convergences that have been measured in several
sections are illustrated in Fig. 6.22 (Armand et al., 2013). Three convergence measurement sec-
tions are located in the GED gallery and three in the SDZ experimental zone. The measurements
indicate that the convergence is anisotropic with a more important vertical convergence, and that
it increases in the long term especially in the vertical direction.

The numerical results in Fig. 6.22 (a) reproduce fairly well this anisotropic convergence in
the short term, mainly thanks to the strain localisation bands located above the gallery. The
increase of vertical convergence in the long term is however not well reproduced. This can be
explained by the ventilation of the gallery air and the rock desaturation close to the gallery. In
fact, under a constant normal total stress at gallery wall and because of the suction imposed
by the air ventilation, the compressive effective stress increases in the vicinity of the gallery by
Eq. 6.2. It engenders an elastic unloading close to the gallery which restricts the further plastic
deformation (see section 4.3.5, Fig. 4.10, and Fig. 4.17).
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Fig. 6.22: Evolution of the convergence of a gallery parallel to the minor horizontal principal
stress with comparison to experimental measurements: (a) viscoplastic parameters of Table 6.1
and (b) increase of viscosity.

During the relatively short excavation period, the creep deformations seem to be negligible,
which was also concluded by Jia et al. (2008) for a modelling of shaft excavation in Callovo-
Oxfordian claystone. Nevertheless, the viscosity and creep behaviour have an impact on the
long-term deformations. This impact has been studied in section 5.4.3 for a gallery (GCS)
parallel to the major horizontal principal stress σH . It has been shown that it is possible to
increase the long-term convergence by adjusting the viscoplastic parameters. Nonetheless, the
set of viscoplastic parameters that is used (Table 6.1) has already been adapted to reproduce the
long-term convergence of the GCS gallery. The parameters can again be adapted to reproduce
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the convergence of the GED gallery parallel to the minor horizontal principal stress σh. For
instance, setting αvp0 = 0 engenders an immediate viscoplastic flow due to the initial deviatoric
stress in the rock and leads to larger convergences as illustrated in Fig. 6.22 (b). Unfortunately,
from the results of Fig. 6.22 (a), it is clear that amplifying the delayed viscoplastic strain will
improve the correspondence with in situ measurements in the vertical direction but inevitably
deteriorates it in the horizontal direction.

6.5 Conclusions, discussion, and outlooks

6.5.1 Conclusions

The coupled processes that occur during the excavation and ventilation of underground galleries
have been addressed in the late modelling. Firstly and similarly to previous representations of the
EDZ, the fractures induced by the excavation process in the vicinity of the gallery are reproduced
by shear banding, and the strain localisation is properly modelled by means of a regularisation
method. The directional development of the excavation damaged zone has been highlighted
for a transversely isotropic argillaceous rock with anisotropic initial stress state. Although the
influences of the material anisotropy and of the stress anisotropy in the gallery section are in
opposition, the stress states anisotropy is the predominant factor leading to the development and
orientation of the fractured zone during the drilling.

Secondly, the evolutions of the flow transfer properties have been characterised around the
drifts, especially in the excavation damaged zone. The evolution of intrinsic permeability is
addressed in correlation with the strain localisation process by using a strain-dependent relation.
This relation involves plastic strain as well as a restricted part of the elastic strain to better
reproduce the EDZ extent and to avoid underestimating the drainage in the medium. At the
end of excavation, the permeability increase is of several orders of magnitude in the shear bands,
as measured experimentally.

Thirdly, the flow transfers in the damaged zone and in the undisturbed material are studied
through the modelling of a gallery air ventilation experiment performed on a large scale. The
air-rock interactions at gallery wall involve both water vapour and liquid water transfers that are
implemented with a non-classical hydraulic boundary condition. Such condition is relevant for
the reproduction of the transfers because an instantaneous equilibrium between the air and the
rock may not be assumed beforehand. An equilibrium is reached in the long term by evaporation
process during the gallery air ventilation. It also allows to accurately reproduce the drainage
kinetics of the rock outside the EDZ and the rock desaturation within the EDZ. Regarding the
different ventilation phases, it has been observed that the applied constant ventilations (constant
air hygrometry), with low and high air relative humidity, only have a limited influence on the flow
kinetics in the rock and do not induce resaturation. Thus, the progressive drainage of the rock
is mostly affected by the long-term ventilation, not by the constant ventilation phases. Longer
phases of constant ventilation might have a more important influence on the desaturation and
resaturation of the rock.

Furthermore, the reproduction of both mechanical and hydraulic in situ measurements is
complex because the processes are coupled. The approach aims to highlight the important hydro-
mechanical aspects to take into account for the analysis of the EDZ behaviour in unsaturated
biphasic media and for the reproduction of experimental measurements. For the reproduction
of shear bands and gallery convergence, the regularisation method, the material anisotropy, and
the creep effect are crucial. For the reproduction of the water transfers, rock drainage, and
desaturation it is the unsaturated properties of the medium, the permeability increase, and the
exchanges at gallery wall that are most particularly important.
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6.5.2 Discussion

Hereafter, a global discussion is presented to emphasise the possibilities and limitations of the
modelling of the excavation damaged zone with shear banding. The arguments are related to
the hydro-mechanical results obtained through the different developments and modelling in a
general sense.

Onset of strain localisation

The strain localisation and bifurcation phenomena are natural consequences of a strain softening
material behaviour. The latter has been considered through the softening of the cohesion which
is involved in the strength definition of the material (yield surface with softening plasticity).
However, the parameters of the cohesion softening have to be adequately chosen to trigger the
strain localisation which may lead to choices that could seem somewhat arbitrary. For the
large-scale modelling of gallery drilling, the numerical results have shown that the cohesion
softening has to start once the material enters plasticity otherwise strain localisation would not
be triggered during the excavation. For small-scale compression test, the deformations are much
more important and the start of the softening can be delayed to reproduce the position of the
peak stress on the global response curve of the specimen. The softening parameters (especially
Bc) have also to be selected in a range that avoids snapback problem and permits computational
stability. Thus, choosing the softening parameters to trigger strain localisation in a given material
engenders different sets of parameters which depend mainly on the type of solicitation. To
go further in the calibration of the strain localisation process, precise information is required
about the shear banding structure, including the exact shear band pattern, orientations, number,
thickness, and evolution. Unfortunately, such information is rarely available for rocks especially
for large-scale problems.

Although softening plasticity is considered, the strain localisation is not automatically trig-
gered for a perfect material. In case of gallery excavation it has been demonstrated that
anisotropy, either of the stress state or of the material behaviour, leads to the onset of shear
bands. This type of solution has been called the "natural" solution but it is not unique. In fact,
even if enhanced models with regularisation methods restore mesh objectivity, the localised solu-
tion of an initial boundary value problem remains non-unique. Different methods are possible to
force the strain localisation and to generate several possible solutions to an identical boundary
value problem. Among them, two have been used for the gallery excavation: a modification of
the computational numerical parameters (see Figs. 5.34 and 5.35) and material imperfections
(see Figs. 6.11 and 6.12). Various localised solutions could therefore emerge by forcing the strain
localisation and, among them, some modes are actually more frequent than others (Marinelli
et al., 2014; Sieffert et al., 2009). A study on this particular point would be interesting to realise.
Nevertheless, different possible solutions can be of interest when trying to reproduce experi-
mental measurements that may be representative of a particular solution (not of the "natural"
solution). For the gallery excavation problem, the drilling damages the rock and creates material
defects at gallery wall. Considering various configurations of defects on the wall will inevitably
influence the strain localisation process and will impact the solution.

Pattern, number, and width of shear bands

The shape of the EDZ is quite well reproduced by the modelling of the shear bands; nonetheless,
the fracturing would be better described if more and thinner shear bands were modelled. The
number of shear bands that develop around the galleries is also related to the onset of strain
localisation. This number remains quite low and controlling the shear band onset, with material
defects for instance, could be appealing. However, the results in Fig. 6.12 indicate that using
several defects may allow to control or modify the shear band pattern (location and orientation
of the bands) but does not generate much more shear bands. The results of Figs. 4.7 and 4.8 have
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shown that the pattern of shear bands of the "natural" solution (without material defects) is
related to the rock properties. The differences in the number, orientation, and time of appearance
of the shear bands for these particular numerical results are related only to the compressibility
of the solid grains, which means to the value of the Biot’s coefficient. Other properties of the
rock may also influence the shear band pattern (dilatancy angle, final cohesion...).

Another crucial parameter which conditions the pattern, number, and thickness of the shear
bands is obviously the elastic modulus D of the second gradient mechanical model. It represents
the physical microstructure and the internal length scale relevant for the shear band width is
related to it. For granular materials, the thickness of the shear bands depends mainly on the
solid grain size (El Bied et al., 2002; Roscoe, 1970; Vardoulakis and Sulem, 1995); thus, the value
of D should be evaluated based on experimental measurements. From a numerical perspective,
a good precision of the post-localisation plastic behaviour within the shear bands is obtained if
a few elements (at least three) compose the shear band width (Bésuelle et al., 2006a). Thus,
because the shear bands can be very thin (<100µm) for fine-grained materials such as clayey
rocks or marls (Bésuelle et al., 2006b; Viggiani et al., 2004), very fine meshes must be used to
correctly reproduce the small width of the shear bands with finite element methods. They may
also allow the development of more shear bands. Such meshes would contain a huge number of
finite elements, especially for large-scale applications, which would cause the numerical solving
to be time consuming.

Lastly, only circular galleries have been envisaged for the modelling of the EDZ with shear
banding, but the galleries in the Andra’s URL generally exhibit a shape of "horseshoe" with a
concrete slab on the floor (Fig. 2.26). The onset and final pattern of the shear bands can be
influenced by different geometries of the problem or by geometrical defects, which could therefore
be investigated.

