
A Stochastic Analysis of Some Two-Person Sports

By Davy Paindaveine and Yvik Swan

We consider two-person sports where each rally is initiated by a server,
the other player (the receiver) becoming the server when he/she wins a
rally. Historically, these sports used a scoring based on the side-out scoring
system, in which points are only scored by the server. Recently, however,
some federations have switched to the rally-point scoring system in which a
point is scored on every rally. As various authors before us, we study how
much this change affects the game. Our approach is based on a rally-level
analysis of the process through which, besides the well-known probability
distribution of the scores, we also obtain the distribution of the number of
rallies. This yields a comprehensive knowledge of the process at hand, and
allows for an in-depth comparison of both scoring systems. In particular, our
results help to explain why the transition from one scoring system to the other
has more important implications than those predicted from game-winning
probabilities alone. Some of our findings are quite surprising, and unattainable
through Monte Carlo experiments. Our results are of high practical relevance
to international federations and local tournament organizers alike, and also
open the way to efficient estimation of the rally-winning probabilities.

1. Introduction

We consider a class of two-person sports for which each rally is initiated by a
server—the other player is then called the receiver—and for which the rules
and scoring system satisfy one of the following two definitions.
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Side-out scoring system: (i) The server in the first rally is determined by
flipping a coin. (ii) If a rally is won by the server, the latter scores a
point and serves in the next rally. Otherwise, the receiver becomes the
server in the next rally, but no point is scored. (iii) The winner of the
game is the first player to score n points.

Rally-point scoring system: (i) The server in the first rally is determined
by flipping a coin. (ii) If a rally is won by the server, the latter serves in
the next rally. Otherwise, the receiver becomes the server in the next
rally. A point is scored after each rally. (iii) The winner of the game is
the first player to score n points.

A match would typically consist of a sequence of such games, and the
winner of the match is the first player to win M games. Actually, it is usually
so that in game m ≥ 2, the first server is not determined by flipping a coin, but
rather according to some prespecified rule: the most common one states that
the first server in game m is the winner in game m − 1, but alternatively,
the players might simply take turns as the first server in each game until
the match is over. It turns out that, in the probabilistic model we consider
below, the probability that a fixed player wins the match is the same under
both rules; see [1]. This clearly allows us to focus on a single game in the
sequel—as in most previous works in the field (references will be given below).
Extensions of our results to the match level can then trivially be obtained by
appropriate conditioning arguments, taking into account the very rule adopted
for determining the first server in each game.

The side-out scoring system has been used in various sports, sometimes up
to tiny unimportant refinements, involving typically, in case of a tie at n − 1,
the possibility (for the receiver) to choose whether the game should be played
to n + � (for some fixed � ≥ 2) or to n; see Section 2. When based on
the so-called English scoring system, Squash currently uses (n, M) = (9, 3).
Racquetball is essentially characterized by (n, M) = (15, 2) (the possible third
game is actually played to 11 only). Until 2006, Badminton was using (n, M) =
(15, 2) and (n, M) = (11, 2) for men’s and women’s singles, respectively—with
an exception in 2002, where (n, M) = (7, 3) was experimented. Volleyball, for
which the term persons above should of course be understood as teams, was
based on (n, M) = (15, 3) until 2000. In both badminton and volleyball,
this scoring system was then replaced with the rally-point system. Similarly,
squash, at the international level, now is based on the American version of its
scoring system, which is nothing but the rally-point system, in this case with
(n, M) = (11, 3). Investigating the deep implications of this transition from
the original side-out scoring system to the rally-point scoring system was one
of the main motivations for this work; see Section 4.

Irrespective of the scoring system adopted, the most common probabilistic
model for the sequence of rallies assumes that the rally outcomes are i.i.d., in
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the sense that they (i) are mutually independent (the probability that a player
wins a rally is not affected by outcomes of the other rallies) and (ii) are,
conditionally on the server, identically distributed (the probability that a player
wins a rally when serving is constant over time). This implies that the game is
governed by the parameter (pa, pb) ∈ [0, 1] × [0, 1], where the rally-winning
probability pa (respectively, pb) is the probability that Player A (respectively,
Player B) wins a rally when serving.

This model is the most widely accepted choice for mathematical analysis of
sports like badminton (see references below), tennis (see [2, 3]) or table tennis
(see [4]), although the existence of such player-related “governing parameters”
may be disputable—discussion of this, and the consequences of using different
modeling assumptions can be found in [5]. We will throughout refer to the
above probabilistic model as the server model, in contrast with the no-server
model in which any rally is won by A with probability p irrespective of the
server, that is, the submodel obtained when taking p = pa = 1 − pb.

The probabilistic properties of a single game played under the side-out
scoring system have been investigated in various works. Hsi and Burich [6]
attempted to derive the probability distribution of game scores—in the sequel,
we simply speak of the score distribution—in terms of pa and pb, but their
derivation based on standard combinatorial arguments was wrong. The correct
score distribution (hence also the resulting game-winning probabilities) was
first obtained in [7] by applying results on sums of random variables having
the modified geometric distribution. Keller [8] computed probabilities of very
extreme scores, whereas Marcus [9] derived the complete score distribution
in the no-server model. Strauss and Arnold [10], by identifying the point
earning process as a Markov chain, obtained more directly the same general
result as in [7]. They further used the score distribution to define maximum
likelihood estimators and moment estimators of the rally-winning probabilities
(both in the server and no-server models), and based on these estimates a
ranking system (relying on Bradley–Terry paired comparison methods) for
the players of a league or tournament. Simmons [11] determined the score
distribution under the two scoring systems, this time by using a quick and
direct combinatorial analysis of a single game. He discussed handicapping and
strategies (for deciding whether the receiver should go for a game played to
n + � or not in case of a tie at n − 1), and attempted a comparison of the two
scoring systems. More recently, Percy [12] used Monte Carlo simulations to
compare game-winning probabilities and expected durations for both scoring
systems in the no-server model.

To sum up, the score distributions have been obtained through several
different probabilistic methods, and were used to discuss several aspects of
the game. In contrast, the distribution of the number of rallies needed to
complete a single game (D, say) remains virtually unexplored for the side-out
scoring system (for the rally-point scoring system, the distribution of D is
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simply determined by the score distribution). To the best of our knowledge,
the only theoretical result on D under the side-out scoring system provides
lower and upper bounds for the expected value of D; see (20) in [11], or (2)
below. Beyond the lack of exact results on D (only approximate theoretical
results or simulation-based results are available so far), it should be noted
that only the expected value of D has been studied in the literature. This
is all the more surprising because, in various sports (e.g., in badminton and
volleyball), uncertainty about D—which is related to its variance, not to its
expected value—was one of the most important arguments to switch from the
side-out scoring system to the rally-point scoring system. Exact results on the
moments of D—or even better, its distribution—are then much desirable as
they would allow to investigate whether the transition to the rally-point system
indeed reduced uncertainty about D. More generally, precise results on the
distribution of D would allow for a much deeper comparison of both scoring
systems. They would also be of high practical relevance, e.g., to tournament
organizers, who need planning their events and deciding in advance the number
of matches—hence the number of players—the events will be able to host.

For the side-out scoring system, however, results on the distribution of D
cannot be obtained from a point-level analysis of the game. That is the reason
why the present work rather relies on a rally-level combinatorial analysis. This
allows to get of rid of the uncertainty about the number of rallies needed to
score a single point, and results into an exact computation of the distribution
of D—and actually, even of the number of rallies needed to achieve any fixed
score. We derive explicitly the expectation and variance of D, and use our
results to compare the two scoring systems not only in terms of game-winning
probabilities, but also in terms of durations. Some of our findings are quite
surprising, and unattainable through Monte Carlo experiments; see Section 5.

