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Abstract. Checking infinite-state systems is frequently done by encod-
ing infinite sets of states as regular languages. Computing such a regular
representation of, say, the reachable set of states of a system requires
acceleration techniques that can finitely compute the effect of an un-
bounded number of transitions. Among the acceleration techniques that
have been proposed, one finds both specific and generic techniques. Spe-
cific techniques exploit the particular type of system being analyzed, e.g.
a system manipulating queues or integers, whereas generic techniques
only assume that the transition relation is represented by a finite-state
transducer, which has to be iterated. In this paper, we investigate the
possibility of using generic techniques in cases where only specific tech-
niques have been exploited so far. Finding that existing generic tech-
niques are often not applicable in cases easily handled by specific tech-
niques, we have developed a new approach to iterating transducers. This
new approach builds on earlier work, but exploits a number of new con-
ceptual and algorithmic ideas, often induced with the help of experi-
ments, that give it a broad scope, as well as good performance.

1 Introduction

If one surveys much of the recent work devoted to the algorithmic verification
of infinite-state systems, it quickly appears that regular languages have emerged
as a unifying representation formalism for the sets of states of such systems.
Indeed, regular languages described by finite automata are a convenient to
manipulate, and already quite expressive formalism that can naturally capture
infinite sets. Regular sets have been used in the context of infinite sets of states
due to unbounded data (e.g. [BG96,FWW97,BW02]) as well as in the context of
parametric systems (e.g. [KMM+97,PS00]). Of course, whether regular of not,
an infinite set of states cannot be computed enumeratively in a finite amount
of time. There is thus a need to find techniques for finitely computing the
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effect of an unbounded number of transitions. Such techniques can be domain
specific or generic. Domain specific results were, for instance, obtained for queues
in [BG96,BH97], for integers and reals in [Boi99,BW02], for pushdown system
in [FWW97,BEM97], and for lossy channels in [AJ96,ABJ98].

Generic techniques appeared in the context of the verification of parametric
systems. The idea used there is that a configuration being a word, a transition
relation is a relation on words, or equivalently a language of pairs of words.
If this language is regular, it can be represented by a finite state automaton,
more specifically a finite-state transducer, and the problem then becomes the
one of iterating such a transducer. Finite-state transducers are quite powerful
(the transition relation of a Turing machine can be modelled by a finite-
state transducer), the flip side of the coin being that the iteration of such a
transducer is neither always computable, nor regular. Nevertheless, there are
a number of practically relevant cases in which the iteration of finite-state
transducers can be computed and remains finite-state. Identifying such cases
and developing (partial) algorithms for iterating finite-state transducers has
been the topic, referred to as “regular model checking”, of a series of recent
papers [BJNT00,JN00,Tou01,DLS01,AJNd02].

The question that initiated the work reported in this paper is, whether the
generic techniques for iterating transducers could be fruitfully applied in cases in
which domain specific techniques had been exclusively used so far. In particular,
our goal was to iterate finite-state transducers representing arithmetic relations
(see [BW02] for a survey). Beyond mere curiosity, the motivation was to be able
to iterate relations that are not in the form required by the domain specific
results, for instance disjunctive relations. Initial results were very disappointing:
the transducer for an arithmetic relation as simple as (x, x + 1) could not be
iterated by existing generic techniques. However, looking for the roots of this
impossibility through a mix of experiments and theoretical work, and taking a
pragmatic approach to solving the problems discovered, we were able to develop
an approach to iterating transducers that easily handles arithmetic relations, as
well as many other cases. Interestingly, it is by using a tool for manipulating
automata (LASH [LASH]), looking at examples beyond the reach of manual
simulation, and testing various algorithms that the right intuitions, later to be
validated by theoretical arguments, were developed. Implementation was thus
not an afterthought, but a central part of our research process.

