
Nonlinear System Identification in Structural Dynamics: A Short
(and Biased) History

K. Worden1, G. Kerschen2, A.F. Vakakis3 & J.C. Golinval2

(1) Dynamics Research Group, Department of Mechanical Engineering, University of
Sheffield, Mappin Street, Sheffield S1 3JD, UK.

(2) Aerospace and Mechanical Engineering Department (LTAS), University of Liege,
Belgium.

(3) Division of Mechanics, National Technical University of Athens, Greece.

ABSTRACT

Although linear systems are now very well-understood in the context of structural dynamics,
this is not at all the case for nonlinear systems. In particular, despite huge advances in
the mathematical theory of nonlinear dynamical systems, progress in the difficult field of
nonlinear system identification (learning of models from measured input/output data) has
largely remained fairly slow and incremental. This is not to say that there have been no
major successes in the field in its comparatively short history, and the objective of this paper
is to present some of the highlights, as perceived by the authors, and to pave the way for a
second paper discussing new developments and possibilities for the future.

INTRODUCTION

This paper is the first of a pair looking at the development of techniques for Nonlinear
System Identification (NSI) in structural dynamics. The object of this paper is to illustrate
the history of NSI by choosing a number of techniques which may be considered milestones
in its development. The second paper will concentrate more on the current status of the
field of NSI and on possible future directions [40]. The paper is not at all intended to be
a complete history. There is a huge body of work accumulated in NSI and it is simply not
possible to do justice to it in an article this short, so in choosing the techniques described
here, the authors have shamelessly concentrated on those they are most familiar with, and
inevitably this means, those they have worked on personally.

Before proceeding to specific techniques of NSI, it is worth pointing out that arguably the
first method in NSI, is still very much in use today. Probably the simplest means of testing
for linearity in a situation where the system is subjected to random excitation is to estimate
the coherence function γ2 [52],

γ2(ω) =
|H(ω)|2Sxx(ω)

Syy(ω)
(1)



which will be unity for all accessible ω if and only if the system is linear and noise-free.
H(ω) is the system transfer function and Sxx(ω) (resp Syy(ω)) is the input (resp. output)
auto-spectrum. The approach was first developed in Wiener’s pioneering work on spectral
estimation in the 1930s [53]. The coherence can be simply calculated using FFT methods
and an implementation is provided on almost all commercial spectrum analysers; however,
it does not distinguish between the cases of a nonlinear system and noisy signals. Despite
it’s limitations, because of its simplicity and sensitivity, the coherence set the standard for
other NSI methods to follow.

The layout of the paper is simple, each of the following sections concentrates on a specific
NSI technique of interest. First, linearisation is covered, then: the Hilbert transform, the
NARMAX model, functional series and finally, restoring force surfaces. The paper closes
with a short set of conclusions.

LINEARISATION

The analysis of linear systems is very well understood. In the context of structural dynamics,
modal analysis has proved to be very powerful approach to the analysis of linear systems
[30]. In the simplest terms, modal analysis can be thought of as the extraction of system
parameters from system FRFs. It is so effective in that restricted area that one might be
tempted to apply the procedures of modal analysis directly to nonlinear systems without
modification. In this situation, the curve-fitting algorithms used will associate a linear
system with each FRF - in some sense the linear system which explains it best. In the case
of a SDOF system, one might find the linear FRF,

Heq(ω) =
1

−meqω2 + iceqω + keq

(2)

which approximates most closely that of the nonlinear system. In the time-domain this
implies a best linear model of the form,

meqÿ + ceqẏ + keqy = x(t) (3)

and such a model is called a linearisation. As the nonlinear system FRF will usually change
its shape as the level of excitation is changed, any linearisation is only valid for a given level.
Also, because the form of the FRF is a function of the type of excitation used [75], different
forcing types of nominally the same amplitude will require different linearisations. Only
linearisations based on random excitation will be discussed here; these are arguably more
fundamental because random excitation is the only excitation which generates nonlinear
system FRFs which look like linear system FRFs [75].