Reproduction of gallery convergence

The mechanical aspects that are considered include mostly the reproduction of the fracturing
pattern and gallery diametrical convergence. The latter is strongly affected by the position of the
fractures and is much larger in the direction corresponding to the location of the fractured zone
(Figs. 6.2 and 2.7). It is clear that the convergence of the galleries and its anisotropy strongly
depend on the appearance of shear bands, on their locations, and on the movements of material
blocks created by the shear bands. The anisotropy of the convergence can not be reproduced
without strain localisation. Nevertheless, other solutions of the gallery excavation problem may
generate other shear band patterns and other results in term of convergence. The shear band
pattern and convergence could also be modified by the "horseshoe" shape of the galleries.

Creep deformations have been introduced with the purpose of analysing if a viscoplastic
mechanism could reproduce the increase of convergence in the long term. It could, but its effect
are restricted when an air ventilation is realised in the gallery. The desaturation (suction) of
the rock around the gallery, which is implied by the ventilation and the increase of permeability,
restricts the deformation after the drilling which comes in opposition to the creep effect. Con-
sequently, reproducing the evolution of the convergence by creep strain and finding one set of
parameters that would suit for horizontal and vertical convergences, as well as for both gallery
orientations in the Callovo-Oxfodian claystone, are not straightforward. The rock vicosity im-
prove the reproduction of the convergence evolution in the long term, but it may not be efficient
to counteract opposite effects such as gallery ventilation.

Reproduction of water transfers

The hydraulic aspects that are considered include mostly the reproduction of the water transfers,
the drainage, and the desaturation. They depend on several factors as the increase of permeability
in the EDZ, the hygrometry of the air inside the gallery, and the exchanges between the rock and
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the air at gallery wall. It is to mention that the reproduction of both mechanical and hydraulic
aspects with strain localisation in shear bands is quite complex because the two problems are
coupled and influence each other. The permeability variation and the water transfer around the
gallery are conditioned by the strain localisation and the shear banding pattern. Consequently,
the simultaneous reproduction of all these aspects constitutes a challenge in the context of strain
localisation in unsaturated biphasic media.

Concerning the intrinsic permeability in the EDZ, if an increase is considered exclusively
inside the shear bands then the drainage in the claystone is underestimated because the rock
mass outside the shear bands is not affected (Pardoen et al., 2014a, 2015b). The drainage could
be accentuated by increasing the number of shear bands, but it may require to reduce the width of
the bands and the permeability increase could remain confined within them. Another possibility,
which has been used in the modelling, is to consider a more global increase of the intrinsic
permeability in the EDZ, in the shear bands but also in their vicinity. The second method allows
a satisfactory reproduction of the drainage and desaturation of the rock (Figs. 6.18 to 6.20).

Material imperfections have also been incorporated in the modelling (Fig. 6.12 (a)) to repre-
sent the defects induced by the drilling process at gallery wall. They influence the shear banding
pattern and therefore the intrinsic permeability evolution and the water transfers. Different
configurations of defects have been tested and both mechanical and hydraulic experimental data
have been analysed simultaneously. The results that have been illustrated in sections 6.3 and 6.4
correspond to a configuration that allows a good reproduction of both mechanical and hydraulic
measurements.

The exchanges at gallery wall are also of importance regarding the flow kinetics in the rock.
Among the two types of exchange involved at gallery wall, the water vapour transfer is controlled
by a transfer coefficient αv. This parameter depends on the external drying conditions (relative
humidity, temperature, and velocity of the air) and can be determined from drying flux curves
deduced from laboratory drying experiments (Léonard et al., 2005). In the numerical modelling,
this parameter has been calibrated to correctly reproduce the experimental measurements of pore
water pressure and water content. The used value is lower than the one determined on small-scale
samples of argillaceous material during convective drying experiments (Gerard et al., 2010). This
difference may be explained by the drying conditions and drying scale in underground galleries
that are different than in laboratory. In fact, the kinetics of the air circulation is different than
in convective drying tests and the size of the dried material is much larger. A scale effect could
possibly help to explain the difference but should be studied in depth.

Following all these arguments, an evident question that can arise is: do other solutions to
the second grade boundary value problem of a gallery excavation could have lead to a potential
correct reproduction of the experimental data? Due to the non-uniqueness of the solution and
to the various choices of parameters, the answer is: probably! Nonetheless, the reproduction
of the different hydro-mechanical measurements are not straightforward, and the solution that
is obtained is satisfactory. It involves parameter values that are chosen in an acceptable range
for the considered rock. It is a fact that the solution is not unique but finding another set of
parameters that would also permit to correctly reproduce all the different aspects would not be
trivial. It might however be possible for another shear band pattern provided that it is located
above the gallery (for the reproduction of the SDZ experiment).

6.5.3 Outlooks

Various perspectives can be extrapolated from the present work on different aspects. Several
outlooks are detailed hereafter, without having the pretension of being exhaustive but with the
purpose of remaining correlated to the large-scale numerical modelling of the excavation damaged
zone.
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Mechanical aspects

The proposed approach aims to reproduce the EDZ and the different couplings occurring in it,
based on a continuous description of the fractures with strain localisation in shear bands. The
material rupture and the fracture discontinuities are not described in a discrete manner, which
will consequently not been discussed here. Considering a continuous approach, the strain lo-
calisation can be seen as a consequence of material damage by microcracking. In fact, strain
localisation appears due to the growth, interaction, and coalescence of microcracks. The mate-
rial damage could therefore be considered in parallel with strain localisation by considering a
degradation of the material strength properties, either with macroscopic or multi-scale approach.
The damage could improve the results, as the gallery convergence for instance, but remains to
be investigated.

Using shear strain localisation in band mode as a predictor of the fracturing process is an
approach that is mostly efficient for the reproduction of shear fractures in materials dominated
by this type of failure. As a perspective, the fracture definition can still be improved, and it
is evident that additional mechanisms would be necessary for the reproduction of other types
of fractures. For instance, modelling tensile fractures in the excavation damaged zone could be
of interest. In fact, even if shearing is the predominant fracture mechanism for the considered
clayey rock, fractures in extension are also observed in the damaged zone close to the gallery.

The material mechanical behaviour in traction could also be improved by adapting the yield
criterion with a resistance criterion in traction. Nevertheless, during the gallery excavation, the
total radial stress at gallery wall decreases to zero (or to the atmospheric pressure) for unsup-
ported galleries. Then, tensile effective stress appears only if pore overpressures are generated
which is not the case when reproducing gallery air ventilation.

Concerning the compressive material behaviour, rocks can exhibit two principal mechanisms
of inelastic deformation: the shear failure and the pore collapse. The shear failure is inherent to
frictional materials and appears for predominant deviatoric stresses. It has been modelled with a
Van Eekelen yield surface and a slightly dilatant behaviour. The pore collapse is characterised by
a contractive plastic behaviour with an important reduction of the porosity due to the collapse of
the larger pores, which appears for predominant mean stresses. This second plastic phenomenon
might appear for high porosity contractive rocks but not for low porosity dilatant rocks (Fossum
and Fredrich, 2000; Issen and Rudnicki, 2001). The considered consolidated rock being of the
second type, only the shear failure has been considered with a classical and simple model. For
high porosity rocks exhibiting a transition from dilatant to compactive deformation, the pore
collapse could be added in the definition of the yield criterion with a cap model expressing the
transition from dilatant to contractive pre-failure deformation (Fossum and Fredrich, 2000). The
influence of the contractive rock behaviour on the shear bands that develop around galleries
would require more investigations. More particularly, it is to recall that bifurcation and strain
localisation are eased if a softening plastic behaviour is included in the model, even for the cap
part if the development of shear bands is sought at considerable mean stress.

Another aspect that can be improved is the creep behaviour. Firstly, the mechanisms of
instantaneous plastic deformation and time-dependent viscoplastic deformation have been sepa-
rately described with two different constitutive models. Yet, these strains are both related to the
plastic behaviour of the material and differ by the time scales at which they develop. Therefore,
for this type of approach, the physical explanation of the creep mechanism is not clearly estab-
lished. In contrast to this classical approach, unified approaches exist. They consist in defining
the plastic and viscoplastic surfaces (loading and potential surfaces) with a similar mathematical
expression and similar internal variables. Such approach may be adopted to gain coherence in the
description of the material behaviour. Moreover, only one viscoplastic mechanism is considered
and it is arduous to calibrate its parameters both on the short term (creep tests) and on the long
term (gallery convergence). Different vicoplastic processes with different time scales may exist
and lead to different mechanisms of creep strain.
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Hydraulic aspects

As for the mechanical aspects, additional mechanisms would be required to represent the frac-
tures in opening mode. Experimental measurements indicate that the presence of a network of
interconnected extensional fractures close to the gallery significantly contributes to the increase
of the hydraulic permeability in the EDZ (Armand et al., 2014). As a consequence, the descrip-
tion of tensile fractures and their influence on the hydraulic kinetics could be incorporated in the
description of the EDZ. For the strain localisation approach, one way to proceed could be to link
the intrinsic permeability evolution with the tensile strain in the normal direction to the shear
bands. The permeability would be more particularly increased in the longitudinal direction of
the shear band. This would lead to an anisotropic evolution of the intrinsic permeability whose
principal directions would not correspond any longer to the principal directions of the initial
material anisotropy. Such anisotropic evolution, with a more pronounced increase in the shear
band direction, could be envisaged for any shear band even without taking into account tensile
effects. The drawback of this permeability evolution is that the permeability increase in the
normal direction to the shear band is limited which restricts the drainage. Therefore, the global
drainage of the rock would not necessarily be obtained. Nonetheless, the Rice bifurcation crite-
rion provides two conjugate directions of possible bifurcation and the direction that is actually
active is not known. The orientation of the shear bands at macroscale are known only at the end
of the computation. Knowing the direction of the shear bands during the computation would
require to determine locally in which direction the shear band propagates on a global scale which
is not possible.

Other effects of the material drying can also be taken into account. Actually, the effect of
drying on the material behaviour is related to the hydro-mechanical coupling inherent to the
effective stress definition. The material drying provoked by the air ventilation of the galleries
generates a matric suction in the porous rock and an increase of the effective compressive stress.
Following the definition of the yield surface, an increase of the mean effective stress strengthens
the material, which becomes elastic again (elastic unloading) close to the gallery (Fig. 4.10).
Such process does not increase the fracturing by desiccation but, on the contrary, inhibits the
strain localisation and the further plastic strains. The expected effect of drying would however
be desiccation, shrinkage, and fracturing; consequently, a more complex definition of the hydro-
mechanical coupling and of the desiccation fracturing process would be required. The latter
could also be related to the description of tensile cracks, to a resistance criterion in traction,
and to permeability evolution. The relation to strain localisation requires further studies to be
established.