The general approach that has been taken is similar to the one of [Tou01]
in the sense that, starting with a transducer T , we compute powers T i of T

and attempt to generalize the sequence of transducers obtained in order to
capture its infinite union. This is done by comparing successive powers of T

and attempting to characterize the difference between powers of T as a set of
states and transitions that are added. If this set of added states, or increment,
is always the same, it can be inserted into a loop in order to capture all powers
of T . However, for arithmetic transducers comparing T i with T i+1 did not yield
an increment that could be repeated, though comparing T 2

i

with T 2
i+1

did. So,
a first idea we used is not to always compare T i and T i+1, but to extract a



sequence of samples from the sequence of powers of the transducer, and work
with this sequence of samples. Given the binary encoding used for representing
arithmetic relations, sampling at powers of 2 works well in this case, but the
sampling approach is general and different sample sequences can be used in
other cases. Now, if we only consider sample powers T ik of the transducers
and compute

⋃
k T ik , this is not necessarily equivalent to computing

⋃
i T i.

Fortunately, this problem is easily solved by considering the reflexive transducer,
i.e. T0 = T∪TI where TI is the identity transducer, in which case working with an
infinite subsequence of samples is sufficient. Finally, for arithmetic transducers,
we used the fact that the sequence T 2

i

0 can efficiently be computed by successive
squaring.

To facilitate the comparison of elements of a sequence of transducers, we work
with transducers normalized as reduced deterministic automata. Identifying
common parts of successive transducers then amounts to finding isomorphic
parts which, given that we are dealing with reduced deterministic automata,
can be done efficiently. Working with reduced deterministic automata has
advantages, but at the cost of frequently applying expensive determinization
procedures. Indeed, during our first experiments, the determinization cost
quickly became prohibitive, even though the resulting automata were not
excessively large. A closer look showed that this was linked to the fact that
the subset construction was manipulating large, but apparently redundant, sets
of states. This redundancy was pinpointed to the fact that, in the automata to
be determinized, there were frequent inclusion relations between the languages
accepted from different states. Formally, there is a partial-order relation on the
states of the automaton, a state s1 being greater than a state s2 (we say s1

dominates s2), if the language accepted from s1 includes the language accepted
from s2. Thus, when applying the subset construction, dominated states can
always be eliminated from the sets that are generated. Of course, one needs the
dominance relation to apply this but, exploiting the specifics of the context in
which determinization is applied, we were able to develop a simple procedure
that computes a safe approximation of the dominance relation in time quadratic
in the size of the automaton to be determinized.

Once the automata in the sequence being considered are constructed and
compared, and that an increment corresponding to the difference between
successive elements has been identified, the next step is to allow this increment to
be repeated an arbitrary number of times by incorporating it into a loop. There
are some technical issues about how to do this, but no major difficulty. Once the
resulting “extrapolated” transducer has been obtained, one still needs to check
that the applied extrapolation is safe (contains all elements of the sequence)
and is precise (contains no more). An easy to check sufficient condition for the
extrapolation to be safe is that it remains unchanged when being composed with
itself. Checking preciseness is more delicate, but we have developed a procedure
that embodies a sufficient criterion for doing so. The idea is to check that any
behavior of the transducer with a given number k of copies of the increment, can
be obtained by composing transducers with less than k copies of the increment.



This is done by augmenting the transducers to be checked with counters and
proving that one can restrict theses counters to a finite range, hence allowing
finite-state techniques to be used.

In our experiments, we were able to iterate a variety of arithmetic transduc-
ers. We were also successful on disjunctive relations that could not be handled by
earlier specific techniques. Furthermore, to test our technique in other contexts,
we successfully applied it to examples of parametric systems and to the analysis
of a Petri net.

2 Transducers, arithmetic transducers and their iteration

The underlying problem we are considering is reachability analysis for an infinite-
state system characterized by a transition relation R. Our goal is thus to compute
the closure R∗ =

⋃
i≥0

Ri of R. In what follows, it will be convenient to also
consider the reflexive closure of R, i.e. R ∪ I where I is the identity relation,
which will be denoted by R0; clearly R∗ = R∗

