
Experimental modal analysis using blind source 
separation techniques 

F. Poncelet, G. Kerschen, JC. Golinval 
University of Liège, Aerospace and Mechanical Engineering Dept. (LTAS) 
Chemin des Chevreuils 1, B-4000 Liège, Belgium 
 
email: fponcelet@ulg.ac.be

Abstract 
Recently, statistical and empirical signal processing techniques such as the proper orthogonal 
decomposition and the Hilbert-Huang transform have shown promise for structural system identification. 
In the present study, experimental modal analysis is carried out by employing blind source separation 
techniques and by interpreting the response of a mechanical system as a static mixture of sources. 
Specifically, it is shown under which circumstances the normal coordinates of the vibration modes may be 
interpreted as virtual sources. The advantages and limitations of the proposed method will be discussed, 
and the procedure will be demonstrated using numerical applications. 
 
 

1 Introduction 
 
Linear system identification is a discipline that has evolved considerably during the last thirty years. 
Modal parameter estimation, termed modal analysis, is indubitably the most popular approach to 
performing linear system identification in structural dynamics. The model of the system is known to be in 
the form of modal parameters, namely the natural frequencies, vibration modes and damping ratios. The 
popularity of modal analysis stems from its great generality; modal parameters can describe the behavior 
of a system for any input type and any range of the input. Numerous approaches were developed for this 
purpose: Ibrahim time domain method [1], eigensystem realization algorithm [2], stochastic subspace 
identification method [3], polyreference least-squares complex frequency domain method [4] to cite a few. 
A description of modal analysis is not within the scope of this paper; the interested reader may consult 
Ref. [5] for further detail. 
Recently, statistical and empirical signal processing techniques have shown promise for experimental 
modal analysis. The relation between the proper orthogonal modes (POMs), extracted from the proper 
orthogonal decomposition (POD, also known as principal component analysis), and the normal modes was 
demonstrated in several studies [6, 7, 8]. Therefore, the POD was proposed as a means of computing the 
normal modes directly from the measured data [9, 10]. One of the intrinsic limitations is that the 
knowledge of the mass matrix is required. To address this issue, Chelidze and Zhou introduced a new 
multivariate data analysis method called smooth orthogonal decomposition (SOD) [11]. The Hilbert-
Huang transform (HHT) has been shown to be effective for characterizing a wide range of non-stationary 
signals in terms of elemental components through what has been called the empirical mode decomposition  
[12]. The HHT has been utilized extensively, as it provides a concise basis for the analysis of nonlinear 
systems. As demonstrated in [13, 14], this technique is also useful for linear system identification. 
The present study performs structural system identification using blind source separation techniques called 
independent component analysis (ICA) and second-order-based identification (SOBI). ICA is a relatively 
recent method [15, 16] and has already found several applications in structural dynamics, including 
damage detection [17], condition monitoring [18, 19] and discrimination between pure tones and sharp-
pointed resonances [20]. A special issue dealing with ICA and blind source separation was also published 
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in Mechanical Systems and Signal Processing in 2005 [21]. Several variants of ICA were also proposed, 
namely SOBI [22], joint approximate diagonalization of eigenmatrices (JADE) [23] and fastICA [24]. 
This paper first presents the BSS concepts, and a comparison with the POD method is also performed in 
Section 2. The proposed modal analysis procedure is then exposed, and the two methods (ICA and SOBI) 
are briefly explained in Section 3. Structural system identification using ICA and SOBI is performed on 
two simulated systems in Section 4. 
 
