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Summary 

An increase amount of –omics data is being generated and single –omics analyses have been 

performed to analyze it in the last decades. While the effort has revealed significant findings to 

better understand the biology of complex disease, such as cancer, combining more than two –

omics data will certainly explain further biological insights not found otherwise. For this reason, 

in the last five years the idea of integrating data has appeared in the context of system biology. 

However, the integration of –omics data requires of appropriate statistical techniques to 

address the main challenges that high-throughput data impose. In this thesis, we propose 

different statistical approaches to integrate –omics data (genomics, epigenomics, and 

transcriptomics from tumor tissue, and genomics from blood samples) in individuals with 

bladder cancer. In the first contribution, a framework based on a multi-staged strategy was 

proposed. Pairwise combinations using the three –omics measured in tumor were analyzed 

(transcriptomics-epigenomics, eQTL and methQTL) to end with the combination of all of them 

in triples relationships. The results showed a whole spectrum of relationships and sound 

biological trans associations identifying new possible molecular targets. In the second 

contribution, a multi-dimensional analysis was applied to the three –omics considered together 

in the same model. Penalized regression methods (LASSO and ENET) were applied since they can 

combine the data in a large input matrix dealing with many of the –omics data integration 

challenges. Besides, a permutation–based MaxT method was proposed to assess the goodness 

of fit while correcting for multiple testing which are the main drawbacks of the penalized 

regression methods. We obtained a list of genes associated with genotypes and DNA 

methylation in cis relationship that were further externally validated in an independent data set. 

Finally, the same approach was applied to integrate the three –omics data in tumor with the 

genomics data in blood samples in an integrative eQTL analysis. This approach was compared 

with the 2 stage regression (2SR) approach previously used for eQTL integrative analysis. Our 

approach highlighted relevant eQTLs including the ones found by the 2SR strategy generating a 

list of genes and eQTLs that may be considered in future analyses. Overall, we have shown that 

–omics integrative analysis is needed to find missing or hidden information. To this end, applying 

appropriate statistical approaches is needed identify sound biological relationships.   
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Resumen 

En las últimas décadas, la cantidad de datos -ómicos generados ha incrementado 

considerablemente y con ellos, se han realizado múltiples análisis considerando cada dato –

ómico por separado. Este tipo de análisis ha revelado hallazgos significativos para entender 

mejor las enfermedades complejas, como el cáncer, pero la combinación de más de dos 

conjuntos de datos –ómicos puede revelar nuevos conocimientos biológicos que no se podrían 

encontrar de otra forma. Así, en los últimos cinco años, ha aparecido el concepto de integración 

de datos en el contexto de la biología de sistemas. No obstante, la integración de datos –ómicos 

requiere de técnicas estadísticas apropiadas para hacer frente a los principales retos que los 

datos de alto rendimiento (-ómicos) imponen. En esta tesis, proponemos diferentes 

aproximaciones estadísticas para integrar datos –ómicos (genómica, transcriptómica y 

epigenómica del tejido tumoral y genómica de sangre) en individuos con cáncer de vejiga. Como 

un primer enfoque, se propone un marco basado en una estrategia de etapas múltiples donde 

se analizan todas las posibles combinaciones por parejas utilizando los tres datos -ómicos 

medidos en el tejido tumoral (transcriptómica-epigenómica, eQTL y methQTL) para finalmente, 

combinar los resultados significativos en relaciones triples. Estas relaciones sugieren patrones y 

asociaciones biológicas trans muy interesantes. Como segundo enfoque, se propone un análisis 

multi-dimensional, donde los tres datos -ómicos se consideran conjuntamente en el mismo 

modelo. Para ello, se han aplicado métodos de regresión penalizada (LASSO y ENET) ya que 

pueden combinar los datos en una misma matriz de entrada haciendo frente a muchos de los 

retos que la integración de datos –ómicos impone. Además se propone un método basado en 

permutaciones MaxT para evaluar la bondad de ajuste a la vez que se corrige por test múltiples 

ya que precisamente estos representan los dos inconvenientes principales de los métodos de 

regresión penalizada. Como resultado una lista de genes asociados con genotipos y  metilación 

del ADN en relaciones cis que ha sido validada en una base de datos externa. Por último, este 

mismo enfoque se ha implementado para integrar los tres datos -ómicos en tumor con la 

genómica en las muestras de sangre en un análisis de integración de eQTLs y se ha comparado 

con una regresión en 2 etapas ya que es un método previamente utilizado para el análisis de 

integración de eQTLs. Nuestro enfoque muestra relevantes eQTLs además de las ya propuestas 

por la regresión en 2 etapas  generando una lista de genes y eQTLs que pueden ser consideradas 

en análisis futuros. En general, esta tesis muestra lo necesario que son los análisis de integración 

de varios datos –ómicos para encontrar información que todavía no conocemos. Además 

demostramos que la implementación de métodos estadísticos apropiados es imprescindible 

identificar relaciones biológicas robustas.  
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Résumé 

Ces dernières décennies, la quantité de données -omiques générées a considérablement 

augmenté résultant en de multiples analyses des données -omiques considérés séparément. Ce 

type d'analyse a permis des avancées significatives dans la comprehension des maladies 

complexes comme le cancer, par conséquent la combinaison de plusieurs ensembles de données 

–omiques entre elles pourrait permettre d’approfondir encore les connaissances biologiques. 

Ainsi, ces cinq dernières années, est apparu le concept d'intégration des données dans le 

contexte de la biologie des systèmes. Cependant, l'intégration des données -omiques exige 

l’application de méthodes statistiques appropriées pour relever les défis majeurs imposés par 

les données de haute performance (-omiques). Dans cette thèse, nous proposons différentes 

approches statistiques pour intégrer données -omiques  (génomique, transcriptomique et 

epigenomique au sein de tissu tumoral et génomique des échantillons de sang) chez des 

personnes atteintes d'un cancer de la vessie. Une première approche est fondée sur une 

stratégie en plusieurs étapes. Toutes les combinaisons possibles de paires ont été analysées en 

utilisant les trois données -omiques mesurées dans le tissu tumoral (transcriptomique-

épigénomique, eQTL et methQTL) pour terminer avec la combinaison de chacun d'eux dans les 

triples relations. Nous avons montré un large spectre d’associations entre elles et les 

associations trans-acting fiables qui ont permis d’identifier de nouvelles cibles moléculaires 

potentielles. Une deuxième approche consiste en une analyse multi-dimensionnelle, où les trois 

données -omiques étaient considérées ensemble dans le même modèle. À cette fin, des 

méthodes de régressions pénalisées ont été appliquées (LASSO et ENET), permettant de relever 

les defis de l’integration de données -omiques en les entrant dans de larges matrices. Les 

permutations MaxT ont permis d’évaluer la qualité de l'ajustement tout en corrigeant pour les 

tests multiples qui sont les principaux inconvénients des méthodes de régressions pénalisées. 