0.
We will work in the context of regular model checking [BJNT00], in which R

is defined over the set of finite words constructed from an alphabet Σ, is regular
and is length preserving (i.e. if (w,w′) ∈ R, then |w| = |w′|). In this case, R can
be defined by a finite automaton over the alphabet Σ × Σ. Such an automaton
is called a transducer and is defined by a tuple T = (Q,Σ ×Σ, q0, δ, F ) where Q

is the set of states, q0 ∈ Q the initial state, δ : Q× (Σ ×Σ) → 2Q the transition
function (δ : Q × (Σ × Σ) → Q if the automaton is deterministic), and F ⊆ Q

is the set of accepting states.
As it has been shown in earlier work [KMM+97,PS00,BJNT00,JN00,Tou01]

[DLS01,AJNd02] finite-state transducers can represent the transition relation
of parametric systems. Using the encoding of integers by words adopted
in [Boi99], finite-state transducers can represent all Presburger arithmetic
definable relations plus some base-dependent relations [BHMV94].

If relations R1 and R2 are respectively represented by transducers T1 =
(Q1, Σ × Σ, q01, δ1, F1) and T2 = (Q2, Σ × Σ, q02, δ2, F2), the transducer T12 =
T2 ◦ T1 representing the composition R2 ◦ R1 of R1 and R2 is easily computed
as T12 = (Q1 × Q2, Σ × Σ, (q01, q02), δ12, F1 × F2), where δ((q1, q2), (a, b)) =
{(q′1, q

′
2) | (∃c ∈ Σ)(q′1 ∈ δ1(q1, (a, c)) and q′2 ∈ δ2(q2, (c, b)))}. Note that even if

T1 and T2 are deterministic w.r.t. Σ × Σ, T12 can be nondeterministic.
To compute the closure R∗ of a relation represented by a transducer T , we

need to compute
⋃

i≥0
T i, which is a priori an infinite computation and hence we

need a speed up technique. In order to develop such a technique, we will consider
the reflexive closure R0 of R and use the following result.

Lemma 1. If R0 is a reflexive relation and s = s1, s2, . . . is an infinite
subsequence of the natural numbers then,

⋃
i≥0

Ri
0 =

⋃
k≥0

Rsk

0 .

The lemma follows directly from the fact that for any i ≥ 0, there is an sk ∈ s

such that sk > i and that, since R0 is reflexive, (∀j ≤ i)(Rj
0 ⊆ Ri

0).



Thus, if we use the transducer T0 corresponding to the reflexive relation R0,
it is sufficient to compute

⋃
k≥0

Rsk

0 for an infinite sequence s = s1, s2, . . . of
“sample points”. Note that when the sampling sequence consists of powers of 2,

the sequence of transducers T 2
k

0 can be efficiently computed by using the fact

that T 2
k+1

0 = T 2
k

0 ◦ T 2
k

0 .

3 Detecting increments

Consider a reflexive transducer T0 and a sequence s1, s2, . . . of sampling points.
Our goal is to determine whether for each i > 0, the transducer T

si+1

0 differs
from T si

0 by some additional constant finite-state structure. One cannot however
hope to check explicitly such a property among an infinite number of sampled
transducers. Our strategy consists in comparing a finite number of successive
transducers until either a suitable increment can be guessed, or the procedure
cannot be carried on further.

For each i > 0, let T si

0 = (Qsi , Σ × Σ, qsi

0 , δsi , F si). We assume that these
transducers are deterministic w.r.t. Σ × Σ and minimal. To identify common
parts between two successive transducers T si

0 and T
si+1

0 we first look for states
of T si

0 and T
si+1

0 from which identical languages are accepted. Precisely, we want
to construct a relation Esi

f ⊆ Qsi ×Qsi+1 such that (q, q′) ∈ Esi

f iff the language

accepted from q in T si

0 is identical to the language accepted from q′ in T
si+1

0 .
Since we are dealing with minimized deterministic transducers, the forwards
equivalence Esi

f is one-to-one (though not total) and can easily be computed
by partitioning the states of the joint automaton (Qsi ∪ Qsi+1 , Σ × Σ, qsi

0 , δsi ∪
δsi+1 , F si ∪F si+1) according to their accepted language. This operation is easily
carried out by Hopcroft’s finite-state minimization procedure [Hop71]. Note that
because the automata are reduced deterministic, the parts of T si

0 and T
si+1

0 linked
by Esi

f are isomorphic, incoming transitions being ignored.