2 Blind source separation techniques for modal analysis 
 

2.1 Blind source separation concept and POD 
 
Blind source separation (BSS) techniques were mostly developed during the last decade for information 
theory and signal processing. But their objective, which consists in revealing the underlying structure 
hidden in a set of measured data, is shared by many research fields. In fact, BSS techniques attempt to 
extract, from the only mixture of sources observed, independent excitation sources and relationships 
existing between these unknown inputs and the measured outputs.  
Let us consider a linear system which is subjected to a set of unknown excitation sources . This 
system provides a set of responses  which are assumed to be linear combinations of sources. Noise, 

, can be considered and added to the response. Mathematically, this can be written as 

( )s t
( )x t

( )n t

  (1) ( ) ( ) ( )x t A s t n t= ⋅ +

Because the mixing matrix A  is unknown, the estimation problem is considerably more difficult. Some 
additional hypotheses about the initial sources have to be taken into account for the purpose of finding the 
matrix W  which will give the best sources approximation, noted . ( )z t

  (2) ( ) ( )Tz t W x t= ⋅

The necessary hypotheses, e.g., uncorrelation, non gaussianity or statistical independence, will be 
discussed below and in Section 3. 
Scientists already considered the use of statistical signal processing techniques, such as principal 
component analysis (PCA), for the study of structural dynamics. The proper orthogonal decomposition 
(POD) is a variant of PCA for dynamical systems [25]. The POD and the BSS techniques share in fact the 
same objective. The basic idea of the POD is to reduce the large number of interdependent variables  
to a much smaller number of uncorrelated variables  while retaining as much as possible of the 
variation present in the original variables. An orthogonal transformation to the basis of the eigenvectors of 
the sample covariance matrix is performed, and the data are projected onto the subspace spanned by the 
eigenvectors corresponding to the largest eigenvalues. The transformation gives uncorrelated signals and 
minimizes the average squared distance between the original signal and its reduced linear representation. 
In this sense, POD is optimal. The method is therefore suitable for variables with Gaussian distribution.  
This is illustrated in Figure 1 using a two-degree-of-freedom system. However, the limitation of the 
method may appear when the uncorrelated variables computed through the POD are not statistically 
independent. BSS methods such as independent component analysis (ICA) address this issue. The 
application of the POD and ICA is considered in Figure 2 for two variables with uniform distribution. The 
POD is clearly unable to recover the underlying structure in the data unlike ICA. 
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Figure 1 - Proper orthogonal modes in the case of two variables with Gaussian distribution 

 

 
Figure 2 - Proper orthogonal and ICA modes in the case of two variables with uniform distribution 

 

2.2 Normal coordinates as virtual sources 
 
BSS techniques are able to separate the different excitation sources acting on a system. How could this be 
exploited in structural dynamics?  
Let us consider a mechanical system governed by the equations of motion 
  (3) ( ) ( ) ( )M x t K x t f t⋅ + ⋅ =

The system response  is the convolution product of the impulse response function  and the 
external force vector 

( )x t ( )h t
( )f t  

  (4) ( ) ( ) ( )x t h t f t= ∗

This relationship involves a dynamic mixture of sources. Unfortunately, the application of ICA to the 
convolutive mixture of sources is not yet completely solved and raises several problems [21]. 
The main idea of this paper, which will allow to bypass these difficulties, is to interpret the mechanical 
system as a static mixture of sources. Besides expression (4), the response of system (3) may be expressed 
through a modal expansion as 

  (5) ( ) ( ) ( ) ( )
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where  and  are the normal modes and the corresponding normal coordinates (i.e., the amplitude 
modulation of the modes), respectively;  is the number of degrees of freedom (DOFs) of the system. By 
definition, the normal modes provide a complete set for the expansion of an arbitrary vector. It turns out 
that the normal coordinates act as virtual sources on the system regardless the number and the type of the 
physical excitation forces. Under the assumption of independent normal coordinates, the application of 
BSS methods should therefore provide a straightforward identification of the eigenmodes of a structure 
through the computed mixing matrix. 

( )in ( )i tη
m



In Ref. [26], a one-to-one relationship between the vibration modes and the ICA modes for free and 
random vibrations of weakly damped systems is demonstrated. The interest reader should consult this 
reference for further details. 
 