The basic theory does not actually proceed via the FRFs, one operates directly on the
equations of motion. The technique - equivalent or more accurately statistical linearisation
dates back to the fundamental work of Caughey [17]. There are a number of variants of the
procedure and an excellent recent discussion can be found in [21]. The following discussion
is limited to SDOF systems; however, this is not a fundamental restriction of the method.



Given a general SDOF nonlinear system,

mÿ + f(y, ẏ) = x(t) (4)

one seeks an equivalent linear system of the form (3). As the excitation is random, a sensible
strategy is to minimise the expected value of the squared difference between the nonlinear
force and that of the linear system, i.e. find the ceq and keq which minimise,

J(y, ceq, keq) = E[(f(y, ẏ) − ceqẏ − keqy)2] (5)

(it will be assumed that the apparent mass is unchanged i.e. meq = m). Using largely
elementary calculus, the values of ceq and keq which minimise (5) are found to be,

ceq =
E[ẏf(y, ẏ)]

E[ẏ2]
(6)

and,

keq =
E[yf(y, ẏ)]

E[y2]
(7)

and all that remains is to evaluate the expectations. Unfortunately this turns out to be
nontrivial. The expectation of a function of random variables like f(y, ẏ) is given by,

E[f(y, ẏ)] =
∫ ∞

−∞

∫ ∞

−∞
dydẏ p(y, ẏ)f(y, ẏ) (8)

where p(y, ẏ) is the joint Probability Density Function (PDF) for the processes y and ẏ.
The problem is that the PDF of the response is not known for general nonlinear systems,
estimating it presents formidable problems of its own. One solution to this problem is to
approximate p(y, ẏ) by peq(y, ẏ) - the PDF of the equivalent linear system (3); this still
requires a little thought. The fact that comes to the rescue is a basic theorem of random
vibrations of linear systems [27], namely: if the excitation to a linear system is a zero-mean
Gaussian signal, then so is the response, so,

peq(yeq, ẏeq) = peq(yeq)peq(ẏeq) =
1√

2πσyeqσẏeq

exp

(
− y2

eq

2σ2
yeq

− ẏ2
eq

2σ2
ẏeq

)
(9)

It may now appear that the problem has been reduced to the evaluation of integrals; un-
fortunately, things are not quite that simple. It remains to estimate the variances in the
integrals. Now standard theory (see [52]) gives,

σ2
yeq

=
∫ ∞

−∞
dω|Heq(ω)|2Sxx(ω) =

∫ ∞

−∞
dω

Sxx(ω)

(keq − mω2)2 + c2
eqω

2
(10)

and,



σ2
ẏeq

=
∫ ∞

−∞
dω

ω2Sxx(ω)

(keq − mω2)2 + c2
eqω

2
(11)

and here lies the problem. Equation (7) ultimately expresses keq in terms of the variance σ2
yeq

and (11) expresses σ2
yeq

in terms of keq. The result is a rather nasty pair of coupled nonlinear
algebraic equations which must be solved for keq. The same is of course true of ceq. However,
the problem has been reduced to one of numerical analysis and appropriate solution schemes
are available. In the case of the Duffing oscillator, for which,

mÿ + cẏ + ky + k3y
3 = x(t) (12)

A closed form approximation can be found [75]. Figure 1 shows the FRF of the linearised
form of (12) for three increasing levels of random excitation. The natural frequency shifts
up as the level increases and the cubic term begins to increase the apparent linear stiffness.
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Figure 1: Equivalent linearisations of a Duffing oscillator at different excitation levels.

The problem with using (6) and (7) as the basis for an experimental method is that they
require one to know what f(y, ẏ) is. In practice it will be useful to extract a linear model
without knowing the details of the nonlinearity. Hagedorn and Wallaschek [36] have devel-
oped an effective experimental procedure for doing precisely this. The results are,

ceq =
E[xẏ]

E[ẏ2]
(13)

and,



keq =
E[xy] + E[ẏ2]

E[y2]
(14)

and it follows that the equivalent stiffnesses and dampings can be obtained experimentally
if the signals x(t), y(t) and ẏ(t) are measured. In fact, the experimental approach to lin-
earisation is superior in the sense that the equivalent damping and stiffness are unbiased.
The theoretical procedure yields biased values simply because the statistics of the linearised
process are used in the calculation in place of the true statistics of the nonlinear process.