Next, we search for states of T si

0 and T
si+1

0 that are reachable from the
initial state by identical languages. Precisely, we want to construct a relation
Esi

b ⊆ Qsi × Qsi+1 such that (q, q′) ∈ Esi

b iff the language accepted in T si

0 when
q is taken to be the unique accepting state is identical to the language accepted in
T

si+1

0 when q′ is taken to be the unique accepting state. Since T si

0 and T
si+1

0 are
deterministic and minimal, the backwards equivalence Esi

b can be computed by
forward propagation, starting from the pair (qsi

0 , q
si+1

0 ) and exploring the parts
of the transition graphs of T si

0 and T
si+1

0 that are isomorphic to each other, if
transitions leaving these parts are ignored.

Note that taking into account the reduced deterministic nature of the
automata we are considering, the relations Esi

f and Esi

b loosely correspond to
the forwards and backwards bisimulations used in [DLS01,AJNd02].

We are now able to define our notion of finite-state “increment” between two
successive transducers, in terms of the relations Esi

f and Esi

b .



Definition 1. The transducer T
si+1

0 is incrementally larger than T si

0 if the
relations Esi

f and Esi

b cover all the states of T si

0 . In other words, for each q ∈ Qsi ,
there must exist q′ ∈ Qsi+1 such that (q, q′) ∈ Esi

f ∪ Esi

b .

Definition 2. If T
si+1

0 is incrementally larger than T si

0 , then the set Qsi can be
partitioned into {Qsi

b , Qsi

f }, such that

– The set Qsi

f contains the states q covered by Esi

f , i.e., for which there exists
q′ such that (q, q′) ∈ Esi

f ;

– The set Qsi

b contains the remaining states1 of Qsi .

The set Qsi+1 can now be partitioned into {Q
si+1

H , Q
si+1

I0
, Q

si+1

T }, where

– The head part Q
si+1

H is the image by Esi

b of the set Qsi

b ;
– The tail part Q

si+1

T is the image by Esi

f of the set Qsi

f , dismissing the states

that belong to Q
si+1

H (our intention is to have an unmodified head part);
– The increment Q

si+1

I0
contains the states that do not belong to either Q

si+1

H

or Q
si+1

T .

These definitions are illustrated in the first two lines of Figure 1. Note that given
the definition used, the transitions between the head part, increment and tail
part must necessarily be in the direction shown in the figure.

Our expectation is that when moving from one transducer to the next in the
sequence, the increment will always be the same. We formalize this by defining
the incremental growth of a sequence of transducers.

Definition 3. The sequence of sampled transducers T si

0 , T
si+1

0 , . . . , T
si+k

0 grows
incrementally if

– for each j ∈ [0, k − 1], T
si+j+1

0 is incrementally larger than T
si+j

0 ;
– for each j ∈ [1, k − 1], the increment Q

si+j+1

I0
is the image by E

si+j

b of the

increment Q
si+j

I0
.

Consider a sequence T si

0 , T
si+1

0 , . . . , T
si+k

0 that grows incrementally. The
tail part Q

si+j

T of T
si+j

0 , j ∈ [2, . . . , k], will then consist of j − 1 copies of the
increment plus a part that we will name the tail-end part . Precisely, Q

si+j

T can
be partitioned into {Q

si+j

I1
, Q

si+j

I2
, . . . , Q

si+j

Ij−1
, Q

si+j

Tf
}, where

– for each ℓ ∈ [1, . . . , j − 1], the tail increment Q
si+j

Iℓ
is the image by the

relation E
si+j−1

f ◦ E
si+j−2

f ◦ · · · ◦ E
si+j−ℓ

f of the “head” increment Q
si+j−ℓ

I0
,

where “◦” denotes the composition of relations;
– the tail-end set Q

si+j

Tf
contains the remaining elements of Q

si+j

T .

The situation is illustrated in Figure 1.