Our results reveal significant differences between both scoring systems, and
help to explain why the transition from one scoring system to the other has more
important implications than those predicted from game-winning probabilities
alone. As suggested above, they could be used by tournament organizers to
plan accurately their events, but also by national or international federations to
better perform the possible transition from the side-out scoring system to the
rally-point one; see Section 6 for a discussion. Also, our results allow for
estimating, somewhat in the spirit of [2], the probability that a particular player
wins a match (not only at the beginning, but at any stage during its progress),
as well as forecasting the duration of the said match. This, of course, would
have important applications for TV broadcast programmers, among others.
Finally, our results open the way to efficient estimation of the rally-winning
probabilities, based on observed scores and durations; see Section 6 for a
discussion.

The outline of the paper is as follows. In Section 2, we describe our
rally-level analysis of a single game played under the side-out scoring system,
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and show that it also leads to the score distribution already derived in
[7, 10], and [11]. Section 3 explains how this rally-level analysis further provides
(i) the expectation and variance of the number of rallies needed to achieve a
fixed score (Section 3.1) and also (ii) the corresponding exact distribution
(Section 3.2). In Section 4, we then use our results to compare the side-out
and rally-point scoring systems, both in terms of game-winning probabilities
(Section 4.1) and durations (Section 4.2). In Section 5, we perform Monte Carlo
simulations and compare the results with our theoretical findings. Section 6
presents the conclusion and provides some final comments. Finally, an appendix
collects proofs of technical results.

2. Rally-level derivation of the score distribution under
the side-out scoring system

In this section, we conduct our rally-level analysis of a single game played
under the side-out scoring system. We will make the distinction between
A-games and B-games, with the former (respectively, the latter) being defined
as games in which Player A (respectively, Player B) is the first server. Wherever
possible, we will state our results/definitions in the context of A-games only;
in such cases the corresponding results/definitions for B-games can then be
obtained by exchanging the roles played by A and B, that is, by exchanging
(i) pa and pb and (ii) the number of points scored by each player. Whenever
not specified, the server S will be considered random, and we will denote by
sa := P[S = A] and sb := P[S = B] = 1 − sa the probabilities that the game
considered is an A-game and a B-game, respectively. This both covers games
where the first server is determined by flipping a coin and games where the
first server is fixed (by letting sa ∈ {0, 1}).

Our rally-level analysis of the game will be based on the concepts of
interruptions and exchanges first introduced in [6]. More precisely, we adopt

DEFINITION 1. An A-interruption is a sequence of rallies in which B gains
the right to serve from A, scores at least one point, then (unless the game is
over) relinquishes the service back to A, who will score at least one point. An
exchange is a sequence of two rallies in which one player gains the right to
serve, but immediately loses this right before he/she scores any point (so that
the potential of consecutive scoring by his/her opponent is not interrupted).

We point out that A-interruptions are characterized in terms of score changes
only (and in particular may contain one or several exchanges) and that, at any
time, an exchange clearly occurs with probability q := qaqb := (1 − pa)(1 − pb).

Now, for C ∈ {A, B}, denote by Eα,β,C(r , j) the event associated with a
sequence of rallies that (i) gives rise to α points scored by Player A and β points
scored by Player B, (ii) involves exactly r A-interruptions and j exchanges,
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and (iii) is such that Player C scores a point in the last rally; the superscript C
therefore indicates who is scoring the last point, and it is assumed here that
α > 0 (respectively, β > 0) if C = A (respectively, if C = B). We will write

pα,β,C2

C1
(r, j) := P[Eα,β,C2 (r, j) | S = C1], C1, C2 ∈ {A, B}.

We then have the following result (see the Appendix for the proof).

LEMMA 1. Let γ 0 := min {β, 1}, γ 1 := min {α, β}, and γ 2 := min {α,

β − 1}. Then, setting (−1
−1) := 1, we have pα,β,A

A (r, j) = (α+β+ j−1
j )(αr )(β−1

r−1)pα
a ×

pβ

b qr+ j , r ∈ {γ0, . . . , γ1}, j ∈ N, and pα,β,B
A (r, j) = (α+β+ j−1

j )( α
r−1)(

β−1
r−1)pα

a ×
pβ

b qaqr+ j−1, r ∈ {1, . . . , γ2 + 1}, j ∈ N.

By taking into account all possible values for the numbers of A-interruptions
and exchanges, Lemma 1 quite easily leads to the following result (see the
Appendix for the proof), which then trivially provides the score distribution in
an A-game, hence also the corresponding game-winning probabilities.

THEOREM 1. Let pα,β,C2

C1
:= P[Eα,β,C2 |S = C1],where Eα,β,C2 := ∪r, j Eα,β,C2

(r, j),withC1,C2∈{A, B}.Then pα,β,A
A = pα

a pβ

b

(1−q)α+β

∑γ1
r=γ0

(αr )(β−1
r−1)qr and pα,β,B

A =
pα

a pβ

b qa

(1−q)α+β

∑γ2+1
r=1 ( α

r−1)(
β−1
r−1)qr−1.

In the sequel, we denote game scores by couples of integers, where the first
entry (respectively, second entry) stands for the number of points scored by
Player A (respectively, by Player B). With this notation, a C-game ends on the
score (n, k) (respectively, (k, n)), k ∈ {0, 1, . . . , n − 1}, with probability
pn,k,A

C (respectively, pk,n,B
C ), hence is won by A (respectively, by B) with the

(game-winning) probability

pA
C := P[E A | S = C] =

n−1∑
k=0

pn,k,A
C

(respectively, pB
C := 1 − pA

C ); throughout, E A := ∪n−1
k=0 En,k,A (respectively,

E B := ∪n−1
k=0 Ek,n,B) denotes the event that the game—irrespective of the initial

server—is won by A (respectively, by B). Of course, unconditional on the
initial server, we have

pn,k,A := P[En,k,A] = pn,k,A
A sa + pn,k,A

B sb,

pk,n,B := P[Ek,n,B] = pk,n,B
A sa + pk,n,B

B sb,

and

pC := P[EC ] = pC
Asa + pC

B sb,

for C ∈ {A, B}.
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Figures 1(a)–(b) present, for an A-game with n = 15, the score distributions
associated with (pa, pb) = (0.7, 0.5), (0.6, 0.5), (0.5, 0.5), and (0.4, 0.5). We
reversed the k-axis in Figure 1(b), because, among all scores associated with a
victory of B, the score (14,15) can be considered the closest to the score (15,14)
(associated with a victory of A). It then makes sense to regard Figures 1(a)–(b)
as a single plot. The resulting “global” probability curves are quite smooth and,
as expected, unimodal (with the exception of the pa = pb = 0.5 curve, which is
slightly bimodal). It appears that these score distributions are extremely sensitive
to (pa, pb), as are the corresponding game-winning probabilities (pA

A ranges
from 0.94 to 0.22, when, for fixed pb = 0.5, pa goes from 0.7 to 0.4). For pa =
pb = 0.5, we would expect the global probability curve to be symmetric. The
advantage Player A is given by serving first in the game, however, makes this
curve slightly asymmetric; this is quantified by the corresponding probability
that A wins the game, namely pA

A = 0.53 > 0.47 = pB
A .

As mentioned in the Introduction, sports based on the side-out scoring
system may involve tiebreaks in case of a tie at n − 1. This means that, at
this tie, the receiver has the option of playing through to n or “setting to �”
(for a fixed � ≥ 2), in which case the winner is the first player to score �

further points. For instance, games in the current side-out scoring system for
squash are played to n = 9 points, and the receiver, at (8, 8), may decide
whether the game is to 9 or 10 points (� = 2). Before the transition to the
rally-point system in 2006, similar tiebreak rules were used in badminton,
there with n = 15 and � = 3. Assuming that the game is always set to � in
case of a tie at n − 1, the resulting score distribution can then be easily
derived from Theorem 1 by appropriate conditioning; for instance, the score
(n + � − 1, n + k − 1), k ∈ {0, 1, . . . , � − 1} occurs in an A-game with
probability pn−1,n−1,A

A p�,k,A
A + pn−1,n−1,B

A p�,k,A
B . We stress that all results we

derive in the later sections can also be extended to scoring systems involving
tiebreaks, again by appropriate conditioning. Finally, various papers discuss
tiebreak strategies (whether to play through or to set the game to �) on the
basis of pa and pb; see, e.g., [11–14].

