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Abstract
Observations of solar-like oscillations by CoRoT and Kepler space-borne telescopes, have opened
new opportunities for the energetic modelling of these oscillations. In particular, oscillations
propagating in both the convective envelope and the radiative core of evolved low-mass stars,
called mixed-modes, have been detected, allowing us to investigate various physical processes
acting on oscillations in these two regions. Theoretical predictions for the linewidths and the
amplitudes of solar-like oscillations, as obtained and discussed in this thesis, strongly depend
on the treatment of the interaction between convection and oscillations. Observed properties of
solar-like oscillations thus gives us the opportunity to test and constrain this treatment.
The comparisons between observed and theoretical linewidths of main-sequence stars allow us
to constrain the parameters of the time-dependent treatment of convection and to produce more
accurate results. The remaining discrepancies will give us new clues for the improvement of the
treatment of the interaction between convection and oscillations.
The modelling of the energetic aspects of solar-like oscillations in red giants allows us to derive
a detectability limit for mixed-modes. These results are in overall good agreement with typical
red-giant observed power spectra.
A detailed comparison between an observed subgiant and the corresponding theoretical predic-
tions confirms that the main aspects of the observed energetic properties of solar-like oscillations
are well reproduced by the theoretical modelling. Discrepancies between observed and theoret-
ical linewidths of quadrupole mixed-modes lead us to invoke the existence of a new damping
mechanism in the core of this star.

Resumé
L’observation d’oscillations de type solaire, dans de nombreuses étoiles de faible masse, par les
satellites CoRoT et Kepler a ouvert de nouvelles possibilités pour la modélisation des aspects
énergétiques de ces oscillations. En particulier, la détection de modes mixtes, se propageant
dans l’enveloppe convective et dans le coeur radiatif des géantes rouges, nous permet d’étudier
les processus physiques à l’origine des propriétés énergétiques des modes dans ces deux régions.
Les prédictions théoriques pour les largeurs et les amplitudes des oscillations de type solaire,
telles qu’obtenues et discutées dans cette thèse, dépendent fortement du traitement des processus
d’interaction entre la convection et les oscillations. La détermination observationnelle des largeurs
et amplitudes des modes nous donne donc l’opportunité de tester et contraindre un tel traitement.
Les comparaisons des largeurs observées et théoriques pour des étoiles de séquence principale nous
permet de contraindre précisément les paramètres du traitement de la convection dépendante du
temps et ainsi de produire des résultats bien plus réalistes. Les différences restantes entre largeurs
observées et théoriques apportent de nouvelles pistes pour une amélioration du traitement de
l’interaction entre la convection et les oscillations.
La modélisation des aspects énergétiques des oscillations de type solaire dans les géantes rouges
nous permet d’établir une limite de détectabilité des modes mixtes. Il apparait que les résultats
de cette modélisation sont globalement en accord avec les observations.
Une comparaison détaillée des propriétés énergétiques des modes observés dans une sous-géante
et prédites par une modélisation théorique de cette étoile, montre que la plupart des aspects én-
ergétiques des oscillations de type solaire sont bien reproduits par les modèles théoriques. Les dif-
férences entre les observations et les prédictions théoriques des largeurs et amplitudes des modes
mixtes quadripolaires nous amènent à l’hypothèse qu’un nouveau mécanisme d’amortissement
est à l’oeuvre dans le coeur de cette étoile.
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Chapter 1

Introduction

When looking at the night sky, the stars generally seem to be quiet, stable, unchanging,... Re-
ality is more complex: stars were born, will die and, undergo a lot of changes. As a "sphere of
gases", a star is the scene of various complex physical processes. Some of them are of interest in
this thesis and concern the structural changes occurring from the birth to the death of a star.

We can sort out the stars into some groups according to their surface properties (effective tem-
perature and luminosity), which is the so called Hertzsprung-Russell diagram (hereafter HRD,
see Fig. 1.1). The theory of stellar structure and evolution describes the internal constitution
of stars and how this structure evolves with time. This evolution is mainly driven by nuclear
reactions inside the star that transform hydrogen (the fundamental constituent of stars) into
more massive elements. This theory also describes the different physical processes at work inside
a star. It allows one to understand the different stars as a function of their mass and age. The
general theory of stellar structure and evolution, will be introduced in Chap. 2 and applied to
low-mass stars (i.e. stars with masses of the order of the solar one).
Among these different groups in the HRD, main-sequence stars, red-giant stars, and white dwarfs
correspond to the subsequent evolutionary sequences undergone by low-mass stars (the evolu-
tionary path of a 1 M� star is also represented in Fig. 1.1). Main-sequence stars are burning
hydrogen into helium in their core. For low-mass stars, when an appreciable part of the hydrogen
is exhausted (around 10% of the stellar mass), the hydrogen burning continues in a shell above
an inert helium core until the central burning of helium into carbon starts. These latter phases
correspond, for low-mass stars, to the red-giant phase. When nuclear burning ceases, a low-mass
star joins the white dwarfs branch where it will cool down.

The theory of stellar structure and evolution has succeeded to describe the different types of
stars as well as their evolution, reproducing the observed surface properties. However, to test
this theory further, one needs to confront the structure of stellar models with the observations.
The problem of accessing the inner structure of astrophysical objects, has been mentioned by Sir
Arthur Eddington in the first sentences of his book " The Internal Constitution of the Stars" in
1926:

"At first sight it would seem that the deep interior of the Sun and stars is less acces-
sible to scientific investigation than any other region of the universe. Our telescopes
may probe farther and farther into the depths of space; but how can we ever obtain
certain knowledge of that which is hidden behind substantial barriers? What appliance
can pierce through the outer layers of a star and test the conditions within?"
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Figure 1.1: Schematic Hertzsprung-Russell diagram with the evolutionary track of a 1M� star
(from CSIRO webpage, Australia Telescope National Facility: http://www.atnf.csiro.au).

Indeed, stars are opaque and the information we receive as photons comes only from their sur-
face layers, i.e. the photosphere. A similar situation exists for the Earth for which only the near
surface layers are directly accessible to observation. Nonetheless, the study of the propagation
of seismic waves inside our planet allows geophysicists to draw a realistic picture of the hidden
Earth internal structure.

The solution to the stellar interior problem is also to use waves propagating inside the object of
interest (the study of such waves is called Helioseismology for the Sun and Asteroseismology for
other stars). Inside a star, different mechanisms can lead to the generation of waves. Adding
some boundary conditions for the propagation of such waves, resonant modes arise. These modes
create periodic changes of the radius, effective temperature (and therefore luminosity) of the star.
These variations are detectable near the photosphere and allow the observer to determine the
periods (or frequencies) of the oscillation modes of a star, from which one can infer information
on the stellar structure. The theory of stellar oscillations (and its application to low-mass stars)
and how one can link oscillation properties to the stellar structure will be introduced in Chap. 3.
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1.1. HISTORICAL CONTEXT OF SOLAR-LIKE OSCILLATIONS

These last decades, asteroseismology has proved to be a unique and powerful tool to access the
inner structure of stars. Since many stars oscillate, we can obtain information on the inner
properties of a large variety of stars and on stellar evolution. In this thesis, we are mainly
interested by low-mass red-giant stars, which correspond to evolved solar-type stars. These stars
are "cool" stars (with surface temperatures around 5000 K), more luminous and much larger
than our Sun (with luminosities between 10 and 103 L� and radii between 5 and 100 R�). In
this thesis, I will investigate stars from the main sequence to the red giant phase (with particular
emphasis on the latter), between 1 and 2 M� and up to no more than 20R�.

1.1 Historical context of solar-like oscillations

As their name suggest it, solar-like oscillations have been first discovered in the Sun. We provide
in Sect. 1.1.1 some key events in the course of their discovery, their observations, and their inter-
pretations (a more detailed review can be found in e.g. Christensen-Dalsgaard 2002; Kosovichev
2011, and references within). We then move in Sect. 1.1.2 to other stars and the recent contri-
butions of the space-borne telescopes CoRoT and Kepler in the study of solar-like oscillations
(with a particular interest for evolved low-mass stars).

1.1.1 Oscillations of the Sun

Some decades after Sir Arthur Eddington’s remark, Leighton (1960) discovered oscillations in
dopplergrams of the Sun with periods of about 5 min and amplitudes around 0.4 km.s−1. Mein
(1966) computed a theoretical solar oscillation power spectrum. He concluded that the oscilla-
tions are acoustic waves and suggested that some of their properties may be determined by the
convective zone just below the surface. We will have to wait almost ten years and the first longer
observations runs of the Sun (3 hours sets instead of 30-40 min) to clearly confirm the nature of
the 5 min oscillation modes (Deubner 1975).

Information from the solar oscillation frequencies

Additional observations by Rhodes et al. (1975) led to the first use of the solar oscillations to probe
the inner structure of the Sun. Indeed, the comparison of their observations with the frequencies
computed from different theoretical solar models allowed them to put some limits on the depth of
the solar convective envelope. With longer duration of observations, new breakthroughs occurred
and laid down firm bases for the wide diagnostic power of solar-like oscillations. Claverie et al.
(1979) measured the equidistant frequency separation in the solar power spectrum (the large
separation, as predicted by Vandakurov 1968) and Grec et al. (1980) resolved the fine structure
of the frequency pattern and provided the value of the solar small separation. These parameters
have, since their discovery, led to very important results for various solar problems (see e.g. Iben
1976; Christensen-Dalsgaard et al. 1979; Christensen-Dalsgaard, Gough 1981) and are now widely
used to infer basic properties of distant stars (see Sect. 3.5 on current asteroseismic techniques).
The clear identification of the observed radial and non-radial modes led to the development
of helioseismic techniques based on various comparisons between theoretical predictions and
observations. One of these predictions concerned the impact of rotation on mode frequencies
called rotational frequency splitting (an effect similar to the Doppler splitting). This effect has
been observationally confirmed by Rhodes et al. (1979); Ulrich et al. (1979); Deubner et al.
(1979) with long continuous observations. Their measures gave a first evidence and, later, a first
determination of the Sun internal differential rotation profile.

13
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Analyses of more and more precise data on solar oscillations have produced these last decades
a lot of interesting results on the inner solar structure and on some physical processes within
(see e.g. the review of Christensen-Dalsgaard 2002). Among them, we may cite the development
of inversion techniques (see Sect. 3.5.3) to determine the sound speed profile inside the Sun
(Christensen-Dalsgaard et al. 1985) and the helium abundance of the solar convective envelope
(see e.g. Vorontsov et al. 1991; Kosovichev et al. 1992; Antia, Basu 1994).
Our knowledge of the rotation profile of the Sun has also been improved by inversion techniques
which have provided the radial and latitudinal dependence of the rotation rate (see e.g. Brown
1985; Schou et al. 1998). Goode (1991) determined that the solar rotation profile presents a
latitudinal dependence of the angular velocity in almost all the convective envelope and then
changes sharply toward a solid body rotation in the radiative interior. Spiegel, Zahn (1992)
interpreted this transition region as a tachochline.
Concerning the solar core, Noerdlinger (1977) has highlighted the importance of diffusion and
gravitational settling of chemical elements. These processes are now included in almost all solar
models (see e.g. Cox et al. 1989; Proffitt 1994; Gabriel, Carlier 1997; Morel et al. 1997).
Finally, with the possibility to observe the wave field in a given region of the solar surface one
can also investigate the local properties of the subsurface region. Local helioseismology gives
access to the three dimensional structure and to the flows below the surface, such as large scale
convective flow patterns, meridional flows,... (see e.g. Duvall 2000; Haber et al. 2002) bringing
valuable information on the dynamic of the convective envelope.

Information from energetic aspects of solar oscillations

All these results mainly focused on the frequencies of the modes. The interpretation of the
amplitudes of these modes is more challenging because they are the result of a balance between
driving and damping processes. From a theoretical point of view, Ando, Osaki (1977) determined
that the mode driving is concentrated close to the surface. We note for further use that this
region is the location of highly turbulent convective motions, which represent the main difficulty
for a realistic modelling of solar-like oscillations. The question of the excitation of the modes
is linked to their stability: did their amplitude grow until a saturation mechanism takes place
(unstable modes) or did it naturally decrease (stable modes)?
This question for the solar oscillations has been investigated by various authors (see e.g. Ando,
Osaki 1975; Balmforth 1992b). Numerical computations taking into account only the κ mech-
anism (excitation and damping due to opacities; see Sect. 3.1.4) gave results inconsistent with
the observed amplitudes. Ando, Osaki (1975) found that only some of the observed modes were
unstable, the other being predicted stable. It would have implied clear amplitude differences
between stable and unstable modes, which is not the case. By taking into account additional
sources of damping (due to the radiative and convective fluxes, as well as turbulent pressure; see
Sect. 3.2.7), Balmforth, Gough (1990) and Balmforth (1992b) showed that the damping due to
the turbulent pressure stabilises all solar modes.
An additional argument favouring stable modes comes from the observed shape of individual
modes in the power spectrum. With a high enough frequency resolution, the modes appear in
the power spectrum with a Lorentzian profile, from which we can measure the linewidths and
amplitudes (see e.g. Libbrecht 1988; Chaplin et al. 1998). A Lorentzian shape in the Fourier
frequency space is characteristic of an exponential behaviour in the time space. Thus, an expo-
nential damping is favoured. Indeed, if modes were unstable, a saturation mechanisms should
take place and from this moment their amplitude behaviour will no longer be exponential. More-
over, observations of other stars which present unstable modes show that such modes reach much
higher amplitudes than in the Sun. It would have thus required a very efficient saturation mech-
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1.1. HISTORICAL CONTEXT OF SOLAR-LIKE OSCILLATIONS

anism if solar modes were to be unstable. It has thus been concluded that solar modes are stable
(intrinsically damped). The damping mechanism for solar-like oscillations will be presented in
details in Sect. 3.2.

Solar oscillations being damped, a new excitation mechanism is needed to explain their existence
and amplitudes (the classical κ mechanism is not able to excite these modes). Since the discovery
of the solar oscillations, Stein, Leibacher (1974) have suggested that these oscillations could be
excited by turbulent motions in the convective envelope. Lighthill (1967) had already shown that
a part of the convective energy is transformed into acoustic noise by the turbulence. Goldreich,
Keeley (1977) proposed the first theoretical estimate of the amplitudes of stable solar modes.
The model developed by Balmforth (1992a) allowed them, by adjusting various free parameters
to solar observations, to reproduce the amplitudes of the observed modes. More recently, Samadi
et al. (2003a), based on the theory developed by Samadi, Goupil (2001) (which generalise the
theory of Goldreich, Keeley 1977), reproduced the solar mode amplitudes, without adjustments
of free parameters to the observations, by constraining the convection using 3D hydrodynamic
simulations. This formalism is adopted in this thesis and will be presented in Sect. 3.4. Im-
provements of this theory have been made in the description of the turbulence (Belkacem et al.
2006a,b, 2010) and the treatment of non-radial oscillations (Belkacem et al. 2008).

We thus define solar-like oscillations as intrinsically damped oscillations excited by
turbulent motions in the upper convective layers of a star. We thus expect to observe
such oscillations in stars with a convective envelope, i.e. low-mass stars on the main-sequence
and in the red-giant phase (see Sect. 2.3.2 for a description on the occurrence of convective
envelopes depending on the stellar mass and evolutionary state). From an observational point
of view, solar-like oscillations can be identified in other stars thanks to equidistant spacings in
the frequency pattern (large and small frequency separations, see Sect. 3.1.3). Moreover, the
heights of the peaks in the power spectrum follow a characteristic bell shape (see for example
Fig. 1.2) which is theoretically explained by the contributions of turbulent eddies of different
characteristics as a function of the oscillation frequency (see details in Sect. 3.4.3).

1.1.2 From the Sun to solar-like oscillators
From ground-based observations, detections of solar-like oscillations in main-sequence stars were
a few and difficult to confirm. Procyon is the first star suspected to present solar-like oscillations
(α CMi, Brown et al. 1991) based on the shape of the power excess in its spectrum. The
nature of these oscillations was clearly established almost ten years later (Martić et al. 1999;
Barban et al. 1999). Thanks to high precision spectroscopy, Kjeldsen et al. (1995) detected for
the first time individual frequencies of solar-like oscillations in another star (η Boo). For this
star, Brown et al. (1997) could not confirm the detection of solar-like oscillations and the clear
confirmation came only later by Kjeldsen et al. (2003) and Carrier et al. (2005). In addition, β
Hyi (Bedding et al. 2001) and α Cen (a solar twin) also presented signs of solar-like oscillations
(see Bouchy, Carrier 2001). For this last star, the very high quality of observations have allowed
Miglio, Montalbán (2005) and De Meulenaer et al. (2010) to exclude the existence of a convective
core. These four stars were the only main-sequence ones in which we have detected or suspected
solar-like oscillations, from the ground, prior to the CoRoT and Kepler era.
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Figure 1.2: Power spectrum of the Sun: Oscillations radial velocity as a function of the frequency
(from Aerts et al. 2010).

At this time, the situation for more evolved stars was even less clear. When only ground based
observations were available, the detection of non-radial modes was a pending issue. On one
hand, observations of α UMa (Buzasi et al. 2000) and their theoretical analysis by Dziembowski
et al. (2001) led them to infer that the inner radiative damping is too strong to have observ-
able non-radial oscillations. Radial velocity observations of ξ Hydrae and ε Ophiuchi seemed to
confirm these results (Frandsen et al. 2002; Stello et al. 2006; De Ridder et al. 2006; Mazumdar
et al. 2009). On the other hand, Hekker et al. (2006) concluded from spectral-lines analyses of
three red giants (ξ Hydrae, ε Ophiuchi, η Serpentis) and a subgiant (δ Eridani) that non-radial
oscillations could be detectable in some cases.

All these results motivated the development of space-borne missions, that now give to the aster-
oseismic community new exciting results and challenges for the understanding of the physics of
stars.

The breakthrough of CoRoT and Kepler space-borne telescopes

The CoRoT mission (Baglin et al. 2006) was designed to discover exoplanets of super-earth radii
and to study the internal structure of stars (mainly linked to stellar convection and rotation
issues). Launched in December 2006, it has gathered data till November 2012. The observations
covered different regions of the sky with an observation duration ranging between 20-30 and 150
days. The Kepler mission (Borucki et al. 2008) was designed to detect earth-size exoplanets.
Since its launch in 2009 it has observed the same field of view (with about 150 000 stars). It
thus gives us access to observations covering a very long period (around 4 years of observations
were gathered when two reaction wheels failed in May 2013). This represents an unprecedented
follow-up of many stars, which, coupled with the high photometric precision, allows one to iden-
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Figure 1.3: From Chaplin, Miglio (2013): HRD of stars confirmed to display solar-like oscillations.
Contributions of the CoRoT (left) and Kepler (right) missions.

tify the mode parameters (frequencies, linewidths and amplitudes) with an excellent precision
(Gilliland et al. 2010). We can have a glimpse of the contribution of CoRoT and Kepler in
the area of solar-like oscillations with the very high number of observed targets confirmed to be
solar-like pulsators as illustrated in Fig. 1.3.

One of the major achievements, and surprise of the CoRoT mission is the discovery of non-radial
solar-like oscillations in red giants (De Ridder et al. 2009). The detectability of these pressure
dominated non-radial modes in red giants was theoretically predicted by Dupret et al. (2009)
who also predicted that gravity-dominated mixed modes should be detectable in red giants (de-
pending on the evolutionary stage).

As already mentioned, solar oscillations are acoustic modes, trapped in the convective envelope,
and giving us information only on superficial layers. Gravity modes, trapped in the radiative
core of the Sun, (see Sect. 3.1.3 for the specificities of these two types of modes) do not reach the
surface with detectable amplitudes (see e.g. Appourchaux et al. 2010). The situation is similar
for other low-mass stars on the main sequence.
For evolved low-mass stars, the stellar evolution leads to a quite different, and complex, situation.
Due to the contraction of the core and the expansion of the envelope (see Sect. 2.5), the typical
frequency ranges of acoustic and gravity modes approach each other and finally overlap. As a
consequence, both types of modes interact, which leads to oscillations that can propagate both
in the convective envelope (with an acoustic mode behaviour) and in the radiative core (with
a gravity mode behaviour) of the star. Such modes are named mixed-modes (see Sect. 3.1.3).
This phenomenon was first theoretically suggested by Scuflaire (1974) and Dziembowski (1977).
These mixed-modes can be described as a resonant interaction (also called an avoided crossing)
between a gravity and an acoustic mode (see e.g. Aizenman et al. 1977; Deheuvels, Michel 2010).
When the star is still close to the main sequence, only a few modes are concerned, but they may
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reach high enough amplitude at the surface to be detected. In that case, new peaks appear in
the power spectrum. It is expected that these peaks present distinct characteristics from acous-
tic modes, depending on their relative trapping between the core and the envelope. As the star
evolves in the red-giant phase, the number of mixed-modes between two acoustic modes increases
(more and more modes undergo avoided crossings), which leads to a very rich and complex power
spectrum. A lot of gravity-dominated mixed-modes create peaks in the power spectra that are
no longer equally spaced in frequency but are almost equally spaced in period (see Sect. 3.1.3).
Providing we can distinguish these modes in a power spectrum (and identify them), they give us
a direct access to the inner structure of the star because they propagate both in the central and
superficial layers of the star.

The detection of non-radial mixed-modes (De Ridder et al. 2009) thus represents an opportunity
to probe the inner structure of evolved low-mass stars, and has already led to a lot of interesting
results (the interested reader could find in e.g. Chaplin, Miglio 2013, a review of the recent results
in asteroseismology of solar-like oscillations). Observations of gravity-dominated mixed-modes,
which are almost equally spaced in periods, allow us to distinguish between stars with very close
surface properties but different core densities. In particular, this allows us to distinguish stars
on the red-giant branch and in the central helium burning phase (see e.g. Bedding et al. 2011;
Mosser et al. 2011, and Sect. 3.5.1). The high frequency resolution of the observations allows one
to distinguish rotational multiplets in the power spectrum of gravity- and acoustic- dominated
mixed-modes from which one can extract the rotation rate of the centre and of the surface of the
stars (see e.g. Beck et al. 2012; Deheuvels et al. 2012; Mosser et al. 2012b; Deheuvels et al. 2014).
The major conclusion of these studies is that red-giant cores spin slower, by about two orders
of magnitude, than what one expects from the current stellar evolutionary models including
transport of angular momentum by meridional circulation and shear instabilities (Eggenberger
et al. 2012; Marques et al. 2013; Ceillier et al. 2013). This calls for a new mechanism able to
transport angular momentum from the core to the envelope. Cantiello et al. (2014) added the
effect of magnetic field and reached the same conclusion. Recently, Rüdiger et al. (2015) have
shown that a toroidal magnetic field could transport angular momentum from the core to the
envelope in subgiants and early red giants. The impact of internal gravity waves (e.g. Press
1981) in the transport of angular momentum for red giants has still to be investigated (but see
Fuller et al. 2014). Belkacem et al. (2015a,b) suggested and demonstrated that mixed-modes can
effectively transport angular momentum in evolved red giants.

Energetic aspects of solar-like oscillations in red giants

The energetic aspects of solar-like oscillations determine the linewidths and heights of the peaks in
the power spectrum. Indeed, these observables are directly related to the lifetimes and amplitudes
of the modes (see Sect. 4.4.2). Investigating these effects requires a non-adiabatic approach of
the oscillations (i.e. including energy exchanges between the oscillation and the surrounding
medium). Since solar-like oscillations excitation and damping are directly related to convection,
it is necessary to also model the interaction between convection and oscillations (for both their
damping and their excitation).
Simultaneously with the first detections of mixed-modes in red giants, Dupret et al. (2009) pro-
vided the first theoretical explanation for the different visibilities of these modes in red giants.
Their theoretical models treat the interaction between convection and oscillations for the damp-
ing (with a non-local time-dependent treatment of convection, Grigahcène et al. 2005, see also
Sect. 3.2) and the driving of the modes (with a stochastic excitation model, Samadi, Goupil
2001, see also Sect. 3.4). They concluded that gravity-dominated mixed-modes should be visible
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in red-giant power spectra until the radiative damping, which increases during the evolution of
the star, becomes too important. Moreover, they show that different strengths of the radiative
damping lead to various structures in power spectra.

On the observational side, the study of these effects suffers from the difficulty to precisely de-
termine the linewidths and amplitudes of the modes. First, linewidths and heights determined
from the observed power spectrum are strongly correlated (Chaplin et al. 1998). Second, it
requires long times of observations (typically larger than 10 times the lifetime of the mode) to
fully resolve the Lorentzian profile of the peak. If this condition can now be easily satisfied for
pressure-dominated modes (with lifetimes between 1-10 days on the main sequence and 10-100
days on the red-giant branch, see e.g. Belkacem et al. 2012), it is rarely the case for gravity-
dominated modes, which can reach much longer lifetimes (up to a factor 100, see Chap. 6).

Mode linewidths and heights have recently been considered more thoroughly for radial modes
both on the observational side (e.g. Baudin et al. 2011; Corsaro et al. 2012; Appourchaux et al.
2012; Corsaro et al. 2013; Appourchaux et al. 2014) and on the theoretical side (e.g. Chaplin et al.
2009b; Belkacem et al. 2011; Belkacem et al. 2012) because they are important for the estimate of
mode detectability, as well as for constraining the interaction between oscillations and turbulent
convection. Note that with the very large number of observed stars displaying solar-like oscilla-
tions, it is now possible to perform ensemble analyses (see Sect. 3.5.1) also on the global energetic
properties of these oscillations (mainly for radial modes). Based on measures of linewidths and
amplitudes of radial modes (around the frequency of maximum power), it is possible to extract
global tendencies linking linewidths and amplitudes to basic stellar parameters.
Prior to the detection of solar-like oscillations in stars other than the Sun, theoretical considera-
tions led to think that acoustic mode amplitudes should vary as L/M (Kjeldsen, Bedding 1995,
with L the luminosity and M the mass of the star). Such scaling relation was recently adjusted
by Samadi et al. (2012).

Measurements of the observed linewidths of radial modes around the frequency of maximum
power led Chaplin et al. (2009b); Baudin et al. (2011) to exhibit a strong dependence between
the linewidths Γ of radial modes and the effective temperature Teff of the star, on the main
sequence and in the red-giant phase (with possibly a different Γ− Teff relation between the two
evolutionary phases). This relation was theoretically investigated by Belkacem et al. (2012a)
who predicted a unique scaling relation from main-sequence to red-giant phase and confirmed
the strong dependence of the linewidths to the effective temperature.
Belkacem et al. (2012a) also proposed a theoretical explanation for the plateau of the linewidths
(well known in the Sun) and showed how the position of the plateau is linked to the frequency
of maximum power.

Nevertheless, literature is more tenuous about the amplitudes and lifetimes of mixed modes.
Only very recently have mixed-mode linewidths and amplitudes been measured for subgiant stars
(Benomar et al. 2013; Benomar et al. 2014), mainly because of the complexity of individually fit
all modes for power spectra including mixed modes.
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1.2 Problematic and organisation of the manuscript

Motivated by all these recent results, the goal of my thesis is to investigate in details the en-
ergetic properties of solar-like oscillations (the linewidths, amplitudes and heights of the peaks
in power spectra) from a theoretical point of view. These properties determine the shape and
the complexity of the power spectrum. I will thus study the physical processes driving and
damping solar-like oscillations and investigate how they can lead to different morphologies in
power spectra. A major goal of this work is to establish the links between the morphologies
of red-giant power spectra and their internal structure. Comparisons between theoretical and
observed linewidths and amplitudes will allow me to put some constraints on the interaction
between convection and oscillations, which is at the basis of the energetic aspects of solar-like
oscillations; and on the physical conditions and damping in the stellar cores.

The typical questions I will address are:

• Given the characteristics (the mass, the evolutionary stage) of red giants, and accounting
for the duration of the observations, which modes can be detected?

• Which information on the inner structure do they hold (on the trapping of mixed-modes, the
physical conditions in the central layers, the interaction between turbulence and oscillations,
...)?

• How theoretical predictions (especially for mode lifetimes and amplitudes) compare with
observations?

• Which information on the accuracy, strengths, and limits of the models can be derived?

• Which theoretical uncertainties/parameters most affect the predictions and how can they
be constrained from observations?

The first step is to clearly understand the theories involved (their current successes and their
assumptions) in any attempt to model the energetic aspects of solar-like oscillations. Thus, the
first part of this thesis will be dedicated to the description of the theoretical background on
solar-like oscillations, with a particular emphasis on red giants and on the energetic modelling
of the oscillations.
The theoretical study starts with the modelling of the object of interest. I will present in
Chap. 2 the theory of stellar structure and evolution, focusing on low-mass evolved stars and
on the physical processes acting in such stars. A particular attention will be devoted to the
convection (in Sect. 2.4) which plays an important role for solar-like oscillations.
This will permit us to introduce solar-like oscillations in Chap. 3, where the theory of stellar
oscillations (as a perturbation of the stellar equilibrium structure) will be presented in Sect 3.1.
I will then focus on the properties of solar-like oscillations. We will first look at the frequency
pattern and at the trapping of oscillation modes (including the specificities of mixed modes)
in Sect. 3.1.3. Then, I will present the theories enabling us to model their energetic proper-
ties, namely their damping with the time-dependent treatment of convection (hereafter TDC)
in Sect. 3.2 and their excitation with a stochastic excitation model in Sect. 3.4. I will then
describe the different ways we can use the observed oscillations properties to access the internal
stellar structure and to understand the physical processes that give their characteristics to the
oscillations in Sect. 3.5.
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The second part of this manuscript is dedicated to my own developments and results.

As a preamble for the presentation of my results, I discuss in Chap. 4 the general method
adopted in this thesis for the modelling of solar-like oscillations and of theoretical power spectra.
In particular, I will discuss some difficulties in the modelling, due to the very specific physical
characteristics of red giants, and the adopted solutions

A well known issue in the modelling of solar-like oscillations concerns the interaction between
convection and oscillations. The time dependent treatment of convection involves significant
assumptions and free parameters. In Chap. 5, I will test the effects of the different parameters of
the TDC on theoretical radial modes linewidths in order to identify their impact on theoretical
predictions. I will also present how the theoretical results compare with observations, and how
observed linewidths can help us to constrain the TDC parameters for a better understanding of
the interaction between convection and oscillations.

Observed red-giant power spectra display a large variety of complexity in the number and the
relative amplitudes of mixed-modes peaks (see e.g. Fig 4 in Chaplin, Miglio 2013). To under-
stand these different types of power spectra we need to identify the key parameter(s) for the
detectability of the modes. I will address this question in Chap. 6 with theoretical modellings
of series of red-giant power spectra. In Sect. 6.1, I will first present simple theoretical consider-
ations that will allow us to understand the combined impact of trapping, damping and driving
on the morphology of the power spectrum (mainly on the different heights of the peaks). Then,
I will investigate the physical process inside the star that limits the amplitudes of g-dominated
mixed-modes and that can prevent their detection. I will then search what are the common char-
acteristics of models with similar detectability of mixed-modes. This will allow me to extend the
results on the theoretical detectability of mixed-modes to a wide range of masses (representative
of CoRoT and Kepler observations) in Sect. 6.2. I will finally present a specific behaviour of a
red-clump stellar model that creates a pattern in the power spectrum for which one has to be
very careful in its interpretation (Sect. 6.4).

Finally, in Chap. 7, I will present a full non-adiabatic analysis of an observed subgiant star. I
will first present the specificities of the modelling of a star with mixed-modes in Sect. 7.2. Then
I will compare the theoretical lifetimes and amplitudes of the modes to the observed ones in
Sect. 7.3. Finally, in Sect. 7.4, I will discuss the accuracy of theoretical predictions with a new
analysis of the same star with a longer duration of observation. This will allow me to discuss the
potential diagnostic provided by the observation of additional mixed-modes.
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Part I

Theoretical background on low-mass
stars and solar-like oscillations
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Chapter 2

Structure and evolution of low-mass
stars

A star is, in first approximation, a self-gravitating sphere of gas governed by the laws of hydro-
dynamics. By low-mass stars, we denote stars that develop an electron degenerate core after
the main sequence and then ignite the helium nuclear burning during an He-flash (see Sect. 2.5
for the description of these evolutionary phases). Standard evolutionary models show that such
stars exist in a limited mass range (M/M� ∈ [0.45; 2.5]). Objects below M ' 0.45M� do not
perform core helium burning, while stars beyond M ' 2 − 2.5M� do not develop an electron
degenerate core and start helium burning in a quiescent way.

In this chapter, I will describe the general theory of stellar structure and evolution. This includes
a presentation of the characteristic time scales associated with the main physical processes oc-
curring inside a star in Sect. 2.1. I will then discuss the basic equations as well as the physical
inputs and processes needed to understand and to compute the equilibrium structure of a star as
well as its evolution in Sect. 2.2. In Sect. 2.3, I will focus on the specificities of energy transport
inside the star. Since convection is a very important process for low-mass stars (as stated for the
Sun in Sect. 1.1.1 and as we will see later in this chapter and the in following one), I will develop
the commonly adopted formalism for the modelling of convective layers in Sect. 2.4. With all
these developments, we will be able to understand the evolutionary path of a low-mass star as
pictured in Sect. 2.5. Finally, I will present in Sect. 2.6 some major current issues and prospects
in stellar modelling.

2.1 Time scales of stellar dynamics

From their birth to their death, stars undergo a lot of structural changes, associated with various
physical processes acting on very different time scales. I give here a brief overview of these time
scales, related to different equilibriums inside the star.

• The dynamical time scale represents the time needed for a star to respond to a sudden
perturbation of the hydrostatic equilibrium. Suppressing one of the two opposite forces
acting on this equilibrium (the pressure gradient against the gravity force), we find

tdyn =

√
R3

GM
' 1√

Gρ?
, (2.1)
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with G the gravitational constant, R andM the total radius and mass of the star and ρ? its
mean density. For further use, we note that the period of the fundamental radial pulsation
mode is of the order of the dynamical time scale.

• The Helmholtz-Kelvin time scale is linked to the thermal equilibrium between the star’s
production and loss of energy. The Virial theorem states that, before the appearance of
nuclear reactions, half of the gravitational potential energy released by the contraction
of the star leads to an increase of its internal energy while the other half is radiated.
Assuming a cut-off of the nuclear reactions, the luminosity of the star will come from
its internal energy and its gravitational potential energy. This time scale is therefore an
estimate of the cooling time of the star. It is defined as

tHK =
GM2

2RL
, (2.2)

with L the total luminosity of the star.

• Since nuclear reactions drive stellar evolution, the typical evolution time scale is associated
with the nuclear time scale given by

tnuc =
Enuc

L
, (2.3)

where Enuc is the nuclear energy produced inside the star, from the beginning to the end
of a given nuclear burning phase. It represents the time needed for the nuclear reactions
to significantly modify the chemical composition of the star. For main-sequence stars, it
corresponds to the time needed for the star to burn about 10% of its hydrogen at a given
luminosity.

In a star, we have almost always between these global time scales tdyn � tHK � tnuc. For
example, for the Sun tdyn = 26 min � tHK = 3.1 × 107 years � tnuc = 9.8 × 109 years and
for a red giant (of 1.5 M� and 12 R�) tdyn ' 39 h � tHK ' 3.5 × 104 years � tnuc ' 9.106

years. These relations between the different time scales will allow us to make some simplifications
in the development of the equations of the stellar structure (Sect. 2.2.2) and in the oscillation
equations (see Chap. 3). The hierarchy tdyn � tHK � tnuc involves that it is not necessary to
consider changes of chemical composition in the study of thermal or dynamical processes. From
this relation, we can also make the hypothesis that in almost all evolutionary phases, the star
is at thermal and hydrostatic equilibrium. As we will see in Chap. 3, tdyn � tHK means that
oscillations can be considered as adiabatic almost everywhere in the star.

