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ABSTRACT 

This paper, presents a new approach to generate parallel 

fiber trajectories on general non planar surfaces based 

on Fast Marching Method. Starting with a (possibly 

curved) reference fiber direction defined on a (possibly 

curved) meshed surface, the new method allows 

defining a level-set representation of the fiber network 

for each ply. This new approach is then used to solve 

optimization problems, in which the stiffness of the 

structure is maximized. The design variables are the 

parameters defining the position and the shape of the 

reference curve. The shape of the design space is 

discussed, regarding local and global optimal solutions.  

 

1. INTRODUCTION 

The use of composite materials in aerospace, 

automotive and ship industry allows manufacturing 

lighter and more efficient mechanical structures. Indeed, 

proper use of the orthotropic properties of these 

materials enables further tailoring of the structure to the 

loadings than when using isotropic materials. However, 

this comes at the cost of a more complicated design and 

sizing process firstly because of the orthotropic 

behavior of composite materials but also because of the 

manufacturing process which induces specific 

constraints in the use of these materials.  

From the mechanical point of view, one of the most 

important restrictions resulting from the practical 

manufacturing of mechanical parts is the orientation of 

the reinforcement fibers resulting from the layup 

process. These orientations directly determine the 

orthotropy axes and cannot be chosen arbitrarily in any 

point of a given part but rather result from the draping 

of the reinforcement material over the part. Several 

models have been developed in order to predict the 

orientations of the reinforcement fibers after the draping 

process depending on the properties of the 

reinforcement materials (see [1] for a review).  

One of the first of these models is due to Mack and 

Taylor [2]. Often called the ‘pin-jointed’ model [3], it is 

based on a geometric model of the woven and it is well 

suited to predict the fiber orientation resulting from 

hand layup of dry woven fabrics. Later, more complex 

models relying on a finite element mechanical modeling 

of the reinforcement have been developed for the 

forming of preimpregnated fabrics as for instance by 

Cherouat and Bourouchaki [4]. 

Besides the manufacturing of composites part by hand 

layup of large pieces of reinforcement material, another 

group of methods is gaining interest since its first 

introduction in the 1970s. These methods rely on the 

robotized layup of bands of unidirectional reinforcement 

material allowing more accurate and more repeatable 

manufacturing process [5]. In this group, two main 

methods can be identified Automated Tape Layup 

(ATL) and Automated Fiber Placement (AFP). ATL 

makes use of a robotic arm to layup tapes (up to 300mm 

wide) of unidirectional prepeg and benefits from high 

productivity for large and simple flat parts. But ATL 

main limitation comes from the relatively high 

minimum curvature radius (up to 6m) that can be 

applied to the prepreg tape without wrinkling. With 

AFP, this minimum curvature radius is decreased to 

50cm by subdividing the tape into several tows which 

can be cut and restarted individually. Therefore the 

manufacturing of more complicated parts can be 

handled by AFP but with a lower productivity than 

ATL. 

For ATL and AFP processes, one of the manufacturing 

issues is the determination of successive courses 

trajectories. Indeed, for these processes, it is crucial that 

there are no overlaps and no gaps between adjacent 

courses in order to ensure maximal strength for the final 

part. In other words, this means that successive layup 

courses have to be equidistant.  

A few researchers have studied the optimal design of  

ATL/AFP parts. A first group of methods consists in 

defining an initial course which is then simply shifted 

over the part to define subsequent course as proposed by 

Tatting and Gürdal [6, 7]. Secondly, the courses can be 

defined as geodesic paths, constant angle paths, linearly 

varying angle paths or constant curvature path [8]. 

However, these two approaches do not result in 

equidistant paths. 

Alternatively, the subsequent courses can be obtained 

by computing actual offset curves from an initial curve. 

This approach is more difficult but leads to equidistant 

courses and has been investigated by Waldhart [8], 

Shirinzadeh et al [9] and Bruyneel and Zein [10] with 

different numerical schemes. The two first groups of 

authors propose an approach based on a geometrical 

description of the part while the third one developed an 

algorithm able to work on a mesh of the layup surface. 

The goal of the present paper is to demonstrate further 

the capabilities of the method proposed by Bruyneel and 

Zein [10] by using it for optimal design of composite 

parts. 