3. Distribution of the number of rallies under the side-out scoring system

As mentioned in the Introduction, the literature contains few results about the
number of rallies D needed to complete a single game played under the side-out
scoring system. Of course, the distribution of D can always be investigated by
simulations; see, e.g., [12], where Monte Carlo methods are used to estimate
the expectation of D for a broad range of rally-winning probabilities in the
no-server model. To the best of our knowledge, the only available theoretical
result is due to Simmons [11], and provides lower and upper bounds on the
expectation of D in an A-game conditional on a victory of A on the score
(n, k). More specifically, letting
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Figure 1. All subfigures refer to an A-game played under the side-out scoring system with
n = 15. Left: for (pa, pb) = (0.7, 0.5), (0.6, 0.5), (0.5, 0.5), and (0.4, 0.5), (a) probabilities
pn,k,A

A that Player A wins the game on the score (n, k) (along with the probabilities pA
A that

Player A wins the game), (c) expected values en,k,A
A , and (e) standard deviations (vn,k,A

A )1/2

of the numbers of rallies D conditional on the corresponding events (along with the
expected values eA

A and standard deviations (vA
A )1/2 of D conditional on a victory of A).

Right: the corresponding values for victories of B on the score (k, n). As for the expected
values and standard deviations of D unconditional on the score or the winner, we have
(eA, v

1/2
A ) = (33.5, 8.6), (41.6, 9.5), (48.7, 10.1), and (52.5, 11.5), for (pa, pb) = (0.7, 0.5),

(0.6, 0.5), (0.5, 0.5), and (0.4, 0.5), respectively. Estimated probabilities, expectations, and
standard deviations based on 5,000 replications are also reported (thinner lines in plots and
numbers between parentheses in legend boxes). Dashed lines in (c) correspond to the lower
and upper bounds in (2); see [11].
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eα,β,C2

C1
:= E[D | Eα,β,C2, S = C1], C1, C2 ∈ {A, B}, (1)

Simmons’ result states that

(n + k)
1 + q

1 − q
≤ en,k,A

A ≤ (n + k)
1 + q

1 − q
+ 2k, k = 0, 1, . . . , n − 1. (2)

Unless a shutout is considered (that is, k = 0), this is only an approximate
result, whose accuracy quickly decreases with k. Again, the reason why no
exact results are available is that all analyses of the game in the literature are
of a point-level nature. In sharp contrast, our rally-level analysis allows, inter
alia, for obtaining exact values of all moments of D, as well as its complete
distribution.

3.1. Moments

We first introduce the following notation. Let Rα,β,A
A (respectively, Rα,β,B

A ) be
a random variable assuming values r = γ 0, γ 0 + 1 , . . . , γ 1 (respectively,
r = 1, 2 , . . . , γ 2 + 1) with corresponding probabilities W α,β,A

A (q, r ) :=
(αr )(β−1

r−1)qr/ [
∑γ1

s=γ0
(αs)(β−1

s−1)qs] (respectively, W α,β,B
A (q, r ) := ( α

r−1)(
β−1
r−1)qr−1/

[
∑γ2+1

s=1 ( α
s−1)(

β−1
s−1)qs−1]). Conditioning with respect to the number of

A-interruptions and exchanges then yields the following result (see the
Appendix for the proof).

THEOREM 2. Let t �→ Mα,β,C2

C1
(t) = E[et D |Eα,β,C2, S = C1], C1, C2 ∈ {A, B},

be the moment generating function of D conditional on the event
Eα,β,C2 ∩ [S = C1], and let δC1,C2 = 1 if C1 = C2 and 0 otherwise. Then

Mα,β,C
A (t) =

(
(1 − q)et

1 − qe2t

)α+β

E
[
et(2Rα,β,C

A −δB,C )
]
,

for C ∈ {A, B}.

Quite remarkably, those moment generating functions (hence also all
resulting moments) depend on (pa, pb) through q = (1 − pa)(1 − pb) only.
Taking first and second derivatives with respect to t in the above expressions
and setting t = 0 then directly yields the following closed form expressions
for the expected values eα,β,C2

C1
from (1) and for the corresponding variances

v
α,β,C2

C1
:= Var[D | Eα,β,C2, S = C1], C1, C2 ∈ {A, B}.

COROLLARY 1. For C ∈ {A, B}, we have (i) eα,β,C
A = (α + β) 1+q

1−q − δB,C +
2 E[Rα,β,C

A ] and (ii) v
α,β,C
A = 4(α + β) q

(1−q)2 + 4 Var[Rα,β,C
A ]. Moreover, (iii)

eα,β,C
A is strictly monotone increasing in q.
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Clearly, Corollary 1 confirms Simmons’ result that the expected number of
rallies in an A-game won by A on the score (n, k) is en,k,A

A = n 1+q
1−q for k = 0.

More interestingly, it also shows that the exact value for any k > 0 is given by

en,k,A
A = (n + k)

1 + q

1 − q
+ 2

k∑
r=1

r W n,k,A
A (q, r ), k = 1, . . . , n − 1. (3)

Note that this is compatible with Simmons’ result in (2) because the second term
in the right-hand side of (3) is a weighted mean of 2r , r = 1, . . . , k. Similarly,
the expected number of rallies in an A-game won by B on the score (k, n),
k = 0, 1, . . . , n − 1, is ek,n,B

A = (n + k) 1+q
1−q − 1 + 2

∑k+1
r=1 r W k,n,B

A (q, r ).
The expectation and variance of D, in a C-game won by A, are then given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eA
C := E[D | E A, S = C] = 1

pA
C

n−1∑
k=0

pn,k,A
C en,k,A

C

vA
C := Var[D | E A, S = C] =

[
1

pA
C

n−1∑
k=0

pn,k,A
C

(
v

n,k,A
C + (

en,k,A
C

)2
)]

− (
eA

C

)2
,

(4)

while, in a C-game unconditional on the winner, they are given by⎧⎨
⎩

eC := E[D | S = C] = pA
C eA

C + pB
C eB

C ,

vC := Var[D | S = C] =
(
vA

C + (
eA

C

)2
)

pA
C +

(
vB

C + (
eB

C

)2
)

pB
C − (eC )2.

(5)

Finally, unconditional on the server, this yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eA := E[D | E A] = eA
Asa + eA

Bsb, e := E[D] = eAsa + eBsb,

vA := Var[D | E A] =
(
vA

A + (
eA

A

)2
)

sa +
(
vA

B + (
eA

B

)2
)

sb − (eA)2,

v := Var[D] = (
vA + e2

A

)
sa + (

vB + e2
B

)
sb − e2.

(6)

Figures 1(c)–(f) plot, for n = 15, en,k,A
A , ek,n,B

A , (vn,k,A
A )1/2, and (vk,n,B

A )1/2

versus k for (pa, pb) = (0.7, 0.5), (0.6, 0.5), (0.5, 0.5), and (0.4, 0.5), and report
the corresponding numerical values of eA

A, eB
A, eA, (vA

A )1/2, (vB
A )1/2, and (vA)1/2.

All expectation and standard deviation curves appear to be strictly monotone
increasing functions of the number (n + k) of points scored, which was maybe
expected.Moresurprising is the fact that—ifonediscardsverysmallvaluesofk—
these curves are also roughly linear. Clearly, Simmons’ lower and upper bounds
(2), which are plotted versus k in Figure 1(c), only provide poor approximations
of the exact expected values, particularly so for large k.

