"La vraie faute est celle qu'on ne corrige pas ..."

Confucius

An introduction to optical/IR interferometry Brief summary of main results obtained during the last lecture:

$$V = \left| \gamma_{12}(0, u, v) \right| = \left| \iint_{S} I'(\zeta, \eta) \exp\left\{ -i2\Pi \left(u\zeta + v\eta \right) \right\} d\zeta d\eta$$

 $I'(\xi,\eta) = \iint \gamma_{12}(0,u,v) \exp\left\{i2\Pi(\xi u + \eta v)\right\} d(u)d(v)$

- For the case of a 1D uniformly brightening star whose angular diameter is $\phi = b/z'$, we found that the visibility of the fringes is zero when $\lambda/B = b/z' = \phi$ where B is the baseline of the interferometer

- For the case of a double star with an angular separation $\phi = b/z'$, we found that the visibility of the fringes is zero when $\lambda/2B = b/z' = \phi$ 2

- 5 Light coherence
- 5.5 Aperture synthesis

Exercises:

- the case of a gaussian-like source?
- let us assume that the observed visibility IY₁₂(0,u)I
 of a celestial object is Icos(πuθ)I, please retrieve
 the intensity distribution I' of the source

Case of a double point-like source with a flux ratio = 1

Case of a double point-like source with a flux ratio 0.7/0.3

Variation of the fringe contrast as a function of the angular separation between the two stars:

If the source is characterized by a uniform disk light distribution, the corresponding visibility function is given by

$$\upsilon = \left(\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}\right) = \left|\gamma_{12}(0)\right| = TF(I) = \frac{2J_1(\pi\theta_{UD}B/\lambda)}{\pi\theta_{UD}B/\lambda}$$

For the case of the Sun:

 $\vartheta_{UD} = 1.22\lambda/B = 1.22\ 0.55/B(\mu) = 30' \ x \ 60''/206265$ B(\mu) = 206265 x 1.22 x 0.55/(30 x 60) = 76.9 \mu d(\mu) = 7.2 or 14.4 \mu $\Rightarrow \sigma = 2.44 \ \lambda/d = 7.8^{\circ} \text{ or } 3.9^{\circ}$

See the masks!

First fringes on the Sun: 9/4/2010

 $B = 29.4 \mu$ d = 11.8 μ

OVLA_Sun_2

Interferometric observations on 10/4/2010 of Procyon, Mars and Saturn, using the 80cm telescope at Haute-Provence Observatory and adequate masks (coll. with Hervé le Coroller) ...

Procyon B = 12 mm d = 2 mm

Mars B = 12 mmd = 2 mm

Saturn B = 4 mmd = 2 mm

Saturn B = 12 mm d = 2 mm

6 Some examples of optical interferometers

First fringes with I2T

6 Some examples of optical interferometers

6 Some examples of optical interferometers

http://www.aeos.ulg.ac.be/HARI/

 6 Some examples of optical interferometers Interferometry to-day is:

Very Large Telescope Interferometer (VLTI)

- 4 x 8.2m UTs
- 4 x 1.8m ATs
- Max. Base: 200m

6 Some examples of optical interferometers

VLTI delay lines

uv plane coverage

Examples of *uv* plane coverage

Dec -15

Dec -65

How does the *uv* plane coverage affect imagery?

 6 Some examples of optical interferometers Interferometry to-day is also:

The CHARA interferometer

6 x 1m
telescopes
Max. Base:
330m

 6 Some examples of optical interferometers Interferometry to-day is also:

Palomar Testbed Interferometer (PTI)

3 x 40cm
telescopes
Max. Base:
110m

6 Some examples of optical interferometers

Interferometry to-day

is also:

Keck interferometer

• 2 x 10m telescopes • Base: 85m

Star

6 Some examples of optical interferometers
 Interferometry to-day is also:

Nullin interferometry

- Measurement of « stellar leakage »
- Allow to resolve stars with a a small size interferometer

51

6 Some examples of optical interferometers Interferometry to-day is also:

6 Other examples of interferometers: ALMA

6 Other examples of interferometers: DARWIN

7 Some results

Star	Spectral type	Luminosity class	Angular diameter × 10 ⁻³ seconds of arc 20		
a Boo	K2	Giant			
α Tau	K5	Giant	20		
a Sco	M1-M2	Super-giant	40		
B Peg	M2	Giant	21		
o Cet	M6e	Giant	47		
α Ori	M1-M2	Super-giant variable	34→47		

From Pease (1931).