THE HILBERT TRANSFORM

A more sophisticated diagnostic tool than the coherence described in the introduction is
provided by the Hilbert transform, which was first used for this purpose by Simon and
Tomlinson [59].

The Hilbert transform diagnoses nonlinearity on the basis of measured FRF data. The
Hilbert transform map on a given FRF G(ω) is,

H[G(ω)] = G̃(ω) = − 1

iπ

∫ ∞

−∞
dΩ

G(Ω)

Ω − ω
(15)

This mapping reduces to the identity on the FRFs of linear systems. (Actually, the transform
reduces to the identity for causal systems; however, for a large class of systems, this is the
same thing.) Suppose G(ω) is decomposed so,

G(ω) = G+(ω) + G−(ω) (16)

where G+(ω) (respectively G−(ω)) has poles only in the upper (respectively lower) half of
the complex ω-plane. Then,

H[G±(ω)] = ±G±(ω) (17)

The HT distortion is,

∆G(ω) = H[G(ω)] − G(ω) = −2G−(ω) (18)

The form of the distortion can provide information about the type of nonlinearity present
in the structure [75]. The major problem in using the Hilbert transform occurs when non-
baseband or band-limited data is employed. The Hilbert transform can be recast in a slightly
different form to that described above,

�G̃(ω) = −2

π

∫ ∞

0
dΩ

�G(Ω) Ω

Ω2 − ω2
(19)

�G̃(ω) =
2ω

π

∫ ∞

0
dΩ

�G(Ω)

Ω2 − ω2
(20)



If zoomed data from (ωmin, ωmax) is measured, data is missing from the intervals (0, ωmin)
and (ωmax,∞).

The problem is usually overcome by adding correction terms to the Hilbert transform evalu-
ated [1, 31, 59]. An alternative approach to the HT exploits the pole-zero form of the FRF.
A general FRF may be expanded into a rational polynomial representation,

G(ω) =
Q(ω)

P (ω)
(21)

Once the RP model GRP is established, it can be converted into a pole-zero form,

GRP (ω) =

nQ∏
i=1

(ω − qi)

nP∏
i=1

(ω − pi)
(22)

Long division and partial-fraction analysis produce the decomposition (16),

G+
RP (ω) =

N+∑
i=1

C+
i

ω − p+
i

G−
RP (ω) =

N−∑
i=1

C−
i

ω − p−i
(23)

Once this decomposition is established, the Hilbert transform follows.

Consider the Duffing oscillator,

ÿ + 20ẏ + 10000y + 5 × 109y3 = X sin(ωt) (24)

Data were generated from 0 to 38.4 Hz, and the data were truncated by removing data above
and below the range 9.25-32.95 Hz.

Figure 2 shows the Hilbert transforms of the FRF calculated by the RP method on the
truncated data and by a standard numerical method which used the full range of the data.

(Note the characteristic distortion of the Nyquist plot for a hardening cubic stiffness nonlin-
earity, the curve rotates clockwise.)

The pole-zero decomposition method can also be used to compute analytical expressions for
the Hilbert transform as in [41].

The Hilbert transform has also been used as a direct method of nonparametric identification.
The FREEVIB and FORCEVIB approaches developed by Feldman [32, 33], can be used to
construct the nonlinear damping or stiffness curves for a large class of nonlinear systems.
The method works by extracting the instantaneous phase and frequency curves from exper-
imental data. Alternative approaches have been constructed to yield the same information,
in particular the method based on the Gabor transform in Brancaleoni et al [15] and the
wavelet approach of Staszewski [61]. All of these approaches except FORCEVIB extract the
information from the free decay response of the systems.



Figure 2: Comparison of Hilbert Transforms from RP approach and standard integral.

