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Abstract

N-Methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission in the hippocampus is
implicated in cognitive and emotional disturbances during stress-related disorders. Here, using
quantitative RT-PCR, we investigated the hippocampal expression of NR2A, NR2B and NR1
subunit mRNAs in a mouse stress paradigm that mimics clinically relevant conditions of
simultaneously affected emotionality and hippocampus-dependent functions. A 2-week stress
procedure, which comprised ethologically valid stressors, exposure to a rat and social defeat,
was applied to male C57BL/6J mice. For predation stress, mice were introduced into
transparent containers that were placed in a rat home cage during the night; social defeat was
applied during the daytime using aggressive CD1 mice. This treatment impaired hippocampus-
dependent performance during contextual fear conditioning. A correlation between this
behavior and food displacement performance was demonstrated, suggesting that burrowing
behavior is affected by the stress procedure and is hippocampus-dependent. Stressed mice
(n¼ 22) showed behavioral invigoration and anomalous anxiolytic-like profiles in the O-maze
and brightly illuminated open field, unaltered short-term memory in the step-down avoidance
task and enhanced aggressive traits, as compared to non-stressed mice (n¼ 10). Stressed mice
showed increased basal serum corticosterone concentrations, hippocampal mRNA expression
for the NR2A subunit of the NMDAR and in the NR2A/NR2B ratio; mRNA expression of NR2B and
NR1 was unchanged. Thus, stress-induced aberrations in both hippocampal-dependent
performance and emotional abnormalities are associated with alterations in hippocampal
mRNA NR2A levels and the NR2A/NR2B ratio and not with mRNA expression of NR2B or NR1.
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Introduction

N-Methyl-D-aspartate receptor (NMDAR)-mediated neuro-

transmission is involved in the etiology of stress-related

cognitive deficits and behavioral abnormalities (Cull-Candy

et al., 2001). This particularly implicates altered expression of

the two NR1 (GluN1) and two NR2 (GluN2) subunits (NR2A

and NR2B) of NMDAR tetramers, which are the most

abundant in the hippocampal formation, a brain structure that

mediates stress-induced aberrations in both learning and

emotional behavior (Li & Ju, 2012). Both NR2A and NR2B

were shown to have distinct pharmacology and a role in the

regulation of NMDAR, and have been suggested to be

differentially involved in the mechanisms of learning and

emotionality (Fleischmann et al., 2003; Li & Tsien, 2009).

A body of evidence has demonstrated the involvement of

NR2A, NR2B and NR1 subunits in the neurobiology

of neuropsychiatric conditions such as anxiety, psychosis,

impulsivity, Alzheimer’s disease and major depression

(Davies et al., 2012; Geissler & Lesch, 2011; Tsang

et al., 2008).

Most experiments investigating the roles of NMDAR

subunits in neuropsychiatric symptoms target selective sub-

units of this receptor using pharmacological and

genetic manipulations that are frequently applied in vitro

(Boyce-Rustay & Holmes, 2006; Cui et al., 2013;

Longordo et al., 2009). However, fewer studies have addressed

the changes in NMDAR subunit expression in
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disease-modeling conditions. Understanding changes in rela-

tive-fold mRNA expression of NMDAR subunits in animal

models of cognitive and emotional disturbances related to

chronic stress is important for the identification of new

pharmacological interventions and therapies that effectively

alter glutamatergic transmission (Vignisse et al., 2013).

Previous work on gene expression (Strekalova et al., 2011)

has highlighted abnormal hippocampal expression of NMDAR

subunits in mice subjected to repeated stressors. We have

hypothesized that in male C57BL/6J mice, a novel 2-week

stress procedure, comprising ethologically valid stressors,

exposure to a rat and social defeat, results in concomitant

cognitive, emotional and NMDA receptor expression abnorm-

alities in the hippocampus. Thus, the current study specifically

investigated the hippocampal relative-fold mRNA expression

of NR2A, NR2B and NR1 subunits in the above-mentioned

chronic stress procedure in mice that mimics clinically relevant

situations of stress-related disturbances in learning and emo-

tionality (Cline et al., 2012; Strekalova & Steinbusch, 2010).