7 Some results

NOM	SPECTRE	DLAMÉTRE à = 0,15 pm en ms. d'arc	MESURÉ 1 = 2,2 µm en ms. d'ars	RAG	TEMPERATURE EFFECTIVE		DISTANCE
					λ = 0.55 μm en degrée Kehde	as degrée Kahin	en parseca (1 pc = 3,25 el
e Ces	KOW	54260		36.8	4700 ± 300		45:11
# And	MOIN	13.2 # 1.7	14.4 ± 0.5	33 ± 9	3000 ± 260	3711 + 84	23±3
T And	K38	6.8 ± 6.6	100000000	50 ± 14	4660 ± 250	1 - 10 (15) (70 2 15
a Per	F510	25164		85 = 9	7000 ± 500	10 C	175.1.9
IN CYO	Alle	27463		145 ± 45	\$200 ± 600		500±100
a Ari	K200	7.6±1	1 2	15	4300 # 350		23 8 4
8 Gem	KON	7.4 ± 6.6		8=2	4800 E 230	2	11 # 1
3 Umi	K488	8.8±1		30 + 9	4220 ± 300		31.0.11
y Dia	K548	8.7±0.8	10.2±1.4	45 ± 10	4300 ± 230	3960 ± 270	60±21
4 One	Gatti	3.8±0.3		1515	4530 ± 220		303.0
µ Gem	MORE		14.6 2 0.8	94±30		3000 8 96	00 1 15
6 Tau	KSII		20.7±0.4	4727		3964±34	2184
a 800	1211	100000000	21.5 ± 1.2	25 ± 6		4240 1 120	1123
a Aura	GSIII	5.0±1.2		11.7±2	5400 ± 200		387246
a Auty	GOHI	48±15		7.1#2	5950±200		11.7108
a swr	AQV	10±02	1	10101	1	14	0.12.0.4

8 Three important theorems ... and some applications

8.1 The fundamental theorem

8.2 The convolution theorem

8.3 The Wiener-Khintchin theorem

Réf.: P. Léna; Astrophysique: méthodes physiques de l'observation (Savoirs Actuels / CNRS Editions)

8.1 The fundamental theorem

 $a(p,q) = TF_(A(x,y))(p,q),$ $a(p,q) = \int_{R^2} A(x,y) \exp[-i2\pi(px+qy)] dx dy,$

with

 $p = x' / (\lambda f)$ $q = y' / (\lambda f)$

8.1 The fundamental theorem

The distribution of the complex amplitude a(p,q) in the focal plane is given by the Fourier transform of the distribution of the complex amplitude A(x,y) in the entrance pupil plane.

8.1 The fundamental theorem

8.1 The fundamental theorem

Démonstration

A(x,y) exp(i $2\pi vt$),

(8.1.3.1)

 $A(x,y) = A(x,y) \exp(i\phi(x,y)) P_0(x,y).$

(8.1.3.2)

8.1 The fundamental theorem Démonstration

$$\delta = -d(O, K) = -|(OM u)|$$

(8.1.3.6)

A(x,y) exp(i2π(νt - xx'/λf - yy'/λf)). (8.1.3.7)

$$p = x'/\lambda f, q = y'/\lambda f,$$
 (8.1.3.8)

 $exp(i2\pi vt) A(x,y) exp(-i2\pi(xp + yq)).$

(8.1.3.9)

8.1 The fundamental theoremDémonstration

$$a(p,q) = \int_{R^2} A(x,y) \exp\left[-i2\pi(px+qy)\right] dxdy,$$

(8.1.3.10)

a(p,q) = TF [A(x,y)](p,q)

(8.1.3.11)

8.1 The fundamental theorem Application: Point Spread Function determination

$$A(x,y) = A_0 P_0(x,y),$$
 (8.1.1)

$$P_0(x,y) = \Pi(x / a) \Pi(y / a).$$
 (8.1.2)

8.1 The fundamental theorem

$$a(p,q) = TF [A(x,y)](p,q) = \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} A_0 \exp[-i2\pi(px+qy)]dxdy \qquad (8.1.3)$$

$$a(p,q) = A_0 \int_{-a/2}^{a/2} \exp\left[-i2\pi px\right] dx \int_{-a/2}^{a/2} \exp\left[-i2\pi qy\right] dy$$
(8.1.4)

 $a(p,q) = A_0 a^2 [sin(\pi pa) / (\pi pa)] [sin(\pi qa) / (\pi qa)].$ (8.1.5)

 $\frac{i(p,q) = a(p,q) a^{*}(p,q) = |a(p,q)|^{2} = |h(p,q)|^{2} =$ $= i_{0} a^{4} [sin(\pi pa) / (\pi pa)]^{2} [sin(\pi qa) / (\pi qa)]^{2}.$ (8.1.6)

8.1 The fundamental theorem Application: Point Spread Function determination

 $\Delta p = \Delta x' / (\lambda f); \Delta q = \Delta y' / (\lambda f) = 2/a \Rightarrow \Delta \phi_{x'} = \Delta \phi_{y'} = 2\lambda/a \quad (8.1.7)$