2.2 Basic equations of stellar structure and evolution

I describe here the case of a single star without magnetic field and for which the classical Newton
gravitational law can be used (which is almost always the case except for very compact objects
such as neutron stars). After a short presentation of the two possible points of view to describe
a fluid, I give in Sect. 2.2.1 the general hydrodynamics equations and apply them to the stellar
case (using some simplifications) in Sect. 2.2.2.

In the Lagrangian description, one follows the evolution of an infinitesimal mass element. A
physical quantity X is given as a function of a vector a attached to the fluid element and of the
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time t. In this thesis the partial time derivative of X(a, t) in the Lagrangian description, i.e.
following the movement of a given mass element, will be noted dX/dt.

The Eulerian description consists in analysing the fluid at a fixed spatial point. A local phys-
ical quantity X is given as a function of the position r and the time. In the Eulerian description,
the partial derivation of X(r, t) with respect to the time will be noted ∂X/∂t.

These two formalisms are linked through their temporal derivatives as follows,

dX

dt
=
∂X

∂t
+ v · ∇X, (2.4)

where v is the fluid velocity (i.e. the Lagrangian derivative of the position: dr/dt).

2.2.1 General equations of hydrodynamics

The four basic fluid equations are:

• The continuity equation, that describes the mass conservation:

dρ

dt
+ ρ∇ · v =

∂ρ

∂t
+∇ · (ρv) = 0, (2.5)

where ρ and v are the local density and velocity vector.

• The motion equation describes momentum conservation. Neglecting the viscosity (because
the Reynolds number is very high in stars, see Sect. 2.4) and also neglecting the Lorentz
force due to the magnetic field, it reads:

dv

dt
=
∂v

∂t
+ v · ∇v = −∇ψ − ∇P

ρ
, (2.6)

where ψ is the gravitational potential and P the total pressure (taking into account the
contribution of gas and radiation).

• The equation of energy conservation:

T
dS

dt
= ε− ∇ · F

ρ
, (2.7)

where T is the temperature, S the entropy, ε the energy generation rate and F the energy
flux.

• The Poisson equation, that describes the behaviour of the gravitational potential:

∇2ψ = 4πGρ, (2.8)

To these equations, one must add an energy transport equation to determine the energy flux in
Eq. 2.7.
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2.2.2 The four equilibrium equations
During the main part of the life of a star, its evolution results from changes of chemical com-
position due to nuclear reactions. Given the time scales of the different dynamical processes
(Sect. 2.1), we can almost always assume that the star is in hydrostatic equilibrium at each
given time. For low-rotating or non-rotating stars, we can assume that stellar models have a
spherical symmetry and neglect the Coriolis force. Given the spherical symmetry, we can rewrite
all the physical quantities as a function of the radial coordinate r. This allows one to simplify
the structure equations 2.5 to 2.8 as follows:

The mass of a shell
dm

dr
= 4πr2ρ. (2.9)

with m(r) the mass inside a sphere of radius r (m(R) = M).

The hydrostatic equilibrium
dP

dr
= −Gmρ

r2
. (2.10)

The energy conservation
dL

dr
= 4πr2ρε. (2.11)

The energy transport

dT

dr
= −GmρT

r2P
∇ with ∇ =

d lnT

d lnP
, (2.12)

The first two equations determine the mechanical profile, while the last two determine the en-
ergetic profile inside the star. They are coupled through the density. Additionally to these
equations, one needs a theory of energy transport (as detailed in Sect 2.3) to determine ∇ in
Eq. 2.12, which is a-priori unknown. Even with a theory for the energy transport, this set of
equations is not complete and one also needs boundary conditions in order to solve it. The
following points present the additional requirements needed in order to obtain a complete set of
equations for the computation of an evolutionary stellar model.

Equation of state: Since we have now four equations for five unknown quantities (m, ρ, P, L, T ),
we need an additional equation to provide the behaviour of one thermodynamic quantity depend-
ing on the others. This is given by equations of state (for example, P = P (ρ, T, µ) where µ is
the mean molecular weight i.e., the mean mass of particles in atomic mass unit).

In the case of a non-degenerate gas, the pressure can be decomposed into gas pressure (Pgas)
and radiative pressure (Prad). Assuming the matter is formed of nuclei and free electrons, the
equation of state of a perfect gas is given by

Pgas =
kρT

µmu
(2.13)

where k is the Boltzmann’s constant and mu ≡ 1/NA with NA the Avogadro’s number.
The radiative pressure is given by

Prad =
1

3
aT 4 (2.14)
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with a the radiation density constant.
In the non-degenerate case, summing Eqs. 2.13 and 2.14, the equation of state for the total
pressure writes:

P =
kρT

µmu
+

1

3
aT 4 (2.15)

The equation of state 2.15 is no longer valid when the density is so high that electrons are
in a degenerate state, which happens, for example (at least partially), in the core of red-giant
stars. For a non-relativistic complete degeneracy the equation of state gives the electrons
pressure:

Pe =
8π

15h3me

(
3h3

8πmu

)2/3(
ρ

µe

)5/3

. (2.16)

where h is the Planck’s constant, me the mass of an electron, mu the atomic mass unit and µe
the mean mass by free electron. Thus, in degenerate conditions, the pressure is independent of
the temperature. This will have an important consequence on low-mass stars evolution as we
will see in Sect. 2.5.

Chemical composition: To fulfil the equations, the last requirement is a description of the
chemical composition of the star to obtain the molecular weight. The chemical composition
changes during the evolution of the star mainly due to nuclear reactions. Transport mechanisms
and mixing processes (such as diffusion and convection) can also contribute to change the chemical
composition. One can write the local variation of the abundance Xi of an element i as

dXi

dt
=
∑

j

Rij −
1

ρr2

∂

∂r
(r2ρwiXi) (2.17)

with
∑

jRij the contributions of all nuclear reactions involving the element i and wi the diffusion
velocity of the element i. Note that in a convective region the mixing speed is so fast that we
can always consider the region as homogeneous.
The chemical composition is usually described by the mass fraction of hydrogen (X), helium (Y)
and metals (Z) (such that X + Y + Z = 1). In stellar models, the metals composition is given
by the metallicity [Fe/H] = log(Z/X) − log(Z/X)� where (Z/X) is the ratio at the stellar
surface and (Z/X)� corresponds to the ratio obtained for the Sun. The amount of individual
metals is generally described by the solar mixture of heavy elements which mainly comes from
the spectroscopic analyses of the Sun from Grevesse, Noels (1993) (GN93, solar metallicity
(Z/X)� = 0.0244), Asplund et al. (2005) (AGS05, (Z/X)� = 0.0165) and Asplund et al. (2009)
(AGSS09, (Z/X)� = 0.0181) 1.

Boundary conditions: To be able to solve this set of equations, we need boundary conditions.
The conditions at the centre of the star are simply given by r(m = 0) = 0 and L(m = 0) = 0.
For the "surface" of the star, the boundary conditions are more challenging. One needs to know
the temperature and pressure profiles in the very outer layers of the star. This had to be based
on atmosphere models that provide the variation of these quantities with the optical depth.

1these are the three principal stellar mixtures used in stellar evolutionary codes.
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Atmosphere model: Ideally, the outer boundary conditions should be fixed with a realistic
atmosphere model. Such procedure presents some practical difficulties and the matching with the
equilibrium model is not always ensured (see e.g. Montalbán, Dupret 2007). Thus, one generally
uses a simple Eddington’s grey atmosphere. Another possibility is to use semi-empirical relations
between the temperature and the optical depth (see e.g. Krishna Swamy 1966).
The transition from the optically thick interior to the optically thin atmosphere is marked by the
photosphere defined by L(R) = 4πR2σT (R)4, with σ the Stefan-Boltzmann’s constant. In the
case of an Eddington’s grey atmosphere (as used throughout this work), this limit occurs at an
optical depth τ = 2/3. This relation also defines the effective temperature Teff = T (R), which
corresponds to the temperature of a black body emitting the same amount of energy as the star.

2.3 Energy transport mechanisms

The existence of a temperature gradient between the centre and the surface of the star requires
a steady flow of energy from the core to the surface. This heat transfer involves the exchange
of some particles (photons, electrons, matter), corresponding to different mechanisms that can
transport this energy, depending on local thermodynamical properties. Thus, we can replace ∇
in Eq. 2.12 by the appropriate temperature gradient depending on the nature of the transport
mechanism. Heat transfers through photons and electrons (radiation and conduction) are treated
in a similar way (see Sect. 2.3.1). Heat transfer through matter exchanges (convection) requires
a specific treatment. We give in Sect. 2.3.2 the criteria for the onset of convection in stellar
interiors before developing the formalism in more details in Sect. 2.4. In all cases, we briefly
discuss the stellar regions concerned by these different mechanisms.

2.3.1 Radiation and conduction
Radiation: In the interior of the star, the mean free path of a photon is negligible compared to
the distance over which the energy transport extends (the stellar radius). One can thus describe
in a very good approximation the radiative transfer by a diffusion equation, which gives the
radiative flux:

Frad = −4ac

3

T 3

κρ

∂T

∂r
, (2.18)

with a the radiation density constant, c the light speed an κ the opacity (see below, Eq. 2.20).
Eq. 2.18 can be recast to give

dT

dr
= − 3κρLrad

16πr2acT 3
, (2.19)

where Lrad ≡ 4πr2Frad is the radiative luminosity and κ is the mean Rossland opacity based on
the monochromatic opacities κν following

1

κ
=

∫∞
0

1
κν

∂Bν
∂T dν∫∞

0
∂Bν
∂T dν

, (2.20)

where Bν is the Planck function at the frequency ν.
In the presence of convection, replacing the radiative luminosity by the total luminosity L =
Lrad + Lconv (with Lconv the luminosity transported by convection) in Eq. 2.19, we define the
radiative gradient as:

∇rad ≡
3κPL

16πacGmT 4
(2.21)
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which is the (fictive) gradient that the medium should have to transport all the energy by
radiation.
The opacity coefficient represents how the matter interacts with photons. One has to account for
all the processes that can prevent the photon from moving freely in the matter to compute such
a coefficient2. In practice, the opacity coefficients (for a given temperature, density and chemical
composition) are most of the time interpolated in tables from OPAL (Iglesias, Rogers 1996) and
OP (Mendoza 1992) groups. In the study of low-mass stars, these opacity tables are generally
completed with the Ferguson et al. (2005) tables at low temperatures and with the conductive
opacities from Potekhin et al. (1999).

Conduction: Transport of energy by conduction is due to collisions of particles in random
thermal motions. In the general stellar case, given the high temperatures involved, the free paths
of electrons and nuclei are much smaller than those of photons and conductive heat transport is
negligible. However, in degenerate environments (such as in the core of evolved low-mass stars, see
e.g. Iben 1968) the mean free path of electrons is considerably increased and conduction becomes
an efficient heat transport mechanism. This mean free path remains very small compared to
the radius of the star, so conductive transport of energy can also be treated as a diffusion
process. Thus, one can add conductive energy transport to the radiative one by replacing 1/κ
by 1/κrad + 1/κcond in Eq. 2.21 (with the appropriate definition of κcond). In the latter, we will
always assume that Frad and ∇rad take into account both radiative and conductive transports.
This is to simplify the notations and to separate the contribution of convection to those of
radiation and conduction.

2.3.2 Convection
In some cases, the radiation cannot transport all the energy from the centre to the surface of the
star and this transport is thus carried out by convective motions. We recall here the criteria for
the onset of convection in stars.

To derive such a criterion, we study the adjustment of the medium to a perturbation. We assume
that a small element of matter is lifted up over a small distance (i.e. a displacement toward lower
density regions). During this operation, the pressure equilibrium between the element and its
surrounding is maintained (justified by the assumption that the dynamical time scale is smaller
than the convective time scale). After this small displacement, the density of the element (which
can change during its motion) is in general different from the one of the surrounding matter. It
then undergoes a buoyancy force F = −g∆ρ where g is the acceleration of the gravity and ∆ρ
the density difference between the element (e) and it surrounding (s).

If ∆ρ < 0, the element continues to go further in less dense regions. Thus, the situation is clearly
unstable and the initial perturbation is increased. On the other hand, if ∆ρ > 0, the element will
go back to its original position, the layer is stable. These two situations depend on the change of
the element density during its travel and on the gradient of density of the surrounding medium
between the original and final position of the element. Such conditions on the gradient of density
can be transformed into conditions on temperature gradients after simple algebra. The condition
required for instability (i.e. for convection to take place) can be written as

∇ > ∇e −
(
∂ ln ρ

∂ lnµ

)(
∂ lnT

∂ ln ρ

)
∇µ, (2.22)

2This involves a huge amount of quantum mechanics computations to take into account all the possible inter-
actions between an atom and a photon.
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where ∇ ≡ (d lnT/d lnP )s and ∇µ ≡ (d lnµ/d lnP )s describe the variation of temperature and
of molecular weight in the surrounding and ∇e ≡ (d lnT/d lnP )e describes the variation of tem-
perature of the element. Such criterion is in practice not very useful since we do not know a-priori
∇ and ∇e.

If the convective element moves adiabaticaly, we should have ∇e = ∇ad. Where we have defined
∇ad = ∂ lnT/∂ lnP |S . In stars, the convective element will always experience some radiative
losses such that we have ∇e > ∇ad. In the same time, convective heat transport will decrease
the temperature gradient of the surrounding such that ∇ < ∇rad. Finally in unstable situations,
we have the relation:

∇ad < ∇e < ∇ < ∇rad. (2.23)

We can now rewrite the instability criterion given in Eq. 2.22 in a more convenient way as

∇rad > ∇ad −
(
∂ ln ρ

∂ lnµ

)(
∂ lnT

∂ ln ρ

)
∇µ (2.24)

in which all the quantities can be easily determined. This is the so-called Ledoux criterion, which
reduces to the Schwarzschild criterion if the chemical composition is homogeneous (∇µ = 0):

∇rad > ∇ad (2.25)

From Eq. 2.21, we see that∇rad ∝ κradL/m. According to the Schwarzschild criterion, convection
will be favoured when the radiative gradient takes large values, which can happen either if κrad or
L/m are large. In stars, these situations are mainly encountered in two cases (see also Sect. 2.5
for a description of the occurrence of convective zones during stellar evolution):

• Convective cores: When the nuclear energy rate strongly depends on the temperature
(for example in the CNO nuclear cycle), the ratio L/m (in the central regions) is large and
then favours the apparition of a convective core. This occurs, for example, on the main
sequence for stars withM > 1.3M�, and during the core helium burning phase of low-mass
stars.

• Convective envelopes: In cool stars envelopes (Teff . 7500K), the opacity κrad is large
leading to a large radiative gradient which favours the onset of convection. This occurs in
all low-mass stars (M < 2M�) and in massive stars in post main-sequence stages.

Since low-mass stars are all characterised by a convective envelope, and since it is of prime
importance for the study of solar-like oscillations, I will describe in the next section the simple
way to model convection in stellar interiors in the frame of the mixing-length theory (hereafter
MLT).

2.4 The convective treatment in stellar interior.

In fluid dynamics, dimensionless numbers are very useful to characterise a fluid. The Reynolds
number, Re, which characterises the ratio between the advection and the viscosity, is given by
(e.g. Landau, Lifshitz 1959):

Re =
UL

ν
, (2.26)
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where, for the Sun (at the top of the convective zone), we have the typical length scale L ∼ 108

cm, the typical velocity U ∼ 105 cm.s−1 and a very small viscosity ν ∼ 1 cm2.s−1 so Re ∼ 1013.
The Reynolds number, in stellar conditions, is thus very large; much larger than the critical
number beyond which turbulence occurs (Recrit ' 2300). In consequence, stellar convection is
highly turbulent, involving a wide range of eddy scales (energetic, temporal and spatial). An
important consequence of this turbulence is that convection mixes stellar matter very efficiently
and rapidly.
Turbulent convective motions in stars transport a huge amount of energy in a very compressible
stratified gas with variation of physical quantities over many orders of magnitude.
Because stellar convection is highly turbulent, its modelling is very complex and requires a spe-
cific treatment. The mixing-length theory is the one traditionally used to model convection in
stars. Given the importance of convection for solar-like oscillations, I will develop in the next
sections how the equations describing convection under the mixing-length approximation are
obtained.

I first present in Sect. 2.4.1 the main ideas and hypotheses behind the mixing-length theory.
The main goal of such a theory is to obtain the convective flux and the temperature gradient
inside a convective zone. To do this, I develop the general expressions for the convective flux
(in Sect. 2.4.2) and of the temperature gradient (in Sect. 2.4.3). After the definition of the
convective efficiency, we will be able to obtain a cubic equation for this quantity (in Sect. 2.4.4).
From the solution of this equation, it is then easy to make the developments backward in order
to obtain the desired quantities. The derivation of the MLT formalism presented here is mainly
based on the one developed and discussed in the textbooks of Cox (1968); Böhm-Vitense (1992);
Kippenhahn et al. (2012).

2.4.1 The approximations of the MLT
The traditional way to model convective motions in stars uses the formalism of the mixing-
length theory (Böhm-Vitense 1958). By analogy with the molecular heat transfer, Prandtl (1925)
proposed a simple picture of the convection. Macroscopic elements (blobs or bubbles), moved
by buoyancy forces, transport heat over a mean free path (called the mixing length) before
dissolving.
This picture implies 5 main approximations:

• The whole spectrum of eddies is reduced to a single representative bubble (all convective
elements have the same size but their precise shape is not given).

• This bubble travels radially over a distance `m (i.e. the mixing length) before dissolving
and releasing their energy.

• Convection is treated as a perturbation of the mean structure and second-order terms in
convective quantities are neglected.

• The bubble keeps the pressure equilibrium with the surrounding environment during its
travel3

• The properties of convective elements depend only on local conditions (i.e. all elements
have the same physical properties at a given distance r from the centre of the star)

3It is the Boussinesq approximation for which we assume that the pressure scale height is large compared to
the size of the convective elements. This approximation is not strictly valid since the mixing length, obtained for
example in solar calibrated models, appears to be of the same order than the pressure scale height.
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We often assume that the mixing length `m can be expressed as a fraction α of the pressure scale
height Hp = P/|∇P | = P/ρg such as `m = αHp. We also assume that the free mixing-length
parameter α is constant inside the convective region.
Moreover, we assume that the convection is time independent. A theory of time-dependent con-
vection will be introduced later in this manuscript (in Sect. 3.2) to treat the interaction between
convection and oscillations. I will also return on the local hypothesis and present a non-local
approach of convection in Sect. 3.3.
In the MLT framework, the turbulence and the various involved scales are not considered. An-
other formalism to treat stellar convection, taking into account various spatial scales, namely
the Full Spectrum of Turbulence theory, has been developed by Canuto, Mazzitelli (1991). This
theory also suffers from being local and involving a free parameter similar to α. We will not
further develop this theory since all the stellar models studied in this thesis (and the associated
oscillation calculations) have been obtained using the MLT. In Sects. 3.2 and 3.4 we will consider
in more details the interaction between turbulent convection and stellar oscillations.
Despite these "strong" approximations and the very simple picture, the MLT has been able to
give a good account of the global characteristics of stars (e.g. their location in the HR diagram).
In the extreme cases, when convection is very efficient or inefficient the mixing-length theory
provides a valid estimate of the temperature gradient (see Sect. 2.4.4). When comparing physi-
cal quantities (such as the convective flux, convective efficiency, ...) derived from the MLT and
from 3D simulations we see that they are not much different (see e.g. Dupret et al. 2006a). The
remaining discrepancies need further improvements (such as a non-local approach) to be reduced.
It seems that the calibration of the mixing-length parameter α hides almost all the uncertainties
of the theoretical model.

2.4.2 Derivation of the convective flux
The total energy flux is given by the sum of the radiative and convective fluxes (Frad +Fc). This
sum defines the temperature gradient ∇rad that would be necessary to transport all the flux by
radiation such as,

Frad + Fc =
4acG

3

T 4m

κPr2
∇rad. (2.27)

When a part of the flux is transported by convection, the actual temperature gradient ∇ is
different from ∇rad and the radiative flux is given by Eq. 2.18. As explained in the beginning
of Sect. 2.3, the real temperature gradient is not a-priori known and should be derived from the
modelling of the energy transport mechanisms.
In this section, I will derive the expression of the convective flux in the frame of the mixing-
length theory. This will enable us to discuss the efficiency of convection and finally to obtain the
temperature gradient in a convective environment under the approximations of the MLT.
In a specific layer (as schemed in Fig. 2.1), the convective energy flux is given by the balance
between the downward (d) and upward (u) energy transports (thermal and kinetic energy):

Fc = ρuvucpTu +
1

2
ρuvuv

2
u − ρdvdcpTd −

1

2
ρdvdv

2
d, (2.28)

with cp the average of the specific heat per unit mass at constant pressure (the averaging is made
over a distance ∆r). We first require no net mass transport which gives ρuvu = ρdvd = ρvc with
vc the average radial velocity of convective elements. According to the basic approximations of
the MLT, we also neglect terms in v3 (so we neglect the flux of kinetic energy).
The average convective flux is thus given by

Fc = ρvccp∆T, (2.29)
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Figure 2.1: Adaptation of Fig 6.2 from Böhm-Vitense (1992). In black, the variation of tempera-
ture in the medium, in red the change of temperature in the convective element during its travel
and in blue the difference of temperature between the convective element and the surrounding
medium at the studied layer.

with ∆T ' [(∂T/∂r)e − (∂T/∂r)s] ∆r as schemed in Fig 2.1. The subscript e refers to the con-
vective element (the bubble or blob) and the subscript s to the average surrounding. ∆T is
the excess of temperature of the convective element over the average of its surrounding after
travelling a distance ∆r.

With the pressure scale height Hp = −dr/d lnP and assuming that the convective element has
traveled over a distance `m/2, one can write

∆T

T
=

1

Hp
(∇−∇e)

`m
2
. (2.30)

And so, by inserting Eq. 2.30 into Eq. 2.29, the convective flux is given by

Fc = ρvc
T

Hp
(∇−∇e)

`m
2
. (2.31)

We have now to get an expression for the average convective velocity vc. To do this, we first
express the resulting radial buoyancy force, per unit mass, fA acting on the convective element.

fA = −g∆ρ

ρ
,

where we have neglected the variation of the local gravity g over the distance traveled by the
convective element. ∆ρ is the excess of density of the element after travelling a distance ∆r. In
the context of the MLT, we assume that the element travels a distance ∆r = `m/2, so the net
work W , per unit mass, done on this element is given by

W = −1

2
g

∆ρ

ρ

`m
2
, (2.32)
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where we have also assumed that the excess of density starts from zero and increases linearly
with ∆r (hence the mean ∆ρ is the half of the final one).

Following Cox (1968), we assume that half of the work is converted into kinetic energy (Ekin =
1/2v2

c per unit mass) and the other half is transmitted to the surrounding. Thus, we can write
for the convective velocity,

v2
c = W = −`m

4
g

∆ρ

ρ
(2.33)

With the equation of state

∆ρ

ρ
=

∂ ln ρ

∂ lnP

∣∣∣∣
T,µ

∆P

P
+

∂ ln ρ

∂ lnT

∣∣∣∣
P,µ

∆T

T
+
∂ ln ρ

∂ lnµ

∣∣∣∣
P,T

∆µ

µ
. (2.34)

Assuming ∆P = 0 and ∆µ =0, using Eq. 2.30 and with 1
Q = (∂ ln ρ/∂ lnT )P,µ it becomes:

∆ρ

ρ
=

1

Q

∆T

T
=

1

Q

1

Hp
(∇−∇e)

`m
2
. (2.35)

We can now express the convective velocity in terms of temperature gradients.

v2
c = − 1

Q
(∇−∇e)

g`2m
8Hp

. (2.36)

Finally, inserting Eq. 2.36, into Eq. 2.31, the convective flux writes,

Fc = − 1

4
√

2
ρcpT

√
g

1

Q
`2m

(
∇−∇e
Hp

)3/2

. (2.37)

Note that in this equation, the temperature gradients ∇ and ∇e are still unknown. To go further,
we need to consider the exchanges of energy between the convective element and the surrounding
medium.

2.4.3 The temperature gradient
We consider here that the representative convective element is a blob of typical size d, surface S
and volume V . We are interested by the radiative losses experienced by the blob which result in
a temperature gradient larger than the adiabatic one.

A rising convective element, hotter than its surrounding, will lose heat during its travel. We
consider an energy flux frad (directed from the centre of the bubble to its surface) due to the
difference of temperature ∆T between the bubble and its environment. In a similar way to
Eq. 2.18, we can write this energy flux as

frad '
8ac

3

T 3

κradρ

∆T

d
, (2.38)

where we have assumed that we have a spherical blob, such that the gradient of temperature
along the normal of the blob’s surface reduces to 2∆T/d.
For the whole surface of the blob S, the radiative loss per unit time is given by

lrad = Sfrad '
8acT 3

3κρ
∆T

S

d
, (2.39)
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which represents the "luminosity of the blob". It also gives the rate at which the blob will
exchange thermal energy with its environment:

−lrad ' ρV cp
∂∆T

∂t
. (2.40)

Equalizing Eq 2.39 and 2.40 and assuming a spherical blob (V/S ' d/6), we obtain directly

∂∆T

∂t
= −∆T

τrad
, (2.41)

with τrad the time scale of thermal adjustment

τrad =
κradρ

2cpd
2

16acT 3
= ρV cp

∆T

lrad
. (2.42)

Thus, τrad represents the excess of thermal energy divided by the luminosity, which is to the blob
what the Kelvin-Helmholtz time scale is to the whole star.

Due to radiative losses, the temperature change of the convective element deviates from the
adiabatic case by (

∂T

∂r

)
e

−
(
∂T

∂r

)
ad

= − lrad

ρV cpvc
, (2.43)

where the right-hand term of this equation represents the decrease of temperature per unit
length over which the element rises for a total energy loss lrad. Expressing this equation with
temperature gradients we obtain:

(∇e −∇ad) =
lradHp

ρV cpTvc
. (2.44)

Finally, replacing lrad by Eq. 2.39 with the average value of ∆T given by Eq. 2.30, we obtain

∇e −∇ad

∇−∇e
=

4acT 3

3κradρ2cp

(
S`m
dV

)
1

vc
. (2.45)

S`m/dV represents the "form factor" of the bubble. For a sphere of diameter `m we have
S`m/dV = 9/2

`m
.

We define the convective efficiency Γ as

Γ ≡ ∇−∇e
∇e −∇ad

' 4

9

FcS

lrad
(2.46)

where for the last equality we have used Fc given by Eq. 2.31, lrad given by Eq. 2.44, and assumed
that the bubble is a sphere of diameter `m. With the last term of this equation, we see that Γ
represents the ratio between the energy transported by the convection and the radiative energy
loss, justifying the appellation of "convective efficiency".
With the definition of the thermal adjustment time scale in Eq. 2.42 and defining the lifetime of
a bubble τc ≡ `m/vc we can also write Γ = 2τrad/τc.

We have now expressed all the equations describing the convective region. We only need some
algebra to obtain an equation that can be easily solved to finally determine the temperature
gradient.
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2.4.4 The cubic MLT equation
With the expressions for Γ (using Eq. 2.45), vc given by Eq. 2.36 and Hp = P/(ρg) one can
rewrite Γ as

Γ = A(∇−∇e)1/2, (2.47)

with

A ≡ − cp

12
√

2acQ−1/2

κradgρ
5/2

P 1/2T 3
`2m. (2.48)

From the energy conservation equation, the total energy flux is given by

F =
4ac

3

T 4g

Pκrad
∇rad =

4ac

3

T 4g

Pκrad
∇+ Fc. (2.49)

Inserting Fc from Eq. 2.37 into Eq. 2.49, we obtain the relation between the gradients

∇rad −∇ = a0A(∇−∇e)3/2, (2.50)

where we have replaced the factor 9/4 in Eq. 2.46 by a general form factor a0. Using the
expression obtained for Γ in Eq. 2.47, we can write

∇rad −∇ = a0Γ(∇−∇e). (2.51)

Defining ζ, one can see after few manipulations that

ζ ≡ ∇rad −∇
∇rad −∇ad

=
a0Γ2

1 + Γ(1 + a0Γ)
. (2.52)

Isolating ∇−∇ad in this equation we obtain

∇−∇ad = (1− ζ)(∇rad −∇ad) =

(
1 + Γ

a0Γ2

)
ζ(∇rad −∇ad) =

1 + Γ

a0Γ2
(∇rad −∇). (2.53)

Combining Eq. 2.47, 2.53 and Eq. 2.53, gives

Γ(Γ + 1) = A2(∇−∇ad). (2.54)

Adding a0Γ3 (from Eq.2.47 and using Eq. 2.50) to Eq. 2.54, we have finally:

a0Γ3 + Γ2 + Γ = A2(∇rad −∇ad) (2.55)

which is the classical cubic MLT equation. ∇rad and ∇ad are known so, in practice, one solves
this last equation for Γ and then comes back to the different expressions presented in this section
to obtain ∇, vc and Fc

For very large or very small Γ, it is possible to develop Taylor expansions of the above equa-
tions to obtain more easily the convective behaviour in these cases, as it is done in e.g. Cox
(1968); Kippenhahn et al. (2012). In the very deep interior, because of the high density and
temperature, Γ � 1, there is only small radiative losses and the convection is very efficient. In
this case we find that the temperature gradient approaches the adiabatic one (but never equals it).
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In the superficial layers of outer convective zones (near the photosphere of the star),
radiative losses are large, Γ � 1, so the convection is inefficient and the temperature gradient
is close to the radiative one. When going deeper, the density and the mixing length become
larger, the efficiency of the convection increases and the temperature gradient departs from the
radiative one to tend to the adiabatic one. Thus, the gradient of temperature is reduced by the
presence of convective energy transport.

When none of the above limiting cases apply, the resolution of the mixing length equations leads
to a temperature gradient between the adiabatic and radiative one. This is, for example, the case
in the upper part of outer convective envelopes when convection is said to be superadiabatic
(Γ ∼ 1).

2.5 The evolution path of low-mass stars

We have now all the elements to compute and follow the evolution of a stellar model. The
method to solve the structure equations is well described in several textbooks (e.g Kippenhahn
et al. 2012; Maeder 2009). We describe here the evolution of low-mass stars, and the different
typical characteristics of their structures according to their mass and/or their evolutionary stage.
The elements presented here come either from numerical computations of stellar evolution or from
simple theoretical relations. This story of low-mass stars is mainly inspired from the lecture notes
of Kippenhahn et al. (2012). We can follow the evolution of a low-mass star in a Hertzsprung-
Russell diagram (Fig. 2.2). We also present in Fig. 2.3 a schematic view of the evolution of the
internal structure of a star (a 1M� star, corresponding to the HRD of Fig. 2.2). In these figures,
circled red numbers indicate particular moments of the stellar evolution as listed thereafter.

1. The birth of a star begins with the collapse of a homogeneous cloud of gas due to
a gravitational instability. The Jeans criterion (Jeans 1902) allows one to estimate the
size and mass of an initial perturbation leading to a collapse of the molecular cloud. This
criterion shows that only clouds of mass higher than around 105M�, much larger than
the stellar mass, will collapse. It is therefore expected that the cloud will undergo some
fragmentation and that most of the fragments form low-mass stars. In the first moments,
the cloud is optically thin and the collapse is isothermal (with a cloud temperature around
10 K).

2. After around 105 years, the central part of the cloud becomes optically thick. The collapse
is now adiabatic, leading to an increase of the luminosity and of the temperature (to a
lower extent) of the protostar. A core in hydrostatic equilibrium forms, surrounded by an
accretion disk. We can now refer to this hydrostatic core as a protostar.

3. The first point in Fig. 2.2 corresponds to the moment when the protostar photosphere
becomes visible which determines what one usually calls the onset of the pre-main-
sequence phase (hereafter PMS). All the ages given in Figs. 2.2 and 2.3 are counted from
this point. As long as the accretion phase lasts, the protostar stays on its birth line. When
accretion stops, the protostar follows its evolution by descending along theHayashi track:
its luminosity decreases at an almost constant Teff .

Note that the Hayashi line defines, for a given set of stellar parameters, the locus in the
HRD of fully convective stars.
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4. During the PMS, when the central temperature reaches about 106K the first nuclear
burning in the life of the star, the deuterium burning starts. The succession of nuclear
burnings drives the evolution of the star. Whether a certain nuclear reaction will occur or
not is mainly determined by the mass of the star. "Stars" less massive than 0.08M� cannot
burn hydrogen quietly because of electron degeneracy. This mass limit draws a separation
between stars and brown dwarfs. With the increase of the temperature, the stellar core
becomes more transparent, thus the convection disappears starting from the central layers
(the hotter ones). A convective envelope remains for low-mass stars (below ∼ 1.5M�).
This happens around the minimum of luminosity at the bottom of the Hayashi line.

5. When the core temperature is high enough, the star ignites hydrogen and nuclear reactions
become the first source of energy. Before the equilibrium temperature of hydrogen burning
is reached, some reactions of the CNO cycle or of the pp chain occur in the stellar core.

For stars with M & 1.3M�: The first reactions of the CNO cycle transform 12C into
14N bringing 12C to its equilibrium value. Given the high dependency in temperature of
this reaction, a convective core is formed. When the 12C reaches its equilibrium value, the
full CNO cycle takes place to transform hydrogen into helium. Since all the reactions of
the CNO cycle have a strong dependence in the temperature, the convective core remains.

For stars with M . 1.3M�: First reactions destroying 3He (from the pp-chain) take
place to bring it to its equilibrium value. The high dependence in temperature of these
reactions also favours the formation of a convective core. When these components reach
their equilibrium value the complete pp-chain becomes the dominant source of energy and
the convective core disappears (the pp-chain is less dependent in the temperature).
This change in the origin of the stellar luminosity (from gravitational energy to nuclear
energy) indicates the arrival of the star on the Zero Age Main Sequence. It took around
5.107 years to a 1M� star to travel from the formation of the hydrostatic core to the ZAMS.

6. The star is now in full equilibrium (hydrostatic and thermal) and enters in the main-
sequence phase. The evolution of the star is governed by nuclear reactions and accord-
ingly the evolution in this phase takes place on the nuclear time scale (of the order of 1010

years for the Sun). It will spend the largest part of its life in this core hydrogen burning
phase. The displacement of the star in the HRD is very slow. The burning of hydrogen
leads to a slight increase of the temperature and luminosity of the star.

7. When the hydrogen at the centre of the star is exhausted, the hydrogen burning process
continues in a shell surrounding an inert helium core. This leads to an increase
of the mass Mc of the helium core that is quasi-isothermal. The helium core becomes
degenerate (more precisely, the electrons inside the core are in degenerate conditions).
The evolution in the subgiant phase is thus characterised by a progressive increase of
the mass of an inert and partially degenerate helium core and a progressive expansion of
the convective envelope. This induces a decrease of the effective temperature, at almost
constant luminosity, marked by a displacement to the right in the HRD.
The contraction of the core is accompanied by an expansion of the envelope above the shell.
Because of the proximity to the Hayashi line (that cannot be crossed), the expansion of the
envelope cannot lead the star to much lower effective temperatures. When the convective
envelope becomes large enough, further expansion is only possible through an increase of
its luminosity, as it will be detailed in the next point.
The evolution of the core and of the hydrogen burning shell of red giants can be understood
through homology relations because the pressure at the base of the envelope is negligible
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compared to the pressure in the core and in the shell. We can then assume that physical
quantities (such as density, temperature, ...) in the region of the shell simply depend on the
mass Mc and radius Rc of the core. These relations (as detailed in e.g., Kippenhahn et al.
2012) show that when increasing the mass of the core, Rc will decrease and the luminosity
will increase. From homology considerations, one can also derive that the temperature in
the shell will increase as Tc ∝ µMc/Rc. Since the core is isothermal, the central temperature
will also increase with the mass of the core. These predictions are supported by numerical
simulations as soon as the core is sufficiently condensed.