3 Independent component analysis 
 
Unlike the POD which simply assumes that the original sources are uncorrelated, statistical independence 
and non-Gaussianity are the guiding principles of ICA [24]. ICA methods solve the problem described in 
(1), i.e., the identification of the mixing matrix  and the sources , by assuming the statistical 
independence of the sources. The advantage is that higher-order statistics about the observed distribution 
are taken into account to extract the sources. Mathematically, statistical independence of the variables  
means that the joint probability density function factorizes into the product of the probability density 
function of each variables 
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In other words, the value of any variable cannot be inferred from the value of the others. For Gaussian 
distributions, ICA techniques will not perform better than decorrelation methods such as the POD, because 
high-order statistical cumulants vanish. 
During the last few years, ICA has received increasing attention, and numerous methods for computing it 
were developed. They differ mainly by the contrast definition (i.e., the objective function) and/or by the 
algorithm resolution. Two of these methods are briefly described in this paper and used for output-only 
modal analysis. The first one exploits the mutual information minimization, and the other one uses the 
joint diagonalization of several covariance matrices. 
 

3.1 Mutual information minimization 
 
Since it is usually not possible to estimate sources that are perfectly statistically independent and since 
noise often perturbs the measurements (1), ICA consists in searching a linear transformation that 
minimizes the statistical dependence between its components. There exist numerous criteria for this 
purpose, and the method considered here is based on the mutual information concept. 
The principal property of mutual information is that its minimum value appears if and only if the random 
variables are independent. Unfortunately it is extremely difficult to compute, and the alternative is to 
evaluate the negentropy through approximations. The negentropy is directly linked to mutual information 
and measures the distance to the Gaussianity. Comon proposed an expansion as function of cumulants of 
increasing orders [16]. The detailed description of ICA and the practical estimation of the independent 
components are beyond the scope of this paper. The interested reader may consult [16, 24]. 
 

3.2 Second-order-based identification 
 
The other method, the second-order-based identification (SOBI), is based on joint diagonalization of 
several matrices [22]. It can be interpreted as an extension of the POD method for a set of covariance 
matrices characterized by different time lags. These matrices  

  (7) 
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are evaluated from the observed data, and the basic idea is to find a matrix U , which jointly diagonalizes 
all the covariance matrices. It can be proven that the unitary matrix U  corresponds to the mixing matrix.  



The main feature of SOBI is that it makes an additional assumption regarding the sources in comparison 
with standard ICA. They must have different spectral contents; the algorithm therefore exploits the time 
coherence of the source signals. This is particularly appropriate in structural dynamics, because the normal 
coordinates are monochromatic (colored signals) for the free response and mostly monochromatic for the 
random response. Another advantage of the procedure is that being based on the joint diagonalization of a 
set of covariance matrices it only involves second-order statistics, which are easier to compute. 
 

4 Numerical applications 
 
To support the previous theoretical findings and to demonstrate the usefulness of BSS techniques for 
output-only modal analysis, numerical experiments are carried out in this section. A comparison of the 
results obtained using the two methods described above is achieved. 
 

4.1 Identification of a discrete system 
 
A three-degree-of-freedom (DOF) system is considered (Figure 3). This system is made of three masses 
connected in series through linear springs. 
 

 
Figure 3 – Three-degree-of-freedom mass-spring model 

 
Parameters of the system are , ,  and . Proportional 
damping is introduced through the  parameter. The homogeneous equation of motion is  

1 2m = 2 1m = 3 3m = 1 3 12 23 1k k k k= = = =
α
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Newmark’s algorithm is used to compute the system response with a sampling frequency of 100 Hz. Data 
are then resampled to 10 Hz. In the first part, the free response is considered with zero initial conditions 
except for .  3 1x =

Theoretical modes and natural frequencies are calculated by solving the classical eigenvalue problem. The 
theoretical sources (i.e., the “true” normal coordinates) are determined by projecting the simulated 
response onto each eigenmode. Equation (5) gives 

  (9) ( ) ( ) ( )1
tht s t x tη −= = ⋅N

The quality of the identification using BSS techniques is assessed by comparison with these theoretical 
results. The modal assurance criterion (MAC) is used for the correlation of the identified and actual 
eigenmodes (a unitary value means a perfect correlation), and the normalized mean squared error (NMSE) 
is used for the sources correlation  

 
( )

( )

2

2
th BSS

th th

s s
NMSE

s s
−

=
−

 (10) 

 



4.1.1 Identification results 
 
This section presents a comparison of the two methods – ICA through mutual information minimization 
and its variant SOBI – for the three-DOF system described above. 
For the SOBI method, the number of time lags  and their values have to be fixed for the covariance 
matrices computation. The chosen delays correspond to a set of frequencies which were derived from an 
equidistant distribution of frequencies between the minimum and the maximum eigenfrequency of the 
studied system. 