Nous avons identifié et validé dans une base de données externe une liste de gènes associés aux 

génotypes et à la méthylation de l'ADN dans les relations cis. Cette même approche a été 

appliquée pour intégrer les trois -omiques tumorales et les données génomiques des 

échantillons de sang en une analyse d'intégration des eQTL. Cette méthode a été comparée avec 

la régression en 2 étapes déjà utilisée pour l'intégration des eQTLs. Notre approche a mis en 

lumière des eQTLs d’intérêt comprenant ceux déjà proposés par la régression en 2 étapes et 

permettant de générer une liste de gènes et d’eQTLs qui pourront être prises en compte dans 

les analyses futures. Au total, cette thèse a montré que l'intégration des données -omiques est 

nécessaire pour l’identification d’informations manquantes, cachées ou fausses. L’application 

de méthodes statistiques appropriées est indispensable pour identifier des relations biologiques 

solides.  
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PART 1. Introduction and Aims 

One important goal in human genetics and molecular epidemiology is to elucidate the genetic 

architecture of complex diseases. Important technological advances are crucial to better 

characterize the different layers of the biological processes that are involved in a complex 

disease. However, the vast amount of molecular –omics data that are generated (genomics, 

epigenomics, transcriptomics, proteomics, metabolomics, among others) needs from optimal 

modelling to extract the most information possible that has been hidden or missing until now. 

Data integration is the technique to process the different types of –omics data as combinations 

of predictor variables to allow comprehensive modelling of complex diseases or phenotypes. 

The frame of the work presented here is under the umbrella of data integration focusing on the 

methodological aspects of the process to perform an integrative –omics analysis.  

In the introduction of this thesis a description of the –omics data used for this work is discussed 

from the simplest to the most complex relationships in terms of molecular description, 

bioinformatics and statistical methods providing biological information and examples of studies 

that have been performed in the context of data integration. In Chapter 1, the three types of 

data used in the thesis (genomics, epigenomics and transcriptomics) are described. In chapter 

2, the biological combinations of these three types of data and the main statistical methods used 

to analyze them are described. In chapter 3, the overview and challenges of integrative –omics 

analysis and the main statistical methods for data integration are described and in chapter 4 the 

penalized regression methods used in this thesis to perform the data integration are detailed 

described. In chapter 5 is explained the epidemiology, tumorigenesis and etiology of bladder 

cancer and the studies used in this thesis (the Spanish Bladder Cancer (SBC)/EPICURO study and 

The Cancer Genome Atlas study (TCGA)) and chapter 6 provides the hypothesis, objectives and 

organization of the thesis.  
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PART 1. Introduction and Aims 

Chapter 1: Introduction to –omics data 

This chapter introduces the three –omics data (genomics, epigenomics and transcriptomics) 

used in this thesis. A short description of the concept of each dataset and their functions in the 

human biological system is provided. 

1.1. Genomics 

Genomics is considered as the study of the genomic DNA (deoxyribonucleic acid) data that is 

available in many species. The human genome is the complete sequence of the genetic 

information of humans and is stored in each cell. Within cells, DNA is packed in the nucleus and 

in the mitochondrias. Here I will only refer to the first DNA. Genetic information is organized 

into structures called chromosomes and is encoded as the DNA molecule. The DNA consists of 

two strands containing millions of nucleotides. The nucleotides are organic molecules that 

serves as a subunits and are composed of a nitrogen nucleobase (guanine (G), adenine (A), 

thymine (T) and cytosine (C)), a five-carbon sugar and at least one phosphate group. This 

information includes protein-coding genes and non-coding sequences (Figure 1.1.1).   

 

Figure 1.1.1 Location and structure of the DNA molecule in the human genome. (Copied from 
National Human Genome Research Institute (https://www.genome.gov/)) 
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PART 1. Introduction and Aims 

The Human Genome Project produced the first complete DNA sequence of individual human 

genomes in 2001 (Venter et al. 2001) with a consensus of approximately three billion nucleotide 

positions. DNA sequencing is the process to determine the order of all the nucleotides within 

the DNA molecule. It is now possible to collect the whole genetic information from each 

individual in a study using whole genome sequencing and this will be a very important 

achievement in the future of the personalized medicine. Most of the studies until now, including 

this thesis, have determined a subset of genetic markers to capture as much of the complete 

genome information as possible. The markers used are Single Nucleotide Polymorphisms (SNPs) 

that are changes of one nucleotide base pair that occurs in at least 1% of the population. In 

humans, the majority of the SNPs are bi-allelic, indicating the two possible bases at the 

corresponding position within a gene. If we define A as the common allele and B as the variant 

allele, three combinations are possible: AA (the common homozygous), AB (the heterozygous) 

and BB (the variant homozygous). These combinations are known as the genotypes and they are 

assessed with SNP genotyping platforms.  