8. The star will then evolve by climbing on a line almost parallel to the Hayashi track the
Red-Giant Branch towards higher luminosities (and larger radii). Such stars have huge
convective envelopes (we remind that the Hayashi track represents fully convective stars),
occupying up to 70% of their total mass (see Fig. 2.3). On this branch, the luminosity of
the star increases strongly.

9. At some point, the convective envelope penetrates deeply inside the star in layers partially
processed by some reactions of the CNO cycle and pp chain (transforming for example 12C
in 14N). Due to the convective motions, the material created by the nuclear reaction will
be distributed in the whole envelope and will reach the surface. This phenomenon is called
the first dredge up. It has taken to the star around 109 years to travel from the end of
the main sequence to this dredge up. After the dredge up, the convective envelope begins
to retreat while the mass of the inert and degenerate He core continues to increase.

10. The monotonic increase of the luminosity is stopped when the shell enters the region left
by the maximal penetration of the convective envelope. At this point, the shell encounters
a discontinuity of the molecular weight (between the homogeneous hydrogen-rich outer
layers and the helium-enriched layers below). Again, with the help of homology relations
(see point 7 here-above), it can be shown that a decrease of the molecular weight will lead
to a decrease of the luminosity.

When the shell has passed the discontinuity, the luminosity increases again with the increase
of the core mass. Because of this "loop" in the HR diagram (the star passes three times in
this region), one then expects to observe more stars in this part of the diagram called the
red-giant bump.

11. The increasing luminosity (due to the increase of the core mass) leads to an increase of the
growth rate of the helium core mass, which leads again to a higher increase of luminosity,
and so on... The evolution of the star on the red-giant branch goes faster and faster as it
climbs the red-giant branch toward higher luminosities.

12. Since the evolution of the stellar core is well described by homology relations (see points
7-8 above), independently of the total mass of the star, the temperature of helium ignition
(Tc ' 108K) is reached when Mc ' 0.48M� whatever the total mass of the low-mass star
(this value slightly depends on the metallicity).

This onset of helium burning takes place inside a shell where the temperature is maximum
(due to the loss of energy by neutrinos inside the core, the maximal temperature is reached
in a layer slightly off the centre of the star).
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Because the core is degenerate, the helium ignition creates a thermal runaway (because
of the lack of pressure regulation) and the central temperature increases more and more
leading to a huge overproduction of nuclear energy. Locally, the luminosity reaches, during
few seconds, values of the order of 1011L� (near the centre). It is the "Helium Flash".
Note that almost nothing of this luminosity reaches the surface because of the high opacity
of the envelope. This energy is progressively transformed into expansion work as the
degeneracy level decreases.

13. The increase of temperature at an almost constant density finally decreases the degen-
eracy level, leading to an expansion of the concerning region.

When degeneracy is lifted off, the pressure regulation mechanism acts, decreasing the tem-
perature and density in the region where helium burning takes place. This turns off the
nuclear reaction, and a new cycle of contraction-heating-onset of nuclear reactions begins.
This sequence of secondary flashes brings the He-burning closer and closer to the centre
and progressively lifts off degeneracy.

The expansion of the core radius goes with a contraction of the envelope and a decrease of
the luminosity. The central temperature finally decreases to a value allowing a quiescent,
stable helium burning: The star has reached the horizontal branch (hereafter HB)
(located near the Hayashi line, at L ' 100L�).

14. The horizontal branch is similar to a main sequence for core helium burning stars. The
star will thus move slightly towards higher effective temperatures and luminosities during
this phase. A convective core forms during this phase (favoured by the high temperature
dependence of the 3α reaction). The opacity in the core will increase with the abundance
of oxygen and carbon. At first, this leads to an increase of the mass of the convective core
but after a while the radiative gradient presents a minimum in the convective core. If the
convective core boundary is fixed such that this minimum is in convective neutrality in
the convective side of the boundary, the layers surrounding the convective core are such
that the Schwarzschild criterion for the onset of convection (Eq. 2.25) is verified while the
Ledoux criterion (Eq. 2.24) is not. These layers become semi-convective. Currently, we do
not have a clear and generally accepted description of what happen in this region (some
authors proposed that a partial, slow mixing can occur in semi-convective layers).

15. After the exhaustion of helium in the core, the star climbs the asymptotic giant branch
(AGB) while it burns helium and hydrogen in shells above an inert core of carbon and
oxygen. A loop of extinction and restart of shell burning take place leading to thermal
pulses (TP AGB). When the luminosity reaches a certain value, important part of the star
envelope is ejected creating a planetary nebulae. Finally, only the carbon-oxygen core and
a very thin envelope (< 1% of the stellar mass) remain, shell burnings definitively switch
off and the star will cool down on the white dwarfs branch.
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Figure 2.2: Fig. 25.11 from Maeder (2009): Evolution path of a 1M� star in the Hertzsprung-
Russell diagram.

Figure 2.3: Fig. 25.10 from Maeder (2009): Evolution of the internal structure of a 1M� star.
Cloudy regions represent convective zones. Hatched regions represent the layers of the stars
where nuclear reactions take place.
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2.6 Beyond the standard model : problems and prospects

The main uncertainties in stellar structure and evolution emerge from difficulties in modelling
several physical processes. In this section, I will discuss some limits of the current stellar stan-
dard models and prospects to overcome them. This presentation is not exhaustive and mainly
focuses on issues that can affect low-mass stars. Among them, I will discuss the treatment of
convection (Sect. 2.6.1), transport mechanisms (Sect. 2.6.2), rotation (Sect. 2.6.3), and mass loss
(Sect. 2.6.3).

2.6.1 Convection

As mentioned in Sect. 2.4, convection is very difficult to model for mainly three reasons. It is a
non-local phenomena; the state of a convective element depends on what happened to it below
and/or above. The energetic, spatial and temporal scales of convection cover many orders of
magnitude. And finally, stellar convection is highly turbulent.
In stellar cores, the high efficiency of convection leads to a quasi-adiabatic situation. There is
therefore no major difficulties to compute the temperature gradient and the convective flux in
a convective core. At the opposite, in the superadiabatic region (upper part of the convective
envelope), current convection models are affected by large uncertainties. The standard modelling
of these regions is based on analytical theories (the MLT or the FST) that simplify the real na-
ture of convection (see Sect. 2.4.1). A third analytic approach, Reynolds-stress models (see e.g.
Yang, Li 2007), treats the turbulence by splitting the physical quantities into an average and
a fluctuating part. This theory takes explicitly the non-local nature of turbulence into account
but suffers of practical issues for implementation in a stellar evolutionary code. A much more
realistic modelling of convection is now accessible thanks to 3D hydrodynamical simulations.
These simulations do not reach, by far, the very high values of stellar Reynolds numbers and
the smallest scales of the turbulent cascade. Nonetheless, 3D simulations can be compared with
analytical results to test the accuracy of the analytical models (see e.g. Dupret et al. 2006a). The
main limit of such simulations is that they cannot be included in stellar evolution computations
because of the time needed to compute the evolution of a convective zone over a short part of
the star life. To obtain a more accurate description of the upper convective layers in stellar
models (in particular for asteroseismology) the use of patched models seems to be promising.
Such models (see e.g. Dupret et al. 2006a, for the way to patch the models) are made of a
standard equilibrium model in which one replaces the upper layers by the outcome of a 3D sim-
ulation that can either be obtained directly or through interpolations in a grid of 3D simulations.

Apart from these general modelling issues, there exists also some uncertainties linked to the
border of the convective zone. Beyond numerical problems in the determination of convective
boundaries (see Gabriel et al. 2014, for a detail explanation on how to determinate convective
boundaries), convective elements are likely to have enough inertia at the boundary to cross
over and penetrate the stable layers. This phenomenon, generally referred as overshooting,
obviously needs a non-local theory to be properly modelled. However, one usually parametrises
the overshooting in term of the local pressure scale height (with a parameter similar, but not
related, to α). For convective cores, overshooting leads to an increase of their size and of the time
spent by the star in the concerned evolutionary phase (by increasing the amount of fuel available
for nuclear reactions). Thus, this can significantly affect the evolutionary path of the star. For
convective envelope, "undershooting" significantly affects the frequencies, and asteroseismology
provides diagnosis tools of the extent of this process (see e.g. Lebreton, Goupil 2014).

44



2.6. BEYOND THE STANDARD MODEL : PROBLEMS AND PROSPECTS

2.6.2 Main transport mechanisms

I will discuss here three types of mechanisms that can transport chemical elements and hence
modify the evolution of the star. The first one is linked to microscopic effects that affect dif-
ferent particles in different ways. The second is related to rotation and the third to internal waves.

In the stellar interior, microscopic particles are subject to two forces. The gravitational force that
pushes down the heaviest ones, and radiative forces that push up the absorbing ones. This leads
to diffusion processes which have to be accounted for in evolutionary codes. Helioseismology has
emphasised the importance of diffusion for the computation of a realistic solar model (see e.g.
Noerdlinger 1977). So, there are significant efforts made in the modelling of diffusion velocities.
The adopted formalisms use a perturbative approach. The main difficulties is the calculations of
the cross-sections representing the interactions between two particles or between a particle and
a photon. This leads to important numerical difficulties given the time scales of diffusion and
the important quantity of data needed.

Rotation affects radiative zone with two different transport mechanisms (e.g. Zahn 1991). First,
in presence of rotation a meridional circulation is generated, that advects angular momentum
toward the surface and mixes chemical elements. Second, differential rotation generates shear
turbulence. The transport by turbulence is modelled as a diffusive mechanism, and the deter-
mination of the values of the turbulent diffusion coefficients that must be used to model this
transport represents the major source of uncertainties (Mathis et al. 2014).

Some waves can also transport angular momentum (see e.g. Talon 2008, and references within).
Transport by internal gravity waves have been proposed to explain the solid body rotation of the
solar core. For more evolved stars, in the upper part of the red giant branch, Belkacem et al.
(2015a) have shown that mixed-modes can also contribute to the transport of angular momentum
(see also Sect. 1.1.2).

2.6.3 Other Physical mechanisms

We have already mentioned in Sect. 2.2.2, the issue in stellar structure modelling due to outer
boundary conditions and atmosphere models. In the physics input of an equilibrium model, un-
certainties linked to the description of the matter in stellar conditions (such as the computation
of opacities, equation of state, ...) can also affect the evolutionary path. The chemical composi-
tion is obviously a key parameter for stellar evolution. The general assumption of a solar metal
mixture in other star is probably not always valid (there are examples of stars with enhancement
in α elements). Rotation also affects the structure of the star by breaking the spherical symme-
try. One thus needs to compute 2D or 3D stellar equilibrium models (see e.g. Roxburgh 2006).
The effects of the magnetic field on the stellar structure (mainly through transport mechanisms)
are still subject to debate. An important issue in the evolution of low-mass stars is related to
mass loss on the red giant branch. Several indicators, such as differences in masses between
red-giant branch stars and horizontal-branch stars (see e.g. McDonald, Zijlstra 2015), indicate
that red giants should experience some mass loss on the red-giant branch. The moment and the
mechanisms of this mass loss is still unclear. Various analytical formulations (see e.g. Reimers
1975; Schröder, Cuntz 2005) have been proposed and lead to very different results, which have a
strong impact on the predictions of the future evolution of a red-giant star.
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Conclusion

We have introduced in this chapter the standard theory of stellar structure and evolution applied
for low-mass stars. Despite various assumptions, this theory provides a solid background and
explains the general observed trends. As observations reach higher and higher precisions, it
becomes obvious that some processes are still misunderstood and missing in the standard model.
The impact of these uncertainties on the theoretical predictions clearly appears when confronted
with recent observations. To all these problems, we have now some hints from hydrodynamics
simulations, from laboratory experiments and from asteroseismology. The study of waves, in
the Sun and stars, has proven to be a unique, powerful tool to probe the inner stellar structure
and physics. We have already mentioned in the introduction some results obtained thanks to
helioseismology and asterseismology that brought a new light on current issues in stellar physics,
as well as new constraints for the theories. This thesis focuses on the use of asteroseismology in
red-giant stars, to better understand their physics and to constrain the current theories of solar-
like oscillators, with a special emphasis on the energetic aspects of the oscillations strongly related
to the interactions between oscillations and convection. The next chapter is thus dedicated to a
presentation of the theory of stellar oscillations, applied to low-mass stars, including a description
on the interactions between convection and oscillations (for both their damping and driving).
The final part of Chap. 3 provides a brief overview of how asteroseismology allows us to draw
some conclusions on the stellar structure and physics.
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Chapter 3

Solar-like oscillations

Solar-like oscillations are of small amplitudes (around 5 ppm for the Sun) and it is only recently,
thanks to the space-borne telescopes CoRoT (Baglin et al. 2006) and Kepler (Gilliland et al.
2010) that it has become possible to observe such oscillations in a wide number of stars, in-
cluding evolved low-mass stars (the interested reader could find in Chaplin, Miglio 2013, and
references within, an early review of the results obtained by these missions on solar-like oscilla-
tions).

In this chapter, I present the general theory of stellar oscillations in Sect. 3.1. I then describe
the link between the oscillation frequencies and the inner structure of the stars (in Sect. 3.1.3). I
also introduce the driving and damping of stellar oscillations (in Sect. 3.1.4). Energetic aspects
of solar-like oscillations are directly linked to the interaction between convection and oscillations.
Thus, I develop the theories for the damping (the time dependent treatment of convection in
Sect. 3.2) and the excitation (the stochastic excitation process in Sect. 3.4) of these oscillations.
In Sect. 3.5, I finally present the asteroseismic methods for the interpretation of observed mode
frequencies in terms of stellar internal structure and physics.

3.1 Theory of stellar oscillations

We describe oscillations of a star in hydrostatic equilibrium, without rotation nor magnetic field,
so that the spherical symmetry is maintained. Since the dynamical time scale is much lower than
the nuclear time scale (see Sect. 2.1) we can assume that the chemical composition of the star
does not change during a large number of oscillation cycles. We thus treat stellar oscillations as
a perturbation of the equilibrium state.

I present in Sect. 3.1.1 the perturbative approach used to obtain in Sect. 3.1.2 the general
equations of stellar oscillations. In Sect. 3.1.3, I discuss different types of modes that can exist
inside a star, including mixed-modes of prime importance for evolved low-mass stars. I end this
presentation of stellar oscillations with some energetic properties of oscillations in radiative zones
in Sect. 3.1.4 (the case of convective zones being detailed Sects. 3.2 and 3.4).
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3.1.1 Small perturbations approach
If X is a physical quantity and X0 its equilibrium value,

• The Lagrangian perturbation of X is defined by

δX(a, t) ≡ X(a, t)−X0(a) (3.1)

with a a vector associated with a mass element. This description represents the variation
of X (with the time t) following the mass element.

• The Eulerian perturbation of X is defined by

X ′(r, t) ≡ X(r, t)−X0(r) (3.2)

which represents the variation of X at a given fixed position r.

In general, the relative deviation of physical quantities to their equilibrium value is small. We
can thus use Taylor developments limited to the first order around the equilibrium in a good
approximation. Thus, the two perturbation formalisms are linked by

δX = X ′ +∇X0 · δr (3.3)

This linear approximation will be in use in all this manuscript.
Applying small perturbations to the structure equations (Eqs. 2.5 to 2.8), and the linear approx-
imation, we obtain a system of linear equations describing the perturbations.

• the perturbed continuity equation reads:

ρ′ +∇ · (ρδr) = 0 (3.4)

• the perturbed equation of motion (momentum conservation):

∂2δr

∂t2
= −∇ψ′ + ρ′

ρ2
∇P − 1

ρ
∇P ′ (3.5)

• the perturbed Poisson equation:
∇2ψ′ = 4πGρ′ (3.6)

• the perturbed energy equation:

T
dδS

dt
= T

[
∂S′

∂t
+ v.∇S

]
= ε′ +

ρ′

ρ2
∇ · F− 1

ρ
∇ · F′ + ε′k (3.7)

where v = ∂δr/∂t, εk correspond to the dissipation of kinetic energy into heat which
appears in a time-dependent treatment of the convection (see Sect. 3.2) and F = Frad +
Fconv.

• The perturbed radiative flux in the diffusion approximation reads:

F′rad =

[
3
T ′

T
− κ′

κ
− ρ′

ρ

]
Frad −

4acT 3

3κρ
∇T ′ (3.8)

The perturbation of the convective flux requires more developments and will be discussed
in details in Sect. 3.2.
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Assuming that the general form of the solutions is given by X(r, t) = X(r) exp(iσt), where σ
and X are complex1, allows us to simplify the equations were temporal derivatives appears, i.e.
the perturbation of the equation of motion and of the equation of energy conservation as

σ2δr = ∇ψ′ − ρ′

ρ2
∇P +

1

ρ
∇P ′, (3.9)

iσTδS = ε′ +
ρ′

ρ2
∇ · F− 1

ρ
∇ · F′ + ε′k. (3.10)

To complete the above set of equations (Eqs. 3.4, 3.6, 3.9, and 3.10), one also has to perturb
the equations of state. This allows one to obtain relations linking together the perturbations
of the different thermodynamical quantities. We give here some of these relations, which will be
useful in the following sections (a complete derivation of all the possible relations can be found
in e.g. Unno et al. 1989).

δT

T
=

δS

cv
+ (Γ3 − 1)

δρ

ρ
(3.11)

δP

P
= PT

δT

T
+ Pρ

δρ

ρ
= PT

δS

cv
+ Γ1

δρ

ρ
(3.12)

with

Γ1 =
∂ lnP

∂ ln ρ

∣∣∣∣
S

, Γ3 − 1 =
∂ lnT

∂ ln ρ

∣∣∣∣
S

, PT =
∂ lnP

∂ lnT

∣∣∣∣
ρ

, Pρ =
∂ lnP

∂ ln ρ

∣∣∣∣
T

(3.13)

3.1.2 Non-adiabatic non-radial oscillations
In a spherical coordinate system (r, θ, φ) with an orthonormal basis (er, eθ, eφ), the displacement
vector writes

δr = ξrer + ξθeθ + ξφeφ. (3.14)

We also define the Legendre operator

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (3.15)

Given the spherical symmetry of the equilibrium configuration, the three components of the
perturbed equation of motion are given by,

σ2ξr =
∂ψ′

∂r
+
ρ′

ρ

Gm

r2
+

1

ρ

∂P ′

∂r
, (3.16)

σ2ξθ =
1

r

∂

∂θ

(
ψ′ +

P ′

ρ

)
, (3.17)

σ2ξφ =
1

r sin θ

∂

∂φ

(
ψ′ +

P ′

ρ

)
. (3.18)

1The complex form is useful to mathematically describe the oscillation problem. Physical quantities will be
obtained by taking the real part of the eigenfunctions.

49



CHAPTER 3. SOLAR-LIKE OSCILLATIONS

As for the term ε′k in Eq. 3.10, we note that the interaction between turbulent convection and
oscillations will introduce additional terms in the equation of motion (see Sect. 3.2).
From the perturbed equation of mass conservation (Eq. 3.4), using expressions of ξθ and ξφ given
by Eqs. 3.17 and 3.18 and the definition of L2 given in Eq. 3.15, we obtain

ρ′ + ξr + ρ

[
1

r2

∂

∂r
(r2ξr)−

1

σ2r2
L2

(
ψ′ +

P ′

ρ

)]
= 0, (3.19)

and the perturbed Poisson equation (Eq. 3.6) becomes,

1

r2

∂

∂r

(
r2 ∂ψ

′

∂r

)
− 1

r2
L2ψ′ = 4πGρ′ (3.20)

We see that the operator L2 appears in all the equations with partial derivative with respect
to the angular coordinate (θ, φ). This allows one to separate the variables of the problem and
search for solutions of the form X(r, θ, φ) = X(r)f(θ, φ).

The function f(θ, φ) must be an eigenfunction of the Legender operator. This is exactly what
defines the spherical harmonics:

L2Y m` (θ, φ) = `(`+ 1)Y m` (θ, φ) (3.21)

Spherical harmonics form a complete set of orthogonal functions on the sphere, such as we can
write the solutions of the equations as

X′(r, θ, φ, t) =
∑
`,m

X′`,m(r)Y m` (θ, φ) exp(iσt) (3.22)

A solution of the form X′(r, θ, φ, t) = X′(r)Y m` (θ, φ) exp(iσt) is called a mode of angular degree
` and azimuthal degree m. With solutions of this form, the angular frequency of the mode is
given by the real part of σ. The imaginary part of σ gives the damping rate of the mode. If
=(σ) > 0, the oscillation is a stable (damped) mode (i.e. its amplitude decays exponentially with
time). On the opposite, if =(σ) < 0, the amplitude of the mode grows exponentially, the mode
is unstable (i.e. oscillations are excited).
For ease of notations, we decompose the complex eigenvalue in its real and imaginary part:

σ = ω + iη (3.23)

where η represents the damping rate of the mode and ω the angular frequency (in rad/s) linked
to the cyclic frequency ν by the relation ν = ω/2π (in Hz).

Using the decomposition in spherical harmonics, the oscillation problem is reduced from a 3
dimensional (r, θ, φ) to a 1 dimensional problem (r).
The displacement vector is thus given by

δr = <
{[
ξr(r)Y

m
` (θ, φ)er + ξh(r)

(
∂Y m`
∂θ

(θ, φ)eθ +
1

sin θ

∂Y m`
∂φ

(θ, φ)eφ

)]
eiσt

}
, (3.24)

with
ξh ≡

1

rσ2
(δψ +

δP

ρ
). (3.25)

Following this decomposition, we note the radial component of a vector with a subscript r and
the horizontal component (in θ and φ) with a subscript h.
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Using the equation for the horizontal motion (Eq. 3.25), the perturbed continuity equation
becomes:

δρ

ρ
+

1

r2

d

dr
(r2ξr)−

`(`+ 1)

σ2r2

(
δψ +

δP

ρ

)
= 0. (3.26)

The perturbed Poisson equation reads:

1

r2

d

dr

(
r2 dψ

′

dr

)
− `(`+ 1)

r2
ψ′ = 4πGρ′. (3.27)

For the perturbed energy equation we define

L = 4πr2Fr; Lrad = 4πr2Frad,r, ; Lconv = 4πr2Fconv,r (3.28)

so, the perturbations of Eqs. 3.28 with the help of Eq. 2.18 write

δLrad

Lrad
= 2

ξr
r

+ 3
δT

T
− δκ

κ
− δρ

ρ
+
dδT/dr

dT/dr
− dξr

dr
, (3.29)

and
δLconv

Lconv
= 2

ξr
r

+
δFconv,r

Fconv,r
. (3.30)

Given the definitions of the different luminosities (Eq. 3.28) this decomposition (i.e. Eq. 3.30) is
also applicable for the total and the radiative luminosity.

Using the decomposition of the solutions in spherical harmonics (Eq. 3.22) in the perturbed
energy equation 3.7, we obtain:

iσTδS =− dδ(Lconv + Lrad)

dm
+ ε

[
δε

ε
+ `(`+ 1)

ξh
r

]
+
`(`+ 1)

4πr3ρ

[
Lrad

(
δT

r
(
dT
dr

) − ξr
r

)
− Lconv

ξh
r

]

+
`(`+ 1)

ρr
δFconv,h + ε′k.

(3.31)

Note on spherical harmonics and mode classification:

Modes, which can be decomposed as the product of a radial function and a spherical function de-
scribed by a spherical harmonic Y m` , are characterised by three quantum numbers that determine
the shape of the distortion created by the oscillation (as represented on Fig. 3.1):

• n: the radial order is approximately given by the number of nodes of the eigenfunction
in the radial direction (from the centre to the surface of the star). For more details, see
Takata (2012) where an approach to the exact classification of adiabatic eigenmodes of
stars is presented.

• `: the angular degree of the mode is the total number of nodal lines on the surface of
the star;

• m: the azimuthal order corresponds to the number of meridional nodal lines on the
stellar surface.
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Figure 3.1: 3D representation of eigenfunctions of two solar mode. a: a p-mode (` = 20, m = 16,
n = 16) and b: a g-mode (` = 5,m = 3,n = 5). The colors represent the values of the radial
displacement ξr (> 0 in red and < 0 in blue). [Illustration from Rozelot, Neiner (2011)]

Given the properties of spherical harmonics with the Legendre operator, the resulting equations
(Eqs. 3.24 to 3.31) are independent of m. For each value of ` there is 2`+ 1 possible values of m.
The problem is thus degenerated (i.e. frequencies are independent of m). This is caused by the
spherical symmetry of the problem. Any breaking of this symmetry (such as induced by rotation
or magnetic field) will lift off this degeneracy.

3.1.3 Physical nature of modes
To obtain simple relations between oscillation properties and stellar interior characteristics, we
make the adiabatic approximation. In the major part of the star, the thermal relaxation time
is much larger than the pulsation period (of the order of the dynamical time scale, see Sect. 2.1).
This means that because of the very high heat capacity, the entropy of the matter has not the
time, during one pulsation cycle, to vary significantly. We should note that this is not true for
the uppermost layers of the star where oscillations are highly non-adiabatic. We then assume
that δS = 0 so we reduce the problem to three differential equations (Eqs. 3.24 to 3.27).
In this approximation, the perturbation of the equation of state links the perturbed density to
the perturbed pressure and temperature as

δP

P
= Γ1

δρ

ρ
and

δT

T
= (Γ3 − 1)

δρ

ρ
(3.32)

In the adiabatic case, the eigenfunctions are real and the eigenvalues are either pure real (dy-
namically stable modes, sinusoidal time dependence), or pure imaginary (dynamically unstable
modes, exponential time dependence).
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We also make the Cowling approximation (Cowling 1941) which consists in neglecting the
Eulerian perturbation of the gravitational potential (ψ′ = 0). This approximation is admissible
in the case of modes with a large number of nodes or in the superficial layers where the local
density is much smaller than the mean density of the star.

With these two approximations, the problem simply reduces to a single second-order equation.
First, we can write the two remaining equations (the radial equation of motion and the equation
for the perturbed density combined with the horizontal equation of motion) as

dξr
dr

= −
(

2

r
− 1

Γ1
H−1
P

)
ξr +

1

ρc2s

(
L2
`

ω2
− 1

)
P ′, (3.33)

dP ′

dr
= ρ(ω2 −N2)ξr −

1

Γ1
H−1
P P ′, (3.34)

with cs the local sound speed and N2 and L2
` (defined below) two characteristic frequencies of the

stellar structure. In these equations, the terms containing derivatives of equilibrium quantities
are much smaller than the left hand side. In a very rough approximation, we neglect these terms
(a similar result can be obtained in a more rigorous way with an appropriate change of variables
following e.g. Gabriel, Scuflaire 1979; Unno et al. 1989), which leads to

dξr
dr

=
1

ρc2

(
L2
`

ω2
− 1

)
P ′, (3.35)

dP ′

dr
= ρ(ω2 −N2)ξr. (3.36)

Combining these two equations, we finally obtain as a rough description of the non-radial oscil-
lation equation:

d2ξr
dr2

=
ω2

c2

(
1− N2

ω2

)(
L2
`

ω2
− 1

)
ξr. (3.37)

The two particular frequencies appearing in the above equations are :

• the Lamb frequency

L2
` =

`(`+ 1)c2

r2
(3.38)

• the Brunt-Vaisälä frequency

N2 =

(
1

Γ1

d lnP

dr
− d ln ρ

dr

)
g (3.39)

Assuming a fully ionised ideal gas, and neglecting the radiation pressure, N2 can be rewrit-
ten as

N2 ' g2ρ

P
(∇ad −∇+∇µ), (3.40)

where we recognise in the right-hand side the Ledoux criterion for the onset of convection
(Eq. 2.24). Hence, we will have N2 > 0 in a radiative zone and N2 < 0 in a convective
zone.
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Figure 3.2: Propagation diagram: illustration of the Brunt-Vaisälä frequency (NBV) and the
Lamb frequency (S`) for the Sun. Horizontal lines represent typical frequencies of p and g
modes. [From Lebreton, Montalbán (2009).]

An illustration of the behaviour of these two frequencies is given in Fig. 3.2. A particular feature
of the Brunt-Vaisälä frequency is related to the gradient of molecular weight. If originally present,
the retreat of the convective core during the evolution on the main sequence leaves a sharp peak
in ∇µ and hence in N2. In practice, the maximum in N2 is often linked to an increase of µ in
nuclear burning regions.
Let us now rewrite Eq. 3.37 as

d2ξr
dr2

= −K(r)ξr, (3.41)

with

K(r) =
ω2

c2s

(
N2

ω2
− 1

)(
L2
`

ω2
− 1

)
. (3.42)

We directly see that this equation admits two type of solutions according to the sign of K(r):

• an evanescent solution in the regions where K(r) < 0

ξr ∼ exp

(
±
∫
|K(r)|1/2 + φ

)
(3.43)

i.e. ifN < ω < L` or L` < ω < N , with φ a phase term determined by boundary conditions.
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• an oscillatory solution in the regions where K(r) > 0

ξr ∼ cos

(∫
K(r)1/2 + φ

)
(3.44)

i.e. if ω > N,L` or ω < N,L`. We expect that these conditions on the frequency will be
realised separately by two different types of modes. Modes with high frequencies, satisfying
the first condition, are labelled p modes. Modes with low frequencies, satisfying the second
condition, are labelled g modes. Some details on the physical nature of these modes are
given here-below.

In general, for a given mode (i.e. for a given frequency), we can have one or more regions that
satisfy the oscillatory criterion separated by evanescent regions. In practice, a specific mode will
have most of its energy in one of the propagation cavities. The mode is then said to be trapped
in this cavity. The boundaries of the trapping cavities are generally at points with K(r) = 0,
called turning points.

The propagation regions of p and g modes for typical main-sequence stars are illustrated
in Fig. 3.2. In such stars, the trapping regions of p and g modes are clearly distinct. With the
evolution of the star, the Brunt-Vaisälä frequency can take such large values that the criterion
for g mode is satisfied even at high frequencies (see Fig. 3.4). As a consequence, the frequency
ranges of p and g modes overlap. Thus, at a given frequency, a mode can be trapped in both p
and g cavities. Such mode is called a mixed-mode, for it propagates in both cavities and thus
presents both p and g mode characteristics. In the following paragraphs, I present separately
some properties of p modes, g modes and mixed-modes.

An important quantity to characterise the trapping of oscillations is the inertia of a mode. It
is given by the integral expression

Ik =

∫ M

0

(
|ξr|2 + `(`+ 1)|ξh|2

)
dm. (3.45)

We could note for further use that 1/2ω2Ik gives the energy of the mode. It is useful to provide
the dimensionless mode inertia

I =

∫M
0
|ξ|2dm

M |ξr(R)|2
=
Mmode

M
, (3.46)

where Mmode is the mode mass and ξr(R) corresponds to the radial displacement at the layer
where the oscillation is measured (in this work, this corresponds to the Rosseland optical depth
τrad = 0.1). In the following, we will always use the dimensionless mode inertia.
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Figure 3.3: Fig. 3.16 form Aerts et al. (2010): Propagation of an acoustic wave inside the star
for ` = 30 and ` = 100. Different modes probes different regions of the star.

Pressure modes

p modes are trapped in a resonant cavity between the surface and an inner turning point rt
determined by L2

`(rt) = ω2, which means that we have

ω2

`(`+ 1)
=
c2s(rt)

r2
t

. (3.47)

In the typical frequency domain of high-order p modes (ω � N) we obtain from Eq. 3.42

K(r) ' 1

c2s
(ω2 − L2

`) (3.48)

The dynamic of the mode is thus determined by the variation of the sound speed inside the
star. We recall that the dispersion relation of a sound wave is given by ω2 = k2c2s for a
wavenumber |k|2 = k2

r + k2
h. Equation 3.48 is thus a dispersion relation for acoustic waves

with k2
r = (ω2 − L2

`)/c
2
s and k2

h = `(` + 1)/r2, the restoring force being the pressure gradient.
This justifies the designation p for these modes. We note that K(r) increases with the frequency,
hence, a larger radial-order means a higher frequency.

If we examine the propagation of a sound wave in a ray tracing view, we can easily understand
that different p modes will probe different regions of the star. A mode can be viewed as a su-
perposition of propagating sound waves. As the wave goes deeper in the star, the sound speed
increases and it travels faster. It is thus refracted toward the surface2 where the density drop
sharply and thus implies the reflection of the mode (this is illustrated in Fig. 3.3 for two p modes
of different angular degree). From Eq. 3.47 we see that the turning point rt is close to the centre
for small ` and moves closer to the surface for larger `. The number of reflections on the surface
thus increases with increasing ` and the lower the degree, the deeper the mode penetrates inside
the star. The frequency of a p mode depends on the sound speed inside the star; more precisely,
on the integral of the sound speed in the propagation cavity. Observation of a large number of

2It is similar to what happens to a light ray when entering materials with higher index of refraction, as reflected
by the Snell-Descartes’ law.
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p modes (i.e. penetrating the star at different depths) allows one to determine the sound speed
profile inside the star (and eventually, the temperature, density and pressure profiles).

Assuming that the oscillation wavelengths are much smaller than the typical (pressure, density,
temperature) scale heights of the stellar interior we can make the WKB approximation (see e.g.
Unno et al. 1989) to have an analytical expression for the oscillation eigenfunctions.

The asymptotic theory of oscillations, as developed by Tassoul (1980), predicts some regu-
larities in the frequency pattern for high-order modes. It is very useful for solar-like oscillators,
for it predicts a comb-like pattern in the power spectra (see e.g. Fig. 1.2) and allows one to
derive easily, information of prime interest about the main structure of the star (see Sect. 3.5.1).
We present here the principal results given by this theory for high-order p modes (ω2 � N2).
The asymptotic expression for the frequency of such a mode of angular degree ` and radial order
n is in first approximation given by

νn,l ' ∆ν0

(
n+

l

2
+ ε

)
, (3.49)

where ε is a function of the frequency determined by the properties of the near-surface region
(Christensen-Dalsgaard, Perez Hernandez 1992). The asymptotic large separation ∆ν0 is the
inverse of twice the time required for a sound wave to travel from the surface to the core of the
star:

∆ν0 =

(
2

∫ R

0

dr

c

)−1

'
√
GM

R3
. (3.50)

From the asymptotic expression of the frequencies (Eq. 3.49) a characteristic spacing directly
appears:

• the large separation
∆νn,l ≡ νn+1,l − νn,l, (3.51)

which provides an estimate on the mean density of the star and tends to ∆ν0 for high radial
orders.