THE NARMAX MODEL

Suppose one is interested in the SDOF linear system,

mÿ + cẏ + ky = x(t) (25)

This can be converted by a process of discrete approximation to the discrete-time form,

yi = a1yi−1 + a2yi−2 + b1xi−1 (26)

where a1, a2 and b1 are constants and functions of the original constants m, c, k and the
sampling interval ∆t = ti+1 − ti where the ti are the sampling instants. In a more general
form,

yi = F (yi−1, yi−2; xi−2) (27)

This is an ARX model i.e. Auto-Regressive with eXogenous inputs. The advantage of adopt-
ing this form is that only the two states x and y need be measured in order to estimate all
the model parameters a1,a2 and b1 in (26) and thus identify the system. It is a simple matter
to show that a general MDOF linear system has a discrete-time representation,

yi =
ny∑
j=1

ajyi−j +
nx∑
j=1

bjxi−j (28)

or,

yi = F (yi−1, . . . , yi−ny ; xi−1, . . . , xi−nx) (29)



As before, all parameters a1, . . . , any , b1, . . . , bnx can be estimated using measurements of the
x and y data only.

The extension to nonlinear systems is straightforward. Consider the Duffing oscillator rep-
resented by,

mÿ + cẏ + ky + k3y
3 = x(t) (30)

One can pass to the discrete-time representation,

yi = a1yi−1 + a2yi−2 + b1xi−1 + cy3
i−1 (31)

The model (31) is now termed a NARX (Nonlinear ARX) model. The regression function
yi = F (yi−1, yi−2; xi−2) is now nonlinear; it contains a cubic term. If all terms of order three
or less were included in the model structure i.e. (yi−2)

2xi−1 etc. a much more general model
would be obtained,

yi = F (3)(yi−1, yi−2; xi−2) (32)

(the superscript denotes the highest order product terms) which would be sufficiently general
to represent the behaviour of any dynamical systems with nonlinearities up to third order
i.e. containing terms of the form ẏ3, ẏ2y etc.

The most general polynomial NARX model (including products of order ≤ np) is denoted
by,

yi = F (np)(yi−1, . . . , yi−ny ; xi−1, . . . , xi−nx) (33)

It has been proved by Leontaritis and Billings [43, 44], that under very mild assumptions,
any input-output process has a representation by a model of the form (33). If the system
nonlinearities are polynomial in nature, this model will represent the system well for all levels
of excitation. If the system nonlinearities are not polynomial, they can be approximated
arbitrarily accurately by polynomials over a given range of their arguments (Weierstrass
approximation theorem, [58]). This means that the system can be accurately modelled
by taking the order np high enough. However, the model would be input-sensitive as the
polynomial approximation required would depend on the data. This problem can be removed
by including non-polynomial terms in the NARX model as described in Billings and Chen
[12]. The NARX model can even be cast as a Neural Network (Billings et al [13]).

The preceding analysis unrealistically assumes that the measured data is free of noise. As
shown below, if the system is nonlinear the noise process can be very complex; multiplicative
noise terms with the input and output are not uncommon, but can be easily accommodated
in the discrete-time models as described in Leontaritis and Billings [43, 44], Korenburg et al
[42] and Chen et al [20].

Suppose the measured output has the form,



y(t) = yc(t) + ζ(t) (34)

where yc(t) is the ’clean’ output from the system. If the underlying system is the Duffing
oscillator of equation (15), the equation satisfied by the measured data is now,

mÿ + cẏ + ky + k3y
3 − mζ̈ − cζ̇ − kζ − k3ζ

3 − 3y2ζ + 3yζ2 = x(t) (35)

and the corresponding discrete-time equation will contain terms of the form ζi−1, ζi−2,
ζi−1y

2
i−1 etc. Note that even simple additive noise on the output introduces cross-product

terms if the system is nonlinear. Although these terms all correspond to unmeasurable states
they must be included in the model. If they are ignored the parameter estimates will gener-
ally be biased. The system model (33) is therefore extended again by the addition of a noise
model and takes the form,

yi = F (3)(yi−1, yi−2; xi−2; ζi−1, ζi−2) + ζi (36)

This type of model is referred to as NARMAX (Nonlinear Auto-Regressive Moving-Average
with eXogenous inputs).