1 Definition 1 implies that these states must therefore be covered by E
si
b ; the fact that

states covered both by E
si
b and E

si
f are placed in Q

si
f is arbitrary, its consequence

is that when successive transducers are compared - see below - the part matched to
Q

si
f , rather than the part matched to Q

si
b will grow.



T
si
0 : Q

si
b

T
si+3

0 :
Q

si+3

H
Q

si+3

I0

T
si+2

0 :
Q

si+2

H
Q

si+2

I0

T
si+1

0 :
Q

si+1

H
Q

si+1

I0

E
si+2

b

E
si+1

b

E
si
f

Q
si+1

Tf

E
si
b

E
si+1

b

E
si+2

f

Q
si+3

I2

E
si+2

f

E
si+1

f

Q
si+2

Tf

E
si+1

f

Q
si+2

I1

E
si+2

f

Q
si+3

Tf

E
si+2

b

Q
si+2

T

Q
si+3

T

Q
si
f

Q
si+3

I1

Q
si+1

T

Fig. 1. Incrementally-growing sequence of transducers.

Focusing on the last transducer T
si+k

0 in a sequence of incrementally growing
transducers, its head increment Q

si+k

I0
and all the tail increments Q

si+k

Iℓ
, ℓ ∈

[1, k − 1] appearing in its tail part Q
si+k

T are images of the increment Q
si+1

I0
by

a combination of forwards and backwards equivalences. Indeed, by Definition 3,
each tail increment is the image of a previous increment by a composition of
forwards equivalences, and each head increment is the image of the previous
one by a backwards equivalence. Thus, the transition graphs internal to all
increments are isomorphic to that of Q

si+1

I0
, and hence are isomorphic to each

other.
Our intention is to extrapolate the transducer T

si+k

0 by adding more
increments, following a regular pattern. In order to do this, we need to compare
the transitions leaving different increments. We use the following definition.

Definition 4. Let T
si+k

0 be the last transducer of an incrementally growing
sequence, let Q

si+k

I0
, . . . , Q

si+k

Ik−1
be the isomorphic increments detected within

T
si+k

0 , and let Q
si+k

Tf
be its “tail end” set. Then, an increment Q

si+k

Iα
is said

to be communication equivalent to an increment Q
si+k

Iβ
iff, for each pair of

corresponding states (q, q′), q ∈ Q
si+k

Iα
and q′ ∈ Q

si+k

Iβ
, and a ∈ Σ × Σ, we

have that, either

– δ(q, a) ∈ Q
si+k

Iα
and δ(q′, a) ∈ Q

si+k

Iβ
, hence leading to corresponding states

by the existing isomorphism,
– δ(q, a) and δ(q′, a) are both undefined,



– δ(q, a) and δ(q′, a) both lead to the same state of the tail end Q
si+k

Tf
, or

– there exists some γ such that δ(q, a) and δ(q′, a) lead to corresponding states
of respectively Q

si+k

Iα+γ
and Q

si+k

Iβ+γ
.

In order to extrapolate T
si+k

0 , we simply insert extra increments between
the head part of T

si+k

0 and its head increment Q
si+k

I0
, and define the transitions

leaving them in order to make these extra increments communication equivalent
to Q

si+k

I0
. Of course, before doing so, it is heuristically sound to check that a

sufficiently long prefix of the increments of T
si+k

0 are communication equivalent
with each other.

4 Extrapolating sequences of transducers and correctness

Consider a transducer Te0
to which extrapolation is going to be applied. The

state set of this transducer can be decomposed in a head part QH , a series of
k increments QI0

, . . . , QIk−1
and a tail end part QTf

. Repeatedly adding extra
increments as described at the end of the previous section yields a series of
extrapolated transducers Te1

, Te2
, . . .. Our goal is to build a single transducer

that captures the behaviors of the transducers in this sequence, i.e. a transducer
Te∗

=
⋃

i≥0
Tei

. The transducer Te∗
can simply be built from Te0

by adding
transitions according to the following rule.

For each state q ∈ QI0
∪ QH and a ∈ Σ×Σ, if δ(q, a) leads to a state q′

in an increment QIj
, 1 ≤ j ≤ k − 1, then add transitions from q labelled

by a to the state corresponding to q′ (by the increment isomorphism) in
each of the increments QIℓ

with 0 ≤ ℓ < j.