1.2. Epigenomics 

Epigenomics is the study of all the epigenetic modifications that occur on the genetic material 

in a cell without alterations in the DNA sequence. These changes mainly include DNA 

methylation and histones modifications. DNA methylation is associated with a number of very 

important processes (genomic imprinting, X-chromosome inactivation, suppression of repetitive 

elements, and regulation of cell specific gene expression) (Bird 2002), being the most studied 

epigenetic marker. In humans, DNA methylation involves the addition of a methyl group to the 

5’ position of the cytosine at a Cytosine-phosphate-Guanine (CpG) dinucleotide by DNA 

methyltransferase (DNMT) enzymes (Figure 1.1.2).  
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Figure 1.1.2. Representation of DNA methylation with the addition of a methyl group (-CH3) to 
the 5’ position of the cytosine. (Copied from Samir Zakhari. The NIAAA journal 2013;35 (1):6-
16) 
 
They are distributed over the human genome with the exception of some regions with high 

density of CpG dinucleotides that are denominated CpG islands. These specific regions are often 

located in gene promoters (the region that facilitates transcription of a particular gene) and they 

are usually unmethylated in normal cells. When methylated, often are associated with gene 

silencing. The CpG shores, located at 2kb from the island’s boundaries are also important in gene 

regulation. Alterations in DNA methylation may affect phenotypic transmission and may be part 

of the etiology of human disease (Robertson & Wolffe 2000; Portela & Esteller 2010) and are 

very well implicated in carcinogenesis (Esteller 2008). To assess information of the CpG sites in 

the genome the methylation beadchip platforms are used.  

1.3. Transcriptomics 

Transcriptomics is the study of the complete set of RNA transcripts that are produced by the 

genome. This process is called transcription and it is the first step of gene expression in which a 

particular segment of DNA is copied into RNA by the enzyme RNA polymerase. In the process of 

transcription the two DNA may be labeled as antisense strand that serves for the production of 

the RNA transcript and the sense strand which includes the DNA version of the transcript 

sequence. The antisense strand is identical to the sense strand with the exception that thymines 

(T) are replaced with uraciles (U) in the RNA (Figure 1.1.3). 
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Figure 1.1.3. Synthesis of mRNA copied from the DNA base sequences by RNA polymerase. 
(Copied from Bioknowledgy webpage) 
 

The RNA molecule encodes at least one gene that will be transcribed as messenger RNA (mRNA) 

if the gene transcribed encodes a protein, or non-coding RNA (microRNA), ribosomal RNA 

(rRNA), transfer RNA (tRNA), or other enzymatic RNA molecules if not. mRNA abundance can be 

used as an indirect measure of gene expression. The expression of different genes allows cells 

to differentiate and perform different functions. There are an estimated 20,000-25,000 human 

protein-coding genes (Human Genome Sequencing Consortium International 2004; Pennisi 

2012) whose mRNA transcript levels can be measured using high-throughput data with 

microarray platforms.  
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Chapter 2. From one –omics analysis to pairwise –omics analysis 

The –omics data shown in Chapter 1 have been extensively studied to better understand and 

characterize complex diseases, such as cancer. The individual analysis of each –omics data has 

provided an interesting amount of new findings in the last decades. Genomics have been mainly 

studied through SNPs in Genome Wide Association Studies (GWAS). Transcriptomics have been 

also extensively studied with differential gene expression analysis, and epigenomics, a less 

studied –omics data type, has been also assessed through Epigenomics Wide Association Studies 

(EWAS) (Rakyan et al. 2011) following the success of GWAS. In this chapter, I give an overview 

of the analysis of the pairwise combinations between these three types of data and the main 

statistical methods to analyze them.  

2.1. Epigenomics – Transcriptomics 

In 1975, it was first suggested that DNA methylation was involved in gene regulation (Riggs 1975) 

showing the X chromosome inactivation process. Since then, the study of the relationship 

between the CpG sites and the gene silencing became very important. Also, the position of the 

CpG sites in the genome, and especially with respect to the gene, influences this relationship. 

For example, methylated CpG islands and shores located in promoter regions of the gene may 

act blocking the expression of the gene while if they are located within the gene body, it might 

stimulate transcription (Jones 2012) (Figure 1.2.1).  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2.1. Inactivation of a gene by DNA methylation 
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The relationship between DNA methylation and gene expression is very important to better 

understand the complexity of the traits. In this regard, hypermethylation of CpG islands and 

shores in the promoter region of a tumor-suppressor gene is a major event in many cancers 

(Portela & Esteller 2010). Many studies have been performed looking at relationships between 

these two –omics data types.   

2.2. Genomics – Transcriptomics 

The expression levels of many genes shows abundant natural variation and this variation of 

many genes has a heritable component in humans (Morley et al. 2004). Studies usually assess 

whether gene expression levels, measured as a quantitative phenotype, are significantly 

associated with genetic variation (SNP genotyped). This association is known as expression 

Quantitative Trait Loci (eQTL) and it has been extensively studied (Stranger et al. 2007; 

Zhernakova et al. 2013; Cheung & Spielman 2009; Bryois et al. 2014), also linked with diseases 

(Nica et al. 2010; Nicolae et al. 2010; Westra et al. 2013; Shpak et al. 2014). Normally, they are 

categorized according to the distance between the SNP and the target gene. The last agreement 

for this definition refers to cis-acting eQTL if the distance is within 1MB window of the gene (the 

SNP is located within 1MB upstream and 1MB downstream the gene) and trans-acting, 

otherwise (Figure 1.2.2).  



 

 
9 

 

PART 1. Introduction and Aims 

Figure 1.2.2. SNP regulating in cis (a) and trans (b) the expression of a gene. Cis-acting is close 
to the target gene while trans-acting is located far from the target gene. Both variants have 
different influence on the levels of expression. Individuals with the G variant of the cis 
relationship have a higher expression and the same with individuals with the T variant in the 
trans relationship. (Copied from Vivian G. Cheung and Richard S. Spielman doi:10.1038/nrg2630) 
 

2.3. Genomics – Epigenomics 

DNA methylation regulates gene expression and genetic variants are associated with gene 

expression too, therefore it is plausible that genetic variants may be related with DNA 

methylation levels. Less studied than the others pairwise combinations is the study of 

methylation Quantitative Trait Loci (methQTL) where the genetic variants are associated with 

the methylation levels. The studies performed in the last years (Bell et al. 2010; Banovich et al. 

2014; Heyn et al. 2014) have demonstrated that a genetic-epigenetic association exists pointing 

to new molecular mechanism behind complex diseases. As in the eQTL analyses, they can be 

classified as cis-acting (1MB distance between the CpG site and the SNP involved in the relation) 

and trans-acting, although the last ones have still not be very extensive studied.  