Materials and methods

Animals and housing

Male C57BL/6J and CD1 mice were 3 months old, Wistar rats

of 3–5 months age were used for applying predator stress;

mice and rats were provided by Harlan, the Netherlands and

Charles River, France, respectively. Fourteen days before the

behavioral experiments, mice were single housed under a

reverse 12 h:12 h light–dark cycle (lights on: 21:00 h) in

standard laboratory conditions (22� 1 �C, 55% humidity, food

and water ad libitum). All experiments were carried out in

accordance with the European Committees Council Directives

and had been approved by the ethics committee of Maastricht

University for animal research (CPV, DEC-UM 2009-109).

Experimental conditions and study outline

This study applied only ethological stressors to male

C57BL/6J mice, for 14 d, based on previous work (adapted

from Cline et al., 2012; Couch et al., 2013). The stress

procedure consisted of dark-cycle rat exposure between the

hours of 09:00 h and 18:00 h and light-cycle application of a

social defeat paradigm, combined with exposure to an

aggressive CD1 mouse. Body weight and parameters of

social behavior were determined 1 week before the chronic

stress procedure in a social interaction test as described

elsewhere (Strekalova et al., 2004). The experimental and

control groups were balanced for these parameters.

Ethological stressors were applied to a stress group for 14 d,

as described below. The control group received daily handling

only. At the end of the stress experiment, 12 h after the

application of the last stressor, short-term memory in the step-

down avoidance task (Vignisse et al., 2011) and aggressive

behavior in a resident-intruder test (Strekalova et al., 2004)

were investigated in stressed and control mice. At this time,

body weight was also assessed. The next day (day 1), mice

were tested in the elevated O-maze and food displacement

tube tests (Strekalova & Steinbusch, 2010). On days 2 and 3,

respectively, contextual fear conditioning training and

testing for recall (Vignisse et al., 2013) were performed.

The open-field testing was carried out on day 4 (under red

light) and on day 5 (under white light). All behavioral tests

were recorded on video.

We used a battery of behavioral tests based on previous

literature (Calabrese et al., 2012). Although it is possible that

the different behavioral tests may affect subsequent tests,

previously published test batteries with similarly employed

paradigms have revealed an absence of any testing effects in

C57Bl/6J mice (Malatynska et al., 2012; Strekalova &

Steinbusch, 2009, 2010; Vignisse et al., 2011, 2013).

Hence, we considered possible interfering effects of multiple

behavioral test to be minimal in the current study.

A separate cohort of mice from both groups was pre-

exposed to a mixture of CO2 and O2 and euthanized via

cervical dislocation (according to Dutch law), for gene

expression analysis 24 h after the termination of the stress

procedure.

Chronic stress procedure

Rat exposure while in a small container

Mice were introduced into cylindrical containers, which were

placed into a rat home cage for 15 h (overnight, from 18:00 h

to 9:00 h). Containers (15 cm�Ø 8 cm) were made from

customized transparent plastic with holes in the covers

(Ø50.5 cm). This ensured protection of the mouse from the

rat, but allowed visual and odor contact. During the week-

ends, mice were kept in their home cages, situated on top of

the rat cages.

Social defeat stress

Social defeat procedures took place during the dark phase of

the light cycle (between 12:00 h and 16:00 h). To enable

visual control by the experimenter over the resident-intruder

confrontation, the test was carried out under red light. In a

preliminary test, aggressive CD1 mice that were able to attack

the counter-partners in less than 60 s, without injuring them,

were selected for this procedure; these mice were introduced

into the home cages of mice from the stress group during

social defeat sessions for 5 min. During social defeat stress,

test mice typically showed flight responses, submissive

postures and vocalizations. Pairs of mice were carefully

observed in order to prevent physical harm. In rare cases,

aggressive mice were immediately removed from the cage

of resident mice. After a 5-min period of social defeat,

C57BL/6J mice were placed into small containers and put

inside a CD1 mouse cage, where they stayed for a 3 h-period.

After the 3 h period, the 5-min social defeat procedure was

repeated. In order to randomize the procedure, the same pairs

of C57BL/6J and CD1 mice were never put together.