A development of the asymptotic mode frequencies to a higher order shows that modes separated
by two angular degree and one radial order are separated by

• the small separation
δνn,l ≡ νn,l − νn−1,l+2, (3.52)

which depends on the gradient of the sound speed, especially near the centre of the star.
It is thus sensitive to the core structure of the star and so provides information about the
evolutionary state of the star.
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Gravity modes

g modes are trapped in a cavity bounded by two turning points (r1, r2) determined by ω2 = N2

and/or ω2 = L2
` . This generally corresponds to a cavity in the central layers of the star. For

the typical g modes with low frequencies (ω2 � L2
`), Eq. 3.42 can be approximated by

K(r) ' `(`+ 1)

r2ω2
(N2 − ω2). (3.53)

The dynamic of the mode is determined by the variations of the Brunt-Vaisälä frequency inside
the star. Eq. 3.53 corresponds to the dispersion relation of internal gravity waves. This justifies
the appellation g for these modes, the restoring force being buoyancy: gravity acting on density
perturbations. We note that K(r) increases with decreasing ω, hence larger radial order means
lower frequency. We also remark that, in a given star, the g modes frequency range cannot excess
the maximum of the Brunt-Vaisälä frequency.

Asymptotic developments for gravity modes (Tassoul 1980) for high order, low degree g
modes give the period of the modes:

Πn,l =
1

νn,l
=

2π2√
`(`+ 1)

(∫ r2

r1

N

r
dr

)−1

(n+ ε), (3.54)

where ε is a constant determined by the structure of the star. As for p modes, a regular spacing
appears in the asymptotic formulation, but this time in periods.

The asymptotic period spacing is given by

∆Π` ≡ Πn+1,` −Πn,` =
2π2√
`(`+ 1)

(∫ r2

r1

N

r
dr

)−1

. (3.55)

It is very sensitive to the presence and the size of convective cores. It has recently appeared that
the period spacing is of great help to determine the evolutionary stage of evolved low-mass stars
(see Sect. 3.5.1).

Mixed modes

As discussed in the previous chapter (Sect. 2.5), after the main sequence, the internal structure
of a low-mass star undergoes important changes. These changes will have a strong impact on
the oscillation spectrum, mainly through the modifications they induce on the Brunt-Vaisälä
frequency.

• the core contraction increases the local gravity, increasing the Brunt-Vaisälä frequency in
the central regions.

• the presence of an hydrogen burning shell creates a large positive gradient of molecular
weight (∇µ = d lnµ/d lnP > 0). If present during the main sequence, the shrinking of a
convective core also increases this gradient. This also increases the Brunt-Vaisälä frequency,
specially around the bottom of the hydrogen burning shell (see Figs 3.4, right panel and 3.5,
upper panel).
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Figure 3.4: Some properties of stellar models 1.02M� in the subgiant phase (between 10000 and
10400 My). Left: variation of dipole modes frequencies of various radial orders (from bottom
to top : n = 4 to n = 16) with the age of the star (ac indicate an avoided crossing). Right:
Propagation diagram of the model of 10300 My. The frequency of the ` = 1, n = 15 mode is
represented by a black line.

The increase of the Brunt-Vaisälä frequency lifts to higher frequencies the frequency range of
g-modes up to the frequency range of acoustic modes. When frequencies of two modes of same
angular degree approach each other, they undergo an avoiding crossing3 (see in Fig. 3.4, left
panel, the local increase of modes frequency). At this point, the oscillation mode has a mixed
nature because it can propagate in both p and g cavities (see the frequency of the mixed-mode
in the propagation diagram in Fig. 3.4, right panel).

Non-radial mixed-modes are preferentially trapped in the p or g cavity, the evanescent
zone between the two cavities acting like a partial reflection barrier. The first ones will be called
p-dominated mixed-modes, the other ones g-dominated mixed-modes. These last modes have
important amplitudes in the g cavity, leading to inertias higher than pure p modes (see Fig. 3.5).
The most the mode is trapped in the g cavity, the higher the inertia. We expect that such inertia
differences lead to important differences in the power spectrum (this point will be discussed in
more details in the next chapters). We see in Figs. 3.4 (right panel) and 3.5 (upper panel) that
the evanescent zone is larger for quadrupole modes than for dipole ones. As a result, quadrupole
modes will be better trapped and their inertia will be closer to pure p or g modes one (this is
illustrated for a red giant branch model in the bottom panel of Fig. 3.5).

3It’s a phenomenon well kwnon in atomic physics
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CHAPTER 3. SOLAR-LIKE OSCILLATIONS

As the star evolves on the red giant branch, the Brunt-Vaisälä frequency continues to increase in
the central layers. As a consequence, the period spacing between two g-dominated mixed-modes
decreases (see Eq. 3.55). This leads to an increase of the density of mixed-modes (number of
mixed-modes over a large separation) in a frequency power spectrum. Note that because of the
mixed character of the modes, the actual period spacing between two consecutive g-dominated
modes (∆Π`) differs from the classical asymptotic one as given in Eq. 3.54.

Asymptotic developments for mixed-mode frequencies and inertias allow one to under-
stand their main properties. In the JWKB approximation, accounting for a g cavity (between
ra and rb), an evanescent region (rb, rc) and a p cavity (rc, R), Shibahashi (1979) developed an
eigenvalue condition for mixed modes:

tan(θp) = q tan(θg), (3.56)

with the definitions

θp =

∫ R

rc

krdr '
πν

∆ν
, (3.57)

θg =

∫ rb

ra

krdr '
π

ν2∆Π1
, (3.58)

and the coupling coefficient

q ' 1

4
(rc/rb)

−2`. (3.59)

From these relations Mosser et al. (2012b) expressed the frequency of a dipole mixed-mode
coupled with a pure p mode νnp,`=1 (Eq. 3.49) as

ν = νnp,`=1 +
∆ν

π
arctan

[
q tanπ

(
1

ν∆Π1
− εg

)]
, (3.60)

with εg a constant (see e.g. Brassard et al. 1992).
If we assume that dipole mixed modes in the range

[
νnp,`=1 −∆ν/2 ; νnp,`=1 + ∆ν/2

]
are coupled

with the pure p mode νnp,`=1, we can find N +1 solutions to Eq. 3.60 with N ' ∆ν∆Π−1
1 ν−2

np,`=1

the number of g-dominated mixed-modes in the interval.

In the asymptotic regime and neglecting the size of the evanescent zone, Goupil et al. (2013)
showed that the inertia in the envelope of the star varies as Ienv ' (c2/2πν)τp and in the core as
Icore ' (a2/2πν)τg, so we can express the total inertia as

I = Icore + Ienv '
c2

2πν
(τp +

a2

c2
τg), (3.61)

with τp = θp/(πν), τg = θg/(πν), c a normalisation constant and a is related to c by (see Eq.
(16.49) and Eq. (16.50) from Unno et al. 1989) :

c

a
=

2 cos
(
arc cot( 1

4 cot(πντp))
)

cos(πντp)
. (3.62)

(c/a)2 is then a function of ν of period 1/τp = ∆ν which varies between 4 (p-modes) and 1/4 (g-
modes). This relation explains the periodic modulation of the inertia with a period ∆ν observed
in red giants (see Fig. 3.5 bottom panel).
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3.1.4 Driving and damping of oscillations.
Sect. 3.1.3 focused on the frequencies of the modes. In this section, I introduce the energetic
aspects of oscillations. Thus, I will describe the damping and driving of oscillations in a radiative
zone. The case of convective zones, will be detailed in Sects. 3.2 and 3.4 because they play a
major role for solar-like oscillations and have to be treated in a specific way.

Using the perturbed equations obtained in Sect. 3.1.2 (hence leaving the adiabatic approxima-
tion), it is possible to write down an integral expression for the damping rate. To do this,
one has to integrate the radial component of the equation of motion and take the imaginary part
(noted =) of the result (a complete demonstration can be found in e.g Dupret et al. 2002) which
reads,

η = =(σ) =
1

2ωIk

∫ M

0

=
[
δρ∗

ρ

δP

ρ

]
dm = −

∫
V
dW

2ωI|ξr|2M
(3.63)

where ∗ denotes the complex conjugate and where we assume the time dependence exp(iωt−ηt).
The numerator of the damping rate can be interpreted as the work W produced by the star
during one oscillation period. We call it the work integral of a mode. The sign of the integral
gives the sign of η and the sign of the integrant allows us to determine which regions of the
star have a driving or damping effect on oscillations. Given the time dependence of the mode in
exp(iωt− ηt), the mode will be stable (or damped) if η > 0, hence if the work performed on the
oscillation is negative. It immediately appears that η = 0 if variations of density are in phase
with variations of pressure.

In order to better understand the physics behind the driving and damping of oscillations we
rewrite the equation of the damping rate using the perturbed equations of state (Eqs. 3.11
and 3.12):

η = =(σ) =
1

2ωIk

∫ M

0

=
[
δT ∗

T
TδS

]
(Γ3 − 1)dm (3.64)

For a mode to be excited, the heating due to the oscillation (TdδS/dt > 0) must occur at the
hot phase of the oscillation (δT ∗/T > 0). This corresponds to a heat engine (such as a Carnot
cycle). Moreover, the mode should have a large amplitude in the driving region to be efficiently
excited. The main contributions in TδS, having a driving effect, are δε and dδL/dm in Eq. 3.31.
They lead to two driving mechanisms: the ε and κ mechanism (see Eq. 3.29 linking δL to δκ)4.

• The ε mechanism has been widely studied for massive stars for which it has an important
impact on the driving of the modes (Ziebarth 1970). Since the production of nuclear energy
increases very quickly with the temperature, the ε term has always a driving effect on the
oscillations. To be efficient, oscillation modes must have a significant amplitude in nuclear
burning regions. Theory shows that it is most efficient in the presence of a nuclear burning
shell (Noels, Scuflaire 1986).

• The κ mechanism in which variations of opacity permits to store energy at the hot phase.
Close to the opacity peak, the work is positive and the mode is excited. Away from the peak
the work is negative and the mode is damped. Whether the mode is globally excited or
damped depends on the relative contribution of these different regions. To drive efficiently
the mode, the opacity peak must be located in the transition region where the thermal
time scale is of the order of the oscillation period.

4The interested reader could find in, e.g. Aerts et al. (2010) a description of the stars concerned by these
different mechanisms with the associated type of modes.
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When oscillations of small spatial wavelength occur in the radiative zone they undergo large
variations of the temperature gradient (from δT/T in Eq. 3.29) with a loss of heat during the
hot phase of the thermal cycle (and a gain of heat during the cool phase). Therefore, they
are damped. This radiative damping increases with the radial wavenumber kr and with the
amplitude of the oscillation in the radiative zone. For evolved low-mass stars, the very high value
of the Brunt-Vaisälä frequency leads to a huge radial wavenumber of the oscillations in the g
cavity (kr '

√
`(`+ 1)N/(ωr)). Hence, these modes will undergo a strong radiative damping.

It is possible to obtain a simple expression for the radiative contribution to the work integral in
the asymptotic limit (see e.g. Dziembowski 1977; Van Hoolst et al. 1998; Godart et al. 2009):

Wrad = −
∫ r2

r1

dW

dr
dr ' K [`(`+ 1)]

3/2

2ω3

∫ r2

r1

∇ad −∇
∇

∇adNgL

Pr5
dr (3.65)

where r1 and r2 are the lower and upper radii of the g cavity and K is a normalisation constant.
This formulation shows that the main contribution to the radiative damping occurs around the
bottom of the hydrogen burning shell (see e.g. Dupret et al. 2009). When the star evolves on
the red-giant branch, N/r5 increases as a result of the contraction of the central layers, leading
to an increase of the radiative damping.

3.2 Time-dependent treatment of convection

The oscillations are usually treated as a perturbation of a gas at rest. This is no longer acceptable
in convective zones due to convective motions. As explained in the introduction, to model the
energetic properties of solar-like oscillations, one needs to take into account the interaction be-
tween convection and oscillations. In particular, the damping rate obtained taking into account
only the κ mechanism does not reproduce solar observations. Given the inherent difficulties
in the treatment of convection and of its interaction with the oscillations, we study separately
the damping and the excitation of the modes. In the study of the damping of oscillations by
convection, we are interested in the reaction of the convective zones to an oscillation. Because
for solar-like oscillations, the time scale of the most energetic eddies is of the same order as the
oscillation periods, this requires a time-dependent treatment of the convection (hereafter TDC).
The stochastic excitation of oscillations by turbulent motions will be treated in a specific way in
Sect. 3.4.

I give here a brief presentation of the theory of convection-pulsation coupling as developed by
Grigahcène et al. (2005). This theory is developed in the frame of the MLT (as presented in
Sect. 2.4) based on the theory of Unno (1967) generalised by Gabriel et al. (1974); Gabriel (1996).
The general procedure we follow to obtain the oscillation equations including the interaction with
convection is presented in Fig. 3.6.

We start from the general equations of hydrodynamics (Sect. 3.2.1) split into a mean structure
and a fluctuating part (the convective contribution). We then develop the equations of the
averaged convective medium in Sect. 3.2.2 in which terms linked to the turbulence explicitly
appear. The differences between the general equations and the mean structure give the equa-
tions governing the convective fluctuations (Sect. 3.2.3). These equations reduce to the classical
MLT equations in the stationary case (Sect. 3.2.4). As it was done in Sect. 3.1, we obtain the
oscillation equations by perturbing the equations of the average medium (Sect. 3.2.5). These
new equations contain coupling terms between the convection and the oscillations. The detailed
expressions of these terms are obtained by perturbing the equations for convective fluctuations
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in Sect. 3.2.6. Finally, these developments will allow us to obtain a more accurate expression for
the damping rate of the oscillations (Sect. 3.2.7).

We first need to make clear the difference between convective fluctuations and oscillations. A
physical quantity will be separated into three contributions: its equilibrium value, a contribution
of oscillations and a contribution of turbulence. The first contribution, assumed to be dominant,
corresponds to the stationary term. While the oscillation contributions are periodic and modelled
by the general theory of stellar oscillations (Sect. 3.1) the turbulent contribution has a stochastic
nature and is difficult to model. In the following, the first and second terms (equilibrium value
and oscillation contribution) are regrouped in the term called average medium.

Derivation of TDC Equations

General hydrodynamics

equations

Equations of the

average medium

Oscillations equations

including

convection-oscillations

coupling terms

Horizontal

average

Perturbation

Difference
Equations for

convective fluctuations

Perturbation

Convection-oscillations

coupling terms

Figure 3.6: General scheme for the derivation of oscillations equations including convection-
oscillations interaction.
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3.2.1 General hydrodynamic equations
The general hydrodynamic equations (namely, the mass, momentum, energy conservation and
the Poisson equation; Eqs. 2.5 to 2.8) are recalled here in a more convenient form:

∂ρ

∂t
+∇ · (ρv) = 0, (3.66)

∂(ρv)

∂t
+∇ · (ρvv) = −ρ∇Ψ−∇ · (Pg + Prad), (3.67)

∂(ρU)

∂t
+∇ · (ρUv) + (Pg + Prad)⊗∇v = ρε−∇ · F, (3.68)

∇2Ψ = 4πρG, (3.69)

where we have introduced the gaseous (Pg = Pg1 − βg) and radiative (Prad = Prad1 − βrad)
stress tensors, with Prad and Pg the gas and radiative pressure (and 1 the identity tensor). The
equation of energy conservation (Eq. 3.68) is given in terms of the internal energy U .

3.2.2 Equations of the average medium
Each variable in the above equations is split into an average value (y,u) and the convective
contribution (∆y,V):

y = y + ∆y (3.70)
v = u + V (3.71)

We take horizontal averages (represented by a bar) of Eqs. 3.66 to 3.69 to obtain the equations
of the average medium. Taking into account that ∆y = 0 and ρV = 0 we obtain for the mass
and momentum conservation:

∂ρ

∂t
+∇ · (ρu) = 0, (3.72)

∂(ρu)

∂t
+∇(ρuu) +∇ · (ρVV) = −ρ∇Ψ−∇ · (Pg + Prad). (3.73)

Note the presence of theReynolds stress tensor ρVV which is related to the turbulent pressure
Pturb through

ρVV = Pturb1− βt, with Pturb = ρV 2
r , (3.74)

The subscript r represents, as usual, the radial component (the horizontal components are rep-
resented either by the subscript h or the subscripts θ and φ).

We define the anisotropy factor A as:

A =
1

2

ρV 2
r

ρV 2
θ

=
1

2

ρV 2
r

ρV 2
φ

(3.75)

which represents the square of the ratio between the vertical and horizontal velocities of convec-
tive elements.
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By neglecting βg and βrad we finally obtain for the equation of momentum conservation in the
average model:

ρ
du

dt
= −ρ∇Ψ−∇(Pg + Prad + Pturb) +∇ · βt (3.76)

The equation of turbulent kinetic energy conservation is obtained by multiplying Eq. 3.67 by v,
Eq. 3.73 by u, taking the difference and then averaging. It reads:

ρ
d

dt

(
1

2

ρV 2

ρ

)
=−(βg + βrad)⊗∇V −V · ∇(Pg + Prad)︸ ︷︷ ︸

−εk

−ρVV ×∇u

− 1

2
∇ · (ρV2V) +∇ · ((βg + βrad) ·V).

(3.77)

On the right-hand side of this equation, the terms on the second line are negligible (Grigahcène
et al. 2005). We put together the first two terms of the first line of the right-hand side as εk
which represents the dissipation rate of kinetic energy into heat. This finally gives,

ρ

2

d

dt

(
ρV 2

ρ

)
= −εk − ρVV ×∇u. (3.78)

Note that εk is equal to zero in the equilibrium model.

The average of Eq. 3.68 gives the mean equation of energy conservation:

ρ
dU

dt
+ (P g + P rad)∇ · u = −∇ · (Frad + FC) + ρε+ εk. (3.79)

The total flux of energy transported by convection is given by:

FC = (Pg + Prad + ρU)V = ρ∆HV, (3.80)

with H the enthalpy. Using the entropy S instead of the internal energy we finally obtain:

ρT
dS

dt
= −∇ · (Frad + FC) + ρε+ εk. (3.81)

If we neglect pressure fluctuations and third-order terms, we obtain for the convective flux:

FC = ρT∆SV. (3.82)

3.2.3 Equations for convective fluctuations
Equations for convective fluctuations are obtained by subtracting the equations of the average
medium to the general equations of hydrodynamics.

• The continuity equation is obtained by subtracting Eq. 3.72 to Eq. 3.66:

ρ
d

dt

(
∆ρ

ρ

)
+∇ · (ρV) = 0 (3.83)
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With the Boussinesq approximation, it reduces to

∇ ·V = 0 (3.84)

• The equation of motion for the convection is obtained by subtracting Eq. 3.73 to Eq. 3.67
and using Eq. 3.72:

ρ
d

dt

(
ρV

ρ

)
= −ρV · ∇u +

ρ

ρ
∇ · (Pg + Prad + ρVV)−∇ · (Pg + Prad + ρVV)

= −ρV · ∇u +
∆ρ

ρ
∇
(
P g + P rad + P turb

)
−∇∆ (Pg + Prad + Pturb)

−∆ρ

ρ
∇ · (βg + βrad + βturb) +∇ · (∆βg + ∆βrad + ∆βturb). (3.85)

We have to simplify this equation in order to recover the MLT. To do this, we follow Unno
(1967) by assuming

Λ
ρV

τc
=

∆ρ

ρ
∇ · (βg + βrad + βt)−∇ · (δβg + ∆βrad + ∆βt), (3.86)

with Λ a constant and τc = lm/

√
V 2
r the lifetime of convective elements. With this ap-

proximation and with the Boussinesq approximation, the equation of motion finally reads:

ρ
dV

dt
=

∆ρ

ρ
∇P −∇∆P − ρV · ∇u− Λ

ρV

τc
. (3.87)

• The energy equation for the turbulence is obtained by subtracting Eq. 3.81 to Eq. 3.68:

ρ
d

dt

(
ρU

ρ
− U

)
+∇ ·

(
ρHV − ρHV

)
−V · ∇ (Pg + Prad) (3.88)

+V · ∇ (Pg + Prad) + (∆Pg + ∆Prad)∇ · u− ρε2 + ρε2

= ρε− ρε−∇ ·∆Frad. (3.89)

Once again, we simplify this equation to recover the MLT. We assume following Unno
(1967) that

ρT
∆S

τc
= −ρTV · ∇S − ρε2 + ρε2 + (ρT∇S) ·V − (ρT∇S) ·V. (3.90)

Following the MLT approach, we linearise ∇ ·∆Frad as:

∇ ·∆Frad = −ωrad∆SρT . (3.91)

Finally, with the Boussinesq approximation, the energy equation for convective fluc-
tuations reads

∆(ρT )

ρT

dS

dt
+
d∆S

dt
+ V · ∇S = −ωradτc + 1

τc
∆S. (3.92)

• The equations of state become, neglecting ∆P :

∆ρ

ρ
=

1

Q

∆S

cp
, (3.93)

∆T

T
=

∆S

cp
. (3.94)
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3.2.4 Stationary case

To recover the MLT equations (see Sect. 2.4), we rewrite Eqs. 3.84, 3.87 and 3.92 in the stationary
case (i.e. assuming u = 0 and suppressing temporal derivatives):

∇ ·V = 0 (3.95)
∆ρ
ρ ∇P −∇∆P − ΛρV

τc
= 0 (3.96)

V · ∇S = −ωradτc+1
τc

∆S (3.97)

We now search for solutions of the form of plane waves:

∆y = ∆y exp(ik · r) (3.98)
V = V exp(ik · r) (3.99)

The continuity equation thus gives:
V · k = 0. (3.100)

Multiplying Eq. 3.96 by k, isolating ∆P and reintroducing this expression for ∆P in Eq. 3.96
we obtain:

ρV =
τc
Λ

∆ρ

ρ

dP

dr
b exp(ik · r), (3.101)

with the notation

b =

(
−krkx

k2
,−krky

k2
,
k2
h

k2

)
. (3.102)

We can also express the entropy gradient in terms of other gradients:

dS

dr
= cp

[
∇−∇ad

d lnPth

d lnP

]
d lnP

dr
, (3.103)

where Pth is the pressure of the gas and P the pressure of the gas and turbulence. One usually
neglects the term d lnPth/d lnP . From Eq. 3.97, with Vr from Eq. 3.101 and with Eqs. 3.93
and 3.103, we recover the classical MLT Eq. 2.54:

Γ(Γ + 1) = A′(∇−∇ad), (3.104)

with

A′ =
A

A+ 1

1

Λ

PTP

Pρρ

[
κcpρ

3gl2m
6acT 3P

]2

, (3.105)

which reduces to the classical MLT A (see Eq. 2.48) if we assume Λ = 8A/(A+1) and an isotropic
turbulence A = 1/2.
The other MLT equations are then obtained following the classical developments of the MLT
made in Sect. 2.4.4. They read:

9
4Γ3 + Γ2 + Γ = A′(∇rad −∇ad) , (3.106)

Fc =
αcpρT

4

√
PTP
2Pρρ

[
Γ(∇−∇ad

Γ+1

]3/2
, (3.107)

Pturb = α2

8
PTP
2Pρ

Γ
Γ+1 (∇−∇ad) . (3.108)
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3.2.5 Perturbation of the average structure
We now perturb the set of equations obtained in Sect. 3.2.2 to obtain the oscillation equations.
The perturbative method is the same as in Sect. 3.1, the only difference being the explicit pres-
ence of coupling terms between convection and oscillations.

The perturbed continuity equation (Eq. 3.26) and the perturbed Poisson equation (Eq. 3.27) are
not modified. Eq. 3.73 gives the perturbed equation of motion:

−σ2ρξ = −δρ∇Ψ−∇(δPg + δPrad + δPturb) +∇ξ · ∇ · βt − ρ∇δΨ + δ(∇ · βt) (3.109)

with ∇ · βt obtained from the definition of A (Eq. 3.75) at equilibrium:

∇ · βt = −2A− 1

A

Pturb

r
er. (3.110)

In what follows, we will use the notation:

δ(∇ · βt) = −Ξr(r)Y
m
` (θ, φ)er − Ξh(r)(r∇hY m` (θ, φ)). (3.111)

The radial component of the perturbed equation of motion reads,

σ2ξr =
dδΨ

dr
+ g

δρ

ρ
+

1

ρ

[
d

dr
δP + Ξr(r) +

(
2A− 1

A

Pturb

r

)
dξr
dr

]
(3.112)

with δP = δPg + δPrad + δPturb. Comparing this equation with Eq. 3.16 we see that taking into
account the coupling between convection and oscillations makes new terms appear (in blue in
this equation)5.

The horizontal component reads

σ2ξh =
1

r

[
δΨ +

δP

ρ
+ Ξh(r) +

2A− 1

A

Pturb

ρ

(
ξr
r
− ξh

r

)]
(3.113)

Finally, the perturbation of the energy equation gives:

iσTδS =− dδ(LC + Lrad)

dm
+ ε

[
δε

ε
+ `(`+ 1)

ξh
r

]
+
`(`+ 1)

4πr3ρ

[
Lrad

(
δT

r
(
dT
dr

) − ξr
r

)
− LC

ξh
r

]

+
`(`+ 1)

ρr
δFC,h + δεk

(3.114)

5note that the perturbation of the turbulent pressure δPturb is included in δP
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3.2.6 Perturbation of the convection

We now look at the equations for the perturbation of convective fluctuations in order to ob-
tain an explicit expression for the new coupling terms appearing in the oscillations equations in
Sect. 3.2.5. A complete derivation of these terms is given in Grigahcène et al. (2005). We only
recall here the main assumptions that will be used for the results presented in this thesis.

The perturbation of energy equation (Eq. 3.92) gives(
∆ρ

ρ
+

∆T

T

)
dδS

dt
+
d(δ∆S)

dt
+δV ·∇S+V ·δ(∇S) = −ωradδ∆S−δωrad∆S−δ

(
∆S

τc

)
(3.115)

The term ∆S/τc corresponds to the closure approximation made for the energy equation (Eq. 3.90)
in our MLT treatment. This closure term extremely simplifies many complex physical processes.
It is therefore clear that the major uncertainty in this theory is associated with the perturbation
of this term for which we have to make some approximations.

When ωτc � 1, convection instantaneously adapts to changes due to oscillations and, following
Gabriel (1996), we assume:

δ

(
∆S

τc

)
=

∆S

τc

(
δ∆S

∆S
− δτc

τc

)
(3.116)

As discussed in Grigahcène et al. (2005) a well known problem of the TDC treatment, when using
Eq. 3.116, is the occurrence of spatial oscillations of wavelength much shorter than the mixing
length. This is not consistent with the basic hypotheses of the MLT. Grigahcène et al. (2005)
proposed to solve this problem by modifying the perturbation of the energy closure equation as
follow:

δ

(
∆S

τc

)
=

∆S

τc

(
(1 + βωτc)

δ∆S

∆S
− δτc

τc

)
(3.117)

where they introduce a free complex parameter β, of the order of unity. This parameter allows
phase lags between oscillations and the adaptation of the turbulent cascade to occur. The impact
of this parameter will be investigated in Chap. 5.

Using the closure assumption given by Eq. 3.117 and introducing the notations

B =
iωτc + Λ

Λ
,

C =
ωradτc + 1

(i+ β)ωτc + ωradτc + 1
,

D =
1

(i+ β)ωτc + ωradτc + 1
,

we can now express the perturbations of the terms linked to convection in the equations given
in Sect. 3.2.5.
When we perturb the equation of motion (Eq. 3.73), some terms corresponding to the per-
turbation of the turbulent velocity appear. The explicit form for the radial turbulent velocity
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perturbation is given by:

VrδVr

V 2
r

=
1

B + ((i+ β)ωτc + 1)D
·
{
−δcp
cp
− δQ

Q
− δρ

ρ
+
dδp

dp
− dξr

ξr

− iωτcD
Q+ 1

Q

δS

cp
+ C

[
dδS

ds
− dξr

ξr

]
− A

A+ 1

iωτc
Λ

(
dξr
dr

+
1

A

ξr
r
− `(`+ 1)

2A

ξh
r

)
− ωradτcD

(
3
δT

T
− δcp

cp
− δκ

κ
− 2

δρ

ρ

)
+((i+ β)ωτc + 3ωradτc + 2)D

δlm
lm

}
.

(3.118)

After some algebra, we found a simple relation for the horizontal components of δV :

VθδVθ
V 2
r

+
VφδVφ
V 2
r

=
1

A

δVr
Vr

. (3.119)

For the convective flux (Eq. 3.82) we directly obtain for the radial and horizontal components
of its perturbation:

δFc,r

Fc,r
=
δρ

ρ
+
δT

T
− iωτcD

Q+ 1

Q

δS

cp
+ C

[
dδS

ds
− dξr

ξr

]
+ (2ωradτc + 1)D

δlm
lm

− ωradτcD

(
3
δT

T
− δcp

cp
− δκ

κ
− 2

δρ

ρ

)
+ ((i+ β)ωτc + 3ωradτc + 2)D

δVr
Vr

,

(3.120)

and

δFc,h

Fc,h
=
C(B + 1)

2A(B − C)

δS

dS/d ln r
+

1

2AB

[
C(B + 1)

BC
+A+ 2

]
δP

dP/d ln r

+

[
C(B + 1)(2BA+B + 1)

2BA(A+ 1)(B − C)
+

B − 1

2B(A+ 1)
+
A+ 2

2AB

]
·
(
ξh
r
− ξr

r

)
− B − 1

2B(A+ 1)

[
C(B + 1)

B − C
+A+ 2

]
dξh
dr

.

(3.121)

The perturbation of the turbulent pressure (Eq. 3.74) gives:

δPturb

Pturb
=
δρ

ρ
+ 2

δVr
Vr

. (3.122)

Using the definition of the turbulent pressure (Eq. 3.74) and the equation for the radial component
of the turbulent velocity perturbation (Eq. 3.118), we obtain the perturbation of the rate of
dissipation of turbulent kinetic energy into heat:

δεk = −iσPturb

[
A+ 1

2A

(
δPturb

Pturb
− δρ

ρ

)
+
dξr
dr

+
1

2A

(
2
ξr
r
− `(`+ 1)

ξh
r

)]
. (3.123)
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For the perturbation of the mixing length, following the MLT formula `m = αHp, we as-
sume when ωτc � 1

δ`m
`m

=
δHp

Hp
=
δP

P
− dδP

dP
+
dξr
ξr
. (3.124)

When ωτc � 1, we expect that the perturbation of the mixing length becomes negligible. These
two behaviours can be reproduced by adopting the general formula

δ`m
`m

=
1

1 + (ωτc)2

δHp

Hp
. (3.125)

Both Eqs. 3.124 and 3.125 have been implemented in the non-adiabatic code used in this thesis
and their effect on the damping rates is discussed in Sect. 5.2.

3.2.7 Damping rates of oscillations

With this TDC treatment, we can now rewrite the damping rate Eq. 3.63 in a more explicit
form, by decomposing the different contributions to the work integral. To do this we first express
δP = δPturb + δPg and we use Eq. 3.12 in Eq. 3.63 (we also neglect non-diagonal components of
the Reynolds stress tensor, Ξ). We finally obtain

η =
1

2ωI

∫ M

0

=
(
δρ∗

ρ

δPt

ρ

)
dm︸ ︷︷ ︸

turbulent pressure contribution

+
1

2ωI

∫ M

0

<
[
(Γ3 − 1)

δρ∗

ρ

dδLconv

dm

]
dm︸ ︷︷ ︸

convective flux contribution

+
1

2ωI

∫ M

0

<
[
(Γ3 − 1)

δρ∗

ρ

dδLrad

dm

]
dm︸ ︷︷ ︸

radiative flux contribution

− 1

2ωI

∫ M

0

<
[
(Γ3 − 1)

δρ∗

ρ
δεk

]
dm︸ ︷︷ ︸

dissipation of kinetic energy contribution

(3.126)

Eq. 3.126 exhibits four contributions to the damping, considered as the dominant ones in the
current state of the art (see Belkacem et al. 2012b, for a detailed investigation of these different
contributions).

• The first term of Eq. 3.126 corresponds to the contribution of turbulent pressure. The
phase difference between variations of density and turbulent pressure control its effect on
oscillations (driving or damping). We recall that the turbulent pressure is simply linked to
the Reynold stress tensor (Eq. 3.74). Its perturbation is obtained by Eq. 3.122.

• The second term of Eq. 3.126 is related to the contribution of the convective flux (through
Eq. 3.30 and Eqs. 3.120, 3.121). It strongly depends on the coupling between convection
and oscillations.

• The third term of Eq. 3.126 is the contribution of the radiative luminosity, already discussed
in Sect. 3.1.4.

• The last term of Eq. 3.126 is associated to the perturbation of the rate of dissipation of
kinetic energy into heat (Eq. 3.123). It partially compensates the effect of the turbulent
pressure (there is a total compensation for an isotropic fully ionised gas).
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Based on this treatment, Belkacem et al. (2012b) have shown that the contributions of turbulent
pressure and entropy are of the same order of magnitude with opposite signs; the turbulent
pressure has a damping effect while entropy fluctuations have a driving effect. Moreover they
remark that the maximum compensation of these two contributions creates the well known
plateau of damping rates of solar-like oscillations.

3.3 Non-local treatment of convection

As mentioned in Sect. 2.4, the MLT is a local theory. The TDC treatment presented here is also
local. This local approximation is, in most of the cases, false when dealing with stellar convec-
tion. The state of a convective element depend of what happens to it in the previously crossed
layers. 3D hydrodynamic simulations are required to model properly the non-local behaviour of
convection. Such simulations are however very time consuming and cannot be easily used for
the interaction between convection and oscillations. Based on the original idea of Spiegel (1963),
Dupret et al. (2006b,a) proposed a non-local treatment based on the MLT approach.

The main idea of this non-local treatment is that non-local quantities can be obtained by weighted
averages of local ones. Spiegel (1963) introduces this idea by analogy with the radiative transfer
in stellar atmosphere. Following Balmforth (1992a), we approximate the non-local turbulent
pressure and convective flux by:

Pt,nl(ζ0) =

∫ +∞

−∞
Pt,l e

−b|ζ−ζ0|dζ , Fc,nl(ζ0) =

∫ +∞

−∞
Fc,l e

−a|ζ−ζ0|dζ, (3.127)

where the subscript nl indicates non-local quantities, l local quantities, and ζ = r/`m. a and
b are free non-local parameters that can be constrained with 3D simulations (see Dupret et al.
2006a). The second-order derivatives of Eqs. 3.127 give:

d2Pt,nl

dζ2
= b2(Pt,nl − Pt,l) ,

d2Fc,nl

dζ2
= b2(Fc,nl − Fc,l). (3.128)

Solving these equations allows one to deduce non-local quantities from local ones. Such a treat-
ment can be implemented in a stellar evolution code to improve the treatment of the convective
zones. However, in this thesis, we use a local MLT description in the computation of the equi-
librium model but we implement it, a-posteriori, in the non-adiabatic oscillation code. The
perturbations of Eqs. 3.128 (neglecting perturbations of ζ) are simply added to the classical
oscillation equations. The local TDC treatment (Sect. 3.2) makes the link between the local
perturbations of convective flux and turbulent pressure, and the classical perturbed quantities.
It allows us to obtain a better determination of the damping rates of solar-like oscillations. I will
discuss the effects of the free parameters a and b on the damping rates of solar-like oscillations
in Sect. 5.2.
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3.4 Stochastic excitation

Solar-like oscillations are excited by turbulent motions in the upper convective layers of stars.
Given the stochastic nature of turbulence, this driving process is named stochastic excitation. A
lot of work has been done to develop a theory of stochastic excitation (see Sect. 1.1.1). I present
in the following sections the formulation of Samadi, Goupil (2001).
The modelling of the effects of turbulence on oscillations presents some particular difficulties (for
instance this is a non-linear process in which one has to describe the effect of an overwhelming
process over a small one), so that we have to treat it in a specific way. One thus traditionally
makes the hypothesis that damping and driving of solar-like oscillations can be treated separately.
In Sect. 3.4.1, I give the relation between mode amplitudes (and mean squared surface velocity)
and the power injected into the modes by the turbulence. This last quantity is quantified thanks
to the stochastic excitation theory presented in Sect. 3.4.2. I finally discuss in Sect. 3.4.3 the
different key elements of such a formulation.