 



 

 
10 

 

PART 1. Introduction and Aims 

To analyze these relationships, the models are constructed using only two different scales at a 

time, for instances, gene expression or SNPs that have either continuous values for the level of 

expression or categorical variables in the case of the SNPs indicating overexpressed or 

underexpressed genes depending on the allele. Same idea when the input variables are the CpGs 

with the difference that CpGs can also be measured in a continuous scale indicating an 

overexpressed or underexpressed genes with higher or lower levels of methylation. Normally, 

the aim of these analyses is to determine genes using SNPs or CpGs that may act as risk factors, 

mediators, confounders or effect modifiers. But at present, studies considering CpGs as the 

entities in a continuous scale and SNPs in a categorical scale indicating higher or lower levels of 

methylation depending on the SNP allele are also established. Different statistical methods to 

implement these pairwise combinations can be used, including linear regression or correlation.  

 2.4. Statistical methods for pairwise analysis 

To assess correlations between two continuous variables such as in the study of epigenomics – 

transcriptomics pairwise, the typical method used is Pearson correlation coefficient. It was 

developed by Karl Pearson from a related idea introduced by Francis Galton in 1880s (Stigler 

1989). This measure checks the linear correlation between two continuous variables. 

Definition of Pearson correlation: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣 (𝑋, 𝑌)

𝜎𝑋, 𝜎𝑌
 

where, 𝑐𝑜𝑣 is the covariance and 𝜎𝑋, 𝜎𝑌 are the standard deviation of X and Y respectively.  

The correlation coefficient can take values from -1 to 1. A value of 1 implies a perfect positive 

correlation between X and Y while -1 implies a perfect negative correlation. A value of 0 means 

that there is no correlation. This coefficient belongs to a parametric test, requiring that the 

distribution of the variables follows a normal distribution. When it is not possible to assess the 

normality assumption, for example in the case of DNA methylation, Spearman’s rank correlation 

coefficient (non-parametric test) can be used. It was developed by Charles Spearman (Spearman 

1904) and measure the statistical dependence between two variables.  

  



 

 
11 

 

PART 1. Introduction and Aims 

Definition of Spearman correlation: 

Considering a sample of size n and being the n raw scores 𝑥𝑖, 𝑦𝑖  

𝜌𝑋,𝑌 = 1 −
6 ∑ 𝑑𝑖

2

𝑁(𝑁2 − 1)
 

where 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖  is the differences between ranks. The values of the coefficient are 

interpreted as in the Pearson correlation. 

For the analysis of eQTLS and methQTLs, the most popular method to identify them is through 

linear regression models. The linear regression modeling is an approach to assess the 

relationship between a dependent continuous variable Y (response variable) and one or more 

independent variables denoted as X (predictors). When only one predictor variable is used, we 

name it as simple linear regression model and multiple when more than one is used.  

Definition of linear regression model: 

Consider a data set where  𝑦 = (𝑦1, … 𝑦𝑛)𝑡 is the response variable and 𝑥 = (𝑥1𝑗, … 𝑥𝑛𝑗)𝑡  𝑗 =

1, … 𝑝 are the predictors, the model takes the form: 

𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖,   𝑖 = 1 … 𝑛 

where n is the sample size, p the number of predictors and εi  the error variable (residuals). 

To estimate the parameters, it is normally used the ordinary least square (OLS) estimator that 

minimizes the sum of squared errors with the assumption that the sum of errors (∑ 𝜀𝑖) is equal 

to 0. An example of how to obtain the regression model for a simple linear regression is shown: 

𝑚𝑖𝑛 (∑ 𝜀𝑖
2 = ∑(𝑦𝑖 − (

𝑛

𝑖=1

𝑛

𝑖=1

𝛼 + 𝛽1𝑥𝑖1))2) 

To estimate α and β, we obtain the solution of the derivative conditioned to each parameter: 

𝜕

𝜕𝛼
(∑ 𝜀𝑖

2 = ∑ (𝑦𝑖 − (𝑛
𝑖=1

𝑛
𝑖=1 𝛼 + 𝛽1𝑥𝑖1))2)=−2 ∑ (𝑦𝑖 − (𝑛

𝑖=1 𝛼 + 𝛽1𝑥𝑖1))2 (1) 

𝜕

𝜕𝛽1
(∑ 𝜀𝑖

2 = ∑ (𝑦𝑖 − (𝑛
𝑖=1

𝑛
𝑖=1 𝛼 + 𝛽1𝑥𝑖1))2)=−2 ∑ (𝑦𝑖 − (𝑛

𝑖=1 𝛼 + 𝛽1𝑥𝑖1))2 (2) 

 

To obtain the minimizing point, (1) and (2) are derivate and set to 0: 

∑ 𝑦𝑖 − 𝑛𝛼 − 𝛽1 ∑ 𝑥𝑖 = 0

𝑛

𝑖=1

𝑛

𝑖=1

 (3) 
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∑ 𝑥𝑖𝑦𝑖 − 𝛼 ∑ 𝑥𝑖

𝑛

𝑖=1

− 𝛽1 ∑ 𝑥𝑖
2 = 0

𝑛

𝑖=1

𝑛

𝑖=1

 (4) 

 Solving (3) and (4), the parameters are obtained as: 

 

𝛼 =
1

𝑛
(∑ 𝑦𝑖 − 𝛽1 ∑ 𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

) = �̅� − 𝛽1�̅� 

𝛽1 =
∑ 𝑥𝑖𝑦𝑖 −

1
𝑛

(∑ 𝑦𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1 )𝑛

𝑖=1

∑ 𝑥𝑖
2 −

1
𝑛 (∑ 𝑥𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1

=
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

=
𝑆𝑥𝑦

𝑆𝑥𝑥
 

 

where �̅� and �̅� are the mean of x and y,  𝑆𝑥𝑦 is the covariance between x and y, and 𝑆𝑥𝑥 is the 

variance of x. 

To apply linear regression models, the following assumptions need to be verified: linearity (the 

mean of the response variables is a linear combination of the parameters (regression 

coefficients) and the predictor variables), homoscedasticity (same variance in the errors of the 

response variables), independence of errors (the errors are uncorrelated), and lack of 

multicollinearity in the predictors (the predictors cannot be correlated between them).   