The added transitions, which include loops (transitions to Qe0

I0
itself) allow

Te∗
to simulate the computations of any of the Tei

, i ≥ 0. Conversely, it is fairly
easy to see all computations generated using the added transitions correspond
to a computation of some Tei

. Note that the addition of transitions yields a
nondeterministic transducer, which needs to be determinized and reduced to be
in canonical form.

Having thus constructed an extrapolated transducer Te∗
, it remains to check

whether this transducer accurately corresponds to what we really intend to
compute, i.e.

⋃
i≥0

T i. This is done by first checking that the extrapolation is

safe, in the sense that it captures all behaviors of
⋃

i≥0
T i, and then checking

that it is precise, i.e. that it has no more behaviors than
⋃

i≥0
T i. Both conditions

are checked using sufficient conditions.

Lemma 2. The transducer Te∗
is a safe extrapolation if L(Te∗

◦ Te∗
) ⊆ L(Te∗

).

Indeed, we have that L(T0) ⊆ L(Te∗
) and thus by induction that L(T i

0) ⊆ L(Te∗
)

(recall that T0 is reflexive).
Determining whether the extrapolation is precise is a more difficult problem

The problem amounts to proving that any word accepted by Te∗
, or equivalently



by some Tei
, is also accepted by an iteration T

j
0 of the transducer T0. The idea is

to check that this can be proved inductively. The property is true by construction
for the transducer Te0

from which the extrapolation sequence is built. If we can
also prove that, if the property holds for all j < i, then it also holds for i, we
are done. For this last step, we resort to the following sufficient condition.

Definition 5. A sequence of extrapolated transducers Tei
is inductively precise

if, for all i and word w ∈ L(Tei
), there exist j, j′ < i such that w ∈ L(Tej

◦Tej′
).

To check inductive preciseness, we use automata with counters, the counters
being used to count the number of visits to the iterated increment. Three
counters are used and we are thus dealing with an undecidable class of automata,
but it can be shown that the counters are sufficiently “synchronized” for the
problem to be reducible to a finite-state one. Details will be given in the full
paper.

5 Using dominance to improve efficiency

Our experiments showed that, when computing powers of transducers, the
determinization steps could be very resource consuming, even though the
resulting transducer was not that much larger than the ones being combined.

Looking at the states generated during these steps, it appeared that they cor-
responded to large, but vastly redundant, sets of states of the nondeterministic
automaton. This redundancy is due to the fact that there are frequent inclusion
relations between the languages accepted from different states of the transducer.
We formalize this observation with the following notion of dominance, similar to
the concept used in the ordered automata of [WB00].

Definition 6. Given a nondeterministic finite automaton A = (Q,Σ, δ, q0, F ),
let Aq be the automaton A = (Q,Σ, δ, q, F ), i.e. A where the initial state is q. We
say that a state q1 dominates a state q2 (denoted q1 ≥ q2) if L(Aq2

) ⊆ L(Aq1
).

Clearly, when applying a subset construction, each subset that is generated
can be simplified by eliminating dominated states. However, in order to use this,
we need to be able to efficiently compute the dominance relation.

A first step is to note that, for deterministic automata, this can be done
in quadratic time, by computing the synchronized product of the automaton
with itself, and checking reachability conditions on this product. The problem
of course is that the automaton to which the determinization and minimization
procedure is applied is not deterministic. However, it is obtained from determin-
istic automata by the composition procedure described in Section 2, and it is
easily possible to approximate the dominance relation of the composed trans-
ducer using the dominance relation of the components.



6 Experiments

The results presented in this paper have been tested on a series of case studies.
The prototype implementation that has been used relies in part on the LASH
package [LASH] for automata manipulation procedures, but implements the
specific algorithms needed for transducer implementation. It is a prototype in
the sense that the implementation is not at all optimized, that the interfaces are
still rudimentary, that the implementation of the preciseness criterion is not fully
operational, and that the increment detection procedure that is implemented is
not yet the final one.