3.4.1 The problematic of mode amplitude
We give here, the relations linking the oscillation velocity, amplitude and the power injected into
the mode by the turbulence. The displacement vector of an oscillation of frequency ω is given
by:

δr =
1

2

(
A(t)ξeiωt + cc

)
, (3.129)

where A(t) is the instantaneous amplitude of the oscillation and cc represents the complex con-
jugate. In the excitation region, the typical frequency of turbulent eddies is of the order of the
pulsation period which is much smaller than the lifetime of the modes (τ = 1/η). The velocity
of the mode vosc ≡ dδr/dr can be approximated by:

vosc(t) ' 1

2

(
iωA(t)ξe−iωt + cc

)
(3.130)

and the time averaged mode energy is given by (see Balmforth 1992b)

Eosc =

∫ M

0

v2
oscdm =

1

2
|A|

2
Ikω

2 (3.131)

Because of the stochastic nature of the process A(t) cannot be obtained in a deterministic way.
We thus have to look at mean values, over an infinite set of independent realisations, denoted by
the operator 〈·〉. The derivation of this mean squared amplitude will be presented in Sect. 3.4.2.
At a given point rs (where the amplitude of the mode is measured), we have

〈
v2

osc(rs)
〉

=
1

2

〈
|A|

2
〉
ω2|ξr(rs)|2. (3.132)

We define the mode mass as:
Mm =

Ik
|ξr(rs)|2

, (3.133)

and thus we obtain
Eosc(rs) = v2

osc(rs)Mm (3.134)

Note that for rs = R we have according to Eq. 3.46,Mm = MI.
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3.4. STOCHASTIC EXCITATION

With η the linear damping rate (such as dvosc/dt = −ηvosc) and P the energy injected into the
oscillation (per unit time), the variation of the mode energy with time is given by (using Eq.
3.131):

dEosc

dt
= P − 2ηEosc. (3.135)

Since solar-like oscillations are stable modes, a stationary solution is obtained by averaging the
previous equation over a long time scale which gives:

Eosc =
P
2η

(3.136)

Dropping the bar for the time average, the power injected into the oscillations is given by:

P = 2πΓEosc (3.137)

with Γ = η/π the mode linewidth. Inserting Eq. 3.134 in Eq. 3.137, the mean squared surface
velocity of a mode is thus given by the relation (Balmforth 1992b):

〈
v2

osc(R)
〉

=
1

2
ω2|ξ(R)|2

〈
|A|2

〉
=

P
2ηMI

. (3.138)

3.4.2 The stochastic excitation mechanism
The main steps of the derivation of the power injected into the oscillations by the turbulence
are schemed in Fig. 3.7. For sake of simplicity, I will limit this presentation to radial oscillations
with a driving only coming from the turbulent Reynolds stress (see Samadi, Goupil 2001, for
more complete developments.). We start by the perturbed momentum and continuity equations
(Eqs. 3.139 and 3.140) in which we split the velocity into the contribution of oscillations and
turbulence. This gives an inhomogeneous equation of a damped and forced oscillator (Eq. 3.142).
Whithout the source term, this equation (which is now homogeneous) reduce to the classical adia-
batic oscillation equation. We thus inject the solutions of the form of Eq. 3.129 (the displacement
vector of an oscillation) into the inhomogeneous wave equation. This gives us a differential equa-
tion for mode amplitudes (Eq. 3.145). We solve it, assuming a stationary turbulence, and obtain
the mean squared mode amplitude (Eq. 3.150). With some closure approximations and hypothe-
ses on the kinetic energy spectrum, we write down the detailed expression for the Reynolds stress
source term and the associated power injected into radial modes (Eq. 3.157).
To establish the equations describing the stochastic excitation (more specifically the forcing
terms), we start from the perturbed momentum and continuity equations under the Cowling
approximation:

∂ρv

∂t
+∇ · (ρvv) +∇P ′ = 0, (3.139)

∂ρ′

∂t
+∇ · (ρv) = 0. (3.140)

If we limit the development to the first order, the perturbed equation of state reads:

P ′ = c2sρ
′ + αsS

′, (3.141)

with αs =
(
∂P
∂S

)
ρ
. Second-order terms are not necessary since we will linearise the above equations

in the next step.
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Figure 3.7: General procedure for the obtention of the power injected into the modes by turbu-
lence.
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The inhomogeneous wave equation

As done for the oscillation equations (in Sect. 3.1.2), we derive the momentum equation (Eq. 3.139)
with respect to the time, and we decompose the velocity into the contributions of the oscillations
and of the turbulence: v = vosc + u. This gives us an inhomogeneous wave equation where the
left-hand side comes from the oscillations and the right-hand side from the turbulence:

ρ

(
∂2

∂t2
− L

)
[vosc] +D(vosc) =

∂

∂t
S − C, (3.142)

with the operator:

L(X) =
1

ρ

[
∇
(
c2s∇ · (ρX) + αsX · ∇S − g∇ · (ρX)

)]
, (3.143)

and the driving source terms:

S ≡ − [∇ · (ρuu) +∇(αsSt)] . (3.144)

The first term on the right-hand side of Eq. 3.144 represents the contribution of the Reynolds
stress tensor. The second one is related to the turbulent entropy fluctuations. The term C in
Eq. 3.142 involves high-order terms and is found to be negligible (see Samadi, Goupil 2001, for
a complete derivation of this term). The D operator involves terms linking linearly oscillations
and turbulent quantities (see Samadi, Goupil 2001, for a complete derivation of this term).

The solution of the homogeneous equation (i.e. Eq. 3.142 without the right-hand side terms of
Eq. 3.142) is the classical adiabatic oscillations solution (with the eigendisplacement ξ associ-
ated with the eigenfrequency ω). We thus assume that the solutions of the inhomogeneous wave
equation are of the form of Eqs. 3.129 and 3.130.

In order to solve the inhomogeneous wave equation, we also have to make some approximations
that will allow us to separate oscillations and turbulence. We assume that perturbations related
to oscillations are small in front of the perturbations associated to turbulent motions, and that
oscillations do not affect the evolution of the turbulence.
We insert Eq. 3.130 in Eq. 3.142, neglect the second temporal derivatives of the amplitude (since
for typical oscillation, its period is much lower than its lifetime, ω � η and then d lnA/dt� ω),
multiply Eq. 3.142 by ~ξ∗(r, t) and integrate over the star. Then, the inhomogeneous wave equation
gives for the amplitude:

dA

dt
+ ∆σA =

1

2ω2I

∫
~ξ∗ · ∂

~S
∂t

d3x, (3.145)

where ∆σ = i∆ω + ηD comes from the contribution of linear coupling between oscillations and
turbulence (the D term in Eq. 3.142). ∆ω corresponds to a frequency shift due to the turbulence.
This shift is of the order of the one introduced by non-adiabatic effects (see e.g. Brun et al. 1998;
Houdek 1996) and does not affect the estimated amplitude of the oscillations. ηD represents the
dynamical damping. Following Balmforth (1992b); Goldreich et al. (1994), this term is replaced
by the global linear damping rate η.

The solution of Eq. 3.145 is straightforwardly obtained:

A(t) =
ie−ηt

2ωI

∫ t

−∞
dt′
∫
V
e(η+iω)t′~ξ∗(~x) · ~S(~x, t) d3x, (3.146)

where the second integral is made over the whole volume V of the star.
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The square of the amplitude thus writes,

|A|2(t) =
e−2ηt

4(ωI)2

∫ t

−∞
dt1 dt2

∫
V
d3r1d

3r2 e
σ(t1,t2)

(
~ξ(~r1) · ~S(~r1, t1)

)(
~ξ(~r2) · ~S(~r2, t2)∗

)
(3.147)

where σ(t1, t2) = η(t1 + t2)+ iω(t1− t2). We define the new coordinates ~x0, t0 corresponding to a
space-time position where the integration of the stochastic excitation is made and ~r, τ associated
with the local turbulence.

~x0 =
~r1 + ~r2

2
, t0 =

t1 + t2
2

,

~r = ~r2 − ~r1, τ = t2 − t1.

We should note that τ is associated to the lifetime of thes turbulent eddies and t0 to the life-
times of the modes. In these coordinates the mean squared amplitude (over an infinite set of
independent realisations) writes

〈
|A|2(t)

〉
=
e−2ηt

4(ωI)2

∫ t

−∞
dt0e

2η(t0−t))
∫ 2(t−t0)

2(t0−t)

dτ

∫
V
d3x0d

3re−iωτ

×
〈
~ξ · ~S

[
~x0 −

~r

2
, t0 −

τ

2

]
~ξ · ~S∗

[
~x0 +

~r

2
, t0 +

τ

2

]〉
.

(3.148)

Since the eddies lifetime τc is much smaller than the oscillations lifetime (∼ 1/η), the term e−2ηt

in Eq. 3.148 is constant over the eddies time scale which allows us to extend to infinity the
integration over τ . We then assume that the turbulence is stationnary such as the source term S
is invariant by translation of time around t0. Moreover, the source term is real since it involves
quantities of turbulent origin. Finally, integrating over t0, the mean squared amplitudes writes

〈
|A|2(t)

〉
=

1

8η(ωI)2

∫
V
d3x0

∫ +∞

−∞
d3r dτ e−iωτ

〈(
~ξ · ~S

)
1

(
~ξ · ~S

)
2

〉
, (3.149)

where the subscript 1 and 2 indicate that we evaluate quantities at respectively [ ~x0− ~r
2 ,−

τ
2 ] and

[ ~x0 + ~r
2 ,

τ
2 ]. For convenience, we note the mean squared average of the amplitude:

〈
|A|2(t)

〉
=

1

8η(ωI)2
(C2

R + C2
S + C2

RS), (3.150)

where the detail derivation of the different source terms (the Reynolds C2
R, entropy C2

S , and
crossing C2

RS terms) can be found in Samadi, Goupil (2001) and the crossing term is found neg-
ligible.

The Reynolds stress contribution

In order to simplify the presentation of this theory, we will consider here only the Reynolds stress
contribution. A complete derivation of the power injected into the modes by the turbulence and
including the entropy source term can be found in Samadi, Goupil (2001). However, as discussed
by Samadi et al. (2013a), a severe deficiency of the modelling of this entropy source term ap-
pears with non-adiabatic eigenfunctions. Thus, in the following and in the results presented in
the second part of this thesis, we will not take the entropy contribution into account.
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The Reynolds stress contribution in Eq. 3.150 is given by (see Samadi, Goupil 2001, for a detailed
derivation):

C2
R =

∫
V
d3x0

∫
dτdr3 e−iωτ (ρ∇iξ∗j )1 〈(uiuj)1(ukum)2〉 (ρ∇kξm)2. (3.151)

If we assume that oscillations and turbulence act on well separated spatial scales (i.e. we assume
that ξ varies on a scale larger that the characteristic spatial scale of turbulence) then, (ρ∇iξj) is
almost constant over the eddies length scale. This allows us to simplify Eq. 3.151 as:

C2
R =

∫
V
d3x0 ρ

2∇iξ∗j∇kξm
∫ +∞

−∞
d3r dτ e−iωτ 〈(uiuj)1(ukum)2〉 . (3.152)

This equation involves a fourth-order velocity correlation (〈(uiuj)1(ukum)2〉). There is no theo-
retical expression for correlations of this order (fourth-order moments are expressed in terms of
fifth-order moments themselves expressed in terms of sixth-order moments ...). A simple closure
model for this problem is theQuasi Normal Approximation which allows us to express fourth
order moments in terms of second-order moments as (see details in Lesieur et al. 1997):

〈(uiuj)1(ukum)2〉 = 〈(uiuj)1〉 〈(ukum)2〉+ 〈(ui)1(um)2〉 〈(uj)1(uk)2〉
+ 〈(ui)1(uk)2〉 〈(uj)1(um)2〉 .

(3.153)

Such approximation is formally valid only when the velocities are normally distributed. Some
improvements for the closure model have been proposed by Belkacem et al. (2006a,b) but it
appears that the final differences in the power injected into the modes for the Sun, between the
QNA and the new model, is of the order of the differences between the seismic constraints from
different instruments (see Fig. 9 of Samadi 2011).

Such expression in terms of velocities correlations is not convenient to use. If we assume an
inhomogeneous, incompressible, isotropic and stationary turbulence, φij the Fourier transform of
the second order velocity correlations 〈(ui)1(uj)2〉 is related to the kinetic energy spectrum E by
(Batchelor 1953):

φij(k, ωt) =
E(k, ωt)

4πk2

(
δij −

kikj
k2

)
(3.154)

with k the wavenumber and ωt the frequency associated with turbulent elements, and δij is the
Kronecker symbol. Following Stein (1967) we decompose E(k, ωt) into the time average kinetic
energy spectrum E(k) and a frequency dependent component χk(ωt) as:

E(k, ωt) = E(k)χk(ωt) (3.155)

χk is linked to the temporal correlation between eddies. Both components satisfy the normali-
sation conditions:

∫ +∞

−∞
dωtχk(ωt) = 1 and

∫ ∞
0

dkE(k) =
1

2

〈
u2
〉

=
φ

2

〈
u2
z

〉
=

3

2
u2

0, (3.156)

with uz the vertical component of the velocity, φ ≡
〈
u2
〉
/
〈
u2
z

〉
the anisotropy factor as intro-

duced by Gough (1977)6 and u0 the characteristic velocity of the eddies at the injection length
6One can easily link this anistropy factor with the one used in the TDC treatment (see Eq. 3.75) as φ = 1+1/A.
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scale k−1
0 We discuss the specific forms that can be adopted for these components in Sect. 3.4.3.

Finally, using the QNA approximation and in the Fourier space, Eqs. 3.138 and 3.152 give the
power injected by the turbulent Reynold stress into radial modes:

P =
π3

2I
G
∫ M

0

dm
ρu3

0

k4
0

∣∣∣∣dξrdr
∣∣∣∣2 S̃R(m,ω), (3.157)

with G linked to the anistoropy factor as defined by Samadi, Goupil (2001) and S̃R the dimen-
sionless source function

S̃R =
k4

0

u3
0

∫ ∞
0

dk
E2(k,m)

k2

∫ +∞

−∞
dωt χk(ω + ωt,m)χk(ωt,m). (3.158)

We have introduced the characteristic wavenumber of turbulent elements k0 related to the mixing
length by k0 = 2π/βt` with βt a free parameter introduced to gauge the definition of k0 (the
impact of this parameter will be discussed in the next section).

A similar source term can be found for the contribution of entropy fluctuations, as it is done by
Samadi, Goupil (2001). This formalism has also been extended to non-radial modes (Belkacem
et al. 2008). Calculations for the Sun are in overall good agreement with the seismic observations
(see e.g. Samadi 2011).

3.4.3 Physical key quantities for stochastic excitation
We now discuss the different physical elements and prescriptions that can affect theoretical
predictions of the power injected into the modes (see also Samadi 2011; Belkacem, Samadi 2013).
To illustrate the discussion, we reproduce in Fig. 3.8 the solar excitation rates for pressure modes.
The estimate of the power injected into the mode depends on the MLT treatment applied (it
affects the amount of kinetic energy of the turbulent eddies) and obviously on the physical
properties of the oscillation mode.

• The mode inertia decreases with increasing frequency. If we assume that the same amount
of energy is available for all modes, it is more difficult to drive modes with high inertia
(at low frequency) than modes with small inertia (at high frequency). This explains the
decrease of the power at low frequency in Fig. 3.8

• The term dξr/dr in Eq. 3.157 corresponds to the mode compressibility. It has been shown
that mode compressibility is maximum in the transition layers between the convective and
radiative regions and increases with mode frequency. This enhances the effect of the inertia,
favouring the excitation of high frequency modes.

• The way the convection is modelled has also a direct influence through the term u0. Indeed,
for isotropic turbulence, one can write the kinetic energy flux as Fkin = 3/2ρ0u

3
0 which in

the MLT framework is roughly proportional to the convective flux.
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Figure 3.8: Theoretical power injected to the solar acoustic modes by turbulence as a function
of the frequency compared to GONG observation [from Belkacem, Samadi (2013)].

The power injected to the modes also strongly depends on the description of the turbulence
through:

• E(k) which can be modelled either with analytical formulations or directly from 3D sim-
ulations. Different shapes of this spectrum can be adopted. The most currently used
formulations are the Kolmogorov Spectrum, the Raised Kolmogorov Spectrum, the Broad
Kolmogorov Spectrum and the Extended Kolmogorov Spectrum (see e.g. Musielak et al.
1994). 3D simulations of the solar convective envelope suggest that the EKS is the best
candidate (Samadi et al. 2003a).

• The choice of the characteristic wavenumber k0 is more important, for P is very sensitive
to the choice of k0. 3D simulations of the Sun allow one to calibrate this wavenumber.
In such calibration, the value of βt depends on the value of the mixing-length parameter
used in the equilibrium model. Extension of such calibration to other stars is still an open
question.

• χk(ω) represents the resonance between oscillations and turbulent eddies. This function
is often modelled by a gaussian function. However, 3D simulations of the Sun show that
a Lorentzian function is better suited. Belkacem et al. (2010) have recently improved the
analytical description of χk by using a modified Lorentzian function (see also Sect. 4.4).
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3.5 Asteroseismic techniques for solar-like oscillations.

We have seen in this chapter how one can compute the oscillation properties (frequencies, damp-
ing rates, amplitudes) of an equilibrium stellar model. In this section, I discuss how one can
obtain information on stars from the observation of their oscillations.
A general discussion on the use of these different techniques and the results obtained for solar-like
oscillations can be found in e.g. Chaplin, Miglio (2013). This discussion will mainly focus on
the inferences on stellar global properties and structure one can derives from observed frequencies.

The use of the energetic properties of solar-like oscillations (linewidths and amplitude) is more
recent and still at its beginning, for it presents both observational and theoretical challenges to
interpret such asteroseismic constraints. We will briefly see in this section and in more details in
the following chapters that the observed mode linewidths can help to constrain the modelling of
the time-dependent treatment of convection. These constraints can come from scaling relations
or from fit of theoretical linewidths to observed ones (as discussed in Chap. 5).

3.5.1 Global asteroseismic quantities and scaling relations

Thanks to the space-borne telescopes CoRoT and Kepler, asteroseismology of solar-like oscil-
lations allows astronomers to derive global information (such as the mass, radius, evolutionary
state) for a large number of field stars. This is mainly done with empirical scaling relations,
linking some average asteroseismic observables to global stellar parameters. A detailed study of
these scaling relations can be found in e.g. Belkacem (2012). Because the obtention of average
seismic quantities can be done quickly and with a good precision, even when observations are not
precise enough to extract individual frequencies, scaling relations are useful to study large groups
of observed stars. This is the basis of a new field of study called "ensemble asteroseismology"
(see e.g. Miglio 2013). The main hypothesis underlying all these relations is the assumption that
scalings between solar global parameters and helioseismic quantities are applicable for all stars
exhibiting solar-like oscillations whatever their mass or evolutionary stage.

Stellar mass and radius

As we have shown in Sect. 3.1, asymptotic developments (Eq. 3.51) link the large separation to
the mass and radius of the star. Scaled to the solar large separation it gives

〈∆ν〉
〈∆ν〉�

'
(
M

M�

)1/2(
R

R�

)−3/2

, (3.159)

where 〈〉 indicates the mean observed value which differ from the asymptotic one. In the follow-
ing we will use 〈∆ν〉� = 135.5µHz as given in Mosser et al. (2010a).

Solar-like oscillations are characterised by a bell-shape power spectra. Brown et al. (1991) pro-
posed that the frequency of maximum power (νmax) scales as the acoustic cut-off frequency.
This frequency characterises the stellar atmosphere and represents a maximum frequency for
oscillations beyond which acoustic waves from the stellar interior are no longer reflected by the
atmosphere. For an isothermal atmosphere, it is theoretically given by (see e.g. Balmforth, Gough
1990): νc = cs/2Hρ ∝MR−2T

−1/2
eff (with Hρ the density scale height at the photosphere).
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Assuming that νmax ∝ νc one can write the scaling relation for νmax:

νmax

νmax,�
'
(
M

M�

)(
R

R�

)−2(
Teff

Teff,�

)1/2

(3.160)

In the following we will use νmax,� = 3050µHz (as given in Mosser et al. 2010a). Belkacem
et al. (2011) have theoretically investigated this scaling relation and showed that νmax and νc are
linked together through their relation to the local thermal time-scale. Moreover, they showed
that a more precise scaling relation for νmax should take into account the stellar Mach number.

From Eqs. 3.159 and 3.160, and assuming that the effective temperature of the star is known, one
can easily obtain the mass and radius, and subsequently the mean density and surface gravity,
of any observed star exhibiting solar-like oscillations.

Stellar evolutionary stage

In Sect. 3.1.3, we have seen that the evolution of the star inner structure leads to the appearance
of mixed-modes in the power spectra. The density of mixed-modes (i.e. their number over a
large separation) is controlled by the Brunt-Vaisälä frequency and hence is a good indicator of
the stellar evolutionary stage. Moreover, observations and theoretical adiabatic computations
(see e.g. Montalbán, Noels 2013) have shown that red-giant branch and horizontal branch stars
with almost the same surface properties (i.e. almost same location in the HR diagram) have
similar ∆ν but different period spacing ∆Π (calculated from observed dipole mixed-modes fre-
quencies). Due to the expansion of the core, and the apparition of a convective core after the
He-flash, the Brunt-Vaisälä frequency decreases in the central layers leading to an increase of
the period spacing (see the asymptotic relation given by Eq. 3.55) We thus have in a ∆ν, ∆Π
diagram two distinct regions. Such a diagram can even lead to a more precise insight into the
evolutionary stage of the star (see Fig. 3.9 reproduced from Mosser et al. 2014). The relation
between the period spacing and the evolutionary stage is still qualitative but very promising for
the knowledge of stellar cores.

Scaling relations for the energetic properties of solar-like oscillations

In addition to these two largely used relations, a lot of work have been done to relate the en-
ergetic properties of modes (typically for the radial modes close to νmax) and stellar properties
(see e.g. Belkacem 2012).

Based on theoretical computations (and the hypothesis of equipartition of energy between modes
and most energetic eddies), Kjeldsen, Bedding (1995) have proposed that the maximum mode
surface velocity Vmax scales as L/M . More recently, focusing on red giants, and thanks to the
large amount of CoRoT and Kepler observations, 3D simulations and theoretical developments,
Samadi et al. (2012) have found that:

Vmax ∝ Γ1/2
max

(
L

M

)1.3(
M

R3

)0.525

, (3.161)

where Γmax is the linewdith of radial modes at νmax. They also derived for the intensity variations(
δL

L

)
max

∝ Γ1/2
max

(
L

M

)1.55(
M

R3

)0.5

. (3.162)
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Figure 3.9: From Mosser et al. (2014): Period spacing of dipole modes as a function of the
large frequency separation. The color indicate the mass of the star, the letter the evolutionary
status (S = Subgiant, R = Red-giant branch, f = Helium subflash stage, C = Red clump, and
more evolved stages toward A= Asymptotic giant branch). Stars of different evolutionary states
occupy different regions of this diagram.

They however note the importance of leaving the adiabatic approximation for the relation be-
tween mode velocity and intensity variation. These scalings (Eqs. 3.161 and 3.162) present
systematic differences for red giant observations thought to be due to non-adiabatic effects.

A relation between modes linewidths (or damping rates) and the effective temperature have
been investigated from both observational and theoretical point of view. Belkacem et al. (2012)
derived a theoretical scaling relation for the linewidth of acoustic modes at νmax :

Γmax ∝ T 10.8
eff g−0.3 (3.163)

which shows that damping rates strongly depends on the effective temperature. This relation is
found in good agreement with Kepler observations (see Belkacem et al. 2012).

These scaling relations for Vmax and Γmax are still investigated and may be promising for a better
understanding of the energy exchanges between oscillations and the turbulent convection. I will
present in Sect. 5.1.2, in a study of the impact of TDC parameters on modes linewidths, how
the observed Γmax − Teff relation can help to constrain these parameters.
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3.5. ASTEROSEISMIC TECHNIQUES FOR SOLAR-LIKE OSCILLATIONS.

3.5.2 Individual mode frequencies

The traditional way to investigate stars inner structure is to make direct comparisons between
the frequencies of stellar equilibrium models and the observed ones.
Two approaches are generally used to find the model that best reproduces the observations.
The first way is to compute grids of stellar models and search inside, the one that best fit the
observations. The second way is to use a Levenberg-Marquardt algorithm that searches in the
parameter space the set of parameters for which the resulting stellar model gives the best fit to
the observations (see e.g. Miglio, Montalbán 2005). This search is automated and sensitive to
local minima of the merit function used to characterise the fit. Because of this limitation, global
minimisation methods are also often used. However, it does not require to compute an entire
grid and automatically adjust the step between two tested values of a parameter to obtain the
best one. I will present in Chap. 7 a practical use of this method, with some particularities for
the modelling of an observed Kepler subgiant.
In most cases, one compares the observed frequencies with theoretical adiabatic ones. As a result,
a shift appears between the observed and computed frequencies. This shift is due to the poor
modelling of the surface layers and is found to increase with frequency. These "surface effects"
come from the non-adiabaticity of the modes in these layers and the effects of the turbulent
pressure. In Chap. 7 I will discuss the use of non-adiabatic frequencies in the search of a best
fit model. An important work is done on the understanding of these surface effects and on the
possibility to correct adiabatic frequencies to improve the fitting process. Empirical relations
(such as the one proposed by Kjeldsen et al. 2008) are generally used to correct the adiabatic
frequencies but their validity (for stars other than the Sun) is still subject to discussion. 3D
simulations coupled with non-adiabatic computations may bring a new light on this issue (see
e.g. T. Sonoi contribution in KASC/TASC 2015 meeting ). Another possibility to avoid surface
effects in the fitting process is to use some frequency separation ratios, independent of these
surface effects (Roxburgh, Vorontsov 2013). The use of some specific frequency ratios allows one
to constrain particular features of the stellar structure such as glitches and rapid variations of
physical quantities. The presence of mixed-modes in observed power spectra bring additional
constraints since their frequencies strongly depend on the age of the star (see e.g. Deheuvels,
Michel 2011).
We should note that, to be efficient, these methods also require the knowledge of non-seismic
parameters of the star (such as its effective temperature, metallicity, ...).

3.5.3 Perspectives

Use of energetic properties of individual modes

The recent possibility brought by the high quality of Kepler observations to measure the fre-
quencies, linewidths and amplitudes of individual modes opens the way to new asteroseismic
constraints. As I will present in Chap. 5, observed mode linewidths can be used to constrain the
TDC treatment.
From the measure of mixed-mode linewidths and amplitudes in subgiant stars, Benomar et al.
(2014) have derived observed inertia ratios between non-radial and radial modes. Such ratios
bring important constraints on mode trapping and can be used in the search of a best fit model
(Tian et al. 2015). I will discuss in Sect. 7.4 the inertia ratios of quadrupole mixed-modes of an
observed Kepler subgiant in order to understand differences between observed and theoretical
mode energetic properties. Since mixed-modes bring very strong constraints on the star inner
structure, the use of inertia ratios is a promising way toward a better understanding of evolved
low-mass stars.
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CHAPTER 3. SOLAR-LIKE OSCILLATIONS

Inversion techniques

A technique widely used for the Sun to overcome the limitations of standard equilibrium models is
to perform seismic inversions. The main idea is to measure the differences between the frequencies
of a reference standard model and the observed ones in order to correct the structure of the
reference model. This technique as the advantage to not be based on restrictive hypotheses on
stellar physics. It produces a corrected model outside the reach of standard modelling. However,
to obtain the detailed density or sound-speed profile of a star (like it was done for the Sun) it
requires a huge number of frequencies measured with a very high precision. Given observation
limitations for other stars, the current outcomes of inversions on other solar-like stars mainly
concern global quantities, such as the mean density (Reese et al. 2012), the acoustic radius
and evolutionary stages indicators (Buldgen et al. 2015a) and an indicator of mixing processes
(Buldgen et al. 2015b). The estimation of a star inner rotation profile can however be obtained
by inversion techniques (Deheuvels et al. 2014) since for rotation we have additional information
brought by the frequency rotational splitting. This is particularly true for evolved low-mass
stars, for which the difference between the rotational splitting of g-dominated mixed-modes and
p-dominated ones gives a direct information on the difference of the rotation rate between the
core and the envelope of the star.
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Part II

New results on the energetic
properties of solar-like oscillations
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Chapter 4

Models and methods for computing
theoretical power spectra

In this chapter, I present the models and methods I used to compute the different properties of
solar-like oscillations and theoretical power spectra.
The general theories of stellar structure, evolution and oscillations have been presented in
Chaps. 2 and 3. Thus, this chapter details the practical path we follow for the computation
of a theoretical power spectrum, as schemed on Fig. 4.1. Particular attention will be paid to red
giants structure and oscillation spectra.
The first step (Sect. 4.1) is the obtaining of the equilibrium structure of stellar models with an
evolutionary code. A particular attention has also to be put on the precise computation of some
specific features of red-giant models (such as numerical noise, discontinuities, ...).
Once the equilibrium model is obtained, we can compute the oscillation properties (frequencies,
damping rates, inertias,...) thanks to an oscillation code. Our non-adiabatic oscillation code
uses an non-local, time-dependent treatment of the convection. These formalisms (see Sects. 3.2
and 3.3) require to choose between different assumptions and to fix some free parameters. The
effects of these assumptions and parameters will be discussed in Chap 5. I give in Sect. 4.2 the
standard choices made for the oscillation computations presented in the next chapters. Since the
main free parameter of the TDC treatment is the complex β parameter (see Eq. 3.117), which
affects a lot the theoretical predictions, I detail in Sect. 4.3 the procedure adopted to constrain
this parameter.
After having obtained the equilibrium model and the non-adiabatic oscillation properties, we use
a stochastic excitation code to determine the power injected into the modes by the turbulence.
This will be described in Sect 4.4.
Finally, mode frequencies, lifetimes, and powers will be combined to obtain mode amplitudes and
the theoretical power spectrum. In this last procedure, we have to take into account the duration
of observations to account for the resolution of the modes and the heights of the corresponding
peaks in the power spectrum.
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CHAPTER 4. MODELS AND METHODS FOR COMPUTING THEORETICAL
POWER SPECTRA

Stellar evolution code
Inputs:

- stellar main parameters (mass, age,...)

- Physical inputs (macro-micro

mechanisms)

Output: Equilibrium model

Non-adiabatic code
Inputs:

- equilibrium structure

- TDC parameters

Output: Eigenfunctions, Frequencies,

Lifetimes

Stochastic excitation code
Inputs:

- equilibrium structure

 -mode eigenfunctions

- Turbulence description

Output: Power injected to the modes,

Mode masses

Power spectra modelling
Inputs: mode lifetimes, powers,

duration of observations

Description of mode heights

Assumption of Lorentzian peaks for all modes

Output: Theoretical power spectra

Figure 4.1: Scheme of the computation process to obtain a theoretical power spectrum.
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4.1. EQUILIBRIUM MODELS

4.1 Equilibrium models

I provide in this section the main physical ingredients we used to compute our models with two
evolutionary codes. In both cases, we do no take into account rotation and magnetic field. I
then discuss some difficulties encountered in the computation of red-giant equilibrium models
especially for asteroseismic use in Sect. 4.1.2.

4.1.1 The stellar evolutionary codes

ATON

We used the ATON code (Ventura et al. 2008) for red-giant branch (hereafter RGB) and helium
burning models. This code is able to evolve a model through the helium flash. Mass loss on the
RGB is not taken into account. The convection is described by the classical mixing-length theory
(see Sect. 2.4). The radiative opacities come from OPAL (Iglesias, Rogers 1996) for the metal
mixture of Grevesse, Noels (1993) completed with Alexander, Ferguson (1994) at low temper-
atures. The conductive opacities correspond to the Potekhin et al. (1999) treatment corrected
following the improvement of the treatment of the e-e scattering contribution (Cassisi et al.
2007). Thermodynamic quantities are derived from OPAL (Rogers, Nayfonov 2002), Saumon
et al. (1995) for the pressure ionisation regime and Stolzmann, Bloecker (1996) treatment for
the He/C/O mixtures. Finally, the nuclear cross-sections are from NACRE compilation (Angulo
et al. 1999), and the surface boundary conditions are provided by a grey atmosphere following
the treatment by Henyey et al. (1965).

CESTAM

The CESTAM code (Marques et al. 2013) has also been used to study models from the main
sequence phase to the bottom of the red-giant branch.
The convection is also described by the classical mixing-length theory. Our models are computed
with the OPAL05 equation of state (Rogers, Nayfonov 2002) and OPAL96 radiative opacities
(Iglesias, Rogers 1996) completed with Ferguson et al. (2005) at low temperatures. The metal
mixture can be chosen between GN93, AGN05 and AGSS09 (see the paragraph on the chemical
composition in Sect. 2.2.2). The nuclear reaction rates are from NACRE compilation (Angulo
et al. 1999) with the revised LUNA rate (Formicola et al. 2004) for the 14N(p, γ)15O reaction.
When a convective core appears during the main sequence, it is possible to consider overshooting.
The core overshoot distance is given by lov = αov × min(Rcc, HP ) with αov a free parameter
(Rcc the radius of the convective core and HP the pressure scale height). We can also include
convective penetration ("undershooting" below the convective envelope) following the model of
Zahn (1991) in which the distance of convective penetration Lp is given by Lp = ζpc/χPHP ,
where ζpc is a free parameter and χP the adiabatic derivative of the radiative conductivity with
respect to the pressure. The surface boundary conditions are provided with an Eddington’s grey
atmosphere.

Turbulent pressure

As presented in Sect. 3.2, an estimate of the turbulent pressure is needed to compute the damping
rates, but it is not generally included in stellar evolutionary codes. The equilibrium value of the
turbulent pressure is thus included a-posteriori in the equilibrium models (Eq. 3.74) without
modifying the hydrostatic equilibrium (this leads to a small inconsistency in the equation of
state).
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CHAPTER 4. MODELS AND METHODS FOR COMPUTING THEORETICAL
POWER SPECTRA

4.1.2 Specificities of red-giant equilibrium models
I will discuss here two particularities of red-giant models that impact oscillation computations.

Discontinuities

Due to the evolution of convective zones inside the star, discontinuities of the chemical composi-
tion or of the density can appear in red-giant models. It is necessary to give a specific attention
to such features when addressing numerical aspects because oscillation computations are very
sensitive to such rapid variations of physical quantities. Moreover discontinuities are problem-
atic when computing numerical derivatives. Solving differential equations (such as the oscillation
equations) needs to account for the presence of these discontinuities.
In practice, we use a double mesch point at each discontinuity (marked by its position at the
radius rd). Physical quantities (X) are splitted between values under and above the discontinuity.
Thus, at the discontinuity, the considered physical quantities have two distinct values: Xunder(rd)
and Xabove(rd). Interpolation is then made separately for each side of the discontinuity (it
prevents from adding points inside the discontinuity). Finally, the solution of the oscillation
equations are obtained by ensuring the continuity of the Lagrangian perturbations of pressure,
gravitational potential and its gradient (see also Reese et al. 2014).
These discontinuities play an important role in mixed-modes trapping. The amplitudes of the
eigenfunctions at each side of the discontinuities strongly change from one mode to another.
In the different red-giant models studied, we have spotted up to three discontinuities. The first
one is located at the upper limit of the convective core in horizontal-branch stars; the others are
linked to chemical composition discontinuities (of hydrogen and helium) that can appear in any
red-giant models.