Finally, the term ’moving-average’ requires some explanation. Generally, for a linear system
a moving-average model for the noise process takes the form,

ζi = ei + c1ei−1 + c2ei−2 + . . . (37)

i.e. the system noise is assumed to be the result of passing a zero-mean white noise sequence
{ei} through a digital filter with coefficients c1, c2, . . .. The terminology comes from the
literature of time series analysis. Equation (36) requires a generalisation of this concept
to the nonlinear case. This is incorporated in the NARMAX model which takes the final
general form,

yi = F (np)(yi−1, . . . , yi−ny ; xi−1, . . . , xi−nx ; ei−1, . . . , ei−ne) + ei (38)

In this form the noise sequence or residual sequence ei is now zero-mean white noise. This
allows the model to accomodate a wide class of possibly nonlinear noise terms.

The input and output variables xi and yi are usually physical quantities like force and
displacement response respectively. An interesting alternative approach to this was followed
by Thouverez and Jezequel [65], who fitted a NARMAX model using modal coordinates.

Having obtained a NARMAX model for a system, the next stage in the identification proce-
dure is to determine if the structure is correct and the parameter estimates are unbiased. It
is important to know if the model has successfully captured the system dynamics so that it
will provide good predictions of the system output for different input excitations, or if it has
simply fitted the model to the data; in which case it will be of little use since it will only be
applicable to one data set. Simple validity tests arise from comparing the model predicted



data to the measured data, Billings et al extended the tests to include stringent correlation
tests [11].

FUNCTIONAL SERIES AND HIGHER-ORDER FRFs

For a general linear system, the input-output map can be expressed by Duhamel’s integral,

y(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (39)

Equation (39) is manifestly linear and therefore cannot hold for arbitrary nonlinear systems.
However, it admits a generalisation. The extended form of equation (39) was obtained by
Volterra [66]. It takes the form of an infinite series,

y(t) = y1(t) + y2(t) + y3(t) + . . . (40)

where,

y1(t) =
∫ +∞

−∞
dτh1(τ)x(t − τ) (41)

y2(t) =
∫ +∞

−∞

∫ +∞

−∞
dτ1dτ2h2(τ1, τ2)x(t − τ1)x(t − τ2) (42)

y3(t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dτ1dτ2dτ3h2(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3) (43)

The form of the general term is obvious from the above. The functions h1(τ), h2(τ1, τ2),
h3(τ1, τ2, τ3), . . . hn(τ1, . . . , τn), . . . are generalisations of the linear impulse response function
and are usually referred to as Volterra kernels. The use of the Volterra series in dynamics
stems from the work of the MIT group on functional series [14, 16, 34], although the most
widely-cited source is the seminal paper of Barrett [5], in which the series was applied to
nonlinear differential equations. One can think of the series as a generalisation of the Taylor
series from functions to functionals. The expression (39) simply represents the lowest order
truncation which is of course exact only for linear systems. There are many practical issues
associated with the existence and convergence of the Volterra series and a good summary
can be found in [54].

There exists a dual frequency-domain representation for nonlinear systems. The higher order
FRF’s or Volterra kernel transforms Hn(ω1, . . . , ωn), n = 1, . . . ,∞ are defined as the multi-
dimensional Fourier transforms of the kernels, i.e.,

Hn(ω1, . . . , ωn) =
∫ +∞

−∞
. . .
∫ +∞

−∞
dτ1 . . . dτnhn(τ1, . . . , τn)e−i(ω1τ1+...+ωnτn) (44)

It is a straightforward matter to obtain the frequency-domain dual of the expression (40),



Y (ω) = Y1(ω) + Y2(ω) + Y3(ω) + . . . (45)

where,

Y1(ω) = H1(ω)X(ω) (46)

Y2(ω) =
1

2π

∫ +∞

−∞
dω1H2(ω1, ω − ω1)X(ω1)X(ω − ω1) (47)

One use of the Volterra series is the construction of analytic approximations to various
quantities of interest in experimental structural analysis. Approximations to the FRFs of
SDOF and MDOF systems with cubic nonlinearities and excited by Gaussian white noise
can be found in the work of Worden and Manson [73, 74]. The approximations derived are
of interest from the point of view that the FRFs constructed have all their poles in the
upper-half of the complex frequency plane. This goes some way to explaining why the FRFs
of randomly excited nonlinear systems appear to be invariant under the Hilbert transform.