The dependence on (pa, pb) may be more interesting than that on k. Note
that, for each k, en,k,A

A and ek,n,B
A (hence also, eA

A, eB
A , and eA) are decreasing

functions of pa, which confirms Corollary 1(iii). Similarly, all quantities related
to standard deviations also seem to be decreasing functions of pa. Now, it is
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seen that, as a function of pa, the expectation eA
A is more spread out than eB

A .
Indeed, the former ranges from 32.95 (pa = 0.7) to 56.30 (pa = 0.4), whereas
the latter ranges from 41.95 to 51.43. On the contrary, the standard deviation
of D is more concentrated in an A-game won by A (where it ranges from 8.34
(pa = 0.7) to 10.90 (pa = 0.4)) than in an A-game won by B (where it
ranges from 7.36 to 11.44). This phenomenon will appear even more clearly in
Figure 3 below, where the same values of (pa, pb) are considered. Note that
the values of eA

A, eB
A , and eA are totally in line with the score distribution and

the expected values of D for each scores. For instance, the value eB
A = 41.95

for pa = 0.7 translates the fact that when B wins such an A-game, it is very
likely (see Figure 1(b)) that he/she will do so on a score that is quite tight,
resulting on a large expected value for D (whereas, á priori, the values of ek,n,B

A
range from 47.82 to 21.29 when k goes from 14 to 0). The dependence of the
expectation and standard deviation of D on rally-winning probabilities will
further be investigated in Section 4 for the no-server model when comparing
the side-out scoring system with its rally-point counterpart.

Finally, in the case pa = pb = 0.5, the fact that A is the first server in
the game again brings some asymmetry in the expected values and standard
deviations of D; in particular, this serve advantage alone is responsible for
the fact that 48.31 = eA

A < eB
A = 49.17, and, maybe more mysteriously, that

10.23 = (vA
A)1/2 > (vB

A )1/2 = 9.95.

3.2. Distribution

The moment generating functions given in Theorem 2 allow, through a suitable
change of variables, for obtaining the corresponding probability generating
functions. These can in turn be rewritten as power series whose coefficients
yield the distribution of D conditional on the event Eα,β,C ∩ [S = A] (see the
Appendix for the proof).

THEOREM 3. Let z �→ Gα,β,C2

C1
(z) = E[zD |Eα,β,C2, S = C1], C1, C2 ∈ {A, B},

be the probability generating function of D conditional on the event
Eα,β,C2 ∩ [S = C1]. Then, for C ∈ {A, B},

Gα,β,C
A (z) = pα

a pβ

b q
δB,C
a

pα,β,C
A

∞∑
j=0

q j Hα,β,C
A ( j) zα+β+2 j+δB,C ,

where, writing m+ := max (m, 0), we let

Hα,β,A
A ( j) :=

j∑
l=( j−γ1)+

(
α + β + l − 1

l

)(
α

j − l

)(
β − 1

j − l − 1

)

and
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Figure 2. Both subfigures refer to an A-game played under the side-out scoring system with
n = 15 and (pa, pb) = (0.6, 0.5). Subfigure (a) (respectively, Subfigure (b)) reports, as
a function of k, the α-quantile of the number of rallies needed to complete the game,
conditional on a victory of A on the score (n, k) (respectively, conditional on a victory of B
on the score (k, n)), with α = 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, and 0.99. Solid lines
(respectively, dotted lines) correspond to standard (respectively, interpolated) quantiles; see
Section 3.2 for details. The thicker solid curves give the expected values of D conditional on
the same events, hence are the same as in Figure 1(c)–(d).

Hα,β,B
A ( j) :=

j∑
l=( j−γ2)+

(
α + β + l − 1

l

)(
α

j − l

)(
β − 1

j − l

)
.

This result gives the probability distribution of D, conditional on Eα,β,C ∩
[S = A], for C ∈ {A, B}. Note that, as expected, we have P[D = d | Eα,β,A,
S = A] = 0 = P[D = d + 1 | Eα,β,B, S = A] for all d < α + β. Moreover, for all
nonnegative integer j , P[D = α + β + 2 j + 1 | Eα,β,A, S = A] = 0 = P[D =
α + β + 2 j | Eα,β,B, S = A]. In the sequel, we refer to this as the server-effect.

Theorem 3 of course allows for investigating the shape of the distribution
of D above all scores, and not only, as in Figures 1(c)–(f), its expectation and
standard deviation. This is what is done in Figure 2, which plots, as a function
of the score, quantiles of order α = 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99
for (pa, pb) = (0.6, 0.5). For each α, two types of quantiles are reported,
namely (i) the standard quantile qα := inf{d : P[D ≤ d | Eα,β,C , S = A] ≥ α}
and (ii) an interpolated quantile, for which the interpolation is conducted
linearly over the set (d, d + 2) containing the expected quantile (here, we
avoid interpolating over (d, d + 1) because of the above server-effect, which
implies that either d or d + 1 does not bear any probability mass). One of the
most prominent features of Figure 2 is the wiggliness of the standard quantile
curves, which is directly associated with the server-effect. It should be noted
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that the expectation curves (which are the same as in Figures 1(c)–(d)) stand
slightly above the median curves, which possibly indicates that, above each
score, the conditional distribution of D is somewhat asymmetric to the right.
This (light) asymmetry is confirmed by the other quantiles curves.

Now, the probability distribution of D in an A-game, unconditional on the
score, is of course derived trivially from its conditional version obtained above
and the score distribution of Section 2. The general form of this distribution is
somewhat obscure (and will not be explicitly given here), but it yields easily
interpretable expressions for small values of d. For instance, one obtains

P[D = n | S = A] = pn
a ,

P[D = n + 1 | S = A] = qa pn
b ,

P[D = n + 2 | S = A] = nqpn
a + paqa pn

b , . . .

Finally, the unconditional distribution of D is simply obtained through P[D =
k] = P[D = k | S = A]sa + P[D = k | S = B]sb, k ≥ 0, where one computes
the distribution for a B-game by inverting pa and pb in the distribution for an
A-game.

Figure 3 shows that there are a number of remarkable aspects to these
distributions. First note the influence of the above mentioned server-effect,
which causes the wiggliness visible in most curves there. Also note that the
distributions in Figure 3(c) are much less wiggling than the corresponding
curves in Figures 3(a)–(b). As it turns out, this wiggliness is present, albeit
more or less markedly, at all stages (that is, not only to the right of the mode)
for every choice of (pa, pb). Most importantly, despite their irregular aspect,
all curves are essentially unimodal, as expected.

Now, consider the dependence on pa of the position and spread of these
curves. One sees that while their spread clearly increases much more rapidly
with pa in Figure 3(b) than in Figure 3(a), the opposite can be said for
their mode. This is easily understood in view of the corresponding means
and variances, which are recalled in the legend boxes (and coincide with
those from Figure 1). As for the curves in Figure 3(c), they are obtained
by averaging the corresponding curves in Figure 3(a) and Figure 3(b) with
weights pA

A and pB
A = 1 − pA

A , respectively. Taking into account the values of
these probabilities explains why the curves with pa = 0.7 and pa = 0.6 are
essentially the corresponding curves in Figure 3(a), whereas that with pa =
0.4 is closer to the corresponding curve in Figure 3(b).

4. Comparison with the rally-point scoring system

One of the main motivations for this work was to compare more deeply the
side-out scoring system considered in Sections 2 and 3 with the rally-point
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Figure 3. All subfigures refer to an A-game played under the side-out scoring system with n
= 15. For (pa, pb) = (0.7, 0.5), (0.6, 0.5), (0.5, 0.5), and (0.4, 0.5), they report the probabilities
that the number of rallies D needed to complete the game takes value d , (a) conditional upon
a victory of Player A, (b) conditional upon a victory of Player B, and (c) unconditional.
Estimated probabilities, expectations, and standard deviations based on 20,000 replications are
also reported (thinner lines in plots and numbers between parentheses in legend boxes).
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scoring system. As mentioned in the Introduction, many sports recently
switched (e.g., badminton, volleyball)—or are in the process of switching
(e.g., squash)—from the side-out scoring system to its rally-point counterpart,
whereas others (e.g., racquetball) so far are sticking to the side-out scoring
system. It is therefore natural to investigate the implications of the transition to
the rally-point system.