Brunt-Vaisälä frequency

The second point requiring a particular attention is the computation of the Brunt-Vaisälä fre-
quency. Since the Brunt-Vaisälä frequency controls the behaviour of mixed-modes, we have to
ensure that it has been computed with high enough precision, especially in the central layers.
Usually, numerical derivatives of the density (as it appears in Eq. 3.39) are subject to numerical
noise while temperature and pressure gradients are computed more carefully. Thus, we use in
the central, homogeneous (∇µ = 0) layers of red-giant models the expression given by (see the
detailed derivation in e.g. Kippenhahn et al. 2012)

N2 =
−g
QHP

(∇ad −∇) (4.1)

where Q is defined by the equation of state (Eq. 2.34).
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4.2 Non-adiabatic computations

Non-adiabatic oscillation computations are made with the non-adiabatic code developed by M.A.
Dupret (Dupret 2001) including a non-local, time-dependent treatment of the convection (see
Sects. 3.2 and 3.3).

4.2.1 Non-local, time-dependent treatment of convection

Except when specified, we use the following parameters for the treatment of the convection-
oscillations interaction. The effects of changes of these parameters on theoretical damping rates
will be discussed in Chap. 5 for main-sequence stars and in Chap. 6 for RGB stars.
The non-local parameters (Eq. 3.127) are those derived by Dupret et al. (2006a) from a 3D
solar simulation (a = 10 and b = 3 with Balmforth (1992b) notations). We assume an isotropic
turbulence (A = 1/2 and Λ = 8/3 in Eq. 3.105). For the perturbation of the mixing-length, we
choose to model it by using Eq. 3.125. In the interaction between convection and oscillations, we
take into account the perturbation of the turbulent pressure as well as the dissipation of kinetic
energy into heat (see Sect. 3.2.7).
The main uncertainty in the TDC treatment comes from the closure approximation made for
the closure term in the perturbation of the energy equation. This is represented by the free
parameter β in Eq. 3.90. To adjust this parameter we follow Belkacem et al. (2012a) who
proposed to constrain it in such a way that the radial mode damping rates present a plateau at
the frequency of maximum power νmax given by the scaling relation 3.160. The existence of such
a plateau is well known in solar observations and is also detected in other solar-like oscillators
(Appourchaux et al. 2014). It is linked with the existence of a maximum in the power spectrum
(Belkacem et al. 2012a). In this procedure we assume that the canonical scaling relation for νmax

is valid. However, we know this relation is incomplete because, for example, the dependence
to the Mach number is missing. Nevertheless, for red-giant stars, the dependence of νmax to
the surface gravity dominates, making the variation of the Mach number disappears during the
evolution on the red-giant branch (see Belkacem et al. 2013). I have also noted that in all the
models computed during my thesis, the maximum in the theoretical power spectrum always
appears around the plateau of the damping rates or equivalently around the frequency of the
minimum of the product of the damping rate by the inertia (Belkacem et al. 2011). From a
practical and numerical point of view, looking at a minimum of ηI is easier than searching a
plateau of η. Since this parameter has a very strong impact on theoretical damping rates, I
detailed how we fix its value in Sect. 4.3.

4.2.2 Specificities of mixed-modes in red giants

I have already mentioned in Sect. 4.1.2 the issue of discontinuities in red giants equilibrium models
and how we solved it for oscillation computations. We also take care of the precise computation
of the Brunt-Vaisälä frequency in the equilibrium models. Two additional numerical difficulties
are present in the computations of mixed-mode properties, linked to the computation of the work
integral in the core of the star and to the high density of mixed-modes in red giants (the very
high number of g-dominated mixed-modes in a small frequency interval between two p-dominated
modes).
The computation of the work integral of the modes in a red-giant core presents some numerical
difficulties due to the very high number of nodes of the eigenfunctions in the g-cavity. However,
this high number of nodes allows us to use an asymptotic formulation for the radiative damping
described by Eq. 3.65.
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Mixed-modes density

Another significant difficulty arises from the high density of non-radial modes over a large sepa-
ration. It leads to modes with very close angular frequencies (real part of mode eigenvalues) but
with very different damping rates (imaginary part of the eigenvalues). The algorithm solving
the non-adiabatic equations searches the eigenvalues by the inverse iteration method. Thus, it
converges towards the closest eigenvalue to the initial guess in the complex plane. Using only
the adiabatic frequency (obtained in a previous step) as an initial guess for the real part of the
eigenvalue, the convergence to the correct mode (i.e. the one with the frequency and trapping
corresponding to the adiabatic case) of the algorithm is not easily ensured. Initial adiabatic
frequencies of different modes could lead to the same eigenvalue in the non-adiabatic algorithm.
As a remedy, we have to find an initial guess for the imaginary part of the frequency to be sure
to obtain all the modes with different trappings. To do this, we use the inertia ratio between
radial and non-radial modes derived from previous adiabatic computations. We scale the initial
guess for the imaginary part (noted =) of the eigenvalues to the damping rates of radial modes
with this inertia ratio:

=(σ)guess,` = =(σ)`=0
I`=0,ad

I`,ad
(4.2)

Without radiative damping (i.e. neglecting the work in the radiative core), this choice gives a
very good approximation of the non-radial damping rates (see Eq. 3.63, since the work integral in
the envelope does not depend on the angular degree and trapping). In the presence of radiative
damping, our initial guess underestimate the true value of =(σ)`. However, it allows us to
reproduce the damping rates of p-dominated modes and modes closed to these ones when the
radiative damping is small. These, are the modes which are the most difficult to obtain with the
inverse iteration method.

4.3 Constraining the main TDC parameter β

We have explained in Sect. 3.2.3 that the β parameter has originally been introduced to avoid
the occurrence of non-physical short-wavelength spatial oscillations in the eigenfunctions, in
particular for luminosity variations (Grigahcène et al. 2005). Such oscillations are easily visible
when looking at the work integral of a mode (see Fig. 4.3) which is directly linked to luminosity
variations (see Eq. 3.126). Thus, to restrain the range of acceptable values for β we choose to
introduce the quantity CW allowing us to estimate the presence and importance of these spurious
oscillations. We define it as:

CW =

∣∣∣∣ ∫ dW∫
|dW |

∣∣∣∣ , (4.3)

where W is the work and the integrals are made over the whole stellar radius. This quantity
is close to 1 in the absence of non-physical oscillations. Indeed, for any function f(x), we have∣∣∫ f dx/ ∫ |f | dx∣∣� 1 when f presents a lot of oscillations around 0. The absolute value is here
to also take into account the case of a negative work integral (i.e. unstable mode) to have a
clear view on which values of β in the complex plane lead to non-physical oscillations. Fig 4.3
represents typical work integrals near the surface of a red-giant model for different values of this
quantity (obtained with different values of β). The lower CW , the more the work present short
wavelength oscillations around 0.
As discussed in the previous chapter, solar-like oscillations are damped. Thus, starting from the
acceptable values of β obtained with the first criterium, we can exclude all values leading to a
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negative work integral. Moreover, observations of solar-like oscillations across the HR diagram
show a limited range of linewidths for radial modes (see e.g. Fig. 2 of Belkacem et al. 2012).
We thus restrain our search to values of β giving a linewidth of radial modes of the order of the
observed ones (e.g. following the scaling relation given in Eq. 3.163).
Finally, we also want to obtain a frequency of maximum power in our theoretical power spectrum
in agreement with the observed νmax. We adopt here the strategy proposed by Belkacem et al.
(2012) which consists in searching values of β for which the theoretical damping rates present a
plateau around νmax obtained by the scaling relation given in Eq. 3.160. Searching a plateau of
the damping rates is equivalent to search a (local) minimum of the product between the damping
rates and the inertia (Belkacem et al. 2011). A minimum of ηI corresponds to a maximum in
the power spectrum. A minimum being easier to find in an automatic way, we have adjusted the
code to search, for each value of the β parameter, the minimum interpolated value of ηI for mode
frequencies in the range [νmax − 5∆ν; νmax + 5∆ν] (which corresponds to the typical frequency
range of observed solar-like oscillations). We select as good values of β, the ones giving the fre-
quency of the minimum at νmax± 0.5∆ν (thus we take into account scattering and uncertainties
in the νmax scaling relation).

These constraints allow us to strongly reduce the range(s) of acceptable values of β for each stellar
model. As an example, we present in Figs. 4.3, 4.4 and 4.5 maps of each criterion obtained for
a scan of values of the complex parameter β ∈ [−2; 0]× [−2; 0] with a 0.01 step for a 1.5M� red
giant model (model A in Tab. 6.1). From these maps, we see that to select the good value of β
we have to find a compromise between the above criteria. Thus, our choice of β is first made by
ensuring that a minimum of ηI is close to the predicted νmax. To obtain long lifetimes, we have
to take values of β with lower CW , i.e. with more short wavelength oscillations (see Figs. 4.3
and 4.4, zones of higher lifetimes are obtained in zones of lower CW ). This represents the main
compromise that we have to make. It appears that a value of CW ∼ 5.10−2 (see Fig. 4.3) is a
good compromise allowing us to have almost no short-wavelength oscillations and lifetimes of
the order of the observed ones.
For this model, CW ∼ 5.10−2 is obtained in the orange regions in Fig. 4.3. This region corre-
sponds to lifetimes around 10 days (Fig. 4.4, dark red regions). The corresponding regions of
these two criteria do not overlap completely and thus reduce the range of acceptable values of
β. They have to be compared with the regions giving a minimum of ηI around the frequency
of maximum power obtained from scaling relation (in green in Fig. 4.5). Finally, we obtain a
large region of acceptable values of β around β = −1.7− 0.7i. and few much smaller regions (as
example for β = −0.106− 0.945i, corresponding to the little circular region in Figs 4.3 and 4.4)
where the criterion for νmax is much more sensitive to the value of β. The impact of these two
values of β, taken as example, on a theoretical power spectrum will be discussed in Sect 6.3.2.
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Figure 4.2: Typical work integral for different values of CW for a radial mode in a RGB model.
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Figure 4.3: Spurious oscillations criterion CW for a radial mode close to νmax as a function of β.
Points leading to unstable oscillations are in white.
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Figure 4.4: Lifetime of a radial mode close to νmax as a function of β. Points outside the colorscale
are in white
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Figure 4.5: Position of the minimum of ηI as a function of β. For this model, we have νmax '
190 µHz from scaling relations.
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4.4 Stochastic excitation and peak properties in a power
spectrum

4.4.1 Mode amplitudes

Mode amplitudes (Eq 3.138) are obtained using their damping rates (from the non-adiabatic os-
cillation computations), mode masses and the power injected into the modes by turbulence. This
power is modelled with the stochastic excitation code developed by R. Samadi (Samadi, Goupil
2001), following the formalism presented in Sect. 3.4.2. We consider the turbulent Reynolds
stress as the dominant driving source. We do not take the entropy contribution into account
(thermal source of driving) for which a severe deficiency in the modelling with non-adiabatic
eigenfunctions appears (as discussed in Samadi et al. 2013b).

The stochastic excitation code

We use solar parameters to describe the turbulence in the upper convective layers (constrained
with a 3D hydrodynamics simulation by Samadi et al. 2003b). They found that the k dependency
of the kinetic energy spectrum (k is the eddies wavenumber in the Fourrier space of turbulence) is
best reproduced with the analytical Extended Kolmogorov Spectrum (EKS, Musielak et al. 1994).
The eddy time-correlation function from 3D simulations seems to be almost Lorentzian. We use
here a Lorentzian profile with a high frequency cut-off as prescribed by Belkacem et al. (2010) in
order to also reproduce the observed solar low-frequency excitation rates. This is based on the
sweeping assumption (see e.g. Kaneda et al. 1999) which consists in assuming that advection by
energy-bearing eddies dominates in the inertial subrange (between the scale of energy-bearing
eddies and the viscous dissipation scale in the turbulent cascade, where inertial effects dominate
in front of viscous effects). The free parameter βt introduced in the characteristic wavenumber of
turbulence is assumed proportional to the pressure scale height (Samadi et al. 2008) and scaled
to the solar value derived by Samadi et al. (2003b). The anisotropy parameter Φ (Eq. 3.156)
is fixed at 2, in agreement with the Böhm-Vitense description of the MLT and with 3D solar
simulations (Samadi et al. 2003b).

Mode velocity vs bolometric variations

The outcome of the stochastic excitation code gives the power injected by the turbulence into
the modes in cgs units and consequently, the amplitude A of the oscillation is given in radial
velocity (i.e. in cm/s) while observations in photometry gives bolometric intensity variations
(δL/L in ppm.) A bolometric corrections that considers the instrumental response of the CoRoT
space-borne telescope was originally proposed by Michel et al. (2009). Kjeldsen, Bedding (1995)
proposed an intensity to velocity conversion factor but their approach is made in the adia-
batic hypothesis. From our non-adiabatic code, a conversion factor from radial velocities to
bolometric amplitudes can be obtained. When the non-adiabatic phase-lag is neglected, the
intensity-velocity relation is given by:

δL

L
=

4fT − 2

2πωR
A (4.4)

with fT =| δTeff/Teff | / | ξr/R |. Using non-adiabatic computations, Samadi et al. (2013b) pro-
posed a scaling relation for the intensity-velocity relation. However, while they found theoretical
velocities in agreement with observations, intensity variations presented systematic differences.
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We thus decided to present our results in radial velocity because the conversion to bolometric
intensity introduces additional uncertainties which have still to be understood.

Moreover, to make direct comparisons with observations, the visibilities of the modes should
also be accounted for (i.e. for geometrical and limb-darkening effects). Ballot et al. (2011)
have computed a grid of values for mode visibilities as a function of the effective temperature,
surface gravity and metallicity in the range of the observed Kepler stars and considering the
Kepler instrumental response. Mode visibilities will be used in the comparisons of our theoretical
predictions with the observed power spectrum of a subgiant star in Chap. 7.

4.4.2 The shape of a mode peak

Lorentzian shape and temporal resolution

As discussed in Sect. 1.1.1, mode peaks in the solar power spectrum follow, when resolved, a
Lorentzian shape (thus characterised by a frequency, a linewidth and an height). This is a direct
consequence of the intrinsic damping the oscillations. When non-resolved, peaks follow a sin2

function.

The resolution criterion is the direct application of the Fourier theorem. To resolve a mode in
an observed power spectrum, the observation time (Tobs) needs to be greater than, in principle,
two times the lifetime of the mode (τ = 1/η). Actually, Tobs = 2τ means that there is two
observation points within the linewidth of the peak. Thus, in practice, Tobs & 10τ is required to
clearly resolve a mode. In this case, one can measure the mode linewidth and hence obtain the
observational value of the mode damping rate.

For sake of simplicity, we model all modes by Lorentzian profiles in ours theoretical power spec-
tra. The parameters of the Lorentzian (the height H, the full-width at half maximum Γ and the
frequency of the peak) and their link to the oscillation mode properties are presented in Fig. 4.6
and discussed hereafter.

mode frequency ν (µHz)

Γ = η/π = 1/πτ (µHz)
Linewidth

Height H
Eq. 4.7

Figure 4.6: Lorentzian profile of a resolved solar-like oscillation mode. The area under the peak
gives the amplitude of the mode.
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Height of a mode

Assuming that a mode is resolved if its lifetime (τ) is much shorter than half the duration of
observation, i.e. τ � Tobs/2, the height of this mode is given by (e.g. Lochard et al. 2005)

H = A2(R)τ, (4.5)

and for unresolved modes τ � Tobs/2

H∞ = A2(R)Tobs/2, (4.6)

where A(R) is the amplitude of the oscillation (given by Eq. 3.138), not including the disk inte-
gration factor. These formulae are strictly correct in the limit cases, when the lifetimes are much
longer or shorter than the duration of observations. Both formulae give the same value for the
height in τ = Tobs/2. If we use directly these two formulae (for Tobs ≥ 2τ and Tobs ≤ 2τ) the
resulting function H(Tobs) present an angular point in Tobs/2.

An alternative formulation for the heights of the modes have been proposed by Fletcher et al.
(2006) (see also Chaplin et al. 2009a). It reads,

H =
A2(R)Tobs

Tobs/τ + 2
, (4.7)

which tends to the same value of Eqs. 4.5 and 4.6 when τ � Tobs/2 and τ � Tobs/2, respectively,
and interpolate the heights smoothly between these two extreme cases. The main difference be-
tween Eq. 4.7 and Eqs. 4.5, 4.6 concerns the region where the observation time is of the order
of the mode lifetime. With Eq. 4.7 the height of the mode is only half its maximal height if
τ = Tobs/2. More observational times is thus required to fully resolve a mode and, for it, to
reach its maximal height. All our power spectra are computed using this latest description of
the height (i.e. Eq. 4.7).

Before comparing observational and theoretical power spectra, it is worth mentioning that the
relation between amplitudes and heights depends on whether we deal with a two-sided or a
single-sided power spectrum. In the first case, the normalisation is such that the integral of the
spectrum from −∞ to +∞ gives,

A =
√
πΓH. (4.8)

With a single-sided power spectrum we have

A =
√
πΓH/2. (4.9)

Here we consider a two-sided power spectrum, which is a different convention from the one used
in Chaplin et al. (2009a).

Computation of theoretical power spectra

For sake of simplicity, we model all our theoretical power spectra with a Lorentzian for each
mode (whether or not they are resolved). To have a clear view on the different types of modes,
we have represented each mode individually in the power spectrum in the top panel of Fig. 4.4.2.
A more realistic power spectrum is the result of the sum of the contributions of all the modes at
a given frequency and is presented in the bottom panel of Fig. 4.4.2.
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Figure 4.7: Theoretical power spectra obtained for a 1.5M� RGB model assuming Tobs = 1 year.
Top: Each mode is represented individually. Bottom: Sum of the contribution of all the modes
at a given frequency. The heights of the peaks are given in (m/s)2/µHz.
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Chapter 5

Impact of the TDC treatment on
main sequence linewidths

In this chapter, I discuss the effects of the time-dependent treatment of convection on the theo-
retical mode linewidths. The first section (Sect. 5.1) focus on the main parameter of the TDC
treatment: the complex free parameter β. I will discuss its effect on mode linewidths and how
it is constrained from observed linewidths. In the second section (Sect. 5.2), I present the effect
of the other parameters and hypotheses of the TDC treatment on mode linewidths. This is nec-
essary, since the tuning of the free parameter β is not enough to reproduce all the observations
(as we will see in this chapter).

5.1 Constraints on the TDC β parameter

As shown in Sect. 4.3, the three criteria we use to constrain β (i.e. the absence of non-physical
oscillations, the frequency of maximum power and the radial mode linewidth at this frequency)
can provide a large zone of acceptable values for this parameter. However, small changes of β
can lead to non negligible changes in the theoretical linewidths (e.g. in the position, values and
shape of the plateau of the damping rates). To some extent, these changes can be predicted,
following a local behaviour of the damping rates with β (see Sect. 5.1.1). Such local behaviour
will help us to search for optimised value of β in order to reproduce the observed Γmax - Teff

relation (in Sect. 5.1.2) and to fit the observed linewidths of Kepler main-sequence stars (in
Sect. 5.1.3). The study of the local behaviour of the damping rate is necessary for an efficient
search of optimised values of β. Indeed, given the non-linearity of the problem and the presence
of local minima, automated search of an optimised value of β (e.g. with a merit function) could
be not efficient enough and/or very time consuming.

5.1.1 Local behavior of the damping rates around the optimized value
of β

By studying the effects of small changes of β in the area of acceptable values, it is possible to
predict how the damping rates will change. It thus allows us to reduce the time spent in the
search of β for various stellar models. Starting with a given β, the impact of changing β with a
small step can be described (in most cases) as follows:
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• Change of the real part of β (Fig. 5.1 left panel): a small increase of <(β) shifts the
position of the minimum of ηI toward higher frequencies and the damping rates around
this minimum to higher values (the stability of these modes is increased).

• Change of the imaginary part of β (Fig. 5.1 right panel): a small increase of =(β) tends to
decrease the damping rates of the plateau (these modes become less stable) without change
of the position of the minimum of ηI.

We note that the damping rates, away from the plateau, are just a bit affected by these changes
of β. We have obtained these general trends in all the models studied during this thesis. We also
note that the sensitivity of the damping rates to a modification of β depends on the evolutionary
status of the model. Red-giant theoretical damping rates are more sensitive to β than the ones
of main-sequence stars (see the effect of small changes of β on RGB lifetimes in Fig. 6.10).

With this local behaviour of the damping rates with β, we can finely adjust the shape of the
plateau around νmax. When the frequency of the plateau is obtained at the desired value (the
value of νmax derived from the scaling relation) by adjusting the real part of β, we can adjust
the value of the linewidth at νmax with the imaginary part of β by changing the depth of the
plateau. These results also show the limit of theoretical computations. For a given frequency
of the plateau, changes of β do not allow us to obtain a deep plateau with a high value of the
damping rates (and reciprocally).
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Figure 5.1: Effect of small changes of β on the damping rates of a main sequence model (M =
1.2M�, νmax ' 2004 µHz). Left: change of the real part of β. Right: change of the imaginary
part of β. Values of β are given in the legend.
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5.1.2 The Γmax - Teff scaling relation
The effect of β (Sect. 5.1.1) on the damping rates shows that for a given νmax we can obtain a
range of values for the damping rate at νmax. To better constrain this parameter we thus need, at
least, the value of the damping rate at νmax. We have already mentioned (in Sect. 3.5.1) that this
value follows a scaling relation with the effective temperature. This relation was deduced from
CoRoT and Kepler observations (Baudin et al. 2011; Appourchaux et al. 2012) as reproduced in
Fig. 5.2.

I have searched to reproduce this relation for stellar equilibrium models on evolutionary tracks.
First, I searched, for models of 1M�, values of β that gave Γmax around the observed ones (red
circle on Fig. 5.2) for main-sequence and early subgiant stars. The resulting values of β are given
in Fig. 5.3 and seem to follow two linear relations with νmax in the main-sequence and in the
subgiant phase. To test the impact of the mass on theoretical linewidths and on the β − νmax

relations, I have also searched values of β for a 1.2M� evolutionary sequence laying in the ob-
served linewidths range (green circles in Fig. 5.2). The values of β obtained do not follow the
relation found for the 1M� sequence in the β− νmax plane. Nonetheless, they still follow a tight
relation between β and νmax (see Fig. 5.3 ) so it is again possible to find good values of β for
additional models on this sequence by extrapolation from the β obtained for the first models of
the corresponding evolutionary phase.

We see in Fig. 5.2 that we have been able to reproduce the typical observed linewidths of main-
sequence and subgiant stars adjusting only β. The situation is a little more complex for red-giant
stars (see Sect. 6.3.2). The dispersion of the linewidths in this figure is linked to the evolutionary
stage and the mass of the stars.
From these results (see Fig. 5.3), we see that it does not seem to exist a simple formula that can
give directly an optimised value of β. However, for a given evolutionary phase, it is possible to
extrapolate values of β on an evolutionary sequence. It will be interesting to extend this study
to other masses and to test the impact of other stellar parameters (such as the metallicity, ....)
in order to see if it is possible to obtain a grid of values of β which could be used in future
theoretical computations. Such computations may also help us to better understand the physics
hidden behind this free parameter.
Finally, adjusting only β is a valid approach for studying large samples of main-sequence and
subgiant stars since it allows us to reproduce the Γmax−Teff scaling relation. In these evolutionary
stages, we can also use some β − νmax relations to study a given evolutionary sequence. For the
study of specific stars for which the linewidths of all observed modes are available, we have to
search more carefully the optimised value of β (and maybe of other TDC parameters) in order
to reproduce the observations. This will be discussed in the next sections.
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Figure 5.2: Theoretical linewidth for 1M� (red) and 1.2M� (green), MS to RGB stars. Observed
linewidths from Appourchaux et al. (2012).
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Figure 5.3: Values of the real part and imaginary part of β found for models of 1M� (in red) and
1.2M� (in green). Red lines indicate the fits obtained for the 1M� models in the main-sequence
and in the subgiant phase.
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5.1.3 Fit of four Kepler main-sequence star linewidths
In Sect. 5.1.2, the only constraint for the search of the optimised value of β was the typical
linewidth of the radial mode at νmax. In this section, we search optimised value of β when more
constraints are available. Our goal is to make a quantitative comparison between theoretical and
observed linewidths in order to test and constrain even more the TDC treatment.
Appourchaux et al. (2012, 2014) have measured the linewidths of radial modes for various main
sequence stars observed by Kepler. The equilibrium structure of some of these stars have been
modelled by S. Deheuvels (private communication). The main parameters of the equilibrium
models of these stars, as well as, the values of β are listed in Tab. 5.1. We present here the
results of our search of β to fit the observed linewidths of four of these stars. Since we have not
only the value of the linewidth around νmax but also the shape of the plateau, the optimised
value of β is much more constrained that it was in Sect. 5.1.2.

The theoretical and observed linewidths are presented in Fig. 5.4. We see that, adjusting only
β, we have been able to reproduce pretty well the observed linewidths. Differences between the-
oretical and observed linewidths can appear away from νmax. Smaller error bars, as well as more
values of observed linewidths at lower frequencies should give us a more precise view on these
differences. For KIC 8694723, discrepancies between observed and theoretical linewidths appear.
The reason of such differences is still unclear and an extended study, with a larger sample of
stars is needed. We could only note that this star is the less metallic and the one with the
lower νmax of the four studied stars. Such study could also allow us to investigate which stellar
characteristic and/or physical process could be at the origin of this difficulty in the modelling
of these linewidths. This would give us more insight on the interaction between convection and
oscillations.

Even with all these constraints, and a precise search of an optimised value of β, the observed
linewidths are not perfectly reproduced by our theoretical computations. We will thus test the
effects of others TDC parameters on theoretical linewidths in the next section.
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KIC number Mass (M�) Radius (R�) Teff(K) logL/L� Z/X νmax(µHz) β
6116048 1.06 1.2392 6030.2 0.2606 0.015 2062 −1.75− 1.18i
8694723 1.12 1.5154 6488.5 0.5626 0.008 1402 −1.79− 1.98i
9139151 1.06 1.1145 6114.2 0.1926 0.025 2519 −1.64− 1.25i
10454113 1.22 1.2628 6141.0 0.3087 0.018 2268 −1.55− 1.25i

Table 5.1: Models parameters of 4 MS Kepler stars

Figure 5.4: Observed and theoretical linewidths for 4 Kepler main-sequence stars. The charac-
tersitc of the equilibrium models are given in Tab. 5.1. The theoretical linewidths are fitted to
the observed ones by adjusting the free complex parameter β.
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5.2 Additional changes in the TDC parameters and hypoth-
esis

Based on the results obtain for the MS Kepler star KIC 9139151 in the previous section, I have
performed tests on the impact of the other parameters and hypotheses involved in the treatment
of the interaction between convection and oscillations. This will allow us to determine, beside
β, which TDC hypotheses can have an impact on the theoretical linewidths and if observational
constraints can help us to discriminate between different hypotheses; and to better understand
some physical processes and the proper way to model them.

5.2.1 Non-local parameters
As seen in Sect. 4.2, our non-adiabatic code uses a non-local treatment of the convection with
two parameters a and b (linked respectively to the description of the convective flux and of the
turbulent pressure, see Eq. 3.127). By default those parameters are obtained from a 3D solar
simulation as performed by Dupret et al. (2006a). In this section, I test the impact of a change
of these parameters. Hydrodynamic simulations for solar-like and red-giant stars seem to favour
an almost constant value of b (R. Samadi, private communication). We thus test the impact of
a change of a and then of a change of both a and b. The tests are performed by doubling the
default value for these parameters (i.e. tending to a more local description).

When changing the non-local parameters a and b, we have to find a new value for β. The one
obtain in Sect. 5.1.3 does not allow us to reproduce a plateau of the damping rates at νmax and
can even lead to unstable modes. The new values of β found are far from the original ones. They
allow us to obtain a minimum of ηI around νmax but the eigenfunctions of the modes present
non-physical short-wavelength spatial oscillations (CW is smaller than the original one). The
resulting linewidhts are presented in Fig. 5.5.

These results show the important effect of the non-local parameters on theoretical linewidths and
eigenfunctions. When we double only a (Fig. 5.5, top panel), we tend to a more local description
of the convective flux while not changing the description of the turbulent pressure. Even with
the change of β the theoretical linewidths do not reproduce correctly the observed ones. They
are globally smaller than the observed ones. When we double both a and b (Fig. 5.5, bottom
panel), we find smaller linewidths away from νmax, but in good agreement with the observed ones.

This shows the importance of the ratio between these two parameters for theoretical linewidths.
However, these more local descriptions also lead to more spurious oscillations in the eigenfunc-
tions and thus strengthen the use of the values of a and b derived from 3D simulations (i.e.
a = 10 and b = 3).
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Figure 5.5: Theoretical linewidths for KIC 913915. Red curves correspond to a = 10,b = 3
(corresponding to the results presented in Sect. 5.1.3). The blue curves are obtained by varying
the non-local parameters.
Top: a = 20, b = 3, β = −2.60− 0.80i gives CW = 1.5 · 10−2 at νmax

Bottom: a = 20, b = 6, β = −2.50− 0.80i gives CW = 1.9 · 10−2 at νmax
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Figure 5.6: Theoretical linewidths for KIC 9139151 (the red curves correspond to the TDC
treatment described in Sect. 4.2.1). The blue curves are obtained with δ`m/`m = dHP /HP .
Top: β = −1.64− 1.25i gives CW = 9.3 · 10−2 at νmax

Bottom: β = −1.60− 1.15i gives CW = 7.3 · 10−2 at νmax
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5.2.2 Perturbation of the mixing-length
As stated in Sect. 3.2.6 there is already two equations for the perturbation of the mixing length
implemented in our code. We test here the impact of these formulae on theoretical linewidths.
One simply relates the perturbation of the mixing length to the perturbation of the pressure scale
height (Eq. 3.124, blue curves in Fig. 5.6). The other (Eq. 3.125, the standard one used in this
thesis) introduces a factor 1/(1 + (ωτc)

2. This represents the assumption that the perturbation
of the mixing length becomes negligible when mode periods are much smaller than the lifetime
of convective eddies.

We see in Fig. 5.6 that it is not possible to discriminate between the two forms of the perturbation
of the mixing length used. Indeed, a small change of β is sufficient to recover the linewidths
obtained previously (see Fig. 5.6, bottom panel). It will be interesting to look if this small
effect can be generalised to other observed stars, as well as to test other formulations for the
perturbation of the mixing length (e.g. the ones proposed by Cowling 1935; Boury et al. 1964;
Unno 1967; Unno et al. 1989).

5.2.3 The anisotropy factor
I recall that the anisotropy factor is defined by:

A =
< v2

r >

< v2
θ + v2

φ >
, (5.1)

where vr, vθ, vφ are the radial, longitudinal and azimuthal components of the velocity of the
convective elements. Usually, we assume an isotropic turbulence such as A = 1/2.
To test the effect of the anisotropy on theoretical linewidths, we try A = 1/4 and A = 1 (see
Fig. 5.7). For main-sequence stars, we find theoretical linewidths inside the error bars in both
case without changing β and keeping a good value for CW (i.e. avoiding non-physical spatial
oscillations). At constant β, an increase (respectively a decrease) of the anisotropy factor leads
to a global increase (respectively a decrease) of the theoretical linewidths. We can also find
theoretical linewidths closer to the original ones with only a small adjustment of the β parameter.
We will see in Chap. 6 that the anisotropy effect is more marked for red-giant stars. For main-
sequence stars, given the error bars and the combined effects of the anisotropy and β, it is difficult
to conclude on the value one should adopt for this parameter. 3D hydrodynamic simulations of
main-sequence and red-giant stars show that this parameter varies approximately between 2.5
and 0.10 from the bottom to the top of these simulations. It is thus unclear if it is reasonable
to keep a constant A in the TDC treatment; and even if kept constant if we should use a mean
value of A or the value of A given by 3D simulations in the region where the convective damping
is the most efficient.

For main-sequence stars, we are able to fit the observed linewidths with different values of the
anisotropy factor. Thus, for these evolutionary stages, we cannot conclude on the best value
to use. For the red-giant models, we will find in Chap. 6 that A = 1/4 allows us to better
reproduce the typical observed linewidths of red-giant stars. A specific study, including various
prescriptions for the anisotropy and comparisons to 3D simulations and observations, is needed
for a better modelling of the anisotropy effect on solar-like oscillations.
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Figure 5.7: Theoretical linewidths for KIC 9139151 (the red curve correspond to the TDC
treatment describe in Sect. 4.2.1). The blue curves are obtained by varying the anisotropy
factor.
Top: A = 1/4, β = −1.64− 1.25i gives CW = 8.3 · 10−2 at νmax

Bottom: A = 1, β = −1.64− 1.25i gives CW = 8.5 · 10−2 at νmax
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Conclusion

The complex parameter β is the main free parameter in the time-dependent treatment of the
convection that significantly affects theoretical linewidths. From comparisons to observations and
with tests of the impact of other TDC parameters, we have seen that, for main-sequence stars,
adjusting β individually for each stellar model (or extrapolating it for models in an evolutionary
sequence) is enough to reproduce the observed linewidths. We have strengthened the use of
non-local parameters derived from 3D simulations, for it allows us to fit the observed linewidths.
Since the effect of the description of the different formalisms implemented for the perturbation
of the mixing-length is small, we cannot conclude on the one that should be adopted. The effect
of the anisotropy factor is more important but remains in the error bars for the main-sequence
star studied here. Detailed studies including a larger sample of stars (at different evolutionary
stages) with observed linewidths (with small error bars), as well as various formulations of these
parameters, are needed to better understand and constrain these parameters and the interaction
between convection and oscillations. In the small sample of main-sequence stars studied here, it
appears one case where significant differences between observed and theoretical linewidths appear
away from νmax (a similar result is also found for the subgiant star studied in Chap. 7). The origin
of such discrepancies is still unclear and investigations on theoretical and observed linewidths for
a larger sample of observed stars (including more evolved stars) may help to understand them.
Such studies could bring more information on the convection-oscillations interaction process.
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Chapter 6

Theoretical power spectra of
mixed-modes in low-mass red-giant
stars

Observed red-giant power spectra display a wide range of morphologies and complexities. In
some power spectra, we observe a lot of mixed-modes between two radial modes and in other
only few are detectable (see e.g. Chaplin, Miglio 2013). In some cases, the heights of the mixed-
modes are of the order of the radial ones while in other cases they cover a range between the
height of radial modes and the noise level. Mosser et al. (2012a) have also remarked a family of
stars in which the dipole modes (acoustic- and gravity-dominated) have all very small heights
compared to radial modes. We denote them as depressed dipole modes.

In this chapter, we study the impact of stellar evolution on solar-like oscillation properties, and
consequently on the power spectrum. This will allow us to understand, from a theoretical point
of view, various morphologies of red-giant power spectra through the evolution of the linewidths,
amplitudes and heights of the mixed-modes. First, we will follow the evolution of a 1.5 M� star
from the red-giant branch to the helium-burning phase and the resulting changes in theoretical
power spectra. We will then consider models of different masses to extend to the typical mass
range of observed red giants the results obtained for the previous evolutionary sequence. Finally,
we will have a closer look at some particular features present in power spectra of stellar models
close to the helium-flash.