τ

Now let us suppose that the system described above is such that  (corresponding to damping 
ratios of 1.78, 1.09 and 0.63 %) and that its response is corrupted by white noise (the RMS amplitude of 
the noise equals 1 % of the signal RMS value). The simulated displacements are presented in Figure 4 
together with the identified sources from ICA and SOBI methods. Note that results given by ICA and 
SOBI are identical in this case. 
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Figure 4 - Response and identified sources (with ICA and SOBI methods) for the 3DOF's system 

 
The eigenmodes are accurately identified with the two methods. The MAC and the NMSE values for each 
mode are listed in Table 1. The damping is computed from the identified sources using logarithmic 
decrement. 

  Mode 1 Mode 2 Mode 3 

Theoretical 0.0895 0.1458 0.2522 

SOBI 0.0892 0.1452 0.2509 
Frequencies 

(Hz) 
ICA 0.0892 0.1452 0.2509 

Theoretical 1.78 1.09 0.63 

SOBI 1.75 1.05 0.60 
Damping 

ratios 
(%) ICA 1.76 1.04 0.60 



SOBI 1.000 1.000 0.999 
MAC 

ICA 1.000 0.997 0.999 

SOBI 0.044% 0.071% 0.016% 
NMSE 

ICA 1.100% 0.215% 0.151% 

Table 1 : Accuracy of identifications using ICA and SOBI (3 DOFs, free response, damping 
coefficient , 1% noise) 0.02α =

 
4.1.2 Damping influence 
 
Let us now consider the robustness of both methods to the amount of damping present in the system. 
Robustness to noise is discussed in the next section. The system considered here has its damping 
parameter α  varying from 0 to 0.1. The corresponding damping ratios for  are 8.89%, 5.46% and 
3.15%. Only the first 500 sample points of the simulated displacements are taken into account for the 
identification. Figure 5 presents the quality of the results in terms of modes and normal coordinates 
identification.  
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Figure 5 - Quality of modes and sources identified with ICA and SOBI method for the 3DOF's 

system regarding damping (3DOFs, free response, 0% noise) 

 
Both methods seem to perform well for the weakly damped system. When damping increases beyond 1%, 
the identification using ICA fails, whereas the SOBI method continues to provide accurate results. For 
illustration, Figure 6 superposes the theoretical normal coordinates together with the sources identified 
through ICA and SOBI sources for the first mode of the system ( ). 0.05α =
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Figure 6 - Comparison of the theoretical, ICA and SOBI sources for the first mode of the 3DOF's 

system. 

4.1.3 Noise influence 
 
This paragraph studies the robustness of the identification to noise. The same system is considered with a 
damping coefficient . The added white Gaussian noise is gradually increased from 0 to 20% of 
the RMS value. Figure 7 shows the signal distortion when 20 % of noise is added to the signals. 
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Figure 7 – Displacement of the 3DOF system when 20% of noise is added 

 
As shown in Figure 8, the results seem to be fairly insensitive to noise, both for SOBI and ICA. Therefore, 
one can conclude that the methods behave remarkably well in the presence of noise. 
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Figure 8 - Quality of modes and sources identified with ICA and SOBI method for the 3DOF's 

system regarding noise 

 
4.1.4 Forced response 
 
An advantage of BSS methods is that no a priori knowledge about the statistical distribution of the 
excitation signal is necessary. Moreover the knowledge of the time history of the applied force is not even 
required. Some numerical experiments were then realized on the previous system with a random excitation 
applied to mass . This random excitation is characterized by a uniform distribution on the interval [-0.5 
N ; 0.5 N]. 1000 sample points are taken into account for the identification after the transient response is 
damped out. The results were obtained with several values of the damping coefficient . Noise (2% of the 
signal RMS value) corrupts the displacement signals. 