This paper starts with a brief introduction describing the 

method developed by Bruyneel and Zein to determine 

equidistant courses for ATL/AFP process. Next, several 

optimization problems with growing complexity are 

studied in order to illustrate the interest of the method. 
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2. FIBER PLACEMENT MODELING 

2.1. Fast Marching Method 

Bruyneel and Zein [10] first proposed the use of Fast 

Marching Method (FMM, see [11]) to solve the problem 

of determining equidistant courses on an arbitrary layup 

surface. The Fast Marching Method aims at solving the 

Eikonal equation: 

 
|�����| � �, � ∈ �\,
���� � 0, � ∈ 	∁	�. (1) 

The problem given in Eq. (1) consists in finding a scalar 

field ���� such that the norm of its gradient is constant 

over the domain � and that the value of � is equal to 

zero on a curve  of �.  

As illustrated in Fig. 1, this differential equation can be 

interpreted as the one characterizing a front propagation 

at a constant speed where ���� denotes the time at 

which the front passes through point �. At time � � 0, 

the front coincides with the curve , therefore, all points 

located on the curve  will have a value of � equal to 0. 

Then as time increases, the front propagates at a 

constant speed equal to 1/� over �. The position of the 

front � at any time	�� corresponds to the set of point 

lying on the isovalue ���� � 	��. Since the front speed 

norm is uniform over the domain, every point of � is 

equidistant from . The set of equidistant curve can 

therefore be obtained by selecting appropriate isovalues 

of ���� over �. 

 
Figure 1. Front propagation interpretation of Eikonal 

equation. 

Based on a triangular mesh of the layup surface, the 

developed procedure allows computing fiber orientation 

on each element of the mesh. At first one needs to 

define the initial front position on the layup surface. 

This curve corresponds to the reference course and the 

definition procedure is presented in next subsection. 

Secondly, the Fast Marching Method is used to solve 

the Eikonal equation and to compute the time � at any 

point of the mesh. The function ���� is supposed to be 

piecewise linear by element. Starting from initial values 

defined by the reference curve, the value of � is 

progressively computed on the domain by solving the 

Eikonal equation locally on each triangle of the mesh. 

For further details about the Fast Marching Method, the 

interested reader may refer to [10, 11]. Finally, the fiber 

orientations on each element are defined by computing 

the direction of the isovalues of ���� over the 

considered element. Since those isovalues are 

equidistant from the reference course, the computed 

orientations correspond to a gap-less and overlap-less 

(i.e. constant thickness) layup obtained by ATL or AFP. 

2.2. Reference course tracing 

The definition of the reference course plays a major role 

in the context of the present work since the orientation 

or the control points of the corresponding curve are used 

as design parameter of the optimization problem.  

Because the definition of a curve on a general 3D 

surface may be a difficult task, we have chosen to resort 

to an ‘artificial’ 2D space to define the reference curve 

and next to map this curve onto the layup surface to 

obtain the reference course.  

This process is illustrated in Fig. 2. The reference curve 

is defined in the 2D space such that it passes through the 

axes origin. A seed point is defined on the 3D surface 

and the triangle containing this point is mapped in the 

2D ‘artificial’ space such that the seed point lies on the 

origin. The intersection between the reference curve and 

the mapped triangle is approximated by a line segment 

which is transposed to the 3D space to define the first 

segment of the reference course. Next, this process is 

repeated for the next triangle that is intersected by the 

initial course (e.g. the triangle adjacent to edge AC in 

Fig. 2) until the boundary of the 3D surface is met. At 

the end of this process the initial course is obtained on 

the layup surface mesh as a piecewise linear curve. 

 
Figure 2. Reference course mapping. 

 

3. STRAIGHT COURSE OPTIMIZATION 

3.1. Optimization problem 

The first illustration of the method is a very simple 

optimization problem consisting in minimizing the 

deformation energy of a square plate presented in Fig. 3. 

The left side of the plate is clamped and a point force is 

applied downwards at the lower right corner. For more 

convenience and since it is possible for the present 2D 

structure, the reference curve is presented directly on 

the structure (even if the mapping process described in 

previous section is used). The initial course is supposed 

to be straight and the sole design variable of the 
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problem is θ the angle made by this course and the 

horizontal. The seed point is fixed at the half of the left 

side boundary of the plate. 

 
Figure 3. Straight fiber path optimization problem. 

For the present application, layup courses are obviously 

very simple as the planar geometry of the structure and 

the choice of a rectilinear initial course always results in 

uniform fiber orientations over the structure. However, 

the purpose of this application is to validate the 

optimization approach and also to provide a reference 

solution for further examples. 