Behavioral procedures

Step-down passive avoidance model

The step-down passive avoidance test was used as described

elsewhere (Strekalova et al., 2001; Vignisse et al., 2011,

2013). The step-down apparatus (Evolocus LLC Tarrytown,

NY and Technosmart, Rome, Italy) was a transparent plastic

cubicle (25 cm� 25 cm� 48 cm) with a stainless-steel grid

floor (33 rods 2 mm in diameter), onto which a square wooden
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platform (7 cm� 7 cm� 1.5 cm) was placed. The illumination

strength was 25 lux. A shocker was used to deliver an

alternating electric current (AC, 50 Hz). In this paradigm,

mice are trained to avoid an electric shock by staying on the

platform above the grid floor. During the training session,

mice were placed on the platform inside a transparent cylinder

for 30 s to prevent them from stepping down immediately.

After removal of the cylinder, the time until the mouse left the

platform, with all four paws, was measured as baseline latency

of step-down. Immediately after step-down, mice received a

single electric foot shock (0.5 mA, 2 s) and were returned to

their home cages. One hour later, during the recall trial

session, mice were exposed to the apparatus again by being

handled in the same way as in the training session; no foot

shock was delivered. Latency of step-down with all four paws

was measured until 180 s had elapsed.

Elevated O-maze

Testing on the elevated O-maze was carried out as described

elsewhere (Strekalova et al., 2005). The O-maze consisted of

a black circular path (runway width 5.5 cm, Ø¼ 46 cm) with

two opposing compartments protected by walls made of

polyvinyl-chloride (height¼ 10 cm) and two open sectors of

equal size. The maze was elevated 20 cm above the ground

and illuminated from the top with red light. At the start of the

testing session, mice were placed inside one of the two closed

compartments. The test was recorded with a web camera. The

latency to the first entry into the anxiety-related open arms of

the maze, total number of entries into the open arms and total

duration of time spent in open arms were scored for 5 min.

Food pellet displacement (burrowing) behavior in a tube test

In order to further assess hippocampal function, all experi-

mental groups were tested for burrowing behavior. Burrowing

behavior, a tendency to displace small objects, e.g. small

stones or food pellets, from a tube inside the home cage, is

species-specific in mice and has been demonstrated to depend

on an intact hippocampal formation. Using a paper tube

(internal diameter 4 cm, length 10 cm), filled with 20 food

pellets and placed in the middle of a mouse home cage, the

latency to displacement of the first food pellet, time required

to empty the tube, number of pellets removed after 1 h and 1 h

30 min were assessed in stressed and control mice during the

dark phase (Strekalova & Steinbusch, 2009, 2010). Time

elapsed was 90 min.

Contextual fear-conditioning paradigm

The contextual fear-conditioning test procedure was adapted

from previously described protocols (Strekalova et al., 2003;

Vignisse et al., 2013). The apparatus consisted of a transpar-

ent plastic cubicle (25 cm� 25 cm� 50 cm) with a stainless-

steel grid floor (33 rods 2 mm in diameter). A shocker was

used to deliver an alternating electric current (AC, 50 Hz; 0.7

mA, 2 s) after a 2-min acclimatization of a mouse to the

chamber. After delivery of the current, the mouse was

immediately placed back in the home cage. Freezing behavior

was scored by visual observation during a test of memory

recall that was carried out 24 h later. The occurrence of

freezing behavior in the chamber was assessed every 10 s for

180 s; each 10-s score was assigned to a freezing or

non-freezing period, and the percentage of time spent in

freezing was calculated.

Open field

The open-field apparatus consisted of four square arenas

(25 cm� 25 cm� 40 cm), made of wood covered with white

resopal. Mice were put in the center of one of the four square

open field arenas, and their behavior was video recorded for

10 min. The open field was illuminated with white light

(25 lux) or red light. Behavior was analyzed off-line using the

Any-maze software (Stoelting Co, Wood Dale, IL). Among

other parameters, time spent immobile was analyzed in the

central (area 20� 20 cm) and peripheral (remaining part of

the apparatus) zones.

Resident-intruder test

The resident-intruder test procedure was performed as

described elsewhere (Strekalova et al., 2004). In this

paradigm, the C57BL/6J mice were placed individually in

an observation cage (30 cm� 60 cm� 30 cm) for 30 min.