Another aspect that can be influenced by the cracking and damage is the water retention
property of the material. The damage process in porous materials such as rocks or concrete can
modify the pore network morphology, the permeability, the water retention curve, and the gas
breakthrough pressure (Arson and Pereira, 2013; M’Jahad et al., 2015; Pereira and Arson, 2013).
A supplementary hydro-mechanical coupling could consequently be introduced by considering
an evolution of the retention curve with the deformations (Gerard, 2011; Olivella and Alonso,
2008). For such approach, it is assumed that the increase of the pore size generates a decrease of
the air entry pressure. Moreover, experimental studies on concretes performed by M’Jahad et al.
(2015) have highlighted that, for the calibrations of retention curves based on the van Genuchten’s
model, the parameter Pr representing the air entry pressure can reduce significantly after damage.
It means that the minimal capillary force needed to desaturate the material pores is lowered by the
cracking process, and the desaturation is amplified in the material for a given capillary pressure
(matric suction). This would lead to a more rapid decrease of the degree of water saturation
around the galleries when they are submitted to air ventilation. The desaturation front would
propagate and reach a steady state more rapidly after the excavation. The exchanges of water
vapour at gallery wall may therefore be less important during the ventilation phase and may
have a lower effect on the drainage of the argillaceous media. Nonetheless, the amplification of
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the desaturation will generate a decrease of the relative permeability, by means of the relative
permeability curve, and therefore a decrease of the global permeability. This decrease would
restrict the advective flows of water and the progressive drainage of the rock, which constitutes
an opposite effect to the increase of the intrinsic permeability.

Lastly, the closure of fractures or the sealing and healing of the rock might be considered as
well. Their major effects would be a reduction of the intrinsic water permeability and of the flow
transfers that would eventually reduce the long-term drainage of the rock.

Other materials and applications

The proposed approach could certainly be extended to other materials and other applications. In
the context of nuclear waste repository, two other clayey geological formations that are considered
in Europe are the Boom clay (Belgium) and the Opalinus clay (Switzerland). The first is a
plastic clay that also exhibits chevron or herringbone fracture patterns around the galleries but
no extensional failure (Blümling et al., 2007; Wileveau and Bernier, 2008). More information
on the modelling of the EDZ with shear bands in this clay can be found in Salehnia et al.
(2015). The second is an indurated clay whose characteristics are comparable to those of the
Callovo-Oxfordian claystone but with bedding planes inclined at about 45°. For this material, the
extension is the prevailing mechanism of failure; consequently, extensional mechanisms should
be included in the fracture description to reproduce the EDZ accurately. The development of
the fractures in this indurated clay (Marschall et al., 2008) is however mostly dominated by
pre-existing features (tectonic faults) and bedding plane instabilities (bedding slip or buckling)
which increase the complexity of the modelling. Other geological formations, such as granite and
salt formations, are also envisaged for the deep repository of nuclear wastes.

Moreover, other applications such as tunnelling, petroleum engineering, mining, oversee
drilling, fractured reservoirs, geothermal drilling... can be considered especially since the coupled
second gradient model has been extended to unsaturated conditions, solid grain compressibility,
and anisotropic behaviour. The modelling of the EDZ in different materials would require to
analyse their fracturing behaviour and to evaluate if the representation of fractures with shear
banding is pertinent for the considered applications.
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7.1 Summary

Among the different sources of energy, the nuclear energy constitutes a significant part of the
global production. The long-term management of the most hazardous radioactive wastes is
envisaged by deep geological repository. This mode of disposal consists of a repository in stable
geological formations that provides good confining characteristics and that insulate the harmful
effects of the wastes. Different low-permeability host materials are envisaged and, among them,
the Callovo-Oxfordian claystone is studied.

The long-term repository requires a good understanding of the host formation behaviour
and of the coupled processes that occur around the underground structures, during the different
storage phases. The excavation of the underground galleries and the water transfers resulting of
the interaction between the host rock and the gallery air are mostly analysed. It is a fact that
the drilling process generates cracks and fractures in the surrounding medium. They concentrate
in the gallery’s vicinity, in a zone called the Excavation Damaged Zone (EDZ). In this zone, the
fracturing engenders important and irreversible modifications of the hydro-mechanical properties
of the rock such as a significant increase of the hydraulic permeability. The material behaviour
can also be affected by the interaction with the gallery air during maintenance phases due to the
air ventilation that is realised inside the galleries. Such ventilation can drain the water from the
rock and cause desaturation, especially in the damaged zone. Consequently, the understanding
and the prediction of the EDZ hydro-mechanical behaviour are crucial issues for the long-term
management of nuclear wastes. The coupled processes that occur during the excavation and
ventilation of underground galleries are therefore addressed.

The first objective is to describe the fractures and the EDZ development induced by the
excavation process. Among the different possible methods allowing to reproduce the drilling
effects and the fracturing process in geomaterials, it is proposed to represent the fractures with
strain localisation in shear bands. An appropriate model allowing to properly reproduce the
strain localisation in geomaterials with finite element methods is defined. It is an enhanced
model for microstructure media called the coupled local second gradient model which involves
a regularisation method. To enlarge its application to drilling in unsaturated anisotropic rocks,
some improvements of this model are developed to take into account unsaturated conditions,
compressibility of the solid grains, anisotropic rock behaviour, and permeability evolution. The
numerical modelling of the excavation fractured zone with shear banding provides information
about its shape, extent, fracturing structure, and behaviour that are in good agreement with in
situ measurements. The shear bands develop during the gallery excavation and the modelling
exhibits a chevron fracture pattern around the gallery.

At repository scale, experimental measurements have highlighted that the rock anisotropy
has an important role in the onset of fractures and in the fractured zone pattern. Then, be-
cause sedimentary geomaterials frequently exhibit a transversely isotropic behaviour depending
on the direction of loading, a constitutive mechanical model incorporating the rock anisotropy
is included. For underground drilling in Callovo-Oxfordian claystone, the fractured zone is con-
trolled by both the anisotropy of the stress state and of the material characteristics. The elliptical
shape of the fractured zone as well as its directional development is highlighted with numerical
modelling of shear banding. On one hand, the shear banding zone develops preferentially in
the direction of the minor principal stress for galleries having an anisotropic stress state in their
sections. On the other hand, for galleries having an isotropic stress state in their sections, the
development of the strain localisation zone is governed by the anisotropic plastic properties of
the rock and develops preferentially in the direction of lower material resistance. The observed
pattern and extent of the shear strain localisation zone correspond fairly well to fracture ob-
servations and measurements. Furthermore, the numerical results also indicate that the shear
bands appearance and pattern have an influence on the convergence of the galleries. A larger
convergence is obtained in the direction of the fractured zone according to in situ measurements.

Creep deformations may also be important to take into account for the long-term feasibility
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analysis of deep geological repository of nuclear radioactive wastes. Such deformations have
an impact on the long-term convergence of the underground structures. Viscosity effects are
therefore included in the modelling to improve the reproduction of the gallery convergence.

The last major objective is the description of the fluid transfers and of the rock hydro-
mechanical behaviour around galleries. In addition to mechanical aspects, the fracture behaviour
is dominated by hydro-mechanical property changes. Characterising the impact of the rock
fracturing on its hydraulic properties remains a major issue for the EDZ description. It is
addressed with a hydro-mechanical coupling for the reproduction of the increase of water intrinsic
permeability in the EDZ. To take into account strain localisation effects at the macroscale, the
intrinsic permeability evolution is expressed by a strain-dependent relation which engenders
a more pronounced increase of permeability inside the fractures (shear bands). A significant
permeability increase of several orders of magnitude is reproduced in the excavation damaged
zone, in agreement with available experimental measurements.

After gallery excavation, the hydraulic transfers in the rock surrounding the galleries are
investigated through the rock interaction with the gallery air. Depending on the air hygrometry,
the interaction implies drainage and desaturation of the surrounding material, especially in the
EDZ where the permeability is increased. These transfers are studied at large-scale during
the reproduction of a gallery air ventilation experiment, namely the Saturation Damaged Zone
(SDZ) experiment, conducted in the Andra’s Underground Research Laboratory. Its purpose is
to investigate, at repository scale, the rock-atmosphere interactions, the effect of drainage and
wetting, as well as the desaturation and possible resaturation of the EDZ.

The different transfers depend on the liquid water and water vapour exchanges at gallery
wall that are introduced with a non-classical (mixed) hydraulic boundary condition. The latter
implies a delayed thermodynamic equilibrium between the gallery wall rock and the gallery air
controlled by the water vapour transfer. Such condition is relevant for the reproduction of the
transfers and has a significant influence on the reproduction of the experimental measurements
performed around the gallery during the test. Based on experimental observations in the clay-
stone, the model prediction successfully captures the drainage kinetics of the undisturbed rock
and the desaturation of the EDZ. The effect of the gallery air ventilation on the shear band-
ing development around the galleries is also highlighted. Moreover, it is to mention that the
reproduction of both mechanical and hydraulic in situ measurements is complex.

The proposed approach aims to highlight the important hydro-mechanical aspects to take
into account for the reproduction of the EDZ behaviour in unsaturated biphasic media with
shear banding. For the reproduction of the mechanical aspects, the regularisation method,
the material anisotropy, and the creep effect are crucial. For the hydraulic aspects it is the
unsaturated properties of the medium, the permeability increase, and the exchanges at gallery
wall that are most particularly important.

7.2 Contributions

The major contribution is to provide new elements for the prediction and understanding of the
hydro-mechanical behaviour of the excavation damaged zone. This behaviour is analysed for
partially saturated porous rocks having low-permeability. The new developments concern the
characterisation of the fracturing and coupled processes that take place around underground
galleries. The approach is innovative in the sense that the fracturing process is predicted on a
large scale with shear bands, and that strain localisation effects are taken into account in coupled
processes, such as the variation of hydraulic properties.