It is important to mention than when the response variable is binary or time-dependent, special 

cases from linear regression models are used: logistic regression and cox regression, 

respectively. Linear regression models are normally applied when the independent variables are 

the SNPs (categorical) and the response variable is continuous such as the gene expression levels 

(eQTLs) or the DNA methylation levels (methQTLs). Usually, one SNP at a time is analyzed to 

assume the lack of multicollinearity. 
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Chapter 3. Integrative –omics analysis 

In the previous chapter, pairwise combination considering three –omics data was covered. 

These may provide some of the pieces of the puzzle of complex diseases showing new 

mechanism of the whole human genome, but the processes that happen in our body are much 

complex. Going one step further in integrative analysis to consider all the –omics data type 

together is a must. An overview of the statistical methods applied in –omics data integration 

analysis and its main challenges are described is this chapter. 

3.1. Introduction to data integration 

The concept of data integration can have numerous meanings: Lu et al. (2005)defined data 

integration in the context of functional genomics as the process of statistically combining diverse 

sources of information from functional genomics experiments to make large-scale predictions. 

Hamid et al. (2009) explained the data integration in a much broader context where it includes 

the fusion with biological domain knowledge using a variety of bioinformatics and 

computational tools and lastly Kristensen et al. (2014) and Ritchie et al. (2015) introduced the 

concept of data integration as a system biology approach. Kristensen et al. remarks that the 

principles of integrative genomics are based on the study of molecular events at different levels 

on the attempt to integrate their effects in a functional or causal framework. Ritchie et al. 

remarks that the complete biological model is only likely to be discovered if the different levels 

of genetic, genomic and proteomic regulation are considered in an analysis.  

Based on these ideas, statistical methods are emerging specifically for –omics integrative 

analysis. Some examples in the literature have lastly explored the combination and integration 

of –omics data.  Gibbs et al. (2010) combined both eQTLs and methQTLs in human brain. Bell et 

al. (2011) combined DNA methylation patterns with genetic and gene expression in HapMap cell 

lines or Wagner et al. (2014) combined also three data sets, DNA methylation, genetic, and 

expression in untransformed human fibroblasts. However, any of these analyses have combined 

more than 2 –omics data in the same model at the same time, mainly because of a lack of 

methodology to deal with the challenges arising with the implementation of integrative –omics 

analysis.  
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3.2. Challenges of -omics integrative analysis 

While integrative –omics analysis will allow us to explore new questions and discover new 

findings, numerous challenges arise such as heterogeneity of the data, huge dimensionality, n 

<< p problem, high correlation. At the individual data sets level, an exhaustive quality control, 

descriptive studies, and an estimation of missing values need to be conducted with a special 

attention since the whole analysis will depend on how good is done this process. When dealing 

with the huge heterogeneity between –omics data sets (SNPs are measured as categorical 

variables where 0, 1, and 2 are representing the number of variants while CpGs are measured in 

a continuous scale which is different from the gene expression continuous scale) numerous 

difficulties are attached. Thus, to be able to model them appropriately it is crucial to know in 

detail the scale structure of the data together with the biological meaning of each –omics and 

their relationships. Another main challenge is due to the high dimensionality of the data as 

millions of data per each data set are determined in the same individuals. Therefore, the 

necessity of performing data reduction in order to obtain the most relevant results appears. But 

even with data reduction, the huge amount of independent variables will be always smaller than 

the number of individuals (n << p) and it is also a problem to deal with. Consequently from the 

dimensionality and (n << p), statistical power becomes an issue and correction by multiple 

testing increase dramatically. To fix these issues, filtering is performing before analysis that may 

facilitate the integration in a smaller subset. This filtering can be done in a biological way, such 

as the one carry out by Biofilter (Bush et al. 2009) that uses public information from GWAS; or 

in a statistical way, through different statistical methods such as Principal Component Analysis 

(PCA) or Factor Analysis (FA) which are explained later. Another possibility of filtering is for 

example reducing the number of SNPs by Linkage Disequilibrium (LD) or CpGs that belong to the 

same CpG islands. These last approaches are also used to avoid high correlated data which is 

also a challenge to deal with. The problem with filtering is that it can exclude functional markers 

and lose important information. Nevertheless, the majority of statistical methods cannot be 

applied because of multi-collinearity (high correlation). So, it will be necessary or filtering before 

analysis assuming that some information may be lost or finding the proper statistical method to 

select the most relevant information.   

Apart of the methodological challenges presented before, interpretation, replication and 

validation of this complexity are also important challenges. After integrating the –omics data, 

normally a huge amount of results are generated and ways for interpretation are needed. Also, 

a way of controlling the possible identification of false positives association behind is needed. 

At the end, the results have to be trustable and understandable and the replication becomes an 
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issue. If the findings derived from a single –omics analysis are difficult to replicate in an 

independent data set, the idea of replicating the combination of more than two –omics becomes 

almost impossible. So, new ideas for replicating and validating are needed.  

3.3. Statistical methods for –omics integrative analysis 

To perform integrative analysis, different strategies can be applied, one aims to divide data 

analysis into multiple steps, and signals are enriched with each step of the analysis. Another is 

to combine more than two –omics data sets simultaneously in the same model. Consequently, 

multivariable approaches need to be taken into account to face the challenges mentioned 

before.  

To reduce data dimensionality, PCA is a method that converts a set of observations into a set of 

values of linearly uncorrelated variables called principal components (PCs). The new values 

generated retain most of the observable information based on the correlation between the 

original variables.  

Definition of PCs  

Considering a sample of n observations on a vector of p variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) the first PC 

of the sample is defined by the linear transformation:  

𝑧1 = 𝒂𝟏
𝑻𝒙 =  ∑ 𝑎𝑖1𝑥𝑖

𝑝

𝑖=1

 

where the vector 𝒂𝟏 = (𝑎11, 𝑎21, … , 𝑎𝑝1) is chosen such that 𝑣𝑎𝑟[𝑧1] is maximum. 