The literature, however, has focused on the impact of the scoring system
on the outcome of the game—studied by comparing the game-winning
probabilities under both scoring systems; see, e.g., [11]. This is all the more
surprising because there have been, in the sport community, much debate and
questions about how much the duration of the game is affected by the scoring
system. Moreover, it is usually reported that the main motivation for turning to
the rally-point system is to regulate the playing time (that is, to make the
length of the match more predictable), which is of primary importance for
television, for instance. Whether the transition to the rally-point system has
indeed served that goal, and, if it has, to what extent, are questions that have
not been considered in the literature, and were at best addressed on empirical
grounds only (by international sport federations).

In this section, we will provide an in-depth comparison of the two scoring
systems, both in terms of game-winning probabilities and in terms of durations,
which will provide theoretical answers to the questions above. Again, this is
made possible by our rally-level analysis of the game and the results of the
previous sections on the distribution of the number of rallies under the side-out
scoring system. As we will discuss in Section 6, our results are potentially
of high interest both for international federations and for local tournament
organizers.

4.1. Game-winning probabilities

Although the game-winning probabilities for an A-game played under the
rally-point system have already been obtained in the literature (see, e.g., [11]),
we start by deriving them quickly, mainly for the sake of completeness, but
also because they easily follow from the combinatorial methods used in the
previous sections. First note that there cannot be exchanges in the rally-point
scoring system, as it is understood in Definition 1 that no point is scored in an
exchange. We then denote by Ēα,β,C

A (r ) (C ∈ {A, B}) the event associated with
a sequence of rallies that, in the rally-point system, (i) gives rise to α points
scored by Player A and β points scored by Player B, (ii) involves exactly
r A-interruptions, and (iii) is such that Player C scores a point in the last
rally; again, it is assumed here that α > 0 (respectively, β > 0) if C = A
(respectively, if C = B). We write

p̄α,β,C2

C1
(r ) := P[Ēα,β,C2 (r ) | S = C1], C1, C2 ∈ {A, B}.
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The following result then follows along the same lines as for Lemma 1 and
Theorem 1.

THEOREM 4. (i) With the notation above, p̄α,β,A
A (r ) = (αr )(β−1

r−1)pα−r
a pβ−r

b

(qaqb)r , r ∈ {γ0, . . . , γ1}, and p̄α,β,B
A (r ) = ( α

r−1)(
β−1
r−1)pα−r+1

a pβ−r
b qa(qaqb)r−1,

r ∈ {1, . . . , γ2 + 1}. (ii) Writing p̄α,β,C
A for the probability of the event Ēα,β,C

A :=
∪r Ēα,β,C

A (r ), we have p̄α,β,A
A = pα

a pβ

b

∑γ1
r=γ0

(αr )(β−1
r−1)(tatb)r and p̄α,β,B

A = pα
a −

pβ−1
b qa

∑γ2+1
r=1 ( α

r−1)(
β−1
r−1)(tatb)r−1, where we let ta = qa/pa and tb = qb/pb.

Remark 1. These expressions further simplify in the no-server model
(p := )pa = 1 − pb. There we indeed have tb = t−1

a , so that the above

formulas yield p̄α,β,A
A = (α+β−1

β )pα(1 − p)β and p̄α,β,B
A = (α+β−1

α )pα(1 − p)β.

Of course, the resulting score distribution and game-winning probabilities
for an A-game directly follow from Theorem 4. In accordance with the notation
adopted for the side-out scoring system, we will write

p̄A
C := P[Ē A | S = C] := P

[∪n−1
k=0 En,k,A | S = C

]
:=

n−1∑
k=0

p̄n,k,A
C , p̄B

C := 1 − p̄A
C ,

p̄n,k,A := P[Ēn,k,A] = p̄n,k,A
A sa + p̄n,k,A

B sb,

p̄k,n,B := P[Ēk,n,B] = p̄k,n,B
A sa + p̄k,n,B

B sb,

and

p̄C := P[ĒC ] = p̄C
Asa + p̄C

B sb.

Figures 4(a)–(b) plot the same score distribution curves as in Figures 1(a)–(b),
respectively, but in the case of an A-game played under the rally-point scoring
system with n = 21. Both pairs of plots look roughly similar, although
extreme scores seem to be less likely in the rally-point scoring; this confirms
the findings from [11] according to which shutouts are less frequent under
the rally-point scoring system. Note also that, unlike for the side-out scoring,
the (pa, pb) = (0.5, 0.5) curve in Figure 4(a) is the exact reverse image of
the corresponding one in Figure 4(b): for the rally-point scoring, Player A of
course does not get any advantage from serving first if (pa, pb) = (0.5, 0.5),
which is confirmed by the game-winning probabilities p̄A

A = p̄B
A = 0.5.

Again, the dependence of the game-winning probabilities on (pa, pb) is of
primary importance. We will investigate this dependence visually and compare
it with the corresponding dependence for the side-out scoring system. To do
so, we focus on the no-server version (p = pa = 1 − pb) of Badminton,
where, as already mentioned, the side-out scoring system with n = 15 (men’s
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Figure 4. Both subfigures refer to an A-game played under the rally-point scoring system
with n = 21. Subfigure (a): for (pa, pb) = (0.7, 0.5), (0.6, 0.5), (0.5, 0.5), and (0.4,
0.5), probabilities p̄n,k,A

A that Player A wins the game on the score (n, k), along with the
probabilities p̄A

A that Player A wins the game. Subfigure (b): the corresponding values for
victories of B on the score (k, n). Estimated probabilities based on 5,000 replications are also
reported (thinner lines in plots and numbers between parentheses in legend boxes).

singles) was recently replaced with the rally-point one characterized by n =
21. The results are reported in Figures 5(a)–(b). Figure 5(a) supports the
claim—reported, e.g., in [11] or [12]—stating that, for any fixed p, the scoring
barely influences game-winning probabilities. Now, while Figure 5(b) shows
that the probability that Player A wins an A-game is essentially the same for
both scoring systems if he/she is the best player ( p̄A

A/pA
A ∈ (0.926, 1) for p ≥

0.5, and p̄A
A/pA

A ∈ (0.997, 1) for p > 0.7), it tells another story for p < 0.5:
there, the probability that A wins an A-game played under the rally-point
system (i) becomes relatively negligible for very small values of p (in the
sense that p̄A

A/pA
A → 0 as p → 0) and (ii) can be up to 28 times larger than

under the side-out system (for values of p close to 0.1). Of course, one can
say that (i) is irrelevant because it is associated with an event (namely, a
victory of A) occurring with very small probability; (ii), however, constitutes
an important difference between both scoring systems for values of p that are
not so extreme.