1m

α

For each case, 50 separate identifications resulting from 50 different samples of random applied force 
were carried out. An identification is considered as successful when the MAC value is higher than 0.98. 
The number of successful identification is given in between parentheses, and the mean values of the MAC 
and NMSE are listed in Table 2.  
 

ICA SOBI Damping coefficient  
and damping ratios  

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

MAC 0.9989 0.9992 0.9929 0.9997 0.9994 0.9995 

NMSE 0.2466 0.1559 0.2326 0.055 0.037 0.017 0α =  

 (49/50) (50/50) (45/50) (50/50) (50/50) (50/50) 

MAC 0.9972 0.9984 0.9863 0.9996 0.9986 0.9990 

NMSE 0.298 0.182 0.366 0.052 0.057 0.030 
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MAC 0.9891 0.9937 0.9885 0.9984 0.9986 0.9972 

NMSE 2.764 1.527 0.729 0.396 0.268 0.088 
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 (35/50) (38/50) (28/50) (50/50) (49/50) (50/50) 



MAC 0.9734 0.9788 0.9818 0.9926 0.9936 0.9889 

NMSE 7.562 6.943 1.170 1.484 1.056 0.456 
1

2

3

8.89%

0.1 5.46%

3.15%
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 (24/50) (21/50) (9/50) (50/50) (47/50) (47/50) 

Table 2 : Accuracy of identifications using ICA and SOBI for several damping coefficients (3 DOFs, 
random response, 2% noise). Successful identification criterion: MAC>0.98 

 
As it was observed for the free response, both methods seem to perform well for the weakly damped 
system. When damping increases beyond 1%, the identification using ICA fails, where as the SOBI 
method continues to provide accurate results. The signal response and the identified sources are 
represented in Figure 9 for . 0.002α =
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Figure 9 - Response and identified sources (with SOBI) for the random excitation 

 

4.2 Identification of a distributed-parameter system 
 
Another numerical experiment was also realized in order to demonstrate the applicability of the 
methodology. It consists of a cantilever steel beam modeled using the finite element method. The length of 
the beam is 0.7 m and the cross section is squared (w=t=0.014m). The theoretical results, namely the 
eigenfrequencies, the damping ratios and the eigenmodes, are also computed using the classical 
eigenvalue decomposition.  
The system response is computed using Newmark’s algorithm with a sampling frequency of 1e5 Hz. The 
data used for identification are the vertical accelerations at seven points which are uniformly spaced along 
the beam. The signals are resampled so that the frequency is 10000 Hz. The signals are corrupted with 
white Gaussian noise (5% of the signal RMS value). 
 



4.2.1 Free response  
 
The free response was obtained by suddenly releasing a vertical load of 100 N applied on the free 
extremity of the beam. Only the first 1000 sample points of the acceleration signals are taken into account 
for the identification. The SOBI and ICA algorithms are then directly applied to the acceleration signals, 
and the results are summarized in Table 3. 
The SOBI algorithm clearly performs better than ICA. It identifies all the modes of the system accurately 
whereas the ICA algorithm retrieves only the first three modes. In fact, only the three first sources 
identified with ICA are purely monochromatic; the other sources mix the normal coordinates of the higher 
modes. Figure 10 presents the SOBI sources and the corresponding power spectral densities. As we can 
see, all the sources are monochromatic as requested by the SOBI algorithm. The shape of the theoretical, 
SOBI and ICA modes are also shown in Figure 11, which confirms the accuracy of the identification 
provided by SOBI. 
 