Likewise, the kth PC is defined equally subject to  

𝑐𝑜𝑣[𝑧𝑘 , 𝑧𝑙] = 0 𝑓𝑜𝑟 𝑘 > 𝑙 ≥ 1 

      𝒂𝒌
𝑇𝒂𝒌 = 1 

FA is related to PCA in that it is used to describe the variability among observed, correlated 

variables. This variability is recovered in what is called factor where multiple observed variables 

have similar patterns of responses because they are all associated with a latent variable.  
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Definition of FA 

Considering the same vector of p variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) as in the PCA, they can be 

expressed as linear functions and an error term, that is 

𝑥1 =  𝜆11𝑓1 + 𝜆12𝑓2 + ⋯ + 𝜆1𝑚𝑓𝑚 + 𝜀1k 

𝑥2 =  𝜆21𝑓1 + 𝜆22𝑓2 + ⋯ + 𝜆2𝑚𝑓𝑚 + 𝜀2 
. 
. 
. 

𝑥𝑝 =  𝜆𝑝1𝑓1 + 𝜆𝑝2𝑓2 + ⋯ + 𝜆𝑝𝑚𝑓𝑚 + 𝜀𝑝 

Where 𝜆𝑗𝑘 are constants called factor loadings, 𝜀𝑗 are the errors and 𝑓1, 𝑓2, … , 𝑓𝑚 are the factors. 

FA attempts to achieve a reduction from p to m, while the number of PCs are the same as the p 

variables. Both FA and PCA are used in single data sets to reduce dimensionality.  

Also related with PCA, canonical correlation analysis (CCA) is important. In this case the 

application is in a two vector of variables X and Y, and it investigates the overall correlation 

finding linear combinations of the two sets of variables. 

Definition of CCA 

Considering  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and  𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚) two vectors of random variables, it is 

defined the cross-covariance ∑ = 𝑐𝑜𝑣 (𝑥, 𝑦)𝑿𝒀  as a matrix where 𝑐𝑜𝑣 (𝑥𝑖, 𝑦𝑖)  is the covariance 

for (𝑥𝑖, 𝑦𝑖). CCA look for vectors 𝑎 and 𝑏 that maximize  

𝜌 =
𝑎′ ∑ 𝑏′

𝑋𝑌

√𝑎′ ∑ 𝑎𝑋𝑋 √𝑏′ ∑ 𝑏𝑌𝑌

 

The optimal linear combination of variables from the sets X and Y are called canonical vectors 

and are given by: 

𝑎 = Σ𝑥𝑥
−1/2

𝑢       𝑏 = Σ𝑦𝑦
−1/2

𝑣 

From which the new variables 𝜂 = 𝑎′𝑥 and 𝜃 = 𝑏′𝑦 are obtained. They are called canonical 

variables or latent variables.  

All these methods are more exploratory than hypothesis-testing, the PCA and FA work in linear 

combinations with one set of variables at a time and the CCA works in the linear combination of 

two sets of data. Moreover all of them generate thousands of variables without selection. They 

are useful in the context of filtering but not in the performance of –omics integrative modeling. 
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For more details look at Jollife (2002) book. Therefore, some statistical applications have been 

proposed for –omics integrative analysis. 

Multiple factor analysis (MFA) is an extension of PCA where more than one variable can be 

studied. The idea is to find whether a group of individuals is described by a set of variables 

structured in groups. It was proposed by Brigitte Escofier and Jérôme Pagès in 1980s (Escofier & 

Pagès 1994). It is based on the computation of a PCA in each data set and then look for common 

factors. An example of an application in the contexts of –omics integration is shown in (de Tayrac 

et al. 2009). They focus on a study combining the genome and the transcriptome of gliomas. 

This method is a way of integrating data, but do not provide specific relationships between each 

data set. Another extension from the approach showed before is the sparse canonical 

correlation analysis (SCCA) that is an extension of CCA. SCCA allows the analysis of two sets of 

variables in order to establish the relationship between them. The idea behind is to add 

parameters λu and λv for variable selection to the vectors u and v. The entire algorithm is 

explained in detail in (Parkhomenko et al. 2009) with an example of application in genomic data 

integration. Another example of new implementations is the multivariate partial least squares 

(PLS) regression (Wold et al. 1984) that is a statistical method that support a relation to PC 

regression which is based on PCA. PLS is used to find relationships between two matrices (X and 

Y). The algorithm proceeds iteratively, extracting the linear combination of predictor variables 

that best describe the response variables. An example applied to microarray data is shown in 

(Palermo et al. 2009). These methods are based on frequentist statistics techniques, but there 

are others based on machine learning approach or Bayesian statistics that are not introduced is 

this thesis. 

Even though, these methods have good properties, one goal of integrative analysis adopted in 

this thesis is to determine entities (i.e. genes) using at least two –omics integrated in the same 

model. For that, penalized regression methods have very good properties that overpass all the 

challenges aforementioned. 
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Chapter 4. From standard regression to penalized regression methods 

In Chapter 2, I comment about the application of linear regression models to relate a variable 

response Y with p variables predictors X1, X2  ,… , Xp . In this model, the estimates of the 

coefficients are based in minimizing the sum of the squared error producing unbiased 

estimators. The bias of an estimator is defined as the difference of the expected value and the 

true value of the parameter. When unbiased, this difference is zero. Therefore, the mean 

squared error (MSE) measure how well the estimate is. It is defined as: 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑓𝑖)2

𝑖

𝑛 − 𝑝 − 1
  

Where 𝑓𝑖 is the estimated model of 𝑦𝑖.  

For a given solution 𝑥0, 

𝑀𝑆𝐸 = 𝐸[(𝑌 − 𝑓(𝑥0)]2 = 𝐸𝜀2 − 𝐸[[𝑓(𝑥0)]
2

+ [𝑓(𝑥0) − 𝐸[[𝑓(𝑥0) − 𝐸[𝑓(𝑥0)]]
2

]

=  𝑛𝑜𝑖𝑠𝑒 +  𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Where ε is the residual error from the adjusted model.  

So, among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance. 