4.2. Durations

In the rally-point system, the number of rallies needed to achieve the event
Ēα,β,C2 ∩ [S = C1] is not random: with obvious notation, it is almost surely
equal to ēα,β,C2

C1
= α + β, which explains why Figure 4 does not contain

the rally-point counterparts of Figure 1(c)–(f). The various conditional and
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Figure 5. As a function of p = pa = 1 − pb (hence, in the no-server model), probabilities
p15,k,A

A (in blue) that Player A wins an n = 15 side-out A-game on the score (15,k), along
with the probabilities p̄21,k,A

A (in red) that Player A wins an n = 21 rally-point A-game on the
score (21,k). Expectations (first row) and standard deviations (second row) of the number
of rallies needed to complete the corresponding games, unconditional on the winner (first
column), conditional on a victory of Player A (second column), and conditional on a victory
of Player B (third column). Estimated probabilities, expectations, and standard deviations
(based on 200 replications at each value of p = 0, 0.0005, 0.0010, 0.0015, . . . , 0.9995) are
also reported (thinner lines).
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unconditional means and variances of the number of rallies in the rally-point
system (that is, the quantities ēA

C , v̄A
C , ēC , v̄C , ēA, v̄A, ē, v̄) can then be readily

computed from the game-winning probabilities given in Theorem 4, in the
exact same way as in (4)–(6) for the side-out scoring system. More generally,
the corresponding distribution of the number of rallies in a game trivially
follows from the same game-winning probabilities.

Figures 5(c)–(h) plot, as functions of p = pa = 1 − pb (hence, in the
no-server model), expected values and standard deviations of the numbers of
rallies needed to complete (i) A-games played under the side-out system with
n = 15 and (ii) A-games played under the rally-point system with n = 21.
Clearly, those plots allow for an in-depth (original) comparison of both scoring
systems. Let us first focus on durations unconditional on the winner of the
game. Figure 5(c) shows that games played under the side-out system will last
longer than those played under the rally-point one for players of roughly the
same level (which was expected because the side-out system will then lead
to many exchanges), whereas the opposite is true when one player is much
stronger (which is explained by the fact that shutouts require more rallies
in the rally-point scoring considered than in the side-out one). Maybe less
expected is the fact (Figure 5(f)) that the standard deviation of D is, uniformly
in p ∈ (0, 1), smaller for the rally-point scoring system than for the side-out
system, which shows that the transition to the rally-point system indeed makes
the length of the game more predictable. The twin-peak shape of both standard
deviation curves is even more surprising. Finally, note that, while the rally-point
curves in Figures 5(c) and (f) are symmetric about p = 0.5, the side-out
curves are not, which is due to the server-effect. This materializes into the
limits of eA given by 16 and 15 as p → 0 and p → 1, respectively (which was
expected: if Player B wins each rally with probability one, he/she will indeed
need 16 rallies to win an A-game, because he/she has to regain the right to
serve before scoring his/her first point), but also translates into (i) the fact that
the mode of the side-out curve in Figure 5(c) is not exactly located in p = 0.5
and (ii) the slightly different heights of the two local (side-out) maxima in
Figure 5(f).

We then turn to durations conditional on the winner of the game, whose
expected values and standard deviations are reported in Figures 5(d), (e), (g),
and (h). These figures look most interesting and reveal important differences
between both scoring systems. Even the general shape of the curves there are
of a different nature for both scorings; for instance, the rally-point curves in
Figures 5(d)–(e) are monotonic, while the side-out ones are unimodal. Similarly,
in Figure 5(g), the rally-point curve is unimodal, whereas the side-out curve
exhibits a most unexpected bimodal shape. It is also interesting to look at limits
as p → 0 or p → 1 in those four subfigures; these limits, which are derived in
Appendix A.3, are plotted as short horizontal lines. Consider first limits above
events occurring with probability one, that is, limits as p → 1 in Figures 5(d),
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(g) and limits as p → 0 in Figures 5(e), (h). The resulting limits are totally in
line with our intuition: the four conditional standard deviations go to zero,
which implies that the limiting conditional distribution of D simply is almost
surely equal to the corresponding limiting (conditional) expectations. The latter
themselves assume very natural values: for instance, for the same reason as
above, eB

A converges to 16, which is therefore the limit of D in probability.
Much more surprising is what happens for limits above events occurring

with probability zero, that is, limits as p → 0 in Figures 5(d), (g) and limits as
p → 1 in Figures 5(e), (h). Focusing first on the side-out scoring system, it is
seen that a (miraculous) victory of A will require, in the limit, almost surely
D = 15 points, while the limiting conditional distribution of D for victories of
B is nondegenerate. The latter distribution is shown (see Appendix A.3) to
be uniform over {n + 1, n + 2 , . . . , 2n} (hence is stochastically bounded!),
which is compatible with the values n + 1 + (n − 1)/2(≈3n/2) and (n −
1)2/12 for the limiting expectation and variance, respectively. It should be
noted here that this huge difference between those two limiting conditional
distributions of D is entirely due to the server-effect. In the absence of the
server-effect, the Figures 5(e) and (h) should indeed be the exact reverse
image of the Figures 5(d) and (g), respectively. Similarly, the bimodality of the
side-out curve in Figure 5(g) is also due to the server-effect. We then consider
the rally-point scoring, which is not affected by the server-effect, so that it is
sufficient to consider at the limits as p → 0 in Figures 5(d), (g). There, one also
gets a nondegenerate limiting conditional distribution for D, with expectation
2n2/(n + 1)(≈2n) and variance 2n2(n − 1)/[(n + 1)2(n + 2)](≈2).

5. Simulations

We performed several Monte Carlo simulations, one for each figure considered
so far (except Figure 2, as it already contains many theoretical curves). To
describe the general procedure, we focus on the Monte Carlo experiment
associated with the side-out scoring system in Figure 5 (results for the
rally-point scoring system there or for the other figures are obtained similarly).
For each of the 1,999 values of p considered in Figure 5, the corresponding
values of pA

A(p), eA(p), vA(p), eC
A(p), vC

A (p), C ∈ {A, B}, were estimated on
the basis of J = 200 independent replications of an A-game played under the
side-out scoring system with pa = 1 − pb = p. Of course, for each fixed p,
the game-winning probability pC

A (p) is simply estimated by the proportion of
games won by C in the J corresponding A-games:

p̂C
A (p) := J C

J
:= 1

J

J∑
j=1

I C
j ,
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where I C
j , j = 1, . . . , J , is equal to one (respectively, zero) if Player C

won (respectively, lost) the j th game. The corresponding estimates for
eA(p), vA(p), eC

A(p), and vC
A (p) then are given by

êA(p) := 1

J

J∑
j=1

d j v̂A(p) := 1

J

J∑
j=1

(d j − êA(p))2,

êC
A(p) := 1

J C

J∑
j=1

d j I C
j , and v̂C

A (p) := 1

J C

J∑
j=1

(
d j − êC

A(p)
)2

I C
j , (7)

where dj, j = 1, . . . , J , is the total number of rallies in the j th game. These
estimates are plotted in thin blue lines in Figure 5. Clearly, these simulations
validate our theoretical results in Figures 5(a), (c), and (f). To describe what
happens in the other plots, consider, e.g., Figure 5(g). There, it appears that the
theoretical results are confirmed for large values of p only. However, this is
simply explained by the fact that for small values of p, the denominator of v̂A

A(p)
(see (7)) is very small. Actually, among the 542 × 200 A-games associated
with the 542 values of p ≤ 0.2710, not a single one here led to a victory of A,
so that the corresponding estimates v̂A

A(p) are not even defined. Of course,
values of p slightly larger than 0.2710 still give rise to a small number of
victories of A, so that the corresponding estimates v̂A

A(p) are highly unreliable.
The situation improves substantially as p increases, as it can be seen in Figure
5(g). Figures 5(b), (d), (e), and (h) can be interpreted exactly in the same way.

This underlines the fact that expectations and variances conditional on
events with small probabilities are extremely difficult—if not impossible—to
estimate. To quantify this, let us focus again on Figure 5(g), and consider the
local maximum on the left of the plot, which is (on the grid of values of p at
hand) located in p0 := 0.0085. The probability pA

A(p0) of a victory of A in an
A-game played under the side-out scoring system with p = p0 is about 3.5 ×
10−31. Estimating vA

A(p0) with the same accuracy as that achieved for, e.g.,
vA

A(0.5) in Figure 5(g) would then require a number of replications of (fixed p0)
A-games that is about 200 × pA

A(0.5)/pA
A(p0) ≈ 3 × 1032. Assuming that 106

replications can be performed in a second by a super computer (which is overly
optimistic), this estimation of vA

A(p0) would still require not less than 9.5 ×
1018 years! This means that it is indeed impossible to estimate in a reliable
way the conditional variance curve for p close to p0 so that Monte Carlo
experiments cannot reveal the existence of the local maximum in p0. Similarly,
without our theoretical analysis, there is no hope to learn about the degeneracy
(respectively, nondegeneracy) of the limiting distribution of D conditional on a
victory of A as p → 0 (respectively, conditional on a victory of B as p → 1).