The developments and applications are oriented towards the numerical modelling of the EDZ.
This modelling plays an essential role in the prediction of the rock behaviour related to under-
ground drilling. Numerical applications are realised in parallel to the different developments,
improving the complexity of the material behaviour and of the fracture description with shear

222



CHAPTER 7. CONCLUSION

banding at each step. This type of modelling constitutes a major novelty because it has not been
widely performed at large scale, in partially saturated rock. Concerning the claystone behaviour,
the objective is not to develop a complex constitutive model but is to highlight if shear banding
can be an adequate numerical tool for the reproduction of the EDZ.

For underground drilling in rocks, the challenges that are addressed in term of strain localisa-
tion modelling are multiple. A first challenge consists in investigating if the proposed numerical
method is appropriate to reproduce shear bands on a large scale. Secondly, the used approach
must be able to represent the impacts of the different material characteristics (unsaturated state,
deformability, anisotropy, property modifications) on the post-failure behaviour and on the devel-
opment of shear bands around galleries. Thirdly, the simultaneous reproduction of mechanical,
hydraulic, and coupled aspects is not an easy task when they are all related to strain localisation
effects. The last challenge is to capture the drainage and desaturation kinetics in the EDZ and
in the surrounding rock, based on in situ experimental measurements.

7.3 Outlooks

Diverse perspectives can be considered on several aspects. They are enumerate hereafter, in
relation to the large-scale numerical modelling of the excavation damaged zone.

Numerical modelling

The onset of strain localisation is related to various numerical aspects. Firstly, to go further
in the calibration of the strain localisation process, precise information is required about the
shear banding structure. However, this information is seldom available for rocks especially for
large-scale problems. Secondly, enhanced models with regularisation methods are required to
properly model the strain localisation by restoring mesh objectivity. The non-uniqueness of the
localised solution to the excavation problem could however be studied by generating various
solutions. Among these solutions, some modes are more frequent than others (Marinelli et al.,
2014; Sieffert et al., 2009) and a study of the most frequent modes around galleries as well as
their influence on the reproduction of experimental measurements could be interesting to realise.

The fracturing pattern may be better reproduced. In fact, the shear bands correctly reproduce
the shape of the EDZ but thinner bands in a large number would be more appropriated to describe
the fracturing. The shear band pattern is related to the rock properties, to material defects,
and to the elastic modulus of the second gradient mechanical model. The latter represents the
microstructure and is related to an internal length scale and to the shear band width. Reducing its
value and the size of the finite elements could allow a better reproduction of the shear band width
and number. Additionally, the value of the second gradient elastic modulus should be evaluated
based on experimental measurements of shear bands. Moreover, galleries regularly exhibit a
"horseshoe" shape which could be reproduced. The influence of such geometry modification
or even of geometrical defects on the shear band pattern and gallery convergence could be
investigated.

For the hydraulic aspects, increasing the number of shear bands could possibly increase
the drainage. Nevertheless, if the shear band width is reduced then the permeability increase
could remain confined within the band and restrict the drainage. The cumulated effect of a
larger number of shear bands and a thinner width requires further investigations. The hydraulic
exchanges at gallery wall may also be analysed more deeply. More particularly, the drying
conditions and the drying scale in underground galleries are different than in laboratory which
might impact the water transfers. A scale effect and the kinetics of the air circulation could be
taken into account.
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Rock behaviour

The proposed approach is based on a continuous description of the fractures. For this approach,
material damage by microcracking can be considered in parallel with strain localisation by con-
sidering a degradation of the material properties. Concerning the description of the fractures in
the EDZ, it can be improved by representing other types of fractures, and additional mechanisms
would be required for their modelling. Tensile fractures could be particularly interesting to rep-
resent since they have an important effect on the hydraulic conductivity of the rock. Linking the
evolution of the water permeability with strain localisation effect in opening mode remains an
open question. In parallel, the material mechanical behaviour in traction should also be adapted.
For the compressive material behaviour, the pore collapse could be added in the definition of
the yield criterion for high porosity rocks exhibiting a transition from dilatant to compactive
pre-failure deformation. Another mechanical aspect that can be improved is the creep behaviour
of the rock. A unified plastic-viscoplastic approach can be envisaged and would provide a better
physical explanation of the creep mechanism. Several mechanisms of vicoplastic strain occurring
on different time scales may also be incorporated.

Regarding the hydraulic aspects, the anisotropy of the intrinsic permeability variation could
be considered in fractured zones. However, reproducing a more important increase of permeabil-
ity in the direction of the shear bands is not trivial because their orientations at macroscale are
known at the end of the computation. The effect of the material drying can also be enlarged
with a more complex definition of the fracturing due to desiccation and shrinkage. It could also
be related to the description of tensile cracks, traction resistance criterion, and permeability evo-
lution. The link to shear strain localisation needs further investigations. Furthermore, the water
retention property may be influenced by the damage and cracking processes. The desaturation
of damaged rocks is amplified; consequently, a supplementary hydro-mechanical coupling could
be introduced between the retention curve and the deformations. The influence of the fracture
closure or of the sealing and healing of the rock on the hydraulic properties might be considered
as well.

More broadly, the continuous approach which is used do not actually represent the cracks
and a natural representation of the fractures is to consider them in a discrete manner. Various
techniques may be used for the modelling of discontinuous fractures with finite element methods.

Applications

The proposed approach could certainly be extended to other materials and other applications.
In the context of nuclear waste repository, different clayey media and other types of geological
formations, such as granite and salt formations, are envisaged for the deep repository of nuclear
wastes. Moreover, other applications such as tunnelling, petroleum engineering, mining, oversee
drilling, fractured reservoirs, geothermal drilling... can be considered especially since the coupled
second gradient model has been extended to unsaturated conditions, solid grain compressibility,
and anisotropic behaviour. The application to any geotechnical problems that engender fractures
could even be envisaged. The modelling of fractures, with the proposed approach, in different
materials would require to analyse their fracturing behaviour and to evaluate if the representation
of fractures with shear banding is pertinent for the considered applications.
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APPENDICES

A Linearisation of the field equations for the coupled local second
gradient model

The linearisation of the field equations (Eqs. 4.39, 4.40, and 4.41) of the coupled local second gra-
dient model, leading to the linear auxiliary problem (Eq. 4.63), is detailed hereafter. It accounts
for unsaturated conditions, compressibility of the fluid and of the solid grains, permeability
anisotropy as well as permeability variation. The theoretical aspects are not recalled, only the
linearisation is realised. These novelties are implemented in the non-linear finite element code
Lagamine developed at the University of Liège (Charlier, 1987; Collin, 2003). Please refer to sec-
tions 3.3 and 4.1 for more details on the coupled local second gradient model for microstructure
media and its implementation in finite element methods.

It is to recall that, for finite element formulation, the non-linear balance equation system of
the coupled second gradient model is numerically solved by time discretisation, over finite time
steps ∆t with τ = t + ∆t, and by iterative procedure. A full Newton-Raphson method and an
implicit scheme (finite differences) for the rate of any quantity a, ȧτ = (aτ − at)/∆t, are used.

In the following developments, the stress and strain fields are defined under the material
mechanic convention in which tensile stress and strain are positive. This convention is chosen in
accordance with the one of the non-linear finite element code Lagamine in which the equations
are implemented.

A.1 Balance equations

The balance equations, the linear auxiliary problem, and the element stiffness matrix are recalled
hereafter. The system of non-linear balance equations for the coupled second gradient model is
obtained by defining two configurations at the end of the time step (Ωτ1 and Ωτ2) and non-
equilibrium forces (∆τ1

1 , ∆τ1
2 , and ∆τ1

3 ):

∫
Ωτ1

∂u∗i
∂xτ1

l

(
στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il

)
+
∂υ∗ij
∂xτ1

l

(
Στ2
ijk

∂xτ1
l

∂xτ2
k

det(F )− Στ1
ijl

)
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

(
λτ2
ij

∂xτ1
l

∂xτ2
j

det(F )− λτ1
il

)
− υ∗ij

(
λτ2
ij det(F )− λτ1

ij

)
dΩτ1

−
∫

Ωτ1

u∗i
(
ρτ2 det(F )− ρτ1

)
gi dΩτ1 = −∆τ1

1

(1)

∫
Ωτ1

λ∗ij

((
∂uτ2

i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

)
−
(
υτ2
ij det(F )− υτ1

ij

))
dΩτ1 = −∆τ1

2 (2)

∫
Ωτ1

p∗w

(
Ṁ τ2
w det(F )− Ṁ τ1

w

)
− ∂p∗w
∂xτ1

l

(
f τ2
w,i

∂xτ1
l

∂xτ2
i

det(F )− f τ1
w,l

)
dΩτ1 = −∆τ1

3 (3)

A.2 Linearisation

Variations

By making the two configurations Ωτ1 and Ωτ2 tend towards each other, the variations between
them can be defined by finite differences for any quantity a as:

daτ1 = aτ2 − aτ1 (4)
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They read for the unknown fields:

duτ1
i = dxτ1

i = xτ2
i − xτ1

i (5)

dυτ1
ij = υτ2

ij − υτ1
ij (6)

dλτ1
ij = λτ2

ij − λτ1
ij (7)

dpτ1
w = pτ2

w − pτ1
w (8)

Including the Biot’s effective stress definition for unsaturated materials of Eq. 4.24 and the
stress-strain constitutive relations of Eqs. 4.5 and 4.6 gives:

dστ1
ij = στ2

ij − στ1
ij = dσ

′τ1
ij − b Sτ1

r,w dpτ1
w δij (9)

dσ
′τ1
ij = σ

′τ2
ij − σ

′τ1
ij = Cijkl

∂duτ1
k

∂xτ1
l

(10)

dΣτ1
ijk = Στ2

ijk − Στ1
ijk = Dijklmn

∂dυτ1
lm

∂xτ1
n

(11)