Thereafter, a male CD1 mouse, which was group housed

before the test, was introduced as an intruder to the same cage

and left with the resident mouse for 8 min. During the

observation period, resident and intruder mice were scored for

aggressive social behaviors. Latency of the first attack and

number of attacks were scored.

Brain dissection and blood collection

On the day following the termination of the stress procedure,

a cohort of mice from both groups was euthanized as

described above, their hippocampi were dissected and trunk

blood was collected for corticosterone evaluation.

Corticosterone concentration

To assay serum corticosterone, trunk blood was stored at 4 �C
overnight and centrifuged at 10� g for 10 min; the assay was

performed as previously described (Pawluski et al., 2012).

Serum was collected and stored a �80 �C until use. All

samples were run in duplicate. For total serum corticosterone

concentrations, a commercially available radioimmunoassay

(RIA) kit for rat corticosterone from MP Biomedicals

(corticosterone I25 for rats and mice, MP Biomedicals,

LLC, Orangeburg, NY) was used. Average intra- and inter-

assay coefficients of variation for all corticosterone assays

were below 10%. Assay sensitivity was 7.7 ng/mL.

RNA isolation and RT PCR

RNA was extracted as previously described (Couch et al.,

2013) using the RNeasy RNA extraction kit (Qiagen, Hilden,

Germany) and first strand cDNA synthesis was performed

using random primers and Superscript III transcriptase

(Invitrogen, Darmstadt, Germany); 1 mg total RNA was

converted into cDNA. Quantitative RT-PCR (qPCR) for

NR2A, NR2B, NR1 genes and the housekeeping gene

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

performed using TaqMan probes and the CFX96 Real-time

System (BioRad, Hercules, CA). Cycling conditions and
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sequences of primers used are indicated in Table 1 of

supplementary data. Results were normalized to GAPDH

mRNA expression and calculated as relative-fold changes

compared to control mice as described elsewhere (Couch

et al., 2013). Results of the qPCR measurements were

expressed as Ct values, where Ct is defined as the threshold

cycle of PCR at which amplified product was 0.05% of

normalized maximal signal. We used the comparative Ct

method and computed the difference between the expression

of the gene of interest and GAPDH expression in each cDNA

sample (2�DD Ct method). Results are given as expression-

folds compared to the mean expression values in non-stressed

control mice (Couch et al., 2013, adapted from Livak &

Schmittgen, 2001).

Statistical analysis

GraphPad Prism 5.00 (San Diego, CA) was used for analyses.

A comparison of normally distributed independent variables

was carried out using unpaired two-tailed t tests. Independent

measurements that were not normally distributed were

analyzed via the non-parametric Mann–Whitney test, and

repeated measurements were compared by the Wilcoxon non-

parametric test. The Pearson test was applied for correlation

analysis. The level of confidence was set at 95% (p50.05).

Results

Stressed mice showed a significant loss of body weight

compared to the control mice (p50.0001, t¼ 6.801, df¼ 21;

unpaired t test; Figure 1A) and a significant elevation of

circulating corticosterone concentration (p¼ 0.030, U¼ 39;

Mann–Whitney test, Figure 1B), indicating a profound impact

of the 2-week stress procedure. In comparison to control

mice, the open-field activity of the stressed mice was

significantly higher both in the peripheral (p¼ 0.040,

U¼ 61.00, Mann–Whitney test) and even more notably, in

the central zones (p¼ 0.011; U¼ 73.50) of the apparatus,

when white lighting was employed (Figure 1C), but not when

activity was scored under red light (p¼ 0.15, U¼ 68.00 and

p¼ 0.64, U¼ 97.50, respectively). There was a significantly

lower latency to the first exit in the elevated O-maze

(p¼ 0.010, U¼ 49.50, Mann–Whitney test), increased time

spent in the open arms (p¼ 0.020, U¼ 55.50) and number of

entries into the open arms (p¼ 0.028, U¼ 58.50; Figure 1D)

in stressed versus control mice. Together, these data indicate

differences in the brightly lit open field induced by stress:

behavioral invigoration and an anomalous ‘‘anxiolytic-like’’

profile. In addition, chronically stressed mice displayed a

significant increase in the number of attacks and no change in

the latency to the first attack in the resident-intruder test

(p¼ 0.049, t¼ 1.698, df¼ 30 and p¼ 0.12, t¼ 1.78, df¼ 23;

unpaired t test; Figure 1E).