Consequently, penalized regression methods sacrifice a little bias to reduce the variance of the 

predicted values through a shrinkage factor improving predictions overall as is represented in 

Figure 1.4.1.  
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Figure 1.4.1. Graphical representation of the relationship between the shrinkage factor and 
the bias, variance and MSE. The bias estimator is increasing while the variance is decreasing 
when the amount of shrinkage increase. The optimal result have to maintain the minimum MSE 
as possible. (Copied from Stanford university webpage, Jonathan Taylor presentation on 
penalized models)  
 

Penalized regression methods have very good properties for high throughput –omics integrative 

analysis. They can deal with the majority of the challenges listed in Chapter 3: they can be 

applied when the number of parameters is much higher than the number of samples, they 

produce sparse models to be interpretable, they allow for the use of different scale variables in 

the same model, so more than two –omics can be analyzed at the same time in the same model, 

and one of the most important properties in analyzing high-throughput data, they can deal with 

highly correlated variables.  

The principle penalty functions that have been proposed are the l1 norm solved by the Least 

Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani (1996), the l2  norm 

solved by ridge regression proposed by Hoerl & Kennard (1970), and the combination of the l1 

and l2 norm solve by Elastic Net (ENET) proposed by Zou (2005).  
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Definition of the methods 

Considering a multiple linear regression model: 

 𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖,   𝑖 = 1 … 𝑛 

The estimators for LASSO, ridge and ENET are defined as: 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + 𝜆𝑙𝑎𝑠𝑠𝑜 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

} 

�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + 𝜆𝑟𝑖𝑑𝑔𝑒 ∑ 𝛽𝑗

2

𝑝

𝑗=1

𝑁

𝑖=1

} 

�̂�𝑒𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + 𝜆1 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

+ 𝜆2 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} 

 

The amount of shrinkage is determined by the parameters: 𝜆𝑙𝑎𝑠𝑠𝑜, 𝜆𝑟𝑖𝑑𝑔𝑒, 𝜆1 and 𝜆2 In the case 

of the LASSO and ENET, the values will cause shrinkage of the estimates of the regression 

towards 0. In the case of the ridge, the estimates of the regression will never be 0. This is the 

reason why in this thesis LASSO and ENET are the only penalized regression methods applied 

since, we are interesting in variable selection methods to obtain sparse results. Regarding the 

behavior of these three penalty functions, a graphical representation is shown in Figure 1.4.2 in 

a two-parameter case β1 and β2.  The shapes in the figure belongs to the constraints: ∑ |𝛽𝑗|
𝑝
𝑗=1 ≤

𝑡 for LASSO, ∑ 𝛽𝑗
2𝑝

𝑗=1 ≤ 𝑡 for ridge and the combination of both for ENET. As a consequence of 

the shapes LASSO and ENET are likely to perform variables selection β1=0 and/or β2=0.  
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Figure 1.4.2. Graphic representation of the different penalty functions. The rhombus, circle 
and oval shapes represent the LASSO, Ridge and ENET constraint, respectively. The eclipses 

represents the penalized likelihood contours from the OLS solution (�̂�) and the dots are the 
penalized likelihood solution tangent to the constraints. If the likelihood contour first touch 
the constraint at point zero, the estimate is zero and the variable is not selected. In case of 
ridge, the eclipses can never touch the point zero due to the circle shape. 
 

To select the optimal penalization parameter, k-fold cross validation (CV) (Trevor Hastie, Rob 

Tibshirani and Jerome Friedman 2001) is used. The measure used in the CV normally is the MSE, 

but others can be used such as deviance, area under the curve, etc…In Figure 1.4.3 and Figure 

1.4.4 an example is shown when applying LASSO to a multiple linear regression model for 

explaining gene expression levels by several SNPs. Figure 1.4.3 shows the selection of 𝜆𝑙𝑎𝑠𝑠𝑜 by 

CV. Each red dot represents the value of the MSE per each value of 𝜆𝑙𝑎𝑠𝑠𝑜. The optimal value is 

when the MSE is minimum and correspond to a 𝜆𝑙𝑎𝑠𝑠𝑜 = 0.89 selecting 5 variables different 

from 0.     
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 Figure 1.4.3 Values of MSE with the confidence interval for the different values of lambda 
(𝝀𝒍𝒂𝒔𝒔𝒐). The y-axis represents the values of MSE, the down x-axis represents the values of 
lambda (𝜆𝑙𝑎𝑠𝑠𝑜) and the up x-axis represents the number of variables different from 0.   
 

Figure 1.4.4 shows the shrunken values of the coefficients of the regression model when 𝜆𝑙𝑎𝑠𝑠𝑜 

vary and it is observable that when 𝜆𝑙𝑎𝑠𝑠𝑜 = 0.89, only 5 color lines are different from 0, that 

are the values selected from the LASSO with the optimal lambda.  
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Figure 1.4.4 Representation of the shrunken coefficients of the regression el for the different 
values of lambda.  The y-axis represents the value of the coefficients, the down x-axis represents 
the values of lambda (𝜆𝑙𝑎𝑠𝑠𝑜) and the up x-axis represents the number of variables different 
from 0.   
 

Penalized regression methods have been applied in GWAS studies context (Wu et al. 2009; Ayers 

& Cordell 2010; Van Eijk et al. 2012; Chen et al. 2010; Zhou et al. 2010) where penalized logistic 

regression was applied. Also, a recent evaluation of the LASSO and ENET in GWAS studies has 

been published (Waldmann et al. 2013), and  we also have previously used penalized regression 

methods in a candidate pathway analysis where we assess genetic variation in the TP53 pathway 

and Urothelial Bladder Cancer (UBC) risk (Pineda et al. 2014) [Appendix 1]. This work was 

developed as part of my Master thesis performed during the first year of my PhD fellowship. 