The variations of the phases densities can also be linearised from Eqs. 4.13 and 4.25:

dρτ1
w = ρτ2

w − ρτ1
w = ρτ1

w

dpτ1
w

χw
(12)

dρτ1
s = ρτ2

s − ρτ1
s = ρτ1

s

(
b− Φτ1

)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
(13)

they lead to the variations of porosity and mixture density by Eqs. 4.26 and 4.12:

dΦτ1 = Φτ2 − Φτ1 =
(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+ dετ1

v

)
(14)

dρτ1 = ρτ2−ρτ1 = dρτ1
s

(
1− Φτ1

)
−ρτ1

s dΦτ1+dSτ1
r,w ρ

τ1
w Φτ1+Sτ1

r,w dρ
τ1
w Φτ1+Sτ1

r,w ρ
τ1
w dΦτ1 (15)

with:

dετ1
v =

dΩτ1

Ωτ1
=
∂duτ1

i

∂xτ1
i

(16)

The balance equations can be rewritten by taking into account the above variations.
Moreover, the Jacobian matrix F ij of the transformation between the two configurations

Ωτ1 and Ωτ2 is approximated by using a Taylor expansion and by retaining only the linear
approximation (Chambon and Moullet, 2004), meaning that the terms of degree greater than
one are discarded:

F ij =
∂xτ2

i

∂xτ1
j

=
∂
(
xτ1
i + duτ1

i

)
∂xτ1

j

≈ δij +
∂duτ1

i
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j

(17)

The Jacobian determinant becomes:

det(F ) =

∣∣∣∣∣∂xτ2
i

∂xτ1
j

∣∣∣∣∣ ≈ 1 +
∂duτ1

i

∂xτ1
i

(18)

Similarly and by applying the limit τ2 = τ1, the inverse relation yields:

∂xτ1
i
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j
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∂
(
xτ2
i − duτ1

i

)
∂xτ2

j

≈ δij −
∂duτ1

i
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j
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i

∂xτ1
j

(19)
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Balance of momentum of the mixture

The development relative to the mixture momentum balance equation 1 are firstly considered.
The first term can be rewritten as:

στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il = στ2

ij

(
δjl −

∂
(
xτ2
l − xτ1

l

)
∂xτ2

j

)
det(F )− στ1

il

= στ2
il det(F )− στ2

ij

∂
(
xτ2
l − xτ1

l

)
∂xτ2

j

det(F )− στ1
il

=
(
στ2
il − στ1

il

)
− στ2

ij

∂
(
xτ2
l − xτ1

l

)
∂xτ2

j

det(F ) + στ2
il (det(F )− 1)

(20)

Taking into account the variations defined previously and making the two configurations tend
towards each other, which leads to the limit τ2 = τ1, allows to rewrite Eq. 20 as follows:

στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il = dστ1

il − στ1
ij

∂duτ1
l

∂xτ1
j

+ στ1
il

∂duτ1
m

∂xτ1
m

(21)

where terms of order higher than one are neglected. The stress definition and the elastoplastic
constitutive law can be added, which gives:

στ2
ij

∂xτ1
l

∂xτ2
j

det(F )− στ1
il = Cilnp

∂duτ1
n

∂xτ1
p

− b Sτ1
r,w dpτ1

w δil − στ1
ij

∂duτ1
l

∂xτ1
j

+ στ1
il

∂duτ1
m

∂xτ1
m

(22)

The other terms of the mixture momentum balance equation are obtained with similar develop-
ment as in Eq. 21:

Στ2
ijk

∂xτ1
l

∂xτ2
k

det(F )− Στ1
ijl = dΣτ1

ijl − Στ1
ijk

∂duτ1
l

∂xτ1
k

+ Στ1
ijl

∂duτ1
m

∂xτ1
m

(23)

λτ2
ij

∂xτ1
l

∂xτ2
j

det(F )− λτ1
il = dλτ1

il − λτ1
ij

∂duτ1
l

∂xτ1
j

+ λτ1
il

∂duτ1
m

∂xτ1
m

(24)

λτ2
ij det(F )− λτ1

ij = dλτ1
ij + λτ1

ij

∂duτ1
m

∂xτ1
m

(25)

ρτ2 det(F )− ρτ1 = dρτ1 + ρτ1∂du
τ1
m

∂xτ1
m

(26)

The latter can be developed by including the densities and porosity variations of Eqs. 13 to 15:

ρτ2 det(F )− ρτ1 = ρτ1
s

((
b− Φτ1

)
Sτ1
r,w dpτ1

w − dσ
′τ1

Ks

)

−
(
ρτ1
s − Sτ1

r,w ρτ1
w

) (
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)

+ dSτ1
r,w ρτ1

w Φτ1 + Sτ1
r,w ρτ1

w

dpτ1
w

χw
Φτ1 + ρτ1∂du

τ1
m

∂xτ1
m

(27)
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By regrouping the different terms, the balance equation is finally rewritten as follows:

∫
Ωτ1

∂u∗i
∂xτ1

l

[
Cilnp

∂duτ1
n

∂xτ1
p

− b Sτ1
r,w dpτ1

w δil − στ1
ij

∂duτ1
l

∂xτ1
j

+ στ1
il

∂duτ1
m

∂xτ1
m

]

+
∂υ∗ij
∂xτ1

l

[
dΣτ1

ijl − Στ1
ijk

∂duτ1
l

∂xτ1
k

+ Στ1
ijl

∂duτ1
m

∂xτ1
m

]
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

[
dλτ1

il − λτ1
ij

∂duτ1
l

∂xτ1
j

+ λτ1
il

∂duτ1
m

∂xτ1
m

]
− υ∗ij

[
dλτ1

ij + λτ1
ij

∂duτ1
m

∂xτ1
m

]
dΩτ1

−
∫

Ωτ1

u∗i

[
ρτ1
s

((
b− Φτ1

)
Sτ1
r,w dpτ1

w − dσ
′τ1

Ks

)

−
(
ρτ1
s − ρτ1

w S
τ1
r,w

) (
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)

+ ρτ1
w

dpτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w Φτ1 dSτ1

r,w + ρτ1 ∂duτ1
m

∂xτ1
m

]
gi dΩτ1 = −∆τ1

1

(28)

Kinematic constraint

The kinematic constraint corresponding to micro-macro continuity of the deformation gradient
fields is solved in Eq. 2. With similar developments, the first term of this equation becomes:

∂uτ2
i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

=

(
∂uτ1

i

∂xτ1
k

+
∂duτ1

i

∂xτ1
k

)(
δjk −

∂duτ1
k

∂xτ2
j

)
det(F )− ∂uτ1

i

∂xτ1
j

=
∂uτ1

i

∂xτ1
j

det(F ) +
∂duτ1

i

∂xτ1
j

det(F )− ∂uτ1
i

∂xτ1
k

∂duτ1
k

∂xτ2
j

det(F )

− ∂duτ1
i

∂xτ1
k

∂duτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

(29)

As previously, by making the two configurations tend towards each other (τ2 = τ1) and by
neglecting terms of order higher than one, it becomes:

∂uτ2
i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F )− ∂uτ1
i

∂xτ1
j

=
∂duτ1

i

∂xτ1
j

+
∂uτ1

i

∂xτ1
j

∂duτ1
m

∂xτ1
m

− ∂uτ1
i

∂xτ1
k

∂duτ1
k

∂xτ1
j

(30)

The second term of the equation reads:

υτ2
ij det(F )− υτ1

ij = dυτ1
ij + υτ1

ij

∂duτ1
m

∂xτ1
m

(31)

Thus the equation becomes:∫
Ωτ1

λ∗ij

[(
∂uτ1

i

∂xτ1
j

− υτ1
ij

)
∂duτ1

m

∂xτ1
m

+
∂duτ1

i

∂xτ1
j

− ∂uτ1
i

∂xτ1
k

∂duτ1
k

∂xτ1
j

− dυτ1
ij

]
dΩτ1 = −∆τ1

2 (32)

Water mass balance equation

The water mass balance equation is detailed in Eq. 3. The first term becomes:

Ṁ τ2
w detF − Ṁ τ1

w = dṀ τ1
w + Ṁ τ1∂du

τ1
m

∂xτ1
m

(33)
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The variation of the water mass storage term:

dṀ τ1
w = Ṁ τ2

w − Ṁ τ1
w (34)

can be developed by using Eq. 4.27:

dṀ τ1
w = Ṁ τ2

w − Ṁ τ1
w

= dρτ1
w

ṗτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w

dṗτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w

ṗτ1
w

χw
dΦτ1 Sτ1

r,w + ρτ1
w

ṗτ1
w

χw
Φτ1 dSτ1

r,w

+ dρτ1
w

(
b− Φτ1

) (
Sτ1
r,w

)2
ṗτ1
w

Ks
− ρτ1

w

dΦτ1
(
Sτ1
r,w

)2
ṗτ1
w

Ks
+ ρτ1

w

(
b− Φτ1

)
2 Sτ1

r,w dSτ1
r,w ṗτ1

w

Ks

+ ρτ1
w

(
b− Φτ1

) (
Sτ1
r,w

)2
dṗτ1

w

Ks
+ dρτ1

w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
Sτ1
r,w + ρτ1

w

(
dε̇τ1
v −

dσ̇
′τ1

Ks

)
Sτ1
r,w

+ ρτ1
w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
dSτ1

r,w + dρτ1
w Φτ1 Ṡτ1

r,w + ρτ1
w dΦτ1 Ṡτ1

r,w + ρτ1
w Φτ1 dṠτ1

r,w

(35)

where:

dṗτ1
w =

dpτ1
w

∆t
, dṠτ1

r,w =
dSτ1

r,w

∆t
, dσ̇

′τ1 =
dσ
′τ1

∆t
(36)

with ∆t being the time step and dSτ1
r,w depending on the choice of the retention curve. Further-

more, dε̇τ1
v is obtained as follows:

dε̇τ1
v = d

(
Ω̇τ1

Ωτ1

)
=

Ω̇τ2

Ωτ2
− Ω̇τ1

Ωτ1
=

Ω̇τ2

Ωτ2
− Ω̇τ1

Ωτ2
− Ω̇τ1

Ωτ1
+

Ω̇τ1

Ωτ2

=
Ω̇τ2 − Ω̇τ1

Ωτ2
− Ω̇τ1

Ωτ1

(
1− Ωτ1

Ωτ2

)
=

Ωτ2 − Ωτ1

Ωτ2 ∆t
− Ω̇τ1

Ωτ1

(
Ωτ2 − Ωτ1

Ωτ2

) (37)

which becomes by applying the limit τ2 = τ1:

dε̇τ1
v =

dΩτ1

Ωτ1 ∆t
− Ω̇τ1

Ωτ1

dΩτ1

Ωτ1
=
dΩτ1

Ωτ1

(
1

∆t
− Ω̇τ1

Ωτ1

)
=
∂duτ1

m

∂xτ1
m

(
1

∆t
− ε̇τ1

v

)
(38)

