The study of air-ice CO₂ exchange emphasize the importance of gas bubble transport during sea ice growth

Marie Kotovitch^{1,2}, Sébastien Moreau³, Jiayun Zhou^{1,2}, Jean-Louis Tison², Fanny Van der Linden¹, Gerhard Dieckmann⁴, Karl-Ulrich Evers⁵, David Thomas^{6,7} and Bruno Delille¹

INTRODUCTION

Sea ice exchanges CO_2 exchanges with the ocean and the atmosphere. In the present study, we filled a tank with seawater and control the freezing of the room in order to reproduce ice growth and decay over 19 days experiment. The aims were to: (1) determine a gas transfer coefficient for CO_2 in sea ice, (2) understand the processes responsible for CO_2 transport between air and sea ice by comparing our results with a 1D biogeochemical model.

Materials and Methods: The air temperature above the tank was set to -15 °C the first 14 days, then to -1 °C the 5 last days. We measured continuously in situ ice temperature, underwater salinity and air-ice CO_2 fluxes. Ice cores were also collected regularly to measure biogeochemical variables.

F = air-ice CO₂ fluxes

We measured continuously temperature and air-ice CO_2 flux with an automated chamber over the ice. Sea ice shifts from:

(i) a sink during ice crystals formation,

- (ii) a source during ice growth,
- (iii) return to a sink during ice melt.

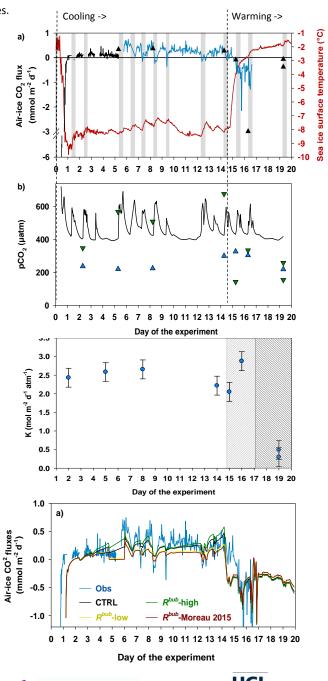
dC = air-ice difference in CO₂ partial pressure

From the difference in partial pressure of CO_2 in the air and the ice, we calculated daily dC. The evolution of dC is consistent with measured flux (F), shifting from: (i) negative,

 $(\ensuremath{\mathsf{ii}})$ to positive and, finally

(iii) return negative.

Gas transfer coefficient for CO₂ : K = F / (pCO_{2 ice} - pCO_{2 air})


By combining F with dC, we determined gas transfer coefficients (K) for CO_2 at air-ice interface for growth and decay phases. K is 6 times higher during the growth phase compared to the decay phase. Transport of gas bubbles enhance dramatically transfer coefficient during ice growth, while only diffusion occurs during ice melt.

1D MODELLING EMPHASIZES THE ROLE OF BUBBLE

To mimic the observed air-ice CO_2 fluxes, we used the 1D model of Moreau et al. (2015). The inversion between outward CO_2 fluxes during ice growth and inward CO_2 fluxes during ice melt depicts well the observations. However, the model (M2015) strongly underestimates the fluxes during the cold phase if the formation rate of gas bubbles is low. Since ice is permeable throughout the cold phase, higher gas bubble formation rates are needed to reproduce high CO_2 fluxes during the growth phase.

CONCLUSION:

- During sea ice growth, gas are transported by diffusion and buoyancy while convection is limited
- Gas transfer coefficients for CO_2 at air- ice interface differ for growth and decay : $K_{growth} = 2,5$ mol m⁻² d⁻¹ atm⁻¹ and $K_{decay} = 0,4$ mol m⁻² d⁻¹ atm⁻¹
- Our 1D model can simulate air-ice CO₂ fluxes and point to the role of gas bubbles in sea ice

¹Unité d'Océanographie Chimique, Ulg, Belgium, ²Laboratoire de Glaciologie, ULB, ³Georges Lemaître Centre for Earth and Climate Research, UCL, ⁴Alfred Wegener Institute Helmhotz Center for Polarand Marine Research, Germany, ⁵Hamburgische Schiffbau-Versuchsanstalt GmbH (HSVA), ⁶Marine Research Center, Helsinki, Finland, ⁷School of Ocean Sciences, Bargor University, United Kingdom

References: Moreau et al., 2015. Drivers of inorganic carbon dynamics in first-year sea ice : a model study. J. Geophys. Res. Ocean. 120, 471–495.