We will not comment in detail the Monte Carlo results associated with the
other figures. We just report that they again confirm our theoretical findings,
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whenever possible, that is, whenever they are not associated with conditional
results above events with small probabilities.

6. Conclusion and final comments

This paper provides a complete rally-level probabilistic description for games
played under the side-out scoring system. It complements the previous main
contributions from [7, 10] and [11] by adding to the well-known game-winning
probabilities an exhaustive knowledge of the random duration of the game.
This brings a much better understanding of the underlying process as a whole,
as is demonstrated in Sections 2 to 4.

In this final section, we will mainly focus on the practical implications
of our findings. For this, we may restrict to (pa, pb) ∈ [0.4, 0.6] × [0.4,
0.6], say, because players tend to be grouped according to strength. For such
values of the rally-winning probabilities, our results show that the recent
transition—in men’s singles’ Badminton—from the n = 15 side-out scoring
system to the n = 21 rally-point one strongly affected the properties of the
game. They indeed indicate that games played under the rally-point scoring
system are much shorter than those played according to the side-out one, and
that the uncertainty in the duration of the match is significantly reduced. Our
results allow quantifying both effects. On the other hand, they show that
game-winning probabilities are essentially the same for both scoring systems.
It is then tempting to conclude (as in [11, 12]) that the outcomes of the games
are barely influenced by the scoring system adopted. While this is strictly
valid in the model, it is highly disputable under possible violations of the
model. For instance, i.i.d.-ness (see page 2) may fail to hold for long games
involving players with different fitness levels, a violation of the model under
which scoring systems, through their impact on the duration of the games (see
above), may significantly influence the outcomes of the games.

In practice, the results of this paper can be useful to many actors of the sport
community. For the international sport federations playing with the idea of
replacing the side-out scoring system with the rally-point one, our results could
be used to tune n (i.e., the number of points to be scored to win a rally-point
game) according to their wishes. For the sake of illustration, consider again the
transition performed by the International Badminton Federation. Presumably,
its objective was (i) to make the duration of the game more predictable and (ii)
to ensure that the outcome of the matches would change as little as possible. If
this was indeed the objective, then our results show that it has only been
partially achieved: it is indeed easy to see that other choices of n would have
been even better in that respect, the choice of n = 27 (see Figure 6(b) and (d)),
being optimal. Moreover, this last choice would have affected the duration of
the game much less than n = 21 (see Figure 6(c)), and thus would have
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Figure 6. Subfigures (a)–(e) here report Subfigures (a)–(c), (f), and (e) from Figure 5 with
the only difference that the rally-point scoring here is based on n = 27 (the side-out scoring is
still based on n = 15).

made the outcome of the matches more robust to possible violations of the
model.

For organizers of local tournaments played under the side-out scoring
system, our results can be used to control, for any fixed number of planned
matches, the time required to complete their events. Such a control over this
random time, at any fixed tolerance level, can indeed be achieved in a quite
direct way from our results on the duration of a game played under the side-out
scoring system. Organizers can then deduce, at the corresponding tolerance
level, the number of matches—hence the number of players—their events will
be able to host. This of course concerns the sports that are still using this
scoring system, such as racquetball and squash (for the latter, only in countries
currently using the so-called English scoring system).
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Finally, because our results provide a complete description of the duration
process in the side-out scoring system, they also open the way to more efficient
estimation of the rally-winning probabilities (pa, pb) there. However, a full
discussion of this is beyond the scope of this paper, and is actually the topic of
current research [8].

Appendix: proofs

A.1. Proofs of Lemma 1 and Theorem 1

In the Appendix, we simply write interruptions for A-interruptions.

Proof of Lemma 1. Clearly, pα,β,A
A (r, j) = Kr, j pα

a pβ

b (qaqb)r+ j , where K r,j

is the number of ways of setting r interruptions and j exchanges in the sequence
of rallies achieving the event under consideration. Regarding interruptions, we
argue as in [2], and say those r interruptions should be put into the α possible
spots (remember the last point should be won by A), while the β points scored
by B should be distributed among those r interruptions—with at least one
point scored by B in each interruption (so that there may be at most r =
min (α, β) interruptions). There are exactly (αr )(β−1

r−1) ways to achieve this. As

for the j exchanges, they may occur at any time and thus there are as many
ways of placing j interruptions as there are distributions of j indistinguishable

balls into α + β urns, i.e., (α+β−1
j ). Summing up, we have proved that

pα,β,A
A (r, j) =

(
α + β − 1

j

)(
α

r

)(
β − 1

r − 1

)
pα

a pβ

b (qaqb)r+ j ,

with r = min(β, 1), . . . , min(α, β), j ∈ N.
As for pα,β,B

A (r, j), this probability is clearly of the form Lr, j pα
a pβ

b qa ×
(qaqb)r+ j−1. In this case, there are α + 1 possible spots for the r interruptions.
However, because B scores the last point, the sequence of rallies should end

with an interruption. There are therefore ( α
r−1) ways to insert the interruptions.

Each interruption contains at least one point for B, so that r ≤ min (α + 1, β).

The result follows by noting that there are (β−1
r−1) ways of distributing the β

points scored by B into those r interruptions, and by dealing with exchanges
as for pα,β,A

A (r, j). �

Proof of Theorem 1. The result directly follows from Lemma 1 by writing
pα,β,A

A = ∑
r, j pα,β,A

A (r, j) and pα,β,B
A = ∑

r, j pα,β,B
A (r, j) (where the sums are

over all possible values of r and j in each case), and by using the equality∑∞
j=0(m+ j−1

j )z j = (1 − z)−m for any z ∈ [0, 1). �
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A.2. Proofs of Theorems 2 and 3 and of Corollary 1

Proof of Theorem 2. First note that if A scores the last point in an A-game
in which the score is α to β after j exchanges ( j ∈ {0, 1, . . . }) and r
interruptions (r ∈ {γ 0, . . . , γ 1}), then there have been α + β + 2(r + j) rallies.
Conditioning on the number of interruptions and exchanges therefore yields

Mα,β,A
A (t) = (

pα,β,A
A

)−1∑
j

∑
r

et(α+β+2(r+ j)) pα,β,A
A (r, j)

(where the sums are over all possible values of r and j in each case) and thus,
from Lemma 1 and Theorem 1,

Mα,β,A
A (t) =

et(α+β)
∑

j

(e2tq) j

(
α + β + j − 1

j

)∑
r

e2tr

(
α

r

)(
β − 1

r − 1

)
qr

(1 − q)−(α+β)
∑

r

(
α

r

)(
β − 1

r − 1

)
qr

= (
(1 − q)et

)α+β

( ∑
j

(e2tq) j

(
α + β + j − 1

j

))

×
(∑

r

e2tr W α,β,A
A (q, r )

)
.