After including the different variations, Eq. 33 becomes:

Ṁ τ2
w detF − Ṁ τ1

w =

ρτ1
w

dpτ1
w

χw

ṗτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w

dpτ1
w

χw ∆t
Φτ1 Sτ1

r,w

+ ρτ1
w

ṗτ1
w

χw

(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)
Sτ1
r,w + ρτ1

w

ṗτ1
w

χw
Φτ1 dSτ1

r,w

+ ρτ1
w

dpτ1
w

χw

(
b− Φτ1

) (
Sτ1
r,w

)2
ṗτ1
w

Ks
− ρτ1

w

(
Sτ1
r,w

)2
ṗτ1
w

Ks

(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)

+ ρτ1
w

(
b− Φτ1

)
2 Sτ1

r,w dSτ1
r,w ṗτ1

w

Ks
+ ρτ1

w

(
b− Φτ1

) (
Sτ1
r,w

)2
dpτ1

w

Ks ∆t
+ ρτ1

w

dpτ1
w

χw

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
Sτ1
r,w

+ ρτ1
w

(
∂duτ1

m

∂xτ1
m

(
1

∆t
− Ω̇τ1

Ωτ1

)
− dσ

′τ1

Ks ∆t

)
Sτ1
r,w + ρτ1

w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
dSτ1

r,w + ρτ1
w

dpτ1
w

χw
Φτ1 Ṡτ1

r,w

+ ρτ1
w

(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)
Ṡτ1
r,w + ρτ1

w Φτ1
dSτ1

r,w

∆t
+ Ṁ τ1 ∂duτ1

m

∂xτ1
m

(39)
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The second term of the water mass balance equation, that includes the water flow, becomes:

f τ2
w,i

∂xτ1
l

∂xτ2
i

det(F )− f τ1
w,l = df τ1

w,l − f τ1
w,i

∂duτ1
l

∂xτ1
i

+ f τ1
w,l

∂duτ1
m

∂xτ1
m

(40)

The variation of the water flow:

df τ1
w,l = f τ2

w,l − f τ1
w,l (41)

can be developed by using Eq. 4.14:

df τ1
w,l = f τ2

w,l − f τ1
w,l

= − dρτ1
w

kτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
− ρτ1

w

dkτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− ρτ1
w

kτ1
w,lj dk

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
− ρτ1

w

kτ1
w,lj k

τ1
r,w

µw

(
d

(
∂pτ1

w

∂xτ1
j

)
+ dρτ1

w gj

) (42)

where dkτ1
w,lj and dk

τ1
r,w depend on the chosen intrinsic permeability variation and water relative

permeability curve. However, it is noteworthy to mentioned the following development which
includes the limit:

d

(
∂pτ1

w

∂xτ1
j

)
=
∂pτ2

w

∂xτ2
j

− ∂pτ1
w

∂xτ1
j

=
∂pτ2

w

∂xτ1
i

∂xτ1
i

∂xτ2
j

− ∂pτ1
w

∂xτ1
j

=
∂pτ2

w

∂xτ1
i

(
δij −

∂duτ1
i

∂xτ2
j

)
− ∂pτ1

w

∂xτ1
j

=
∂pτ2

w

∂xτ1
j

− ∂pτ2
w

∂xτ1
i

∂duτ1
i

∂xτ2
j

− ∂pτ1
w

∂xτ1
j

=
∂dpτ1

w

∂xτ1
j

− ∂pτ1
w

∂xτ1
i

∂duτ1
i

∂xτ1
j

(43)

The expression of Eq. 40 can then be rewritten as:

f τ2
w,i

∂xτ1
l

∂xτ2
i

det(F )− f τ1
w,l =

− ρτ1
w

dpτ1
w

χw

kτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
− ρτ1

w

kτ1
w,lj k

τ1
r,w

µw

(
∂dpτ1

w

∂xτ1
j

+ ρτ1
w

dpτ1
w

χw
gj

)

− ρτ1
w

dkτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
− ρτ1

w

kτ1
w,lj dk

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

+ ρτ1
w

kτ1
w,lj k

τ1
r,w

µw

∂pτ1
w

∂xτ1
k

∂duτ1
k

∂xτ1
j

− f τ1
w,i

∂duτ1
l

∂xτ1
i

+ f τ1
w,l

∂duτ1
m

∂xτ1
m

(44)
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and by regrouping the different terms, the balance equation becomes:

∫
Ωτ1

p∗w

[
ρτ1
w

dpτ1
w

χw

ṗτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w

dpτ1
w

χw ∆t
Φτ1 Sτ1

r,w

+ ρτ1
w

ṗτ1
w

χw

(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)
Sτ1
r,w

+ ρτ1
w

ṗτ1
w

χw
Φτ1 dSτ1

r,w + ρτ1
w

dpτ1
w

χw

(
b− Φτ1

) ṗτ1
w

Ks

(
Sτ1
r,w

)2
− ρτ1

w

ṗτ1
w
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(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)(
Sτ1
r,w

)2
+ 2 ρτ1

w

(
b− Φτ1

) ṗτ1
w

Ks
Sτ1
r,w dSτ1

r,w + ρτ1
w

(
b− Φτ1

) dpτ1
w

Ks ∆t

(
Sτ1
r,w

)2
+ ρτ1

w

dpτ1
w

χw

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
Sτ1
r,w + ρτ1

w

(
∂duτ1

m

∂xτ1
m

(
1

∆t
− Ω̇τ1

Ωτ1

)
− dσ

′τ1

Ks ∆t

)
Sτ1
r,w

+ ρτ1
w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
dSτ1

r,w + ρτ1
w

dpτ1
w

χw
Φτ1 Ṡτ1

r,w

+ ρτ1
w

(
1− Φτ1

)((b− Φτ1
)
Sτ1
r,w dpτ1

w − dσ
′τ1

(1− Φτ1) Ks
+
∂duτ1

m

∂xτ1
m

)
Ṡτ1
r,w

+ ρτ1
w Φτ1

dSτ1
r,w
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+ Ṁ τ1 ∂duτ1

m

∂xτ1
m

]
dΩτ1

−
∫
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∂xτ1

l

[
−ρτ1

w

dpτ1
w

χw

kτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− ρτ1
w

kτ1
w,lj k
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r,w

µw

(
∂dpτ1

w

∂xτ1
j
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w
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w

χw
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)
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w
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w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− ρτ1
w

kτ1
w,lj dk

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
+ ρτ1

w

kτ1
w,lj k
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r,w

µw

∂pτ1
w

∂xτ1
k

∂duτ1
k

∂xτ1
j

− f τ1
w,i

∂duτ1
l

∂xτ1
i

+ f τ1
w,l

∂duτ1
m

∂xτ1
m

]
dΩτ1 = −∆τ1

3

(45)

Retention and permeability variations

Among various analytical expressions available in the literature, the van Genuchten’s model is
used (van Genuchten, 1980) for the retention curve:

Sr,w = Sres + (Smax − Sres)

(
1 +

(
pc
Pr

) 1
1−M

)−M
(46)

with pc = −pw in the absence of gaseous phase. The time derivative of the degree of water
saturation can be obtained:

Ṡr,w =
∂Sr,w
∂pw

ṗw (47)

where:
∂Sr,w
∂pw

=
(Smax − Sres) M

(1−M)P
1

1−M
r

(
1 +

(
−pw
Pr

) 1
1−M

)M+1
(−pw)

M
1−M (48)
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for the van Genuchten’s model. The variation form of Eq. 47 is:

dSτ1
r,w = Sτ2

r,w − Sτ1
r,w =

∂Sτ1
r,w

∂pτ1
w

dpτ1
w (49)

The water relative permeability curve is defined by Mualem - van Genuchten’s model (Mualem,
1976; van Genuchten, 1980):

kr,w =
√
Sr,w

(
1−

(
1− Sr,w.