6.1 Power spectrum evolution from the bottom of the RGB
to the horizontal branch

Motivated by the results of Dupret et al. (2009) and the contribution of CoRoT and Kepler
observations (see e.g. Chaplin, Miglio 2013, and references within), our objective is to have a
closer and more detailed look at the evolution of power spectra on the red-giant branch. I am
particularly interested by the evolution of the detectability of mixed-modes in theoretical power
spectra. Determining theoretical detectability limits is interesting for the preparation of ob-
servation programs and the targets selection to predict the observation time needed to detect
mixed-modes and thus to obtain information on the stellar core.
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Dupret et al. (2009) have already shown the impact of the radiative damping on mixed-mode
heights. While Dupret et al. (2009) studied models of 2 and 3 M�, we will consider here models
of lower masses (around 1.5 M�) more representative of the CoRoT and Kepler observed red
giants. Moreover, Dupret et al. (2009) computations did not reproduce the bell shape of the
power spectra, mainly due to their choice for the TDC parameter β. The more careful approach
developed in Chap. 4 will thus give more accurate results for theoretical power spectra.

6.1.1 Non-adiabatic effects on mixed-mode heights
The shape of a power spectrum is mainly determined by two contributions: the modulation of
inertia through mode trapping and the radiative damping. To discuss this shape, we describe
the behaviour of the ratio between the height of a g-type mode (Hg) and of a p-type mode (Hp).
From Eqs. 3.138 and 4.7, we have (

Hg

Hp

)
=

(PRI)g
(PRI)p

ηpI
2
p

ηgI2
g

fg
fp
, (6.1)

where, according to Chaplin et al. (2009a), we could take fg,p = (Tobsηg,p + 2)−1. In the follow-
ing, we derive this height ratio in the two asymptotic cases, when τ � Tobs/2 and τ � Tobs/2,
to discuss the main physical properties of the modes that can affect this ratio and to help the
interpretation of numerical results (see Sect. 6.1.3).

Assuming that the modes are resolved (i.e. Γ � Tobs/2), fg/fp in Eq. 6.1 tends to ηp/ηg and
the height ratio is given by (

Hg

Hp

)
res

=
(PRI)g
(PRI)p

(
(ηI)p
(ηI)g

)2

, (6.2)

where PRI only depends on the eigenfunction of the mode near the surface, and thus does
not depend on the type of modes at a given frequency (see Samadi, Goupil 2001), because the
stochastic excitation is only efficient close to the surface (so for a p and g mode of the same
frequency we have (PRI)g ' (PRI)p). Taking into account the equation of the damping rate
(Eq. 3.63) and the decomposition of the work integral into the contribution of the core (Wc) and
of the envelope (We) in Eq. 3.63, we can rewrite the height ratio as(
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, (6.3)

where we have used (We)g ' (We)p since the eigenfunctions of p-type and g-type modes are very
similar in the envelope. We also neglect the core contribution in the work integral of a p-type
mode. We note from this formula that, when the radiative damping of g-type modes is negligible
compared to the convective damping, the heights of g-type modes are the same as the height of
p-type modes if they are resolved. Increasing the radiative damping clearly decreases the height
ratio.

If we assume now that the p-type mode is resolved and the g-type mode is not resolved (which
is often the case in observed power spectra), the situation is different, and fg/fp in Eq. 6.1 tends
to ηpTobs/2 so (

Hunres
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2
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, (6.4)
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following the same development as in Eq. 6.3, we find(
Hunres
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)
'
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2
. (6.5)

We see from this formula that the height ratio of unresolved modes depends on both their inertia
and radiative damping, and on the duration of observations.

We see from Eq. 6.3, that there are clearly two contributions, the inertia and the non-adiabatic
effects (i.e. the ratio between the work in the core and the work in the envelope), that determine
the shape of the power spectrum. For unresolved modes, the duration of observation also plays
an important role in the morphology of the power spectrum. How the inertia depends on the
models is explained in several other studies (e.g. Montalbán, Noels 2013) and can be understood
through simple asymptotic derivations (see e.g. Goupil et al. 2013, and Eq. 3.61). The work due
to non-adiabatic effects for p-type modes can be estimated with scaling relations (Belkacem et al.
2013). The only remaining unknown is the ratio of the work integrals, which will be discussed
in the following sections. This shows the importance of non-adiabatic computations to fully
understand the links between the different power spectra morphologies (power spectra rich or
poor in mixed-modes) and the inner properties of the stars.

6.1.2 Red-giant models and general tendencies
We first consider 1.5 M� models that are typical of CoRoT and Kepler observed red-giant stars
from the bottom of the red-giant branch to the helium core-burning phase (see models A to D
in Table 6.1 and Fig. 6.1). All these models are computed with the ATON code as described in
Sect. 4.1.1. For each model we give the global seismic parameters: the large frequency separation
(∆ν), the frequency of maximum oscillation power (νmax), and the asymptotic period spacing
(∆Π). An adiabatic analysis of these models is presented in Montalbán, Noels (2013). In
addition, we have selected models between 1 and 2.1 M� (see models E to G in Table. 6.1 and
Fig. 6.1) at an evolutionary stage similar to model B but with different masses. The criteria for
choosing these models, as well as the consequences for theoretical power spectra are discussed in
Sect. 6.2.

Model Mass [M�] Radius [R�] ∆Π1 [s] ∆ν [µHz] νmax [µHz]
A 1.5 5.17 79.7 14.1 190
B 1.5 7.31 70.5 8.4 97
C 1.5 11.9 57.2 4 37
D 1.5 11.9 242.5 4 37
E 1.0 6.3 76.7 8.5 88
F 1.7 8.1 68.6 7.7 90
G 2.1 10.5 88.0 5.7 66

Table 6.1: Global parameters of our models: the large separation ∆ν and the frequency of
maximum power νmax are computed using the seismic scaling relations (e.g. Mosser et al. 2010b;
Belkacem 2012). The period spacing ∆Π1 is computed using the asymptotic expansion (e.g.
Tassoul 1980).
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With the objective to produce theoretical power spectra compatible with the observed ones, we
want first to obtain a maximum of mode amplitudes in agreement with νmax given by the scaling
relation (Eq. 3.160). We have explained in Sect. 4.3 that the main TDC parameter affecting our
theoretical predictions is the free complex parameter β. In order to reproduce the bell-shape of
the power spectra, we have to ensure the presence of a minimum of the product of the damping
rate by the inertia at νmax (by adjusting β, as prescribed by Belkacem et al. 2011). We see in Fig
6.2, that with a unique value βRGB = −0.106−0.945i, we can reproduce a minimum of ηI around
the frequency νmax predicted by the scaling relation for all our RGB models (see also Sect. 4.3).
For the helium-burning model, we have to take another value βRC = −0.130 − 0.950i. We also
assume an isotropic turbulence. We thus use these values in the non-adiabatic computations for
the models we present here. We will discuss the effect of the choices made in the TDC parameters
for a qualitative comparison with observed power spectra in Sect. 6.3.2. The synthetic power
spectra are modelled following the procedure detailed in Sect. 4.4. They are computed assuming
1 year of observations. Even if longer duration of observations are now accessible from Kepler
data, we use this value because it allows us to clearly distinguish and discuss the different type
of modes (fully resolved or not). We do not consider the noise background (which can limit
the detectability of mixed modes). We will nonetheless discuss the effects of an increase of the
duration of observations for each model in Sect. 6.1.3. We therefore consider that the detectability
of mixed modes can be derived from the appearance of peaks in our synthetic power spectra.
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Figure 6.1: Evolutionary tracks in the Hertzsprung-Russell diagram of our models. Selected
models are represented by dots. Blue dots correspond to models of a 1.5 M� star at different
ages (on the red-giant branch and on the horizontal branch). Black dots correspond to models
with the same number of mixed modes over a large separation as model B.
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Figure 6.2: A unique value of β (βRGB = −0.106− 0.945i) can reproduce the minimum of ηI at
νmax (in dashed line) for various RGB models.

122



6.1. POWER SPECTRUM EVOLUTION FROM THE BOTTOM OF THE RGB
TO THE HORIZONTAL BRANCH

W
or

k
In

te
gr

al

- 11

10
- 10

10
- 9

10
- 8

10
- 7

10
- 6

Wenv
Wcore l=1
Wcore l=2

10

9 10 11 12 13 9 10 11 12 13

9 10 11 12 13

Model A Model B

10
- 9

10
- 8

10
- 7

10
- 6

10
- 5

10
- 4

10
- 3

10
- 2

Wenv
Wcore l=1
Wcore l=2

Model C

10
- 10

10
- 9

10
- 8

10
- 7

10
- 6

10
- 5

10
- 4

Wenv
Wcore l=1
Wcore l=2

W
or

k
In

te
gr

al

Figure 6.3: Core and envelope contributions to the work integral for the three RGB models
of 1.5M�. The work is normalised by GM2/R. Unlike the envelope contribution, the core
contribution depends on the trapping and on the angular degree of the mode.
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As discussed in Sect. 6.1.1, the shape of the power spectra is mainly determined by the inertia
and the ratio between the convective and radiative contributions to the work integral. This ratio
strongly affects the lifetimes and the heights of mixed-modes. The core and envelope contribu-
tions to the work integral of Models A to C are presented in Fig. 6.3, while the corresponding
mode lifetimes and theoretical power spectra are displayed in Fig. 6.5. When the star evolves on
the RGB, the radiative contribution to the work integral increases up to overcome the convective
contribution. This corresponds to the increase of the radiative damping, which is expected to
occur due to the increase of the core density.
As we will detail in the next section, these different behaviours of the damping rates will have
a strong impact on the theoretical power spectra. As can be seen in Fig. 6.4, our theoretical
predictions succeed in reproducing the main tendencies of power spectra along the evolution
on the red-giant branch: the frequency range of solar-like oscillations goes to lower frequency,
the large separation and the period spacing decrease, and the height of the modes in the power
spectrum increases. Fig. 6.4 also summarises different types of power spectra we will discuss:
from power spectra with few mixed-modes at the bottom of the RGB, to power spectra with
numerous mixed-modes and finally without any visible g-type mixed-modes. We have mentioned
before that among the large diversity of observed red-giant power spectra some show depressed
dipole modes. We should note that in all the models we have studied, we never found such
behaviour of the mixed-modes.
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Figure 6.4: Power spectra of the three RGB models (A, B, and C from right to left) of 1.5M�,
summarising the global evolutionary tendencies on power spectra. The heights of the peaks are
given in (m/s)2/µHz.
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6.1.3 Detailed description of the evolution of a theoretical power spec-
trum

In this section, we discuss the changes in the power spectrum along with the stellar evolution.
We focus on the changes in the damping rates and on the height of mixed modes, as well as the
effect of increasing the duration of observation. We consider the 1.5M� models as described in
Sect. 6.1.2.

Model A: At the bottom of the red-giant branch, the radiative contribution to the work
integral (Eq. 3.65) is small for all modes in comparison with the convective one (Fig. 6.3). In
addition, the convective work is a smooth function of the frequency and thus, as already pointed
out, is independent of the mode trapping. From the damping rate equation (see Eq. 3.63), we
see that only the inertia is responsible for the observed modulation of dipole and quadrupole
mode lifetimes (Fig. 6.5, first panel).
In this model, all dipole mixed modes are resolved (except for low frequencies) and have am-
plitudes that are high enough to be detected. Since the radiative damping is always negligible,
their heights are close to those of p-dominated modes (see Eq. 6.3). This spectrum is more
regular than the spectrum corresponding to Model A in Dupret et al. (2009). Some quadrupole
mixed-modes, close to the p-dominated ones, are also visible in the synthetic power spectrum
(Fig 6.5, first panel).
Increasing the duration of observations would not change the dipole mode profiles. Indeed, since
those modes are resolved, their heights no longer depend on the duration of the observations.
Thus, at this early stage on the red-giant branch, we already find a clear structure in the power
spectrum for dipole modes, allowing us to derive a period spacing. Conversely, as the observation
duration increases, the number of visible quadrupole modes increases, too. With four years
of observation, some quadrupole modes are resolved (more precisely quadrupole modes with
lifetimes lower than 700 days) with heights comparable to the p-dominated modes. Moreover,
the height of some quadrupole unresolved modes increases so as to become visible in the synthetic
power spectrum. Finally, a very long time of observations (typically about 27.5 years) is required
to have all quadrupole modes resolved, with all heights similar to the heights of the radial ones.
In this model, we also consider the behaviour of the ` = 3 modes (not shown in the figures).
At this early stage on the RGB, they already undergo a strong radiative damping so that only
the modes trapped in the envelope are visible in the power spectrum (observations longer than
a hundred years would be required to see some g-dominated ones). The increase in the radiative
damping during the ascension of the red-giant branch will prevent from detecting ` = 3 g-types
modes higher on the RGB. We thus predict that the detectable ` = 3 modes in red giants are all
p-type modes.

Model B: Higher on the red-giant branch, the radiative contribution to the work integral is
similar to the convective contribution for quadrupole modes (Fig. 6.3). This explains why the
lifetimes for low-frequency quadrupole modes level off (Fig. 6.5, second panel). Moreover, the
coupling between the two cavities decreases due to the contraction of the core and the expansion
of the envelope. Indeed, when the star evolves, the number of mixed-modes by large separation
increases, leading to an increase in the inertia ratio between a p-type and a g-type mode. Because
of these two effects, ` = 2 mixed modes are no longer visible in our synthetic power spectrum.
Even when increasing the duration of observation above twice the lifetime of quadrupole modes
(corresponding to approximately 10 years of observation), they would still not be detectable due
to their significant radiative damping in the core.
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For dipole modes, the convective contribution is still the dominant part of the work integral so
that their lifetimes are still clearly modulated by the inertia. Dipole modes strongly trapped in
the core are not resolved and have smaller amplitudes. Moreover, as shown in Fig. 6.5 (second
panel), their detection would be made difficult by the overlapping with radial modes and p-
type quadrupole modes that exhibit large linewidths. In Sect. 6.3.2, we detail the effect of the
TDC parameter β on the lifetimes of the p-type modes (see also Chap. 5). Other values of this
parameter could lead to longer lifetimes, hence to narrower peaks (see Fig. 6.12). Nevertheless,
increasing the duration of observations will increase the heights of dipole modes. Taking four
years of observation would allow us to have almost all ` = 1 modes resolved, and in this case,
their heights are very similar to the p-dominated non-radial modes.

Model C: For a more evolved model, the radiative damping continues to increase and the
coupling between the two cavities becomes very small owing to the expansion of the envelope
and contraction of the core. This implies that the lifetimes of all modes, except modes strongly
trapped in the envelope, are dominated by the radiative damping (Fig. 6.5, third panel). This
damping is high enough to obtain lifetimes of g-dominated quadrupole mixed-modes lower than
the dipole ones. Consequently, only p-dominated modes are detectable (Fig. 6.5, third panel).
In this model, increasing the duration of the observation even more (even with Tobs > 2τ for
all modes) does not lead to detectable mixed-modes, because of the strong radiative damping
(much more important than the convective one, see Fig. 6.3).

Model D: Further along in the evolution, after the helium-flash, the star begins to burn helium
in its core. This model presents lifetimes similar to those of model B (Fig. 6.5, fourth panel).
After the helium flash, the core has expanded and the envelope contracted leading to a decrease
in the radiative damping of mixed-modes and a stronger coupling between the p and g cavities.
The appearance of a convective core also contributes to this decrease. The detectability of mixed
modes (Fig. 6.5, fourth panel) is very similar to the case of model B . After the He-flash, the
radiative damping of the ` = 3 modes is still too high to observe g-type modes in our synthetic
power spectrum.
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6.1. POWER SPECTRUM EVOLUTION FROM THE BOTTOM OF THE RGB
TO THE HORIZONTAL BRANCH

Figure 6.5: Left : Lifetimes of ` = 0 (red), ` = 1 (blue), and ` = 2 (green) modes in models A,
B, C, and D (from top panel to bottom). The dashed line represents Tobs/2 (with Tobs = 1 year.
Right: Corresponding power spectra. The heights in power spectra are given in (m/s)2/µHz.
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6.2 Generalisation of the results on mixed-modes detectabil-
ity

In the previous section, we have seen that when the stars climb the red-giant branch, the mixed
modes become more difficult to detect until their heights are too low to be visible in our synthetic
power spectra (even if we consider a longer duration of observation to resolve all modes). In the
following lines, we denote ng and np as the number of nodes of a dipole mode in the g- and p-
cavities, respectively. Our analysis of models with the same number of mixed-modes over a large
separation (models E to G in Table 6.1) or, equivalently, a given ratio ng/np shows that they all
exhibit the same behaviour of the lifetimes (Fig. 6.7, left panel). They also present very similar
power spectra (Fig. 6.7, right panel) with the same height ratios of mixed modes. Using the
heights computed in the previous sections (i.e. from the calculations of the damping rates and
of the power injected into the modes by turbulence), we show in Fig. 6.6 a relation between the
height ratio of g- and p-type modes around νmax on the one side and ng/np on the other side,
for fully resolved and partially resolved modes. This relation is more marked in the case of fully
resolved modes. More computations for a larger number of models will be needed to derive a
more precise relation for the relative heights of the modes. There is a higher dispersion between
the models with the same ng/np with only one year for the duration of observations, because
these modes are only partially resolved. In Sect. 6.1.3 we have seen that there is a theoretical
limit on the RGB above which mixed-modes are no longer detectable. The results obtained here
for models with the same number of mixed modes over a large separation allow us to extend the
previous results to other masses. Moreover, we note that the inertia ratio can also be expressed
as a function of ng/np (Goupil et al. 2013). We thus conclude that this ratio is a good proxy for
the shape of power spectra.

8
0.01

2

4

6

8
0.1

2

4

6

8

H
g
/
H
p

605040302010

ng/np

Figure 6.6: Height ratio between a g-type (the ` = 1 with the highest inertia close to νmax) mode
and a p-type mode around νmax as a function of ng/np for all our models. Red crosses represent
the ideal case where all the modes are resolved. Blue squares are for observation durations of
one year.
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DETECTABILITY

Figure 6.7: Left: Lifetimes of ` = 0 (red), ` = 1 (blue) and ` = 2 (green) modes in models E, F,
and G (from top panel to bottom). The dashed line represents Tobs/2 (Tobs = 1 year) . Right:
Corresponding power spectra. The heights in power spectra are given in (m/s)2/µHz.
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Our results on the theoretical power spectra for models along the red giant branch and of different
masses shows that the number of mixed mode over a large separation is a good proxy for the
theoretical detectability of mixed modes. A theoretical evaluation of this proxy is easily obtained
through asymptotic relations. Indeed, from Eq. 3.49 we can express the np close to νmax as
np ' νmax/∆ν, from Eq. 3.54 ng ' 1/(∆Πνmax) and thus ng/np ' ∆ν/(∆Πν2

max). Taking then
the background noise into account, it becomes possible to estimate the detectability of mixed
modes along the red-giant branch. Using this relation, we present in Fig. 6.8 the theoretical
limit for mixed modes detectability (corresponding to ng/np ' 60), which is the level on the
red-giant branch where we are no longer able to see any dipole mixed modes in the synthetic
power spectra even by increasing the time of observation to more than ten years (so that all
modes are resolved).

3.75 3 .7 0 3 .6 5 3 .6 0 3 .5 5

1.01.51.72.1

Figure 6.8: Evolutionary tracks in the HR diagram of all our red-giant branch models. Num-
bers on the top of the tracks indicate the mass of the star (in M�). The color scale indicates
models with the same number of mixed modes by large separation. The red line represents
the detectability limit we have found for the dipole modes (assuming that all modes are fully
resolved).
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6.3 Comparison to Kepler power spectra

6.3.1 The detectability of mixed modes
We present in Figure 6.9 some power spectra obtained with Kepler along with our 1.5M� RGB
theoretical power spectra to show the main tendencies discussed in this paper. Concerning the
height ratios and the limit for the detectability of mixed-modes, we found the same tendencies
as the observed ones. At the beginning of the red-giant branch, dipole mixed modes have heights
that are comparable to the p-type mode heights. It seems, however, that the observed heights
of the mixed-modes (especially for the ones the most trapped in the core) are smaller than our
predictions. A modulation of the heights of dipole mixed-modes appears for the star at the level
of model A. Higher on the RGB, dipole mixed modes are partially resolved, and their heights
present a clear modulation compared to the heights of p-type modes. At the level of model
C, only the p-type modes have significant heights. There are more visible mixed-modes in the
observed spectra, owing to the presence of rotational multiplets, but without any consequence
for their heights and widths.

This confrontation of ours theoretical results to the observations shows that we reproduce pretty
well the different shapes of the power spectra. However, it appears that our p-dominated
mode theoretical linewidths are much larger than the observed ones. This will be discussed
in Sect. 6.3.2.

For comparison, we give in Table 6.2 the conversion factor to obtain the height for the radial
mode at νmax in ppm2/µHz. When the non-adiabatic phase lag is neglected here, it is obtained
using the relation

δL

L
=

4fT − 2

2πνR
V = CfV (6.6)

with fT =| δTeff/Teff | / | ξr/R |. We decided to present our results in radial velocity because
the conversion to bolometric intensity introduces additional uncertainties. Observations (as
presented in Fig. 6.9) show that the typical maximal heights for radial modes on the part of
the RGB studied here are between more or less 9000 and 120000 ppm2/µHz, thus in overall
agreement with our theoretical results.

Model νmax[µHz] C2
f [ppm

2/(m/s)2] H [ppm2/µHz]
A 190 3.6× 103 9× 103

B 97 2.9× 103 2× 104

C 37 2.4× 103 8× 104

D 37 3.2× 103 4× 105

E 88 8.8× 103 4× 104

F 90 12.7× 103 6× 104

G 66 39.1× 103 3× 105

Table 6.2: Conversion factor C2
f from radial velocities to intensity variations for heights around

νmax
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Figure 6.9: Theoretical and observed power spectra of Kepler stars with similar masses (from
top to bottom: 1.44, 1.48, 1.47 M�), ∆ν, and νmax. The heights in theoretical power spectra are
in (m/s)2/µHz. The heights for observed spectra are given in ppm2/µHz divided by a factor
6000 to have scales similar as the theoretical spectra.
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6.3.2 Lifetimes of radial modes on the red giant branch
The main differences between the observed and theoretical power spectra are the widths of the
p-type modes. As discussed in the previous chapter, we often underestimate the lifetimes of red-
giant p modes in our computations. Guided by the various tests on the TDC treatments made
in Sect. 4.3, we search to obtain longer lifetimes, first with a change of β, then with a change
of the anisotropy factor. Indeed, the free parameter β has a strong impact on the theoretical
linewidths (as it can be seen in Fig. 6.10) but this may not be enough to reach lifetimes of the
order of the observed ones.
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Figure 6.10: Theoretical lifetimes of radial modes of model B for different values of β. The
lifetimes corresponding to β used in this paper are denoted by red squares. For this model, the
Γmax - Teff scaling relation (see Sect. 5.1.2) gives lifetimes of the order of 20 days.

We see in Fig. 6.11 (in blue), that we have been able to obtain longer lifetimes, by changing the
value of β between each model. We use respectively for models A, B and C: βA = 1.700−0.700i,
βB = −1.940 − 0.800i, βC = −1.780 − 0.920i. These lifetimes are however a little smaller than
the typical observed ones The test made on the anisotropy factor (see Sect. 3.75) suggest that
A = 1/4 may give a better agreement between theoretical and observed lifetimes. Using this
value for the anisotropy factor and the values of βA, βB , βC given here-above, we obtain lifetimes
(see Fig. 6.11 in green) of the order of the observed ones and in good agreement with the scaling
relation between Γmax and Teff (see Eq. 3.163).
As an example, we present in Fig. 6.12 the resulting power spectra for these changes (of β and
of the anisotropy factor) for model B. Such modifications in the TDC parameters affect the
linewidths of the modes (mainly the p-type modes) but does not change considerably the general
aspect of the power spectra and, in particular, the detectability of g-type mixed-modes.
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Figure 6.11: Lifetimes of radial modes for models A, B and C (from left to right). The lifetimes
from β used in Sect. 6.1 are in red. The blue curves represent the change of β. The green curves
give the lifetimes with the change of the anisotropy factor.
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Figure 6.12: Power spectrum of model B for the TDC parameters β = −0.106− 0.945i, A = 1/2
(top panel), β = −1.940−0.800i, A = 1/2 (middle panel), β = −1.940−0.800i, A = 1/4 (bottom
panel).
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6.4 Particular signature in the theoretical power spectrum
shortly after the helium flash

Shortly after the He-flash, the stellar structure presents remnants of the multiple small flashes.
These remnants will finally disappear, being smoothed, during the evolution on the horizontal
branch. We illustrate such a behaviour with a stellar model, computed with the ATON evo-
lutionary code. It corresponds to a 1.4 M� model with a radius of 11.4 R� and an effective
temperature of 4563 K. For this model, we obtain from scaling relations νmax = 37.8 µHz, and
from Eq. 3.55 the asymptotic period spacing ∆Π1 = 252 s.
In Fig. 6.13, we see some discontinuities of the chemical composition left by the flash. These
discontinuities produce peaks in the Brunt-Vaisälä frequency. The most important discontinuity,
at the bottom of the hydrogen burning shell, also produces a discontinuity in the Lamb frequency
(around log T = 7.42). This chemical discontinuity acts like a partial reflection barrier for non-
radial modes. This is clearly visible when looking at the inertia of the modes. In Fig. 6.14, we
distinguish two types of inertia ranges for dipole modes. This double trapping is also present in
a less extent for quadrupole modes. As expected, this special feature impacts the lifetimes of the
modes. Approximately one over three g-type dipole modes have a small lifetime. The impact is
less marked for the quadrupole modes because of the radiative damping.
The direct consequence of this double trapping is that in the power spectra the visible dipole
mixed modes do not follow the regular pattern presented in the previous section. Only the
modes with small inertia appear in the power spectrum (see Fig. 6.15). Thus, between two
visible g-type dipole modes there is a gap in the power spectrum due to missing modes (the
modes with higher inertias). Such a situation can create a misinterpretation of the observed
power spectrum. Indeed, if we observe a star shortly after the helium-flash we will only see the
modes with low inertia. We thus have to be very careful in the use of such period spacing for
which the asymptotic interpretation is no longer valid.
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Figure 6.13: Propagation diagram of a 1.4M� model shortly after the Helium Flash. The
horizontal black line represents νmax
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Figure 6.14: Top: Inertia of radial and non-radial modes for a model shortly after the helium
flash. g-type mixed-modes are trapped in two different regions. Bottom: Corresponding life-
times, which are also sensitive to the two modes trapping. We note the impact of the radiative
damping for quadrupole modes.
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Figure 6.15: Top: Resulting power spectra, for an helium burning model shortly after the Helium
flash. Only the g-type mixed-modes with low inertia are visible. The purple circles represent the
frequencies of all dipole modes. Bottom: Computed (blue) and asymptotic (red) period spacing
for dipole modes. Accounting for only the visible modes in the power spectrum gives a period
spacing smaller than the asymptotic one.
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Conclusion

Theoretical power spectra of red giants are in good agreement with the observed ones. In
particular, the detectability of mixed-modes seems to correspond to the typical observed power
spectra in this evolutionary phase. A more detailed and extended analysis of this result is needed
to precise the detectability limit, as well as the relation between the height ratios of mixed-modes
and the number of mixed-modes over a large separation. This should be done from both the
observational and theoretical point of view, and for various stellar properties (e.g. to test the
impact of other parameters such as the metallicity, ....).
For the p-type mode linewidths, we have shown that an adjustment of the main TDC free
parameter β is not enough to reach the typical observed red-giant linewidths. However, we have
been able to recover the observed linewidths with a change of the anisotropy factor. Quantitative
comparisons between theoretical and observed linewidths for red-giant stars should help us to
better understand the properties of the interaction between convection and oscillations on the
red-giant branch.
Finally, we have exhibited a particular behaviour of the mixed-modes shortly after the He-flash
that could lead to a misinterpretation of the observed power spectra. It would be very interesting
to observe (and properly identify) such a particular situation which could bring new constraint
on the characteristics of post He-flash stellar interiors.
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Chapter 7

Non-adiabatic analysis of a Kepler
subgiant: KIC 6442183

In this chapter, we intend to perform a full seismic analysis, using non-adiabatic computations,
of an evolved low-mass star, the Kepler subgiant KIC 6442183. Our objective is to provide a
first quantitative test for theoretical predictions on mixed-modes linewidths and amplitudes. We
also want to investigate to which extent these observations can provide additional constraints on
the stellar structure and on the oscillations-convection interaction processes (more precisely on
the damping and driving of mixed-modes).
We present in Sect. 7.1 the different information we already have on this star: the spectroscopic
data, and the oscillation mode parameters (frequencies, linewidths, heights) extracted from pho-
tometric data (from 9 months of Kepler observations). We will also shortly present the previous
studies on this star, made with adiabatic computations.
Given the presence of mixed-modes in the power spectra, we have to adapt the way we search for
the equilibrium models that best fit the observations. The method we have adopted is presented
in Sect. 7.2 with the resulting best fit models. A particularity of our equilibrium models is the use
of computed non-adiabatic frequencies in the fitting process. We will see in Sect. 7.3.1 the impact
of the use of non-adiabatic frequencies. In Sects. 7.3.2 and 7.3.3 we compare the theoretical and
observed linewidths and amplitudes. From these comparisons, we can draw conclusions on the
energetic modelling of the modes as well as predictions on the detectability of mixed-modes.
Finally, in Sect 7.4, we will test these predictions by confronting them to the power spectra
obtained with four years of Kepler observations, which will also bring us additional constraints
on the models.

7.1 State of the Art (Observations and first models)

The Kepler light-curves of KIC 6442183 have been analysed by Benomar et al. (2013) using
Quarters 5 to 7 (9 months) of Kepler observations. They extracted the frequencies, lifetimes
and amplitudes of all the modes (corresponding to ` = 0, 1, 2) in the power spectrum using a
Markov Chain Monte Carlo fitting algorithm. The star is in the subgiant phase and its main
characteristics are given in Table 7.1. Scaling relations show that the mass and radius of the star
are approximately 0.94 M� and 1.60 R�, respectively. We use the values of mode frequencies,
linewidths, and amplitudes as provided by Benomar et al. (2013) to search the corresponding
theoretical equilibrium model.
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Additional constraints are given by spectroscopic observations (Bruntt et al. 2012; Molenda-
Żakowicz et al. 2013). We used the values of Teff , log g and [Fe/H] provided by Molenda-Żakowicz
et al. (2013) as constraints for our models. This choice does not really impact our fitting, since
the effective temperature and metallicity obtained in both studies are very similar (see Tab. 7.1).
The main difference between these two spectroscopic studies is the value of the surface gravity
which is not used as a constraint in our fitting (the value of the large separation is much more
constraining for the fit).

From this first analysis of the power spectra, Benomar et al. (2014) derived observed inertia
ratios between radial and dipole modes (including mixed-modes). They stress that such ratios
can give additional constraints for the modelling and the understanding of the internal structure
of the star. They also provided a first modelling of this star (based on adiabatic computations)
and find that theoretical inertia ratios are in agreement with the observed ones.
Tian et al. (2015), using the same set of observations as Benomar et al. (2013), provided an
independent measure of KIC 6442183 mode frequencies, consistent with the previous determi-
nation. With these frequencies and the spectroscopic observations by Bruntt et al. (2012), Tian
et al. (2015) used a grid based approach to search for theoretical models fitting the observations.
Then, they used inertia ratios between dipole and radial modes (with a particular interest for
mixed-modes) as an additional constraint to discriminate between the different good fit models.
They indeed found that the inertia ratios allow one to more precisely determined the fundamen-
tal parameters of the star. They have also shown that a well chosen frequency combination can
play a similar role as inertia ratio, allowing them to identify the modes with the most g-mode
characteristic.

These theoretical works were based on an adiabatic approach for computing the oscillations.
These works showed that models that fit the frequencies of the mixed-modes also reproduce
their trapping. This comforts us on the validity of mixed-modes modelling.
An additional analysis of this star with 4 years of Kepler observation was also made (Benomar,
private communication). We will discuss in Sect. 7.4 the new asteroseismic constraints brought
by a longer observation duration.

Observations
∆ν (µHz) 65.07± 0.09(a) 64.9± 0.2(c)

νmax (µHz) 1160± 4(a) 1225± 17(c)

Teff (K) 5738± 62(b) 5740± 70(d)

log g(dex) 4.14± 0.10(b) 4.03± 0.03(d)

[Fe/H] −0.120± 0.050(b) −0.11± 0.06(d)

Table 7.1: Global parameters of KIC 6442183 used in our study (a) Benomar et al. (2013), (b)
Molenda-Żakowicz et al. (2013). Alternative values by (c) Tian et al. (2015), (d) Bruntt et al.
(2012).
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Figure 7.1: Observed power spectrum of KIC 6442183 obtained with 9 months of Kepler observa-
tions. The Lorentzian fit of oscillation modes by Benomar (private communication) is presented
in red.

7.2 Finding the equilibrium model of a star with mixed-
modes

Our goal in this section is to find a theoretical model that matches the observational constraints
(i.e. mode frequencies and spectroscopic constraints). This will lead us to make quantitative and
precise comparisons between theoretical and observed linewidths and amplitudes (see Sects. 7.3
and 7.4). These comparisons will give us new insights on the damping and driving mechanisms
in evolved low-mass stars. The equilibrium model is obtained following the procedure detailed
in Sect. 7.2.1 with the CESTAM evolutionary code (see Sect. 4.1). Oscillation computations are
made with the MAD code (see Sect. 4.2).

The presence of mixed-modes in the power spectrum creates particular conditions for the search of
a best-fit model. Standard fitting methods are not useful when mixed-modes are present. Indeed,
avoided crossings occur on a short time-scale compared to the usual time steps in evolutionary
codes. Thus, for a grid approach it would require to compute an enormous number of models,
given that we have to produce models spanning a large range of stellar parameters with a very
small time step between each other. A direct Levenberg-Marquardt approach is also problematic
because it is difficult to find an appropriate time step. The presence of mixed-modes makes also
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the classical technics, using large and small frequency separations (or any frequency combination
or ratio), inadequate. Moreover, when dealing with mixed-modes, one should be aware that it is
highly probable that all the oscillation modes of a star, of a given angular degree, may not lead
to an observable peak in the power spectrum. Thus, we can expect to have, in a given frequency
range, more theoretical modes than observed ones.

7.2.1 Fitting process
Mass and age: Deheuvels, Michel (2011) proposed a solution for the search of the best-fit
model of a star with mixed-modes by constraining the stellar age and mass in the fit. Considering
only one mixed-mode, for a given set of parameters, there is only one value for the mass and
age that allows one to simultaneously fit the mean large separation and the frequency of the
mixed-mode. This search for the mass and age can be rapidly done for various sets of stellar
parameters (such as the mixing-length parameter α, the initial helium abundance Y0, ...) and
physical prescription (metal mixture, overshooting, diffusion ...) allowing one to finally obtain
series of models fitting the large separation and the frequency of the mixed-mode. We adopt this
method to obtain first constraints on the mass and the age of the star.

Levenberg-Marquardt: We then use a Levenberg-Marquardt algorithm (developed by R.
Samadi) to fit the other parameters. An important aspect of our method is to use non-adiabatic
frequencies in the Levenberg-Marquardt algorithm. We discuss here-below (see the paragraph on
the constraints, and Sect. 7.3.1) the interest and specificities of using non-adiabatic frequencies
for the fit. The preliminary results on the mass and age allow us to determine the range of values
allowed for these parameters as well as the sensitivity of the mixed-mode frequency to these
parameters. As a starting point for the Levenberg-Marquardt algorithm, we choose the model
obtained in the previous step that presents the best χ2 when accounting for all the observational
constraints (or at least the same set of constraints that will be used in the Levenberg-Marquardt
algorithm).