The optimization problem is mathematically formulated 

in Eq. (2) where c stands for the deformation energy. An 

upper bound and a lower are imposed on the angle such 

that all possible orientations are covered. 

 
min� ���� ,

�. �. ��90° ! � ! 90°. (2) 

The material properties used for all numerical 

applications are those of a typical composite used for 

ATP made of unidirectional carbon fibers. The 

properties are listed in Tab. 1. 

Table 1. Material properties. 

E11 181 GPa 

E22,E33 5.18 GPa 

ν 0.25 

G12,G13 2.57 GPa 

G23 2.07 GPa 
 

3.2. Solution 

The numerical model is created by meshing the plate 

with 40x40 elements. The optimization is carried out 

using BOSS QUATTRO [11] optimizers. Gradient 

based optimization [12] will be used for this application. 

The required sensitivities can be computed using finite 

difference since due to the small number of design 

variable it does not lead to a prohibitive computational 

overhead. 

To initiate the optimization process a course 

perpendicular to the left edge (i.e. θ=0°) is selected 

which gives an initial value of the objective function 

equal to 11919 J.  After a few iterations, the 

optimization method converges to an optimum for θ=-

42.9° and c=8718 J which means a decrease of 27% 

with respect to the initial value. The resulting fiber 

orientations and courses are presented in Fig. 4. In this 

figure, the red line represents the initial course 

centerline and each color strip corresponds to a layup 

course. Resulting elementary fiber orientations are 

represented by a small segment on each element. 

 
Figure 4. Solution of the optimization problem with a 

straight course. 

Since the optimization problem considered in this 

section is very simple the validity of the optimal 

solution presented in Fig. 4 can be verified by 

performing a parametric study over the design domain. 

Therefore, the value of the objective function has been 

computed for every integer value of θ between -90° and 

90°. The result of the parametric study is presented in 

Fig. 5. The minimal value of the objective function is 

8719 J obtained for θ=-43° which confirms the result of 

the optimization procedure. Moreover, the parametric 

study shows that the present optimization problem does 

not possess local optima except the one generated by the 

upper bound θ<90°. However, as the objective function 

is periodic, the solution θ=90° would disappear if the 

 
Figure 5. Deformation energy against the angle design 

variable. 
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upper bound was larger and lead to the same solution as 

θ=-43°. 

 

4. CURVILINEAR COURSE OPTIMIZATION 

4.1. Optimization problem 

In order to make advantage of fiber placement 

capabilities, we can consider a more general 

optimization problem with a curvilinear fiber course 

presented in Fig. 6. In this new optimization problem, 

the geometry of the structure and the boundary 

conditions remain identical to the one considered in 

previous section while the definition of the initial course 

is modified. Firstly, the optimization process is now 

able to move the seed point along the left side of the 

plate by adjusting the design variable ys. Secondly, the 

initial course corresponds now to a quadratic spline 

defined by three points:  

• The seed point,  

• A final point located on the right edge at a 

vertical distance from the seed point equal to yp 

(the second design variable), 

• A middle point placed at 25mm from the left 

edge and at a vertical distance from the seed 

point equal to yp/5. 

 
Figure 6. Curved fiber path optimization problem. 

The mathematical formulation of the optimization 

problem is given in Eq. (3). Again, the objective of the 

optimization problem is to minimize the deformation 

energy. 

 

min"#,"$
�%&', &() ,

�. �. * 1 ! &( ! 49,
�100 ! &' ! 100.

 (3) 

The position of the seed point ys is restricted to the 

range [1,49] in order to avoid discontinuities of the 

objective function that may arise when the seed point is 

close to the lower or upper edge of the plate. Indeed, 

when the seed point is close to one of those edges, the 

initial course may suddenly go out of the domain for a 

small modification of ys, which leads to very different 

layups. 

4.2. Solution 

The optimization problem is solved with the same 

procedure as previously based on finite difference 

sensitivities. The initial design is chosen as in previous 

application with ys=25 and yp=0 which result in 

horizontal rectilinear fibers. In the final design is 

presented in Fig. 7, the position of the seed point has 

reached its upper bound (ys=49) while the end point of 

the initial course is defined by yp=-48.9.  

 
Figure 7. Solution of the optimization problem with a 

curvilinear course. 

 Under the design load case, the final design give a 

deformation energy equal to 4676 J, which is 61% less 

than the initial design and 46% less than the rectilinear 

design obtained previously. This shows that the 

capability of AFP to follow curved courses leads to a 

strong improvement of the mechanical performance and 

confirms the conclusions of Hyer and Charette [14]. 