Both stressed and control mice showed a significant

increase in the latency of step down 1 h after training, in

comparison to baseline latencies (p¼ 0.033, W¼�37.00 and

p¼ 0.05, W¼�51.00, respectively, Wilcoxon test). There

was no significant difference between stressed and control

mice in the latencies for step-down evaluated at baseline

conditions (p¼ 1.0, U¼ 71.50) or 1 h after training (p¼ 0.98,

U¼ 71.00; Figure 2A), indicating similar scores of

anxiety-like behavior and short-term memory in these

groups. In the contextual fear-conditioning paradigm, stressed

mice spent a significantly shorter time freezing during a recall

session than the control group (p¼ 0.021, U¼ 50.00, Mann–

Whitney test; Figure 2B), which demonstrates impaired

hippocampus-dependent contextual memory in this group.

Stressed mice showed no significant inhibition of burrowing

behavior in comparison to the control group, as assessed by

latency for the first pellet displacement (p¼ 0.18, U¼ 73.00;

Figure 2C) and number of pellets displaced over time

intervals of 0–60 min (p¼ 0.14, U¼ 53.50) and 60–90 min

(p¼ 0.34, U¼ 47.50, Mann–Whitney test). Nonetheless, there

was a significant correlation between the two latter measures

and contextual freezing (r¼ 0.36, p¼ 0.046 and r¼ 0.36,

p¼ 0.048, respectively). There was no significant correlation

between the duration of freezing and the latency for pellet

displacement (r¼�0.16, p¼ 0.39, Pearson correlation).

Concerning mRNA levels of NMDA receptor subunits in

the hippocampus, in comparison to control mice, the stressed

group had a significant increase in expression of NR2A

(p¼ 0.029, t¼ 2.050, df¼ 15, unpaired t test; Figure 3A) and

no significant change in the expression of NR2B (p¼ 0.27,

t¼ 0.6431, df¼ 15, Figure 3B). The ratio of NR2A/NR2B

was significantly increased (p¼ 0.015, t¼ 2.452, df¼ 13;

Figure 3C) but the expression of the NR1 subunit was

unaltered (p¼ 0.64, t¼ 0.4665, df¼ 14; Figure 3D).

Discussion

In accordance with our hypothesis and in line with the

literature (Calabrese et al., 2012; Cull-Candy et al., 2001;

Fleischmann et al., 2003; Li & Ju, 2012), the current study

implicates altered expression of NMDAR subunits of the

hippocampus in stress-induced deficits in both cognitive and

emotional traits. The present study showed that in C57BL/6J

mice, a 2-week ethological stress paradigm, comprised of

exposure to a rat and social defeat, resulted in the impairment

of contextual fear conditioning, as well as behavioral

disinhibition in the open field test and increased aggressive

behavior. These cognitive and emotional abnormalities were

accompanied by increases in the hippocampal mRNA

expression of the NR2A subunit of the NMDAR and in the

NR2A/NR2B ratio, while the mRNA expression of NR2B and

NR1 was unchanged.

A significant reduction in body weight and increase in

basal serum corticosterone concentration of stressed mice

demonstrated the impact of the 2-week stress procedure

(Figure 1A, B). Stressed mice displayed behavioral hyperar-

ousal under stressful testing conditions, as shown by a

significant decrease in the time spent immobile in the central

and peripheral parts of the brightly illuminated open field, but

a lack of these changes during stress-free open field testing

under red light (Figure 1C). Behavioral alterations of the

stressed group in the open field illuminated with white light

are in agreement with behavioral changes in these mice in the

elevated O-maze. In the O-maze test, stressed mice showed a

significant shortening of the latency to enter the open arms,

an increase in the time spent and the number of entries into

the open arms (Figure 1D). Together, these findings indicate

that the stress procedure evoked anomalous ‘‘anxiolytic-like’’
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Figure 1. Exposure of mice to stressors for 2 weeks affects body weight, serum corticosterone and parameters of emotionality. (A) Weight loss and
(B) increased serum corticosterone concentration in the stress group. (C) Stressed mice showed a reduced total time spent immobile at the periphery
and in the center of the open field lit with white light. There were no significant differences in locomotor behavior between groups tested under red
light. (D) Stressed mice displayed decreased latency of entries into the open arms, an increased time spent therein and increased number of entries.
(E) Elevated aggressive behavior (number of attacks) in stressed mice. *p50.05 versus control (A, E: unpaired t test, B–D: Mann–Whitney test).
Control group, n¼ 10; stress group, n¼ 22. All data are means� standard error of the mean (SEM).