An introduction to optical/IR interferometry 8.1 The fundamental theorem

Application: Point Spread Function determination when observing a star along another direction

$$\psi = 2\pi \,\delta \,/\,\lambda = 2\pi (\text{xb/f} + \text{yc/f}) \,/\,\lambda, \tag{8.1.5.7}$$

$$A(x,y) = P_0(x,y) A_0 \exp[2i\pi(xb/f + yc/f) / \lambda].$$
 (8.1.5.8)

$$a(p,q) = A_0 \int_{-a/2}^{a/2} \exp\left[-2i\pi(p-b/f\lambda)x\right] dx \int_{-a/2}^{a/2} \exp\left[-2i\pi(q-c/f\lambda)y\right] dy \quad (8.1.5.9)$$

$$a(p,q) = A_0 a^2 \left(\frac{\sin\left(\pi\left(p-b/f\lambda\right)a\right)}{\pi\left(p-b/f\lambda\right)a}\right) \left(\frac{\sin\left(\pi\left(q-c/f\lambda\right)a\right)}{\pi\left(q-c/f\lambda\right)a}\right) \quad (8.1.5.10)$$

An introduction to optical/IR inter

8.1 The fundamental theorem Application: Point Spread Function determined

 $i(\rho') = |a(\rho')|^2 = (A_0 \pi)^2 [R_2^2 2 J_1(Z_2) / Z_2 - R_1^2 2 J_1(Z_1) / Z_1]^2, \quad (8.1.8)$ with $Z_2 = 2\pi R_2 \rho' / (\lambda f)$ and $Z_1 = 2\pi R_1 \rho' / (\lambda f).$ (8.1.9)

69

BESSEL FUNCTIONS (REMINDER)

Integral representation of the Bessel functions

 $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos[x \sin(\vartheta)] d\vartheta \qquad \qquad J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos[n\vartheta - x \sin(\vartheta)] d\vartheta$

Undefined integral

$$\int x' J_0(x') dx' = x J_1(x)$$

Graphs of the $J_0(x)$ and $J_1(x)$ functions

Series development (x ~ 0): $J_0(x) = 1 - x^2/2^2 + x^4/(2^24^2) - x^6/(2^24^26^2) + \dots$ $J_1(x) = x/2 - x^3/(2^24) + x^5/(2^24^26) - x^7/(2^24^26^28) + -1$ $J_n(x) = (2 / (\pi x))^{1/2} \cos(x - n\pi/2 - \pi/4) \dots$ and when x is large! An introduction to optical/IR interferometry 8.1 The fundamental theorem Application: Point Spread Function determination $x = \rho \cos(\theta), y = \rho \sin(\theta), p = \rho' \cos(\theta') / (\lambda f), q = \rho' \sin(\theta') / (\lambda f).$ (8.1.5.13) $a(\rho', \theta') = A_0 \int_{R}^{R_2} \int_{0}^{2\pi} \exp[-2i\pi\rho\rho' \cos(\theta - \theta') / (\lambda f)] d(\theta - \theta')\rho d\rho$

(8.1.5.14)

$$a(\rho',\theta') = a(\rho') = A_0 \pi \left[\frac{2R_2^2}{Z_2}J_1(Z_2) - \frac{2R_1^2}{Z_1}J_1(Z_1)\right]$$
(8.1.5.15)

$$Z_2 = 2\pi R_2 \frac{\rho}{\lambda f}$$
 et $Z_1 = 2\pi R_1 \frac{\rho'}{\lambda f}$ (8.1.5.16)

Pour le cas $R_1 = 0$ $i(\rho') = |a(\rho')|^2 = 4(A_0\pi)^2 R_2^4 \left(\frac{b_1(Z_2)}{Z_2}\right)$

(8.1.5.17)

An introduction to optical/IR inter

8.1 The fundamental theorem Application: Point Spread Function dete

 $i(\rho') = |a(\rho')|^2 = (A_0 \pi)^2 [R_2^2 2 J_1(Z_2) / Z_2 - R_1^2 2 J_1(Z_1) / Z_1]^2, \quad (8.1.8)$ with $Z_2 = 2\pi R_2 \rho' / (\lambda f)$ and $Z_1 = 2\pi R_1 \rho' / (\lambda f). \quad (8.1.9)$ An introduction to optical/IR interferometry 8.1 The fundamental theorem Application: Point Spread Function determination

 $\rho'(=r) = 1,22 \lambda f / D$ (D = 2 R₂, R₁ = 0). (8.1.5.18)

$$\frac{2\pi \int_{0}^{r} i(\rho') \rho' d\rho'}{2\pi \int_{0}^{\infty} i(\rho') \rho' d\rho'} = 0,84$$

(8.1.5.19)

 $h(p,q) = TF_(P(x,y))(p,q).$

(8.1.5.20)