Nevertheless, we can observe that curvature of the 

courses increases in the lower left corner such that the 

introduction of an optimization constraint on curvature 

would be helpful to ensure the manufacturability of the 

part. 

In order to check the optimality of the design obtained 

by the optimization procedure and to investigate the 

 
Figure 8. Objective function for the curvilinear course 

optimization problem. 
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existence of local optima, a parametric study has been 

performed. The result of this parametric study is 

presented in Fig. 8. The plotted surface represents the 

objective function value over the optimization domain. 

We can check that the presented design actually 

corresponds to the optimal solutions. However, a closer 

analysis of Fig. 8 shows that there is also a local 

optimum for ys=1 and yp=62 into which the optimization 

procedure could get trapped if a different initial design 

is selected. 

 

5. CONICAL SURFACE 

5.1. Optimization problem 

In order to illustrate the ability of the method to handle 

3D surfaces, the last presented numerical application is 

the optimal design of a conical shell depicted in Fig. 9. 

The cone axis coincides with Z axis. The large base of 

the cone is clamped while a force and a torsion torque 

are applied on the small base. The shell is composed of 

two plies which can be oriented independently. For each 

ply, the reference curve is a straight line in the 

‘artificial’ 2D plane and its angle with respect to the x 

axis of the ‘artificial’ 2D plane is a design variable. We 

have therefore two design variables θ1 and θ2. The 

mathematical formulation of the optimization problem 

is: 

 

min�,,�-
����, �.� ,

�. �. *�90° ! �� ! 90°,
�90° ! �. ! 90°.

 (4) 

Moreover, because the surface is conical, if the 

reference course makes more than one revolution 

around the cone, it becomes non equidistant to itself. As 

a consequence it is of course impossible to generate 

equidistant courses. To circumvent this problem, we 

assume that the shell is manufactured in two parts which 

are draped with the same parameters. That’s why in Fig. 

9, one seed point is placed on each side of the (YZ) 

plane and the shell is cut in two by this plane. 

Figure 9. Conical surface dimensions and load case. 

5.2. Solution 

Starting with �� � �. � 0, the optimization procedure 

converges to the solution presented in Fig. 10. Ply 2 is 

the symmetrical of ply 1 with respect to plane (X-Z) as 

at the end of the optimization process �� � 37.7° and 

�. � �37.7°. These opposed orientations shows that in 

the present load case, torsion dominates. The 

deformation energy is cut by 83% between the initial 

design and the final design. 

 
a. Ply 1 

 
b. Ply 2. 

Figure 10. Solution of the conical shell optimization 

problem. 

The results of a parametric study are presented in Fig. 

11 which present the isovalue lines of the objective 

function over the design space. One can notice that the 

objective function has several local extrema but 

fortunately, only two of them are minima. The solution 

obtained by the optimization procedure is indicated by a 

star label and actually corresponds to a minimum of the 

objective function. The second minimum corresponds in 

fact to the first one but with changed sign for each 

design variable. As a consequence, we can conclude that 

the stacking sequence has no significant importance for 

the present application. 

 
Figure 11. Objective function isolines over the design 

space. 
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6. CONCLUSION 

In this paper, a new approach for computing fiber 

orientations resulting from ATL/AFP draping is used as 

the basis for composite shell optimization. The main 

advantages of this approach over previous research is 

that it allows determining fiber orientations and 

deposition courses that correspond to a layup free from 

overlaps and gaps between successive courses. 

Moreover, the method does not require a geometrical 

representation of the layup surface but can simply be 

applied on a 2D mesh of this surface. 

In order to show the generality of the proposed 

approach, several numerical applications were 

proposed, firstly on 2D surfaces, next on a 3D surface. 

Additionally, the results of these applications confirms 

the benefits of using curved fiber paths on mechanical 

performance as previously observed [14] with the great 

advantage in the present case that optimal fiber 

orientation correspond to a manufacturable part. 

Future works should focus on the introduction of other 

manufacturing constraints into the optimization problem 

such as a minimum curvature radius for the layup 

courses. Moreover, the improvement of the sensitivity 

analysis can also be investigated. The development of a 

semi-analytical sensitivity analysis would strongly 

improve the efficiency of the optimization process and 

would allow increasing the number of design variables 

in order to consider more complex courses definition. 
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