Free parameters and physical prescriptions: Using the same physical prescriptions as in
step 1, we select a set of free parameters (mass, age, ...). We first perform searches of the best
fit model for subsets of these parameters. We then add progressively more parameters and con-
straints. This is done to ensure that the starting point of the algorithm is not too far from the
best fit model, as well as to avoid numerical issues. This procedure allows us to finally adjust the
different free parameters taking into account all the constraints and in particular the frequencies
of all the observed mixed-modes

Constraints: For the fit, we define a χ2 with a weight parameter that allows us to give more
importance to some specific frequencies in the fit. The values of this weight parameter can vary
depending on how many constraints we use. The fit is thus made using a merit function defined
as

χ2 =
∑
S

(
Sobs − Sth

σ(Sobs)

)2

+
∑
ν

(
Wν

νobs − νth

σ(νobs)

)2

(7.1)

where the subscript ”th” indicates theoretical value, ”obs” the observed ones and σ the corre-
sponding error. The first sum (over S) represents the contribution to the χ2 of the spectroscopic
constraints. The second sum (over ν) represents the contribution of the asteroseismic constraints
(the individual frequencies) with a weight parameter Wν .
Since mixed-modes bring very strong constraints on the stellar structure and are only weakly
affected by surface effects, we increase their weight in our fitting procedure to be sure that the
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final model will reproduce the frequency and trapping of these modes with a good precision
(see also Sect. 7.4). We also increase, to a lesser extent, the weight of low-frequency p modes
(typically below 1200 µHz) compared to high-frequency p modes, in order to account for the
uncertainties in the modelling of high-frequency modes due to surface effects. Since we use
non-adiabatic frequencies and due to the uncertainties of current empirical methods to correct
theoretical frequencies (see Kjeldsen et al. 2008; Sonoi et al. 2015), we do not apply a-posteriori
corrections on the theoretical frequencies. This explains our choice to grant different weights for
the p-type mode frequencies in the fitting process. To avoid numerical issues, the final model
is obtained at the end of series of fits increasing step by step the number of constraints (up to
finally take into account all observed constraints with different weights).

7.2.2 Best fit model
The fit was made by given an important weight to the mixed-mode frequency (Wν = 100 for the
mixed-mode at ν = 1002.93 µHz) and limiting the fit of p-type modes to the low-frequency ones
(ν < 1000 µHz, to avoid surface effects). I fixed the metallicity and metal mixture of the model
and let the mass, the age, the mixing-length parameter and the initial helium abundance as free
parameters. The main parameters of the resulting model (SUBG1) are given in Tab. 7.2.2. The
parameters of this model are in agreement with the best candidate models found by Benomar
et al. (2014) and Tian et al. (2015).

Model Free parameters output Input parameters Additional outputs
M Age α Y0 [Fe/H] Metal mixture Teff R log g ∆ν

(M�) (Gyr) (dex) (K) (R�) (dex) (µHz)
SUBG1 1.02 10.368 1.61 0.267 -0.120 GN93 5624 1.65 4.01 65.03

Table 7.2: Global parameters of a model fitting the observations of KIC 6442183

During our search for a best model, we have encountered several issues at different steps of
the fitting process. In the first step, for some values of M,α, Y0, our attempts to obtain the
age that gives a mixed-mode at the desired frequency were not always successful. It appears
sometimes that the model computed for a given age, could be located outside the evolutionary
track computed with the same input parameters up to an older age. Even if the difference is
small, mixed-mode properties strongly depend on the inner structure of the equilibrium models
which could affect the convergence toward a best fit model. Some models seem to present
inconsistencies in the central layers. The final interpolation made (at the end of the evolutionary
code) to provide a model with enough points for further computations can give near the centre
values of the luminosity and mass that are not in full agreement with the energy generation
equation (dL/dm = ε). As a consequence, the computed radiative gradient could be incorrect
and become greater than the adiabatic gradient. When such a situation happens, it leads to a
misinterpretation of the region as a convective zone in our oscillation code, while in the point of
view of the evolutionary code the region is not mixed (i.e. a radiative zone). The hydrostatic
equilibrium in the central layers may be not always ensured which strongly impacts the oscillation
properties. I think that these are the main reasons why, sometimes we can not find a mixed-mode
at the desired frequency by adjusting the age of the model and sometimes mode identification
(radial order n) is incorrect and prevents the Levenberg-Marquardt algorithm from working
properly (the same radial order is assigned to two consecutive modes of the same angular degree,
or an additional mode with the same radial order and a very close frequency appears).
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Searches of an equilibrium model using other weights (such as the same weight for all the modes,
an even more important weight for the mixed-modes, ... see also Sect. 7.4) have been made but
did not produce an equilibrium model that fit properly the observed echelle-diagram. This could
come from some numerical difficulties (such as mode identifications in theoretical computations,
consistency of the equilibrium models, ...) and more investigations, including testing the impact
of other parameters (such as the metal mixture, diffusion, ...) are needed to better describe this
star (see e.g. Tian et al. 2015).

7.3 Comparisons between theory and observations

In these sections, we compare theoretical oscillations properties with the observed ones. We
first look at the frequency of the modes in Sect. 7.3.1. Then, Sect. 7.3.2 and 7.3.3 focus on the
energetic properties of the modes, respectively their linewidth and amplitude. We then present
the theoretical power spectra obtained with model SUBG1 (Fig. 7.5) for comparison with the
observed ones (in Fig. 7.1).

7.3.1 Frequencies

We present in Fig. 7.2 an echelle-diagram combining the observed frequencies as well as the
theoretical adiabatic and non-adiabatic ones. The impact of the so-called surface effects is clearly
visible in this echelle-diagram. The difference between observed and theoretical frequencies
increases with the frequency. This is due to the poor modelling of the superficial layers of the
stars. The two main processes expected to be responsible for these differences, and not usually
included in theoretical computations, are the non-adiabaticity of the modes and the impact of
turbulent pressure in the superficial layers of the star. Since we used non-adiabatic computations,
we took into account the first one. As a consequence, the differences between observed and
theoretical frequencies are smaller for the non-adiabatic frequencies than for the adiabatic ones.
This strengthens our non-adiabatic modelling. The remaining discrepancies between observed
and non-adiabatic frequencies are believed to be due to the effect of the turbulent pressure.
However, it is unlikely that the two processes (non-adiabaticity and turbulent pressure) simply
add, the problem being non-linear. Thus, non-adiabatic computations on a model including
turbulent pressure are needed to go further in the modelling of these surface effects. The use
of 3D hydrodynamic simulation to describe the near surface layers of the star, coupled with a
non-adiabatic code (see e.g. Sonoi et al. 2015) is a promising way to improve our modelling of
the oscillations.
We remark in this echelle-diagram (Fig. 7.2), in the observed frequency range, three quadrupole
modes appearing in the theoretical computations without any equivalent in the observed frequen-
cies. These modes are located away from the quadrupole p-modes ridge because of their mixed
nature. As mentioned earlier, this represents an important issue in the modelling of evolved
low-mass stars, because we cannot be sure that all mixed-modes can actually be observed. So,
it is probable that in a given frequency range, we could find more theoretical frequencies than
the observed ones. A first indication of the actual presence of these modes, is given by the
distortions in the quadrupole p-modes ridge. We are thus confident that these modes could be
detected in KIC 6442183. In the following sections, we will have a closer look on the energetic
properties of these additional modes. We will determine, from a theoretical point of view, if
longer observations could allow us to resolve these modes.
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Figure 7.2: echelle-diagram of the observed and theoretical frequencies for modes ` = 0 (red),
` = 1 (green), ` = 2 (blue).

7.3.2 Linewidths
The key parameter for the theoretical mode linewidths is the TDC free parameter β. According
to the method detailed in Sect. 4.3 we tune this parameter in order to fit the observed radial
mode linewidths. We find that β = −1.78 − 1.12i, with the perturbation of the mixing-length
given by Eq. 3.125 gives the best fit, while assuming an isotropic turbulence, and using non-local
parameters from 3D simulations. The resulting linewdiths are presented in Fig. 7.3. Our fit of the
β parameter leads to theoretical linewidths in good agreement with the observed ones especially
around νmax. Given the observed error bars, the modes around νmax have more importance in
the fit. Some discrepancies appear for low-frequency modes were it seems that our theoretical
results underestimate the linewidths.
As expected, the dipole g-type modes theoretical linewidths also fit the observed ones. Our
theoretical computations also confirm that the radiative damping of dipole modes is negligible in
this star. As a consequence, the ratio between radial and non-radial mode linewidths is mainly
determined by the ratio of their inertia (see Eq. 7.3). For these mixed-modes, theoretical com-
putations thus reproduce the frequency of the modes as well as their trapping (see also Fig. 7.9).

Concerning the additional quadrupole g-type modes, theoretical computations show that they
have small linewidths. If we compare these predicted linewidths with the duration of observations
(horizontal lines in Fig. 7.3), it appears that with only 9 months of observations these modes
are not, or poorly, resolved. However, 4 years of observations should be enough to resolve these
modes.
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Figure 7.3: Observed and theoretical mode linewidths. Up: radial and dipole modes. Bottom:
radial and quadrupole modes. The horizontal bars indicate the resolution limits (Tobs = 9
months). X/Tobs indicate that above this line we have at least X points in the linewidth of a
mode.
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7.3.3 Amplitudes
The direct comparison of observed and theoretical amplitudes presents several issues. The
stochastic excitation code provides radial velocity amplitudes (in m/s) while observations pro-
vide the amplitudes of bolometric intensity variations (in ppm). As discussed in Sect. 4.4, the
conversion from one to another is not easy and will introduce additional uncertainties. Moreover,
measured amplitudes may not be accurate because of the complex Kepler instrumental response
and of the necessary data preprocessing, prior to the power spectrum analysis. On the contrary,
amplitude ratios are independent of the radial velocity to bolometric amplitudes conversion and
of the instrumental response. Indeed, the conversion factor from radial velocities to bolometric
variations is determined by the physics of the modes close to the surface of the star. It thus only
depends on the frequency and not on the angular degree or trapping of the modes. Amplitude
ratios between radial and non-radial modes thus give the same results either the amplitude are
measured in radial velocity or in bolometric variations. We thus choose to compare the theoret-
ical and observed amplitude ratios between radial and non-radial modes to test our theoretical
predictions (see Fig. 7.4).

The parameters of the stochastic excitation code, are given in Sect. 4.4. We recall that we consider
only the Reynolds stress contribution to the amplitudes. We take into account the visibilities
of the modes using the values derived from Ballot et al. (2011). While absolute amplitudes give
information on the interaction between convection and oscillations, amplitude ratios allow one
to investigate the visibilities of the modes. For mixed-modes, amplitude ratios also reflect the
trapping of the modes and the damping processes occurring in the stellar core (see e.g. Eq. 7.2).
This is because the work of a mode in the envelope is the same for radial and non-radial modes
(see Sect. 6.1).

With the help of the conversion factor given in Eq. 4.4 (a direct output of our non-adiabatic code)
we have found that theoretical amplitudes (converted into bolometric variations) are of the order
of the observed ones. However, theoretical individual mode amplitudes (and thus the precise
bell-shape of the amplitudes) differ from the observed ones. It will need a much more accurate
equilibrium model, especially for the description of the superficial layers, to better reproduce
individual mode amplitudes.
The amplitude ratios for the p-type non-radial modes reflect their visibilities. The theoretical
visibilities (from Ballot et al. 2011) fit the observed ones although smaller error bars may bring
better constraints. Concerning the g-type dipole mixed-mode, the theoretical amplitude ratio
is also in the observed error bars. As mentioned in the previous section, longer observations
may also help us to test our predictions for the three quadrupole g-type mixed-modes present in
our theoretical spectrum. Their predicted amplitude ratios are small but when looking at their
predicted heights (see the theoretical power spectrum in Fig. 7.5) they should emerge from the
noise once resolved.
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Figure 7.4: Observed and theoretical amplitude ratios between radial and non-radial modes.
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Figure 7.5: Theoretical power spectrum of KIC 6442183 (model SUBG1) for 4 years of observa-
tions. Mixed-modes are indicated with black arrows.
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7.4 From 9 months to 4 years of observations

Benomar (private communication) have reanalysed this star using the full length of Kepler ob-
servations (4 years). The resulting echelle diagram is given in Fig. 7.6. It is very interesting
to see that quadrupole mixed-modes are present in this power spectrum approximately at the
frequencies predicted by our theoretical model.
We can also note that their heights, in the observed power spectrum, are much lower (by approx-
imately a factor 3) than the height of the closest quadrupole acoustic mode, while our theoretical
computations predicted mixed-mode heights of the order of the acoustic ones (see Fig. 7.5). We
will look at these differences in more details in Sect. 7.4.2.
Using these new observed frequencies, we looked for improvement of the stellar model. First,
we used the same method and weight as for SUBG1, to test the change in the parameters by
adding quadripole mixed-modes to the fit (model SUBG2a). Second, we used all the observed
frequencies with Wν = 100 for the mixed-modes ( and Wν = 1 for the other modes) and
add undershooting below the convective envelope as a free parameter (model SUBG2b). The
characteristics of the new equilibrium models are given in Tab. 7.3. We include convective
penetration ("undershooting" below the convective envelope) following the model of Zahn (1991)
in which the distance of convective penetration Lp is given by Lp = ζpc/χPHP , where ζpc is a
free parameter and χP the adiabatic derivative of the radiative conductivity with respect to the
pressure. We recall that classical seismic indicators such as the small separations or frequency
ratios are not adapted for stars with mixed-modes. Thus, we can not use such ratios to constrain
the undershooting as it was done by e.g. Lebreton, Goupil (2012).
We find that model SUBG2b fits very well the frequencies of the mixed-modes (as required) but
presents a systematic shift for the frequencies of the acoustic modes (see Fig. 7.6). The shift for
the acoustic modes seems to indicate a small difference between the theoretical and observed ε
term in Eq.3.49. However, this term is more sensitive to the envelope while the mixed-modes
are more sensitive to the core of the star. Thus, we can use this model to discuss the physics of
mixed-modes inside the core of the star. It is interesting to note that this model, that best fits
the frequencies of the two high frequency quadrupole mixed-modes also gives the best fit of their
inertia ratios (see Fig. 7.12). This illustrates the difficulties to fit simultaneously and with high
precision the frequencies of mixed-modes and acoustic modes.

The energetic mode properties (linewidths, amplitudes, heights) of models SUBG1 and SUBG2a
are similar. I will thus discuss, in the next sections, the comparison between the 4 years of
observations and model SUBG1 (to test the prediction made with only 9 months of observations)
and model SUBG2b (to test the effect of a better fit of mixed-modes frequencies).
Given that models SUBG1 and SUBG2b do not present important differences in the absolute
value of acoustic modes linewidths and amplitudes, I present in the following ratios of ener-
getic properties between radial and non-radial modes. This will allow us to have a clearer view
on mixed-modes properties by avoiding the systematic discrepancies between observed and the-
oretical linewidths away from νmax (as already noted from the comparison with 9 months of
observations).
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Model Free parameters output Input parameters Additional outputs
M Age αMLT Y0 αunder [Fe/H] Metal mixture Teff R log g ∆ν

(M�) (Gyr) (dex) (K) (R�) (dex) (µHz)
SUBG1 1.02 10.368 1.61 0.267 No -0.120 GN93 5624 1.6514 4.0114 65.03
SUBG2a 1.02 10.368 1.60 0.262 No -0.120 GN93 5620.5 1.6917 4.0014 65.02
SUBG2b 1.02 10.388 1.60 0.261 0.26 -0.120 GN93 5620.5 1.6563 4.0089 64.79

Table 7.3: Global parameters of the models fitting the observations for KIC 6442183
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Figure 7.6: Echelle-diagram from the 4 years of Kepler observations of KIC 6442183 (in black)
along with the non-adiabatic frequencies from model SUBG2b (l = 0 in red, l = 1 in green, l = 2
in blue). Additional quadrupole mixed-modes are marked by black arrows
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7.4.1 Dipole modes
Concerning the dipole modes, additional observations give smaller error bars and confirm our
first theoretical results for the linewidth ratios (Fig 7.7) and amplitude ratios (Fig. 7.8). We can
also note that for dipole modes there is no significant differences between the ratios derived from
model SUBG1 and model SUBG2b even if this last one fits better the mixed-mode frequencies.
It appears that two dipole modes (at 840 and 1400 µHz) identified as acoustic modes (from the
echelle-diagram) present linewidth ratios of the order of mixed-mode ones (in conflict with our
predictions) but amplitude ratios of the order of the acoustic mode ones (in agreement with our
predictions). It seems that these modes exhibit an inconsistency in their energetic properties,
with linewidths of mixed-modes and amplitudes of acoustic modes. In the computations of mod-
els close to the ones presented here, we never found mixed-modes at these frequencies. From a
theoretical point of view, we do not see a simple way to solve this problem (i.e. decreasing the
linewidths of the modes without changing their amplitudes). It is however interesting to note
that, to exhibit such a behaviour of the modes, it requires to study the energetic aspects of the
modes. Hence linewidths and amplitudes (and from them inertias), give additional information
from the ones derived from mode frequencies alone.

From observed amplitudes and linewidths we can compute observed inertia ratios as suggested
by Benomar et al. (2014). They showed that, for resolved modes, if we assume (as made in
Sect. 6.1.1), that the product PI does not depend on the trapping, the inertia ratio (between a
non-radial and a radial mode at a given frequency) is given by:

I`
I0
' V`

A0

A`

√
Γ0

Γ`
(7.2)

where V` is the mode visibility. Fig. 7.9 shows that theoretical inertia ratios are in good agree-
ment with the observed ones, except for the two modes that present an inconsistency between
their linewidth and amplitude ratios. The inertia ratio being derived from linewidth and ampli-
tude ratios, it is expected that our theoretical computations are not fully in agreement with the
observed inertia ratios. Further investigations are required to understand this issue.

Nonetheless these results strengthen the conclusions found based on the 9 months of observations:
our predictions for dipole mixed-modes are still not contradicted by observations.
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Figure 7.7: Observed and theoretical linewidth ratios of dipole modes of KIC 6442183.
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Figure 7.8: Observed and theoretical amplitude ratios of dipole modes of KIC 6442183.
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Figure 7.9: Observed and theoretical inertia ratios of dipole modes of KIC 6442183. The observed
inertia ratio are computed with Eq. 7.2.
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7.4.2 Quadrupole modes
For quadrupole mixed-modes, the theoretical energetic properties of these modes are not always
in agreement with the observed ones. The linewidth ratios of mixed-modes predicted for model
SUBG1 are lower than the observed ones (see Fig. 7.10), mainly for the mixed-mode at 1002µHz.
The differences for the other quadrupole mixed-modes are less marked thus, we will focus on this
mode in the following. For model SUBG2b (which better fits the mixed-mode frequencies), the
linewidth ratio of this mode is a little higher but still too low to fit the observed one.

For model SUBG1 the theoretical amplitude ratio of this mixed-mode is within the observed er-
ror bars. For model SUBG2b, the linewidth ratio of this mode is closer to the observed ones but
its amplitude ratio is further from the observations. This is quite surprising since the linewidth
of a mode directly affects its amplitude. This appears as an inconsistency between the linewidth
and amplitude ratio of this mixed-mode. It presents a linewidth ratio of an acoustic mode (in
conflict with our predictions) while its amplitude ratio corresponds to the one of a mixed-mode
(in agreement with our predictions).

From a theoretical point of view, when radiative damping is negligible (as it appears to be
the case in our different equilibrium models), we expect from Eq. 6.3 (neglecting the work in
the core Wc) that once resolved, mixed-mode heights should be of the order of acoustic mode
heights. As we can see in Fig. 7.13 the observed linewidths show that quadrupole mixed-modes
are resolved but their heights in Fig. 7.15 are smaller than the nearest quadrupole acoustic modes
by approximately a factor 3, which is not consistent with theoretical predictions.
Moreover, without damping in the core (i.e. neglecting Wc) we can rewrite the linewidth and
amplitude ratios between quadrupole and radial modes as (following the same developments
made in Sect. 6.1.1):

Γ2

Γ0
=

(Wc +We)2

I2

I0
We,0

=
I0
I2
, (7.3)(

A2

A0

)2

= V2
Γ0

Γ2

(
I0
I2

)2

= V2
I0
I2
, (7.4)

with V2 the modes visibility (which is a constant). Amplitude and linewidth ratios should thus
be a measure of inertia ratios when core damping is negligible. We should thus expect that
models that best fit the linewidth ratios also fit the amplitude ratios and reciprocally, which is
not the case here.
Contrary to linewidths and amplitudes, inertias are not significantly affected by energetic effects
since they are mostly determined by the part of the star where the oscillations are quasi-adiabatic.
To go a little further we can thus compare the theoretical inertia ratios and those derived from
observed amplitudes and linewidths (either with Eq. 7.2 or Eq. 7.3). We see that for our two
models there is no significant differences between the observed and theoretical inertia ratios (see
Fig. 7.12). However, deriving observed inertia ratios from Eq. 7.2 and Eq. 7.3 (or Eq. 7.4) does
not give compatible results for quadrupole mixed-modes, which is an observational evidence of
a damping process in the core (see Fig. 7.12).
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All these results lead us to conclude in the presence of an additional damping (other than radiative
damping) in the core of the star. This seems clear for the quadrupole mixed-mode at 1002 µHz.
An additional damping will indeed increase the work in the core and thus the linewidth of the
mode and decrease its amplitude. This will reconcile theoretical results and observations. In
order to have height ratios between the mixed-mode and the nearest quadrupole acoustic mode
H2,mixed/H2,p ' 3, Eq. 6.3 suggests that the ratio between the work in the core and in the
envelope should be Wc/We ' 0.7, which is quite significant.
This damping affects only the quadrupole mixed-modes since for dipole ones our theoretical
results provide a good fit of all the energetic properties of the mixed-modes and derivations of
inertia ratios from Eq. 7.2 and Eq. 7.3 give the same results, compatible with the absence of core
damping for dipole modes.
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Figure 7.10: Observed and theoretical linewidth ratios of quadrupole modes of KIC 6442183.
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Figure 7.11: Observed and theoretical amplitude ratios of quadrupole modes of KIC 6442183.

20

15

10

5

0

1600140012001000800600

Observations

Theory

SUBG1

SUBG2B

Eq. 7.2

Eq. 7.3

Figure 7.12: Observed and theoretical inertia ratios of quadrupole modes of KIC 6442183.
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Conclusion

The use of non-adiabatic frequencies to model an observed star, has allowed us to strongly re-
duce the impact of surface effects on the fitting process. We have found theoretical results on
the energetic aspects of observed modes (including mixed-modes) in overall agreement with the
observations. We have however exhibited that at least one quadrupole mixed-mode theoretical
energetic properties do not coincide with the observed ones. This calls for an additional damping
mechanism, acting in the core of the star that can affect quadrupole mixed-modes.

It is interesting to note that some observations of red-giant stars also point toward the presence
of an additional damping mechanism. This concerns the particular subset of stars displaying
low-amplitudes dipole modes (for both p-dominated and g-dominated modes). Indeed, such
stars also present dipole modes of small amplitudes (even for the p-dominated ones) while their
linewidths are of the order of the radial ones (see e.g. García et al. 2014). This situation is thus
similar to the one we have encountered for the subgiant presented in this chapter. The origin of
the additional damping needed to explain this phenomenon is still under investigation. García
et al. (2014) suggested that a fossil magnetic field in the core could explain why only the dipole
modes are affected. However, for the star they had investigated (KIC 8561221) they do not
find evidence of magnetic effects on dipole modes frequencies. This reduces the possibility that
this star has a strong magnetic field in its core. Cantiello, Fuller (2015) also suggested that a
strong magnetic field in the core can suppress the amplitude of the dipole modes. Moreover, they
identified the 10% of stars on the RGB exhibiting depressed dipole modes as stars with strongly
magnetised cores, possible descendants of the family of magnetic Ap stars.

Whether the damping mechanism, which seems to be missing in our modelling has the same
origin than the one responsible for depressed dipole modes in more evolved star has still to be
investigated. Observations of other subgiant stars presenting this effect and their non-adiabatic
modelling should bring more insight on the characteristics of a possible additional damping
process.
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Appendix: Observed mode properties of KIC 6442183 with
4 years of Kepler observations.
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Figure 7.13: Observed modes linewidths of KIC 6442183 (with 4 years of Kepler observations,
Benomar private comm.), quadrupole mixed-modes are marked by black arrows
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Figure 7.14: Observed modes amplitudes of KIC 6442183 (with 4 years of Kepler observations,
Benomar private comm.), quadrupole mixed-modes are marked by black arrows.
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Figure 7.15: Observed modes heights of KIC 6442183 (with 4 years of Kepler observations,
Benomar private comm.), quadrupole mixed-modes are marked by black arrows
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Chapter 8

Conclusions and perspectives

The main questions behind this thesis were linked to the physical processes that give their
energetic properties to solar-like oscillations. We were interested to search constraints on the
proper way to model these processes. But beyond all, we wanted to study the links between the
stellar structure, the properties of the physical processes within, and the different morphologies
exhibited in observed power spectra. We have searched which are the characteristics of the modes
that could be detected in observations and which information they could give us.

Original contributions to the thesis problematic

The aim of this thesis was to investigate the energetic properties of solar-like oscillations in
evolved low-mass stars. In particular, we have been interested by the interactions between con-
vection and oscillations. We have studied the damping and driving processes governing solar-like
oscillations to understand the links between the stellar properties and the different morphologies
of red-giant power spectra. At this end, we have performed non-adiabatic analyses, of radial
and non-radial modes (including mixed-modes), of stellar models representative of CoRoT and
Kepler observations. An important goal of this thesis was to reproduce the general characteris-
tics of observed power spectra. We have succeeded to reproduce the typical bell-shape of power
spectra of solar-like oscillations, with a maximum amplitude at the frequency νmax predicted by
scaling relations. This was done by ensuring the existence of a plateau of the damping rates at
νmax, following the prescriptions of Belkacem et al. (2011) for the adjustment of the main free
parameter of our time-dependent treatment of convection.

We have begun our studies of the interaction between convection and oscillations by comparing
the theoretical and observed linewidths, either from scaling relations or from fit of some specific
stars. Scaling relations were used for models from the main-sequence to the red-giant phase to
obtain theoretical radial mode linewidths in agreement with the observations. The fit of indi-
vidual mode linewidths for main-sequence and subgiant stars have exhibited the validity of the
theoretical linewidth around νmax and the difficulties to properly reproduce the linewidths, for
the stars with the lower νmax, especially at low frequency. This has allowed us to obtain strong
constraints on the modelling of the time-dependent convection and to open new perspectives for a
better modelling mainly through the impact of the anisotropy on solar-like oscillations linewidths.

We have then studied the changes in the morphology of theoretical power spectra following the
evolution of a red-giant star. This study clearly exhibits the impact of the radiative damping

163



CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

on mixed-modes detectability. It has allowed us to derive a theoretical detectability limit for
mixed-modes on the red-giant branch. The study of models of different masses exhibiting similar
power spectra has allowed us to extend this limit across the typical mass range of observed red
giants. We have concluded that the number of mixed-modes over a large separation is a good
indicator of the final morphology of the power spectra. For star with more than approximately
60 dipole mixed-modes over a large separation, we predicts that only the modes strongly trapped
in the envelope could be detected, whatever the duration of observations. This could give some
limits for target selections in observation campaigns, and to predict the duration of observations
required to extract information on the core of the stars.

We have also exhibited a specific behaviour of mixed-mode properties of a stellar model, shortly
after the helium-flash, for which one have to be very careful in the interpretation of the corre-
sponding power spectrum. The consecutive helium sub-flashes leave regions of partial trapping
inside the core of the star. As a consequence, only the mixed-modes trapped in the outer cavity
of the core reach high enough amplitude at the surface of the star. In the power spectrum,
between two p-type modes, approximately only one mixed-mode over three can be detected. In
such case, the period spacing that could be derived from these modes does not correspond, by
far, to the asymptotic period spacing.

Finally, we have performed a full seismic analysis of an observed Kepler subgiant using non-
adiabatic computations. For this study, we have used two sets of observations (of 9 months
and 4 years) to obtain additional information on the processes behind mixed-mode energetic
properties and test our theoretical predictions. This star is very challenging, for some theoretical
mode properties (frequency, linewidth, amplitude) are in good agreement with the observations
while others (mainly the quadrupole mixed-modes) present important differences and bring new
questions on mode damping.

Theoretical predictions vs Observations

The confrontation of our theoretical computations to observations have allowed us to conclude
on the strengths and limits of our modelling of the damping and driving processes.

By adjusting the main free parameter of the time dependent treatment of the convection (TDC),
the complex free parameter β, we have been able to reproduce the observed scaling relation
between the effective temperature and the linewidth of the modes at νmax for main-sequence
and subgiant stars. Adjustment of this parameter also allows us to fit the observed linewidths of
Kepler main-sequence stars. In this study, we have strengthened the use of non-local parameters
derived from 3D hydrodynamical simulations. However, these fits were not perfects, and for some
specific stars important discrepancies appear between observed and theoretical mode linewidths
away from νmax. For red-giant branch stars, adjustment of the free parameter β is not enough to
reproduce the typical observed linewidths. In order to obtain theoretical linewidths in agreement
with the observed Γmax − Teff relation we had to also adjust the anisotropy factor in the TDC
treatment.

For red-giant branch stars, our modelling of the driving and damping processes (including radia-
tive damping in the core) has allowed us to reproduce different morphologies of observed power
spectra, following the evolution of the star. In particular, the detectability of mixed-modes
derived from theoretical computations is in good agreement with the observations. Stars with
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similar masses, large separation and frequency of maximum power as our equilibrium models
exhibit behaviours of mixed-modes similar to the ones found following the evolution of power
spectra along the red-giant branch: from dipole mixed-modes with high heights, to heights clearly
modulated by the inertia and finally with only p-dominated modes visible in the power spectrum.
It seems however that theoretical heights of g-dominated dipole mixed-modes are a little higher
than the observed ones, especially for models at the base of the red-giant branch for which a
modulation by the inertia seems to be present in the observed power spectrum. Concerning the
specific behaviour of mixed-modes observed in the stellar model shortly after the helium flash, we
need to search for observed stars around this evolutionary stage to test our theoretical predictions.

The non-adiabatic results for the subgiant model of KIC 6442183 are in overall good agreement
with the observations. In particular theoretical linewidths and amplitudes of g-dominated dipole
mixed-modes have been confirmed by the increase of the duration of observations (from 9 months
to 4 years). For some dipole acoustic modes, we found inconsistency between the linewidth and
amplitude ratios that we can not explain. It is not clear if an unknown mechanism or some
uncertainties in the fit of individual peaks in the observed power spectrum could be at the origin
of this issue. However, we exhibit significant differences between the theoretical and observed
linewidths of quadrupole g-dominated mixed-modes. Our theoretical predictions underestimate
quadrupole mixed-mode linewidths while they give amplitudes and inertias in agreement with
the observations. These modes present amplitudes and inertias of g-dominated mixed-modes
with linewidths of acoustic modes. This is not compatible with the theoretical modelling of core
damping based only on radiative damping.

Possible origins of the disagreements between observations
and theoretical results

The TDC treatment is certainly one of the major source of uncertainty that could lead to dif-
ferences between theoretical and observed linewidths. Indeed, this treatment involves strong
assumptions for the closure terms and the perturbation of convective fluctuations. The main
approximation of the TDC treatment is made for the closure term of the perturbed energy equa-
tion, and is represented by the free complex parameter β. Adjusting only this parameter is not
enough to accurately reproduce the observations. Another source of uncertainty comes from the
anisotropy factor. While the linewidths of main-sequence stellar models seem to hardly depend
on the anisotropy factor, red-giant ones are much more affected by this parameter. Moreover, this
factor varies a lot between the top and the bottom of 3D hydrodynamical simulations. This leads
to an uncertainty in the value we should use in non-adiabatic computations, and if it is possible to
find one value that will be in agreement with 3D simulations and with the observed linewidths.
The description of the perturbation of the mixing-length could also explain the discrepancies
between observed and theoretical linewidths. Several formulations for the perturbation of the
mixing-length have been proposed and should be tested (we only tested two formulations).

We have mentioned some difficulties for the direct comparison of theoretical and observed ampli-
tudes and heights of solar-like oscillations. Theoretical amplitudes are obtained in radial velocities
while the observations are made in intensity fluctuations. The conversion factor between radial
velocities and intensity fluctuations is certainly a source of uncertainties in the study of mode
amplitudes and heights. The inaccuracy of the conversion factor derived from non-adiabatic
computations is probably caused by the poor description of the upper layers of the convective
envelope. Moreover, the evolution of the height of mixed-modes with the duration of observations
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is described following simple relations that have still to be confronted to observations. A precise
observational determination of mixed-mode linewidths and amplitudes on the red-giant branch
is needed to constrain core damping and to investigate why our theoretical predictions seem to
not exactly reproduce the inertia modulation of dipole g-dominated mixed-mode heights at the
base of the red-giant branch.

For the issue of the quadrupole mixed-mode linewidths in the subgiant star studied here, it
appears that a new damping process should be added to theoretical computations. This damping
should affect only quadrupole mixed-modes at this early stage in the subgiant phase and should
represent a significant contribution to the total damping (around 40% of the total work integral
of the mode). This new damping could be related to the issue of depleted dipole modes observed
in some red-giant stars. The question of the exact origin of this damping is currently open (some
studies invoke the impact of core magnetic field).

Perspectives

Improvements of the TDC treatment are needed to go further in the study of the energetic
properties of solar-like oscillations. Confrontations of theoretical predictions to observations
would bring us strong constraints on the properties of the interactions between convection and
oscillations. This would allow one to precise the treatment and the choice of parameters to apply.
In particular, precise comparisons between observed and computed mode linewidths would allow
one to discriminate between different formulations for the closure terms of the perturbations of
convective fluctuations.
When we would obtain very accurate linewidths, the comparisons of observed and theoretical
amplitudes could constrain the stochastic excitation treatment (because the amplitudes strongly
depend on the linewidths). Strong constraints on observed amplitudes would also help us to im-
prove the treatment of the interaction between convection and oscillations. Indeed, the conversion
factor from radial velocity to intensity variations, a direct output of our non-adiabatic code, is af-
fected by the TDC treatment. Precise comparisons between theoretical and observed linewidths
and amplitudes will thus give us the opportunity to test and improve the time-dependent treat-
ment of convection and then the stochastic excitation model.
When treated, we should have with the full length of Kepler observations, a lot of useful date to
perform extended and detailed comparisons between observations and theoretical predictions.

An important opportunity for understanding the interaction between convection and oscillations
is now open due to 3D hydrodynamical simulations. First, one could preform non-adiabatic com-
putations on patched models to obtain more accurate results. Patched models are obtained by
replacing the upper layers of standard evolutionary models by the stratification coming from 3D
simulations. Studies of the energetic properties of modes from these more realistic models (e.g.
accounting for the turbulent pressure) would give us an insight on the effect of a more accurate
description of the convection on oscillation properties. Second, eigenmodes directly appear in
3D hydrodynamical simulations. One can thus compare the properties of these modes with the
ones computed from standard or patched models. In particular, we could directly extract from
3D simulations the work of these modes. This would give us a more realistic description of the
interaction between the convection and the oscillations. Comparing these results from the one of
the TDC treatment should allows one to improve the theoretical description of the convection-
oscillations interaction.
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