There are various methods of determining the higher order FRF’s for a system. If one has
measured input and output time data, it is possible to evaluate the FRF’s by carrying out
many multi-dimensional Fast Fourier Transforms and averaging the results, in much the same
way as one would evaluate a standard linear transfer function (Schetzen [56], Gifford and
Tomlinson [35]). However, this approach requires that the input be a Gaussian white noise
sequence; also, the computational burden of carrying out multi-dimensional FFT’s makes
evaluation of FRF’s higher than second order prohibitive by this method. Wray and Green
proposed an interesting method of extracting the Volterra kernels for a system by fitting
the time-domain response using a Time-Delay Neural Network (TDNN) and computing the
kernels from the network weights [76]. Alternatively, it is possible to estimate the higher
order FRF’s efficiently by harmonic testing of a system as in Storer and Tomlinson [62]. The
higher order FRF’s can also be obtained by impulse testing (Liu et al [45]).

More recent work on identification of nonlinear systems via the Volterra kernels and kernel
transforms can be found in Khan and Vyas [38], Chatterjee and Vyas [19] and Tawfiq and
Vihn [64].

If one knows the equation of motion of a system, an alternative approach can be used which
yields exact expressions for the higher order FRF’s. The method of harmonic probing was
introduced by Bedrossan and Rice specifically for systems with continuous-time equations of
motion [6]. The method was extended to discrete-time systems by Billings and Tsang [9, 10].
An alternative, recursive approach to probing is presented in Peyton Jones and Billings [55].

For the Duffing oscillator in equation (12), the first three higher-order FRFs are found to
be,

H1(Ω) =
1

−mΩ2icΩ + k
(48)



H2(ω1, ω2) = −k2

2
H1(ω1)H1(ω2)H1(ω1 + ω2) (49)

H3(ω1, ω2, ω3) = −1

6
H1(ω1 + ω2 + ω3).

{4k2 (H1(ω1)H2(ω2, ω3) + H1(ω2)H2(ω3, ω1) + H1(ω3)H2(ω1, ω2)) + k3H1(ω1)H1(ω2)H1(ω3)}
(50)

The method of Wray and Green described earlier which extracted Volterra kernels from
TDNN neural networks [76], proved to be inextendible to the NARX case. However, Chance
et al [18], showed that it was possible to extract kernel transforms or HFRFs by fitting Multi-
Layer Perceptron neural networks and then using harmonic probing. Ideas from machine
learning theory have proved useful in other respects for Volterra series approximation. Kernel
methods and ideas based on Reproducing Kernel Hilbert Spaces (RKHS) have proved fruitful
in the work of Dodd & Harris [24] and Dodd and Harrison [25, 26]. One particular result of
interest is a method for estimating the entire Volterra series without truncation (Wan [67]).

In order to illustrate the first two higher-order FRFs, the parameters from the system in
equation (24) have been substituted in equations (48) and (49).

Figure 3: Estimated and exact H1s for the Duffing oscillator.

The first order FRF has been used in system identification for some time; the well-established
technique of modal analysis (Ewins [30]) is based on the extraction of linear system para-
meters by curve-fitting to the FRF. Gifford and Tomlinson [35], showed that the technique
extends naturally to nonlinear systems; nonlinear parameters are extracted by fitting surfaces
or hypersurfaces to the higher order FRF’s. This work was further extended by Storer and
Tomlinson [62], who demonstrated that it is sufficient to curve-fit to the parts ot the FRF’s



Figure 4: Estimated and exact H2s for the Duffing oscillator.

above the diagonal frequency subspaces. This allowed a significantly simpler experimental
procedure based on harmonic testing.

Considering Figure 3, the interpretation of the H1 curve is well-known. The peak in the curve
corresponds to the resonant frequency at which high amplitudes of vibration are expected.