  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

Theoretical 23.6 147.8 414.3 814.0 1353.1 2038.2 2845.5 

SOBI 23.6 147.7 413.8 814.2 1352.5 2036.1 2839.4 
Frequencies 

(Hz) 
ICA 23.6 147.7 413.8 814.2 1352.5 2036.1 / 

Theoretical 0.69 0.20 0.30 0.53 0.86 1.29 1.79 

SOBI 0.69 0.20 0.30 0.52 0.86 1.27 1.71 
Damping 

ratios 
(%) ICA 0.76 0.20 0.30 0.58 0.9 1.4 / 

SOBI 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995 
MAC 

ICA 0.9996 0.9992 0.9991 0.8250 0.6066 0.5072 / 

SOBI 0.0019 0.0009 0.0005 0.0019 0.0169 0.0044 0.0098 
NMSE 

ICA 0.6833 0.6691 0.7024 27.8827 43.4520 45.1922 / 

Table 3 : Accuracy of identifications using ICA and SOBI for the cantilever beam (free response, 
5% noise). 
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Figure 10 – Identified sources (with SOBI) and their power spectral densities 



 

 
Figure 11 – Comparison of identified modes with the theoretical ones 

 
4.2.2 Forced response 
 
The two BSS methods were also applied to the response of the forced system to a random excitation 
(uniform distribution on the interval [-50 N ; 50 N]) applied vertically at the extremity of the beam. 
Because the results depend on the time history of the excitation signal, 50 separate identifications were 
realized. The results are presented in Table 4. Once again, SOBI performs well and is capable of 
identifying the majority of modes. ICA seems to be less robust. 
 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 

 SOBI 
MAC / 0.9973 0.9989 0.9995 0.9997 0.9979 0.9992 

NMSE / 19.35 2.44 2.03 1.72 2.49 0.04 

 (0/50) (39/50) (45/50) (45/50) (45/50) (45/50) (45/50) 

 ICA 

MAC / 0.9962 0.9953 0.9957 0.9900 0.9912 0.9894 

NMSE / 11.70 3.23 5.15 2.79 9.86 3.13 

 (0/50) (5/50) (7/50) (6/50) (7/50) (3/50) (8/50) 

Table 4 : Accuracy of identifications using ICA and SOBI for the cantilever beam (random 
response, 5% noise). 

 



5 Conclusions 
 
This paper proposes to exploit blind source separation techniques for experimental modal analysis. The 
key idea is to interpret the normal coordinates of a dynamic system as virtual independent sources. Under 
this assumption, there is a one-to-one mapping between the mixing matrix and the vibration modes of the 
structure.  
Two methods were investigated (ICA and one of its variant SOBI) with two different numerical 
experiments, namely a discrete and a distributed-parameter system. Both methods are capable of 
performing an accurate identification of the modal parameters of weakly damped systems. We also 
showed that SOBI, which assumes that the sources have different spectral contents, is clearly more 
suitable for moderately or even highly damped systems.  
These identification techniques possess several interesting features:  

• They do not require the measurement of the applied force and can perform output-only modal 
analysis. In addition, in the random case, the knowledge of the statistical distribution of the 
applied force is neither necessary. This is particularly convenient in practical applications for 
which the external force cannot always be measured (e.g., vibrations of a bridge due to traffic and 
wind). 

• A truly straightforward and simple identification is realized, because the vibration modes are 
merely the columns of the mixing matrix. The natural frequencies and damping ratios can be 
easily computed based on classical 1DOF techniques (e.g., the logarithmic decrement) applied to 
the computed sources. 

• Compared to standard and efficient modal analysis techniques such as the stochastic subspace 
identification method, there is no need to specify a model order. As a result, computational modes 
are not an issue, and the use of stabilization charts, which always require a great deal of expertise, 
is avoided. 

• According to the numerical simulations carried out herein, the methods seem to be fairly robust to 
the presence of measurement noise. 

One potential limitation of the proposed modal analysis methodology is that the number of modes which 
may be computed cannot exceed the number of sensors. As a result, sensors should always be chosen in 
number greater or equal to the number of active modes. 
Identification of experimental systems is an important step to pursue the validation of the methods. Results 
obtained to date demonstrate that the methods also perform well for practical applications. This will be 
discussed in a forthcoming paper [27]. 
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