1
M

)M)2

(50)

The time derivative of the water relative permeability reads:

k̇r,w =
∂kr,w
∂Sr,w

Ṡr,w =
∂kr,w
∂Sr,w

∂Sr,w
∂pw

ṗw (51)

where:

∂kr,w
∂Sr,w

=
1

2
√
Sr,w

(
1−

(
1− S

1
M
r,w

)M)2

+ 2
√
Sr,w

(
1−

(
1− S

1
M
r,w

)M)1(
1− S

1
M
r,w

)M−1

S
1
M−1
r,w

(52)
for the considered model. The variation form of Eq. 51 is:

dkτ1
r,w = kτ2

r,w − kτ1
r,w =

∂kτ1
r,w

∂Sτ1
r,w

dSτ1
r,w =

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

dpτ1
w (53)

Furthermore, the intrinsic water permeability can also evolves. Its time derivative obviously
depends on the chosen evolution law and on the considered parameters. If it varies according
to a set of parameters mi and with the pore water pressure, the time derivative of the intrinsic
permeability reads:

k̇w,ij =
∂kw,ij
∂mk

ṁk +
∂kw,ij
∂pw

ṗw (54)

The dependence on the pore water pressure can for instance be linked to the effect of poros-
ity variation if the Biot’s coefficient is lower than 1 (Eq. 4.26). Among other possibilities, a
strain-dependent isotropic evolution of the hydraulic permeability tensor is taken into account in
chapter 6, based on a power (cubic) formulation (Pardoen et al., 2014b). Its general expression
reads (Eq. 6.33):

kw,ij = kw,ij,0
(
1 + βper 〈γper〉3

)
(55)

where kw,ij,0 is the initial intrinsic water permeability tensor, βper is an evolution parameter, and
γper is a deformation parameter for which different expressions are envisaged. For such evolution
the time derivative of the permeability reads:

k̇w,ij =
∂kw,ij
∂εkl

ε̇kl =
∂kw,ij
∂γper

∂γper
∂εkl

∂u̇k
∂xl

= kw,ij,0 3 βper γ
2
per

∂γper
∂εkl

∂u̇k
∂xl

(56)

with ∂γper
∂εkl

depending on the expression of γper. Moreover, the variation forms of Eqs. 54 and 56
read:

dkτ1
w,ij = kτ2

w,ij − kτ1
w,ij =

∂kτ1
w,ij

∂mτ1
k

dmτ1
k +

∂kτ1
w,ij

∂pτ1
w

dpτ1
w (57)

dkτ1
w,ij = kτ2

w,ij − kτ1
w,ij =

∂kτ1
w,ij

∂ετ1
kl

∂duτ1
k

∂xτ1
l

(58)
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A.3 Element stiffness matrix

The linearisation of the field equations leads to a linear auxiliary problem that can be expressed
in matricial form as:∫

Ωτ1

[
U∗,τ1

(x1,x2)

]T [
Eτ1

] [
dU τ1

(x1,x2)

]
dΩτ1 = −∆τ1

1 −∆τ1
2 −∆τ1

3 (59)

where the local stiffness (tangent) matrix of an element is defined as follows:

[
Eτ1

]
25×25

=



Eτ1
14×4

04×2 Kτ1
WM4×3

04×8 04×4 −I4×4

Gτ1
12×4

02×2 Gτ1
22×3

02×8 02×4 02×4

Kτ1
MW3×4

03×2 Kτ1
WW3×3

03×8 03×4 03×4

Eτ1
28×4

08×2 08×3 Dτ1
8×8 08×4 08×4

Eτ1
34×4

04×2 04×3 04×8 04×4 I4×4

Eτ1
44×4

04×2 04×3 04×8 −I4×4 04×4


(60)

To compute the current element stiffness matrix it is easier to separate the different parts of the
coupled problem. The matrices

[
Eτ1

1

]
,
[
Eτ1

2

]
,
[
Eτ1

3

]
,
[
Eτ1

4

]
, and

[
Dτ1

]
are not developed because

they are identical to those used in the local second gradient model for monophasic medium by
Chambon and Moullet (2004) (

[
Dτ1

]
= Dijklmn in Eqs. 3.78 and 3.80). The matrices that are

of interest are: the stiffness matrix of the flow problem,
[
Kτ1
WW

]
, the matrices of the coupling

between the flow and the mechanical problems,
[
Kτ1
MW

]
and

[
Kτ1
WM

]
, as well as the matrices

related to the contribution of gravity volume force,
[
Gτ1

1

]
and

[
Gτ1

2

]
.

Influence of the fluid

To determine the influence of the fluid on the mechanics, an identical geometry for the configu-
rations Ωτ1 and Ωτ2, a different pore water pressure, and no variation of the effective stress can
be assumed. Therefore:

dpτ1
w = pτ2

w − pτ1
w (61)

xτ1
i = xτ2

i (62)

σ
′τ1
ij = σ

′τ2
ij (63)

which lead to:
duτ1

i = 0 , dετ1
v = 0 , detF = 1 , dσ

′τ1
ij = 0 (64)

The balance equations become:∫
Ωτ1

∂u∗i
∂xτ1

l

(
−b Sτ1

r,w dpτ1
w δil

)
+
∂υ∗ij
∂xτ1

l

dΣτ1
ijl dΩτ1 −

∫
Ωτ1

dλτ1
il

(
∂u∗i
∂xτ1

l

− υ∗il
)
dΩτ1

−
∫

Ωτ1

u∗i

[
ρτ1
w

(
b− Φτ1

) dpτ1
w

Ks

(
Sτ1
r,w

)2
+ ρτ1

w

dpτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w Φτ1 dSτ1

r,w

]
gi dΩτ1

=−∆τ1
1

(65)

∫
Ωτ1

λ∗ij
(
−dυτ1

ij

)
dΩτ1 = −∆τ1

2 (66)
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∫
Ωτ1

p∗w

[
ρτ1
w

dpτ1
w

χw

ṗτ1
w

χw
Φτ1 Sτ1

r,w + ρτ1
w

dpτ1
w

χw ∆t
Φτ1 Sτ1

r,w

+ 2 ρτ1
w

ṗτ1
w

χw

(
b− Φτ1

) dpτ1
w

Ks

(
Sτ1
r,w

)2
+ ρτ1

w

ṗτ1
w

χw
Φτ1 dSτ1

r,w

− ρτ1
w

ṗτ1
w

Ks

(
b− Φτ1

) dpτ1
w

Ks

(
Sτ1
r,w

)3
+ 2 ρτ1

w

(
b− Φτ1

) ṗτ1
w

Ks
Sτ1
r,w dSτ1

r,w

+ ρτ1
w

(
b− Φτ1

) dpτ1
w

Ks ∆t

(
Sτ1
r,w

)2
+ ρτ1

w

dpτ1
w

χw

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
Sτ1
r,w

+ ρτ1
w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
dSτ1

r,w + ρτ1
w

dpτ1
w

χw
Φτ1 Ṡτ1

r,w

+ ρτ1
w

(
b− Φτ1

) dpτ1
w

Ks
Sτ1
r,w Ṡτ1

r,w + ρτ1
w Φτ1

dSτ1
r,w

∆t

]
dΩτ1

−
∫

Ωτ1

∂p∗w
∂xτ1

l

[
−ρτ1

w

dpτ1
w

χw

kτ1
w,lj k

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− ρτ1
w

kτ1
w,lj dk

τ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)
− ρτ1

w

kτ1
r,w

µw

∂kτ1
w,lj

∂pτ1
w

dpτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− ρτ1
w

kτ1
w,lj k

τ1
r,w

µw

(
∂dpτ1

w

∂xτ1
j

+ ρτ1
w

dpτ1
w

χw
gj

)]
dΩτ1 = −∆τ1

3

(67)

where
∂kτ1w,lj
∂pτ1w

6= 0 only if it is considered that the intrinsic permeability evolution depends on the
pore water pressure as in Eq. 57.

These equations allow to write the matrix of the flow problem and of the fluid influence on
the mechanics. The stiffness matrix of the flow problem is expressed as:

[
Kτ1
WW

]
3×3

=


ρτ1
w

kτ1
w,11k

τ1
r,w

µw
ρτ1
w

kτ1
w,12k

τ1
r,w

µw
Kτ1
WW1,3

ρτ1
w

kτ1
w,21k

τ1
r,w

µw
ρτ1
w

kτ1
w,22k

τ1
r,w

µw
Kτ1
WW2,3

0 0 Kτ1
WW3,3


(68)

where:

Kτ1
WW1,3

= ρτ1
w

kτ1
w,1j

µw

kτ1
r,w

χw

(
∂pτ1

w

∂xτ1
j

+ 2ρτ1
w gj

)
+ ρτ1

w

kτ1
w,1j

µw

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

+ ρτ1
w

kτ1
r,w

µw

∂kτ1
w,1j

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

) (69)

Kτ1
WW2,3

= ρτ1
w

kτ1
w,2j

µw

kτ1
r,w

χw

(
∂pτ1

w

∂xτ1
j

+ 2ρτ1
w gj

)
+ ρτ1

w

kτ1
w,2j

µw

∂kτ1
r,w

∂Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

+ ρτ1
w

kτ1
r,w

µw

∂kτ1
w,2j

∂pτ1
w

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

) (70)
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Kτ1
WW3,3

=
ρτ1
w

χw

ṗτ1
w

χw
Φτ1 Sτ1

r,w +
ρτ1
w

χw ∆t
Φτ1 Sτ1

r,w + 2
ρτ1
w

Ks

ṗτ1
w

χw

(
b− Φτ1

) (
Sτ1
r,w

)2
+ ρτ1

w

ṗτ1
w

χw
Φτ1

∂Sτ1
r,w

∂pτ1
w

− ρτ1
w

Ks

ṗτ1
w

Ks

(
b− Φτ1

) (
Sτ1
r,w

)3
+ 2 ρτ1

w

(
b− Φτ1

) ṗτ1
w

Ks
Sτ1
r,w

∂Sτ1
r,w

∂pτ1
w

+
ρτ1
w

Ks ∆t

(
b− Φτ1

) (
Sτ1
r,w

)2
+
ρτ1
w

χw

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
Sτ1
r,w + ρτ1

w

(
ε̇τ1
v −

σ̇
′τ1

Ks

)
∂Sτ1

r,w

∂pτ1
w

+
ρτ1
w

χw
Φτ1 Ṡτ1

r,w +
ρτ1
w

Ks

(
b− Φτ1

)
Sτ1
r,w Ṡτ1

r,w + ρτ1
w Φτ1 1

∆t

∂Sτ1
r,w

∂pτ1
w

(71)

The coupled part is:

[
Kτ1
WM

]
4×3

=


0 0 −b Sτ1

r,w

0 0 0
0 0 0
0 0 −b Sτ1

r,w

 (72)

and a part of the stiffness matrix related to the gravity volume force can be written thanks to
the coupling between u∗i and dpτ1

w :

[
Gτ1

2

]
2×3

=


0 0 −ρ

τ1
w

Ks

(
b− Φτ1

)
(Sτ1
r,w)2g1 −

ρτ1
w

χw
Φτ1Sτ1

r,wg1 − ρτ1
w Φτ1

∂Sτ1
r,w

∂pτ1
w

g1

0 0 −ρ
τ1
w

Ks

(
b− Φτ1

)
(Sτ1
r,w)2g2 −

ρτ1
w

χw
Φτ1Sτ1

r,wg2 − ρτ1
w Φτ1

∂Sτ1
r,w

∂pτ1
w

g2

 (73)