Interpretation of the second order FRF is also straightforward. The magnitude and phase
of H2 for the Duffing system above are given in Figure 4 as contour maps over the (f1, f2) =
(ω1

2π
, ω2

2π
) plane. The frequency ranges for the plot are the same as for H1 in Figure 3. A

number of ridges are observed. These are in direct correspondence with the peak in H1 as
follows. According to equation (65), H2 is a constant multiple of H1(ω1)H1(ω2)H1(ω1 + ω2).
As a consequence H2 possesses local maxima at positions where the H1 factors have local
maxima. Consequently there are two ridges in the H2 surface corresponding to the lines
ω1 = ωr = 2πfr and ω2 = ωr. These are along lines parallel to the frequency axes. In
addition, H2 has local maxima generated by the H1(ω1+ω2) factor along the line ω1+ω2 = ωr.
This ridge has an important interpretation; it indicates that one can expect a maximum in
the second order output y2(t) if the system is excited by two sinusoids whose sum frequency
is the linear resonant frequency. This shows clearly why estimation of a transfer function by
linear methods is inadequate for nonlinear systems; such a transfer function would usually
indicate a maximum in the output for a harmonic excitation close to the linear resonant
frequency.

RESTORING FORCE SURFACES

The simple procedure described in this section allows a direct nonparametric identification
for SDOF nonlinear systems. The only a priori information required is an estimate of the



system mass. The basic procedures were introduced by Masri and Caughey [46], although
the approach described here resembles more the variant developed independently by Crawley
and Aubert [22], and Crawley and O’Donnell [23] and referred to by them as ’force-state
mapping’. A recent variation on the theme is the ’local’ approach of Duym and Schoukens
[29] which fits a piecewise linear restoring force surface.

The starting point is the equation of motion as specified by Newton’s second law,

mÿ + f(y, ẏ) = x(t) (51)

where m is the mass (or an effective mass) of the system and f(y, ẏ) is the internal restoring
force which acts to return the system to equilibrium when disturbed. The function f can
be a quite general function of position y(t) and velocity ẏ(t). Because f is assumed to be
dependent only on y and ẏ it can be represented by a surface over the phase-plane i.e. the
(y, ẏ) plane. A trivial re-arrangement of equation (51) gives

f(y(t), ẏ(t)) = x(t) − mÿ(t) (52)

Now, if the mass m is known and the excitation x(t) and acceleration ÿ(t) are measured,
all the quantities on the RHS of this equation are known and hence so is f . As usual,
measurement of a time signal entails sampling it at regularly spaced intervals ∆t. If ti =
(i − 1)∆t denotes the ith sampling instant, then at ti, equation (130) gives

fi = f(yi, ẏi) = xi − mÿi (53)

where xi = x(ti) and ÿi = ÿ(ti) and hence fi are known at each sampling instant. If
the velocities ẏi and displacements yi are also known (i.e. from direct measurement or from
numerical integration of the sampled acceleration data), at each instant i = 1, . . . , N a triplet
(yi, ẏi, fi) is specified. The first two values indicate a point in the phase plane, the third gives
the height of the restoring force surface above that point. Given this scattering of force values
above the phase plane there are a number of methods of interpolating a continuous surface on
a regular grid for plotting purposes [75]. There are a couple of other issues of signal processing
here. In the first case, direct sampling of the displacement, velocity and acceleration data
requires considerable instrumentation, it is more economical to measure one and estimate
the remaining states by numerical differentiation or integration; the problems which arise in
this strategy are addressed in Worden [69]. This problem was neatly avoided in Shin and
Hammond [57], where the authors adopted a state-space embedding approach and fitted a
force surface of the form fi = f(yi, yi−1). A second issue is the choice of excitation signal to
give uniform coverage of the phase-plane; this is addressed in Worden [69] and Duym and
Schoukens [28].

Once the surface is obtained, Masri and Caughey [46] construct a parametric model of the
restoring force in the form of a double Chebyshev series,

f(y, ẏ) =
m∑

i=0

n∑
j=0

CijTi(y)Tj(ẏ) (54)



where Ti(y) is the Chebyshev polynomial of order i. It has since been established (Al-Hadid
and Wright [2], that a straightforward polynomial expansion of the form

f(y, ẏ) =
m∑

i=0

n∑
j=0

Cijy
iẏj (55)

is superior in terms of ease, speed and accuracy of estimation. The only advantage of the
Chebyshev form of the expansion is that the coefficients can be estimated independently
of each other due to the fact that the polynomials are orthogonal [46]. Note that the
identification precedes the fitting of the model; the method is truly nonparametric.