As a first series of test cases, we used transducers representing arithmetic
relations, such as (x, x + k) for many values of k. Turning to examples
with multiple variables, the closure of the transducers encoding the relations
((x, y, z), (z + 1, x + 2, y + 3)) and ((w, x, y, z), (w + 1, x + 2, y + 3, z + 4))
were successfully computed. In addition, we could also handle the transducer
encoding the transition relation of a Petri net arithmetically represented by
(((x, y), (x+2, y− 1)) ∪ ((x, y), (x− 1, y +2))) ∩ N

2 ×N
2. An interesting aspect

of this last example is that it is disjunctive and can not be handled by the specific
techniques of [Boi99]. In all these examples, the sampling sequence consists of
the powers of 2. In Table 1 we give the number of states of some transducers
that were iterated, of their closure, and of the largest power of the transducer
that was constructed.

Relation |T0| |T ∗

0 | Max |T i
0 |

(x, x + 1) 3 3 11
(x, x + 7) 7 9 91
(x, x + 73) 14 75 933

(((x, y), (x + 2, y − 1)) ∪ ((x, y), (x − 1, y + 2)))
∩N

2 × N
2 19 70 1833

((x, y), (x + 2, y − 1)) ∪ ((x, y), (x − 1, y + 2))
∪ ((x, y), (x + 1, y + 1))) ∩ N

2 × N
2 21 31 635

((w, x, y, z), (w + 1, x + 2, y + 3, z + 4)) 91 251 2680

Table 1. Examples of transducers and their iteration.

We also considered the parametric systems which were used as examples in
previous work on transducer iteration. We tried the main examples described
in [BJNT00,JN00,Tou01,AJNd02] and our tool was able to handle them. In this
case, sampling was not needed in the sense that all powers of the transducer
were considered.



7 Conclusions and comparison with other work

As a tool for checking infinite-state systems, iterating regular transducers is
an appealing technique. Indeed, it is, at least in principle, independent of the
type of system being analyzed and is a natural generalization of the iteration of
finite-state relations represented by BDDs, which has been quite successful.

Will the iteration of regular transducers also have a large impact on
verification applications? The answer to this question is still unknown, but clearly
the possibility of scaling up the technique will be a crucial success factor. This
is precisely the direction in which this paper intends to make contributions.
Indeed, we believe to have scaled up techniques for iterating transducers both
qualitatively and quantitatively. From the qualitative point of view, the idea
of sampling the sequence of approximations of the iterated transducer, as
well as our increment detection and closing technique have enabled us to
handle arithmetic transducers that were beyond the reach of earlier methods.
Arithmetic relations were also considered in [JN00,BJNT00], but for a simple
unary encoding, which limits the expressiveness of regular transducers. From the
quantitative point of view, systematically working with reduced deterministic
automata and using efficiency improving techniques such as dominance has
enabled us to work with quite complex transducers of significant, if not really
large size. At least, our implemented tool can find iterations well beyond what
can be done by visually inspecting, and manually computing with, automata.

Our work definitely builds on earlier papers that have introduced the basic
concepts used in the iteration of regular transducers. For instance, our technique
for comparing successive approximations of the iterated transducer can be linked
to the reduction techniques used in [JN00,DLS01,BJNT00,AJNd02]. However,
we work from the point of view of comparing successive approximations, rather
than reducing an infinite-state transducer. This makes our technique similar to
the widening technique found in [BJNT00,Tou01], but in a less restrictive setting.
Furthermore, we have a novel technique to check that the “widened” transducer
corresponds exactly to the iterated transducer. Also, some of the techniques
introduced in this paper could be of independent interest. For instance, using
dominance to improve the determinization procedure could have applications in
other contexts.

Techniques for iterating transducers are still in their infancy and there is
room for much further work. The set of transducers we have handled is still
limited and there are many other examples to explore and to learn from in
order to improve our technique. Our implementation can still be substantially
improved, which can also lead to further applications and results. Finally, there
are a number of possible extensions, one being to handle automata with infinite
words, which would lead the way to applying the iteration of transducers to
dense real-time systems.
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