A practical approach to the microbiological diagnosis of infectious keratitis

Pierrette Melin
Microbiology, University of Liege
Clinical Microbiology, University Hospital of Liege
Belgium

INTRODUCTION

Microbiology
MATERIAL
SPECIMEN
INTERPRETATION
KEY POINTS

Infectious keratitis

- Inflammation of underlying corneal stroma caused by replicating organisms
 - Bacteria, Viruses, Fungi, Protozoa
- Acute presentation
 - Significant pain and distress
- Rapid initiation of aggressive treatment needed
 - To improve poor natural outcome
 - To halt disease process
 - To limit extent of corneal scarring and loss of vision

Sight-threatening condition - urgency

Helpful contribution of microbiology ? Id & AST

Infectious keratitis: primary pathogens

- Corneal trauma / ulcer
 - P. aeruginosa
 - S. aureus
 - S. pneumoniae
 - Viridans group streptococci
 - Moraxella spp
 - AFB-rapid growers (M. chelonae, M. fortuitum)
 - Nocardia spp
- Contact lens associated
 - Gram negative bacilli including P. aeruginosa, Serratia spp
 - Bacillus spp
- Acanthamoeba spp
- Fusarium spp

Microbiological diagnosis

Improve strategies to increase likelihood of detection of aetiologial agents of OCULAR INFECTIONS

Keys of success:
The best laboratory is not enough!! Essential close collaboration with micro lab
Pathway to microbiological diagnosis of ocular infections

- Urgent notification
- Alarming notification

MICROBIOLOGY

Pathway to microbiological diagnosis

Garbage IN = Garbage OUT

MICROBIOLOGY

Microbiological diagnosis of ocular infections

- Cultures
 - Bacteria (aerobic, anaerobic & mycobacteria), fungi
 - Viruses, Acanthamoeba spp
- Direct microscopy
 - Gram, Giemsa, ...
 - White calcofluor, Immunofluorescence
- Molecular Biology
 - Various PCR methods and targets
 - Minute or scant quantity of specimens
 - Limited viability

MICROBIOLOGY

Communication between microbiologist and ophthalmologist

From laboratory to physician
- Notification of insufficient quantity of specimen
- Reduction of ordered tests to target specific organisms
- Alarming results (= medical emergencies)

To facilitate physicians’ immediate clinical decisions

From physician to laboratory

Communication between microbiologist and ophthalmologist

From laboratory to physician
- Notification of insufficient quantity of specimen
- Reduction of ordered tests to target specific organisms
- Gram negative cocci (N.gonorrhoeae) in conjunctival specimen
- Paeruginosa in a corneal culture
- Bacillus spp in inner eye cultures
- Yeast or mold structural elements (Direct microscopy)

To facilitate choice of the more appropriate procedures and interpretation
Communication between microbiologist and ophtalmologist

From laboratory to physician
- Notification of insufficient quantity of specimen
- Reduction of ordered tests to target specific organisms
- Gram negative cocci (N.gonorrhoeae) in conjonctival specimen
- P.aeruginosa in a corneal culture
- Bacillus spp in inner eye cultures
- Yeast or mold structural elements (Direct microscopy)

From physician to laboratory
- Very small amount of material, warning
- Corneal specimens related to lens, LASIK associated, trauma with foreign object, etc.
- 6-12 months postoperative infection; to perform AST even on Staphylococcus epidermidis

Material for physician
- Instructions (+ training !)
- Primary fresh culture media
 - Schedule to replace expiring media
 - Blood agar, chocolate agar
 - Thio Broth or TSB
 - Media for anaerobic, fungal and mycobacterial cultures
- Slides
- Specimen collection & Transport devices
- Topical anesthetic (proparacaine hydrochloride 0.5%)

Specimen collection

1. Instillation of 1 or 2 drops of proparacaine HCL
 - Some topical anesthetics and topical dyes: inhibitory to a variety of microorganisms (culture, PCR)

2. Specimens from the conjonctiva
 - From both eyes
 - Comparison of microbiological growth from unaffected eye with affected eye
 - Lower tarsal conjonctiva
 - Gentle scraping with a Kimura spatula
 - Or Dacron/Floaked swabs (moistened with Thio or TSB)
 - Not cotton or calcium alginate swabs
 - To avoid touching eyelashes

3. Corneal scrapings
 - From the advancing edge of ulcer
 - By scraping multiple areas of ulceration and suppuration
 - With a Kimura spatula (short firm strokes in one direction)
 - To avoid touching eyelashes
 - 3 to 5 scrapings per cornea

Specimen processing

- Identification of plates
- Inoculation of each set of scrapings onto appropriate media
 - By successive « C » imprints
 - (Or Zig-zag with swab)
- Preparation of smears
 - By applying scrapings in a gentle circular motion over clean identified glass slides
 - Immersion for 5'-10' in methanol (fixing)
 - Gram, Giemsa, Calcofluor, Immunofluorescence, ...
Specimen handling, transportation

To identify and transfer to the microbiology lab without any delay! (< 30’ – 2h)
- Inoculated identified plates
- Collection device with transport media
- if specimens not inoculated at bedside
- Specific transport media for PCR tests
- Slides for smear staining
- For research of *Acanthamoeba spp.*
- Call the lab

Interpretation

- **Smears**
 - Gram, Giemsa
 - Presence of PMN ➔ bacterial infection?
 - Presence of mononuclear cells ➔ viral infection
 - Bacteria
 - High positive predictive value
 - Low sensitivity
- Calcofluor white
 - Fungi; *Acanthamoeba*
- Immunofluorescence
 - Viruses

Interpretation of cultures

<table>
<thead>
<tr>
<th>Ocular specimen group</th>
<th>Microorganisms</th>
<th>Normally present bacteria: % healthy adults with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Coagulase negative staphylococci</td>
<td>75-90</td>
</tr>
<tr>
<td></td>
<td>Propionibacterium spp.</td>
<td>50-70</td>
</tr>
<tr>
<td></td>
<td>Corynebacterium spp.</td>
<td>10-75</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>10-40</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus epidermidis</td>
<td>2-17</td>
</tr>
<tr>
<td></td>
<td>Streptococcus pyogenes</td>
<td>0-5</td>
</tr>
<tr>
<td></td>
<td>Hemophilus influenzae</td>
<td>0-5</td>
</tr>
<tr>
<td></td>
<td>Gram-negative bacilli</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Fungi</td>
<td>0.5</td>
</tr>
<tr>
<td>Group 2</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Group 1: all sites that can be touched with finger or swab
- lid, conjunctiva, component and products of lacrymal system
- NOT corneal swabs!

Groupe 2:
- ALL cornea specimens (including swabs)
- All other specimens: inner eye, lens, iris, retina, sclera, ocular fluids, etc.

Acanthamoeba sp

Calcofluor white (cysts)

Culture track left behind by amebae in the lawn of the culture media
Microbiological diagnosis of keratitis

Key points

- Wide range of infectious agents
- Wide range of microbiological methods
- Minute quantity of specimen
- To target (priority) analysis to perform
- Essential close working relationships between physicians and microbiologists
- Development and implementation of optimal protocol
- Increase chances of detecting ocular pathogens
- Crucial quality of pre-analytic issue
- Short time from collection to inoculation
- Direct inoculation by ophthalmologist
- To organize training and setting up

More timely intervention
Less patient morbidity
Improved chances of salvaging eye and preserving sight
Cost savings

Useful references