Influence of the mechanics

To determine the influence of the mechanics on the fluid, a different geometry for the config-
urations Ωτ1 and Ωτ2 as well as an identical pore water pressure can be assumed. Therefore:

duτ1
i = xτ2

i − xτ1
i (74)

pτ1
w = pτ2

w (75)

which lead to:
dpτ1

w = 0 (76)

The balance equations become:

∫
Ωτ1

∂u∗i
∂xτ1

l

[
dσ
′τ1
il − στ1

ij

∂duτ1
l

∂xτ1
j

+ στ1
il

∂duτ1
m

∂xτ1
m

]
+
∂υ∗ij
∂xτ1

l

[
dΣτ1

ijl − Στ1
ijk

∂duτ1
l

∂xτ1
k

+ Στ1
ijl

∂duτ1
m

∂xτ1
m

]
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

[
dλτ1

il − λτ1
ij

∂duτ1
l

∂xτ1
j

+ λτ1
il

∂duτ1
m

∂xτ1
m

]
− υ∗ij

[
dλτ1

ij + λτ1
ij

∂duτ1
m

∂xτ1
m

]
dΩτ1

−
∫

Ωτ1

u∗i

[
−ρτ1

s

dσ
′τ1

Ks
−
(
ρτ1
s − ρτ1

w Sτ1
r,w

)(
−dσ

′τ1

Ks
+
(
1− Φτ1

) ∂duτ1
m

∂xτ1
m

)
+ ρτ1∂du

τ1
m

∂xτ1
m

]
gi dΩτ1 = −∆τ1

1

(77)
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∫
Ωτ1

λ∗ij

[(
∂uτ1

i

∂xτ1
j

− υτ1
ij

)
∂duτ1

m

∂xτ1
m

+
∂duτ1

i

∂xτ1
j

− ∂uτ1
i

∂xτ1
k

∂duτ1
k

∂xτ1
j

− dυτ1
ij

]
dΩτ1 = −∆τ1

2 (78)

∫
Ωτ1

p∗w

[
ρτ1
w

ṗτ1
w

χw

(
−dσ

′τ1

Ks
+
(
1− Φτ1

) ∂duτ1
m

∂xτ1
m

)
Sτ1
r,w

− ρτ1
w

ṗτ1
w

Ks

(
−dσ

′τ1

Ks
+
(
1− Φτ1

) ∂duτ1
m

∂xτ1
m

)(
Sτ1
r,w

)2
+ ρτ1

w

(
∂duτ1

m

∂xτ1
m

(
1

∆t
− Ω̇τ1

Ωτ1

)
− dσ

′τ1

Ks ∆t

)
Sτ1
r,w

+ ρτ1
w

(
−dσ

′τ1

Ks
+
(
1− Φτ1

) ∂duτ1
m

∂xτ1
m

)
Ṡτ1
r,w + Ṁ τ1∂du

τ1
m

∂xτ1
m

]
dΩτ1

−
∫

Ωτ1

∂p∗w
∂xτ1

l

[
ρτ1
w

kτ1
w,lj k

τ1
r,w

µw

∂pτ1
w

∂xτ1
k

∂duτ1
k

∂xτ1
j

− ρτ1
w

kτ1
r,w

µw
dkτ1

w,lj

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)

− f τ1
w,i

∂duτ1
l

∂xτ1
i

+ f τ1
w,l

∂duτ1
m

∂xτ1
m

]
dΩτ1 = −∆τ1

3

(79)

where dkτ1
w,lj 6= 0 only if the intrinsic permeability evolution depends on parameters linked to

the displacement field duτ1
i . It can correspond to the first part of Eq. 57 involving dmτ1

k or to
Eq. 58.

These equations allow to write the matrix of the mechanic influence on the fluid:

[
Kτ1
MW

]
3×4

=


Aτ1

111 f τ1
w,2 +Aτ1

121 Aτ1
112 −f τ1

w,1 +Aτ1
122

−f τ1
w,2 +Aτ1

211 Aτ1
221 f τ1

w,1 +Aτ1
212 Aτ1

222

Cτ1 + Ṁ τ1 0 0 Cτ1 + Ṁ τ1

+
[
Kτ1
k

]
(80)

where:

Aτ1
ijk = −ρτ1

w

kw,ij k
τ1
r,w

µw

∂pτ1
w

∂xτ1
k

(81)

and, by assuming poroelasticity (Eqs. 2.57 and 2.62):

dσ
′τ1

Ks
= (1− b) dετ1

v = (1− b) ∂du
τ1
m

∂xm
(82)

the term Cτ1 reads:

Cτ1 = ρτ1
w

ṗτ1
w

χw

(
b− Φτ1

)
Sτ1
r,w−ρτ1

w

ṗτ1
w

Ks

(
b− Φτ1

) (
Sτ1
r,w

)2
+ρτ1

w

(
b

∆t
− Ω̇τ1

Ωτ1

)
Sτ1
r,w+ρτ1

w

(
b− Φτ1

)
Ṡτ1
r,w

(83)
It would be possible to develop the variation of the mean effective stress dσ′τ1 in function of the
elastoplastic tensor Cijkl from the constitutive relation Eq. 10. However, the expression of Cijkl
is quite complex (Eq. 2.102) and poroelasticity is assumed for simplicity reason.

Moreover,
[
Kτ1
k

]
in Eq. 80 is a matrix that considers the evolution of the intrinsic perme-

ability. The terms of this matrix differ depending on the intrinsic permeability evolution. By
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considering for instance an evolution with the strain tensor, as described in Eq. 58, the matrix
is defined as follows:

[
Kτ1
k

]
3×4

= ρτ1
w

kτ1
r,w

µw

(
∂pτ1

w

∂xτ1
j

+ ρτ1
w gj

)


∂kτ1
w,1j

∂ετ1
11

∂kτ1
w,1j

∂ετ1
12

∂kτ1
w,1j

∂ετ1
21

∂kτ1
w,1j

∂ετ1
22

∂kτ1
w,2j

∂ετ1
11

∂kτ1
w,2j

∂ετ1
12

∂kτ1
w,2j

∂ετ1
21

∂kτ1
w,2j

∂ετ1
22

0 0 0 0

 (84)

where j is a summation index. Finally, the second part of the stiffness matrix related to the
gravity volume force is given by:

[
Gt1
]
2×4

=

[
−ρτ1

w S
τ1
r,wg1b 0 0 −ρτ1

w S
τ1
r,wg1b

−ρτ1
w S

τ1
r,wg2b 0 0 −ρτ1

w S
τ1
r,wg2b

]
(85)

under poroelasticity assumption.

Simplifications

A few simplifications may be considered in the general problem and simplify the expressions of
the stiffness matrices. Firstly, poroelasticity has been assumed for the matrices

[
Kτ1
MW

]
and

[
Gt1
]

and can be extended to the others by taking into account σ̇′τ1 = K ˙ετ1
v in the term Kτ1

WW3,3
.

Secondly, if the gravity is not taken into account, gi = 0, then
[
Gτ1

1

]
and

[
Gτ1

2

]
are null matrices

because no contribution of the gravity volume force is considered. Moreover, terms including gi
cancel in the other matrices (

[
Kτ1
WW

]
and

[
Kτ1
k

]
). Additionally, if the intrinsic water permeability

is independent of the pore water pressure, the terms Kτ1
WW1,3

and Kτ1
WW2,3

of the stiffness matrix
of the flow problem reduce to:

Kτ1
WW1,3

=
ρτ1
w

µw

(
kτ1
r,w

χw
+
∂kτ1

r,w

∂pτ1
w

)
kw,1j

∂pτ1
w

∂xτ1
j

(86)

Kτ1
WW2,3

=
ρτ1
w

µw

(
kτ1
r,w

χw
+
∂kτ1

r,w

∂pτ1
w

)
kw,2j

∂pτ1
w

∂xτ1
j

(87)

Lastly, if no variation of the intrinsic water permeability is considered then
[
Kτ1
k

]
= 0. The

coupling matrix
[
Kτ1
WM

]
4×3

remains unchanged.

Mechanical anisotropy

Anisotropy of the hydraulic properties has been included with the anisotropic intrinsic water
permeability tensor kw,ij . For mechanical anisotropy, the elastoplastic tensor Cijkl and the
Biot’s coefficient become anisotropic. The elastoplastic tensor is involved in the definition of
the first gradient constitutive law (Eq. 10 in variation form) and in the matrix

[
Eτ1

1

]
defined

by Chambon and Moullet (2004) that remain unchanged. The Biot’s anisotropic and symmetric
tensor is defined from the Hooke elastic constitutive tensor, under micro-homogeneity and micro-
isotropy assumptions, as follows:

bij = δij −
Ceijkk
3 Ks

(88)

where δij is the Kronecker symbol and Ks is the bulk modulus of the solid phase. For more
details about the anisotropy of the Biot’s coefficient, please refer to chapter 5. The generalised
Biot’s coefficient reads:

b =
bii
3

= 1− K

Ks
(89)
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where K is the generalised drained bulk modulus of the poroelastic material:

K =
Ceiijj

9
(90)

The poroelasticity relations remain valid by considering the above relations.
By taking into account the anisotropy of the Biot’s coefficient and the partial saturation

effect, the stress definition yields:

σij = σ
′
ij − bij Sr,w pw (91)

Moreover, the time derivative of the solid density is related to the variations of pore water
pressure as well as of mean effective stress, and involves the Biot’s coefficient. Nevertheless, the
relation

ρ̇s
ρs

=
(b− Φ)Sr,w ṗw − σ̇

′

(1− Φ) Ks
(92)

remains valid provided that b is the generalised Biot’s coefficient. It is also the case for re-
lated relationships as the porosity time derivative for instance. Therefore, the different matrices
composing

[
Eτ1

]
remain identical except

[
Kτ1
WM

]
which becomes:

[
Kτ1
WM

]
4×3

=


0 0 −b11 S

τ1
r,w

0 0 0
0 0 0
0 0 −b22 S

τ1
r,w

 (93)

due to the effective stress definition.
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