For illustration, the restoring force surface and the associated contour map for an automotive
shock absorber, obtained by experiment [63] are given in Figure 5, they both show a very
clear bilinear characteristic. Note that if a parametric representation of the internal force
had been obtained, say a least-squares polynomial, it would have been impossible to infer
the bilinear characteristic from the coefficients alone; it is the direct visualisation of the
nonlinearity which makes the force surface so useful.

There exist in the literature a number of examples of the application of force surface tech-
niques to experimental SDOF systems; One of the first is that of Crawley and O’Donnell
[23], which includes a study of space-structure joints. Worden and Tomlinson consider an
impacting cantilever beam in [71], as in the more recent study by Kerschen et al [39]. Meskell
et al [50] applied the approach to a nonlinear fluid-loading example. Beligarde and Cam-
panile consider an automotive shock absorber in [7]. The experimental study of Hunter et
al [37], is also of interest in that it contains a frequency domain formulation of the method.

The identification procedure of Masri and Caughey was shown to extend to MDOF systems
in Masri et al [47]. Although in principle, arbitrarily complex nonlinear systems could be
identified; in practice, the computational burden was considerable. Attempts to obtain
a practical implementation of the procedure were made by Worden and Tomlinson [68],
and Al-Hadid and Wright [2]. The main difficulty being that the identification procedure is
carried out in modal coordinates, the intention being to simplify matters by diagonalising the
underlying linear system. The procedure therefore requires a priori estimates of the modal
matrix and mass matrix [4]. Although the linear parts of the restoring forces are simplified
by this procedure, each component of the nonlinear restoring force vector remains a function
of all the coordinates. Al-Hadid and Wright showed that unless a time-consuming iterative
version of the procedure was adopted, any model parameters would be biased. A further
problem is that restoring force surfaces can no longer be obtained before the parameter
estimation stage.

However, research continued and in Al-Hadid and Wright [2], a useful form of the iden-
tification procedure was obtained by utilising a physical coordinate representation for the
nonlinear forces while retaining a modal coordinate approach to the underlying linear sys-
tem. This can be contrasted with the later work of Masri et al [48, 49], where physical
coordinates are used for the linear identification and modal coordinates for the nonlinear.
In subsequent papers by Al-Hadid and Wright [3, 4], experimental results are presented for
a MDOF system and a powerful technique for obtaining estimates of the mass and modal
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Figure 5: Experimental restoring force surface for an automotive shock absorber.

mass matrices appears.

In Worden et al [72], an alternative approach to MDOF system identification was described.
Rather than make any use of modal coordinates, a physical coordinate system based on a
lumped parameter representation of the system is adopted. Although this is now a direct
parameter estimation (DPE) scheme similar to that adopted by in [48, 49] for linear systems,
it was shown that all system parameters could be obtained if the system is excited at a single
point. Also, restoring forces are shown to be a useful by-product. An alternative approach
to DPE is described in Mohammad et al [51].

In an earlier formulation of a DPE scheme, Yang and Ibrahim [77], observed that if the



unforced equations of motion are considered, anoverall scale can be fixed by a knowledge of
the total system mass and all system parameters can be obtained from measurements of the
free oscillations.

CONCLUSIONS

The techniques described in this paper (along with all those omitted for reasons of space)
represent considerable progress in the development of system identification methods for non-
linear systems. They have taken the field from a state of comparative ignorance to the point
were it is possible to identify nonlinear structural systems in practice. While the methods all
have their individual merits, they also have individual weaknesses and it is safe to say that
no single technique offers a solution to all problems. There are many outstanding problems
in the field of NSI which require considerable attention and the field is very much in a state
of evolution. The second paper in this short series will attempt to indicate where current
progress is being made and will try to indicate where future research should be directed.
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