The first claim of Theorem 2 follows.
For the second claim, it suffices to note that if B scores the last point in an

A-game in which the score is of α to β after j exchanges ( j ∈ {0, 1, . . . }) and
r interruptions (r ∈ {1, . . . , γ 2 + 1}), then the number of rallies equals α +
β + 2(r − 1 + j) + 1; the computations above then hold with only minor
changes. �

Proof of Corollary 1. Taking first and second derivatives of the moment
generating functions yields the expectations and variances given in Corollary 1.
Moreover it can easily be seen that derivatives of the expected values with
respect to q are positive by using the Cauchy–Schwarz inequality, and thus the
latter are strictly monotone increasing in q. �

Proof of Theorem 3. The change of variables z = et in the moment
generating functions given in Theorem 2 immediately yields the probability
generating functions. If β = 0, the latter is already in the form of an infinite

series Gα,0,A
A (z) = ∑∞

j=0(1 − q)αq j (α+ j−1
j )zα+2 j . If β > 0, we have

Gα,β,A
A (z) = (1 − q)α+βzα+β

∞∑
j=0

K j z
2 j

γ1∑
r=1

Wr z2r ,
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where K j = q j (α+β+ j−1
j ) and Wr = W α,β,A

A (q, r ). This double sum satisfies

∞∑
j=0

K j

γ1∑
r=1

Wr z2( j+r ) =
γ1∑

j=1

z2 j

(
j−1∑
l=0

Kl W j−l

)
+

∞∑
j=γ1+1

z2 j

⎛
⎝ j−1∑

l= j−γ1

Kl W j−l

⎞
⎠ .

The same arguments are readily adapted to Gα,β,B
A (z), and Theorem 3

follows. �

A.3. The distribution of the number of rallies, in the no-server model,
for extreme rally-winning probabilities

As announced in Section 4.2, we determine here the limiting behavior of the
number of rallies D, in the no-server model, for p → 0 and p → 1, conditional
on the winner of the A-game considered. We start with the limit under almost
sure events, that is, limits as p → 1 (respectively, p → 0) for the distribution
of D conditional on a victory of A (respectively, of B).

PROPOSITION 1. Let, for the side-out scoring system, t �→ MC
A (t) =

E[et D | EC , S = A], C ∈ {A, B}, be the moment generating function of D
conditional on the event EC ∩ [S = A]. Denote by t �→ M̄C

A (t) = E[et D | ĒC ,

S = A], C ∈ {A, B}, the corresponding moment generating function for the
rally-point system. Then, (i) as p → 1, M A

A (t) → ent and M̄ A
A (t) → ent ; (ii) as

p → 0, M B
A (t) → e(n+1)t and M̄ B

A (t) → ent .

Proof . (i) By conditioning, we get M A
A (t) = ∑n−1

k=0 Mn,k,A
A (t)pn,k,A

A /pA
A . It is

easy to check that limp→1 pn,k,A
A /pA

A = δk,0 and that limp→1 Mn,k,A
A (t) = e(n+k)t .

Hence limp→1 M A
A (t) = ent . Likewise, M̄ A

A (t) = ∑n−1
k=0 e(n+k)t p̄n,k,A

A / p̄A
A . Again,

it is easy to check that limp→1 p̄n,k,A
A / p̄A

A = δk,0. Hence, we indeed have
M̄ A

A (t) → ent . (ii) The proof is similar, and thus left to the reader. �

COROLLARY 2. (i) As p → 1, (eA
A, vA

A) → (n, 0) and (ēA
A, v̄A

A) → (n, 0), so

that, conditional on a victory of A in an A-game, D
P→ n, irrespective of

the scoring system; (ii) as p → 0, (eB
A, vB

A ) → (n + 1, 0) and (ēB
A, v̄B

A ) →
(n, 0), so that, conditional on a victory of B in an A-game, D

P→ n + 1
(respectively, n) for the side-out (respectively, rally-point) scoring system.

As shown by Proposition 1 and Corollary 2, the situation is here very clear.
In each of the four cases considered, only one trajectory is possible, namely
that for which all rallies in the game will be won by the winner of the game.

Next we derive the limiting conditional distribution of D under events which
occur with zero probability, that is, limits as p → 1 (respectively, p → 0) for
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the distribution of D conditional on a victory of B (respectively, of A). Our
conclusions are much more surprising.

PROPOSITION 2. Let m(t) := ∑n−1
k=0 e(n+k)t (n+k−1

k )/
∑n−1

k=0(n+k−1
k ). Then, (i)

as p → 0, M A
A (t) → ent and M̄ A

A (t) → m(t); (ii) as p → 1, M B
A (t) →

(e(n+1)t − e(2n+1)t )/(n(1 − et )) and M̄ B
A (t) → m(t). In particular, as p → 1,

the limiting distribution of D conditional on the event E B ∩ [S = A] is
uniform over the set {n + 1, . . . , 2n}.

Proof . We first prove the assertions for the rally-point scoring system.
In this case, M̄ A

A (t) = ∑n−1
k=0 e(n+k)t p̄n,k,A

A / p̄A
A . Now, from Remark 1 it is

immediate that limp→0 pn,k,A
A /pA

A = (n+k−1
k )/

∑n−1
k=0(n+k−1

k ), which proves the

claim for M̄ A
A (t) (hence, by symmetry, also for M̄ B

A (t)).
Next consider the assertions for the side-out scoring system. First note that,

as before, M A
A (t) = ∑n−1

k=0 Mn,k,A
A (t)pn,k,A

A /pA
A and M B

A (t) = ∑n−1
k=0 Mk,n,B

A (t)
pk,n,B

A /pB
A . Now fix k ∈ {0, . . . , n − 1}. Using Theorem 1, one readily shows

that

lim
p→0

pn,k,A
A

/
pA

A = δk,0 and lim
p→1

pk,n,B
A

/
pB

A = 1/n.

Combining these results and the definitions of the moment generating functions,
it is then straightforward to show that

lim
p→0

Mn,k,A
A (t) = e(n+k)t and lim

p→1
Mk,n,B

A (t) = e(n+k+1)t .

The claim follows. �

COROLLARY 3. (i) As p → 0, (eA
A, vA

A) → (n, 0) and (ēA
A, v̄A

A ) → ( 2n2

n+1 ,
2n2(n−1)

(n+1)2(n+2) ); as p → 1, (eB
A, vB

A ) → ( 3n+1
2 ,

(n−1)2

12 ) and (ēB
A, v̄B

A ) → ( 2n2

n+1 ,

2n2(n−1)
(n+1)2(n+2) ).

It is remarkable that we can again give a complete description of the
“distribution of the process” (by this, we mean that we can again list all
trajectories of rallies leading to the event considered, and give, for each
such trajectory, its probability). Consider first the side-out scoring system.
For victories of A, the situation is very clear: Corollary 2 indeed yields that,

conditional on a victory of A in an A-game, D
P→ n as p → 0, which implies

that the only possible trajectory of rallies is the one for which all rallies in the
game are won by A. Turn then to victories of B. There, we obtained in the
proof of Proposition 2 that all scores (k, n) are equally likely. It is actually

easy to show that, conditional on Ek,n,B ∩ [S = A], D
P→ n + k + 1 as p →

1. This implies that there are exactly n equally likely trajectories: A first scores
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k points, then loses his/her serve, before B scores n (miraculous) points and
wins the game (k = 0, . . . , n − 1).

Consider finally the rally-point system. In this case, it is sufficient to study
the distribution of the scores after victories of A (when p → 0) because the
number of rallies is a function of the scores only, and because the conclusions
will, by symmetry, be identical for victories of B (when p → 1). Clearly,

for any fixed k ∈ {0, 1, . . . , n − 1}, there are exactly (n+k−1
k ) trajectories

leading to the score (n, k), and those trajectories are equally likely. Each such

trajectory will then occur with probability 1/
∑n−1

k=0(n+k−1
k ), because, as we have

seen in the proof of Proposition 2, the score (n, k) occurs with probability

(n+k−1
k )

/ ∑n−1
k=0(n+k−1

k ). These considerations provide the whole distribution of

the process: there are
∑n−1

k=0(n+k−1
k ) equally likely possible trajectories, namely

the ones we have just considered. The exact limiting distribution of D can of
course trivially be computed from this.
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