112 J. Costa-Nunes et al. Stress, 2014; 17(1): 108–116
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Figure 2. Hippocampus-dependent performance in stressed mice. (A) Stressed and control mice showed a significant increase in the latency for
step down 1 h after training, in comparison to baseline latencies; *p40.05 versus baseline, Wilcoxon test; there were no differences between groups.
(B) Stressed mice spent a significantly shorter time freezing, during a recall session in the fear-conditioning paradigm; (C) there were no significant
differences for latency to food displacement or number of pellets displaced at 0–60 min and 60–90 min in the tube test. *p50.05 versus control;
Mann–Whitney test. Control group, n¼ 10; stress group, n¼ 22. All data are means� the standard error of the mean (SEM).

Figure 3. Hippocampal expression of mRNAs for N-methyl-D-aspartate receptor (NMDAR) subunits in stressed mice. In the stressed group, relative
to controls: (A) mRNA expression of the NR2A subunit of the NMDAR was significantly greater; (B) mRNA expression of NR2B was not altered;
(C) the ratio of mRNAs for NR2A/NR2B was significantly increased; (D) mRNA expression of the NR1 subunit of NMDAR was not altered; *p50.05
versus control; unpaired t test. Control group, n¼ 9; stress group, n¼ 12. Data are means� the standard error of the mean (SEM).

DOI: 10.3109/10253890.2013.872619 NMDAR subunits and behavior after stress 113
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traits and behavioral invigoration in mice. In our experiments,

these changes were accompanied by a significant increase in

the number of attacks by stressed mice in the resident-intruder

paradigm, which is an indicator of enhanced aggressive traits

(Figure 1E). This is in agreement with previous work showing

that increased anxiety levels typically correlate with increased

scores of aggressive behavior in C57BL/6J male mice

(Willner, 2005).

In line with our findings, different chronic stress proced-

ures have been reported to cause an increase in time spent in

anxiety-related compartments of the elevated plus maze and

the dark/light box in rodents, which was interpreted as a sign

of ‘‘anxiolytic-like’’ effects (Cancela et al., 1995; D’Aquila

et al., 1994; Hata et al., 2001; Sanchez, 1997). Such

phenomena, also considered as manifestations of impulsivity

and disinhibition, are well-known consequences of chronic

stress in rodents (Belujon & Grace, 2011; Strekalova et al.,

2005; Willner, 2005). It is commonly accepted that the limbic

system, in general, and the hippocampus, in particular, have a

central role in the behavioral inhibition system (Abela &

Chudasama, 2013; Geissler & Lesch, 2011; Gray &

McNaughton, 1983; McNaughton et al., 1997; McNaughton

& Gray, 2000; Rawlins et al., 1985), while the crucial role of

the hippocampus for memory was established much earlier

(Squire, 1992). Behavioral invigoration, such as during stress,

is likely to be associated with alterations of other hippocam-

pal functions, which may include learning processes and

molecular changes related to gene expression regulating

glutamatergic neurotransmission (Belujon & Grace, 2011;

Calabrese et al., 2012; Geissler & Lesch, 2011). Thus, these

potential changes were investigated in the present study.

Stressed mice had a normal acquisition of the short-term

step-down avoidance task, a form of cortex-dependent

learning, which was shown by their unaltered latencies to

step-down (Figure 2A). However, a lower percentage of

freezing during the recall session of the fear-conditioning test

in stressed mice indicates a deficiency in their long-term

hippocampus-dependent memory (Figure 2B). The possibility

that a hyperactivity of chronically stressed mice in our study

interferes with scoring of freezing was largely ruled out by a

lack of differences in locomotor activity during a 2-min

acclimatization pre-training period between stressed and

control mice (Strekalova et al., 2003). Also, both groups

had similar values for the baseline latencies of step-down

behavior (Figure 2A), indicating similar anxiety-like traits

when assessed under the testing conditions that were subse-

quently used to assess contextual learning. Baseline step-

down behavior was previously reported as a highly sensitive

measure of subtle changes in anxiety and locomotion in

C57BL/6J mice (Strekalova & Steinbusch, 2009, 2010;

Vignisse et al., 2011, 2013).

The changes in contextual freezing significantly correlated

with decreased burrowing behavior, although burrowing

parameters were not altered significantly (Figure 2C).

A tendency to displace food pellets is often regarded as not

a fully specific indicator of hippocampal dysfunction in

rodents (Hart et al., 2012; Kaczmarczyk et al., 2013; Tarr

et al., 2012) and its neurobiology is debatable. Hence the

finding of a correlation between this behavior and hippocam-

pus-dependent learning in the present study might be

potentially important in relating the burrowing behavior

to the dorsal hippocampus, as originally proposed (Deacon

et al., 2002).

This study revealed stress-induced increases in the

hippocampal expression of NR2A and the NR2A/NR2B

ratio (Figure 3A, C), which were previously shown to

accompany elevated anxiety (Boyce-Rustay & Holmes,

2006; Calabrese et al., 2012; Gao et al., 2010), impulsivity

and aggression (Bortolato et al., 2012; Meyer et al., 2004),

home cage hyperactivity and a stress-induced increase in

peripheral concentrations of corticosterone (Huang et al.,

2010; Longordo et al., 2009) in various conditions.

A limitation of our study, however, is the need for confirm-

ation that the mRNA changes result in corresponding changes

in subunit protein levels and in altered synaptic function in the

hippocampus. In agreement with our data, separate studies

have reported that molecular changes such as we found are

associated with a disruption of long-term memory, but not

short-term learning (Calabrese et al., 2012; Cui et al., 2013;

Huang et al., 2010). In the present experiment, mRNA

expression of NR2B and the NR1 in the hippocampus was not

significantly changed by stress (Figure 3). However, previous

work has reported a significant decrease in NR2B expression

in several brain areas during stress (Cull-Candy et al., 2001;

Huang et al., 2010), aging (Dere et al., 2003) and

compromised plasticity (Bortolato et al., 2012). Previous

work has also reported a decrease in NR1 mRNA after

stress (Cull-Candy et al., 2001; Schenberg et al., 2006).

Discrepancies between our findings and others may be due to

the different stress paradigms employed. However, previous

work we have done in a gene expression profiling Illumina

study (Integragen, Evry, France and Northwestern Chicago

University, USA and Ingenuity Systems, Redwood city, CA),

using hippocampi obtained in a similar chronic stress model

(Strekalova et al., 2011), suggests diminished expression of

NR1 receptor subunit mRNA in stressed mice in particular,

and speaks for systemic differences in the hippocampal

glutamatergic receptors expression in these mice in general.

In addition to NR1 expression results, these microarray data

pointed to statistically significant changes in several elements

of the glutamatergic system in the hippocampal formation of

chronically stressed mice: NR2B receptor, AMPA receptor,

glutamate metabotropic receptor 5 and in NR2A/NR2B ratio,

which changes are overall in line with the outcome from

mRNA evaluation in the current study. Remarkably, a

segregation of stress-susceptible and stress-resilient individ-

uals in the microarray study revealed differential expression

of the above genes between the sub-groups that additionally

supports functional importance of molecular changes in

response to stress, obtained both in the microarray and

mRNA experiments

In summary, this study demonstrates that elevated

hippocampal expression in stressed mice of mRNAs for

NR2A and of the NR2A/NR2B ratio, but not for NR2B and

NR1, is associated with concomitant abnormalities in both

cognitive and emotional elements that mimic one of the most

characteristic consequences of experiencing chronic stress in

humans. These data suggest that a paradigm comprising

ethological stressors evokes behavioral disinhibition and

molecular changes that likely mimic epidemiologically
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spread human syndromes associated with stress-related

emotional and cognitive deficits. Thus, the stress paradigm

employed in the present study can be useful for translational

studies in the search for pharmacological compensation of

these combined symptoms of stress-related pathologies.
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