Briefly, we investigated a total number of 184 tagSNPs in a case/control study where we applied 

first a classical statistical analysis using logistic regression to assess individual SNPs association 

and second the LASSO penalized logistic regression analysis to assess all the SNPs 

simultaneously. Finally, penalized regression methods have been applied  in integrative analysis 

(Mankoo et al. 2011),  where penalized Cox regression was used.   
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Chapter 5. Introduction to bladder cancer and data types 

5.1. Cancer Epidemiology 

Cancer is the leading cause of death worldwide (Ferlay et al. 2013). There were 14.1 million new 

cancer cases, 8.2 million cancer deaths, and 32.6 million people living with cancer in the last 

estimation from Globocan (http://globocan.iarc.fr/) for the period of 2012. Notable are the 

differences observed between sex: the overall age standardize rate (ASR) cancer incidence is 

around 25% higher in men than in women (205 vs. 165 per 100,000); and also among regions: 

from Western Africa (95.3 per 100,000) with the lowest incidence rate to Australia (318.5 per 

100,000) with the highest rate (Figure 1.5.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5.1. Incidence and mortality rates for all cancers separated between 
males and females in different regions worldwide. (Extracted from Globocan 
2012) 
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5.2. Bladder cancer epidemiology 

The present work uses a –omics dataset from bladder cancer patients. This represents one of 

the major types of cancer with 429,793 new cases and 165,084 deaths according to the 

estimation from Globocan (2012). The ASR varies across regions, with a higher rate in Europe 

with approximately 12 per 100,000. The highest incidence rate in Europe is shown by Belgium, 

Spain being in the 5th position. In terms of gender, bladder cancer also affects more men than 

women (9 vs. 2.2 per 100,000 the ASR respectiAffectvely) (Figure 1.5.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5.2. Incidences and Mortality ASR per 100,000 for the 20th highest 
in Europe for both sexes. (Extracted from Globocan 2012) 
 

 

Bladder cancer is an important public health problem in Spain, mainly among men being the 5th 

most frequent cancer (ASR= 13.9 per 100,000) but with a huge difference between the 

incidences rates for men (ASR= 26.0) and women (ASR = 3.7) with a gender man:woman ratio of 

7:1, in contrast with the ratio 3:1 in the westernized world.  
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 5.3. Bladder cancer tumorigenesis 

Bladder cancer encompasses various types of cancer according to their morphology, urothelial 

bladder cell carcinoma (UBC) being the most common occurring in up to 90% of all bladder 

cancer patients. UBC is further subtype in three groups according to their grade of 

differentiation (G) and stage (T): 1) low-risk, papillary, non-muscle invasive (NMI) tumors (60-

65% of all UBC), 2) high-risk NMI (15-20% of all UCB), and 3) muscle invasive (MI) (20-30% of all 

UCB). Supporting these morphological subtypes, differential genetic pathways were identified. 

While deletion of both arms of the chromosome 9 is an initial step in bladder carcinogenesis as 

similarly frequent in both subtypes, somatic mutation in FGFR3 are more frequent in low-risk 

NMI tumors, while mutations in TP53 and RB pathways are mainly involved in high-risk NMI and 

MI (Wu 2009). Mutations in PIK3CA are a common event that can occur early in NMI supporting 

the hypothesis of different molecular pathways (López-Knowles et al. 2006).  

 5.4. Bladder cancer etiology 

Bladder cancer is a complex disease that involves environmental exposures and genetic factors 

for its development. Cigarette smoking, occupational exposures, arsenic, Schistosoma 

haematobium infection, some medications, and genetic variation are the major risk factors 

associated with the disease as reviewed recently in (Malats & Real 2015). Tobacco consumption 

is the best established environmental risk factor and also occupational exposure to aromic 

amines, polycyclic aromatic hydrocarbons, and dyes have been associated with bladder cancer 

risk (Samanic et al. 2006; Samanic et al. 2008). For genetic factors, one study conducted in 

Scandinavian twins population-based estimated that 31% of the total variance of bladder cancer 

is explained by genetic factors while non-shared environmental factors would explain the 67% 

(Lichtenstein et al. 2000). Even though there is no high-penetrance allele/gene, low penetrance 

genetic variants have been found associated with bladder cancer risk. NAT2 slow acetylation and 

GSTM1 null genotypes increase UBC risk and in addition, the interaction between tobacco and 

NAT2 is also well established (García-Closas et al. 2006). In addition, polymorphism in these 

genes (MYC, TP63, PSCA, TERT-CLPTM1L, TACC3-FGFR3, CBX6, CCNE1) have been identified 

associated with bladder cancer risk thorough GWAS (Nathaniel Rothman et al. 2010). 
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5.5. Bladder cancer data and –omics assessment  

The data used in this thesis in Chapters 1 and 2 of Part 3 come from the pilot phase of the 

SBC/EPICURO. This is a multicenter hospital-based case-control study conducted in Spain 

between 1998 and 2001. The pilot phase was implemented recruiting individuals in 2 hospitals 

in Spain (Hospital del Mar,Barcelona, and Hospital General de Elche) during 1997-1998 and 

included total of 70 patients newly diagnosed of a histologically confirmed UBC with available 

fresh tumor tissue from which tumor DNA and RNA were successfully extracted and used. Table 

1.5.1 displays the characteristics of the individuals included in the pilot study. The majority were 

males (93%) and current (50%) or former (36%) smokers. Based on the disease subtypes, 45% of 

individuals had low-grade- NMIBC, 22% had high-grade NMIBC, and 29% had MIBC. 

Table 1.5.1. Characteristics of the studied patients 

Characteristics N (%) 

Total 72 

Gender 

          Male 

          Female 

 

67 (93) 

5   (7) 

Age 

          Mean (SD) 

          Min-max 

 

65.6 (9.5) 

41-80 

Region 

          Barcelona 

          Elche 

 

31 (43) 

41 (57) 

Smoking status 

          Non-smoker 

          Current 

          Former 

          Unknown 

 

8 (11) 

36 (50) 

26 (36) 

2   (3) 

Tumor-stage* 

         Low-grade-NMI 

         High-grade-NMI 

         MI 

         Unknown 

 

32 (45%) 

16 (22%) 

21 (29%) 

3   (4%) 

* Risk group was defined according to the grade (G) and stage (T) 

characteristics. 
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Genomics and epigenomics data were available for 46 individuals and transcriptomics data for 

43. The overlapping between the three –omics data was 27. Genomic data was assessed with 

SNP genotyping with the IlluminaHap 1M array, epigenomics with bisulphite Infinium Human 

Methylation 27 Bead chip Kit detecting CpG sites and transcriptomics with the measurements 

of the levels of gene expression with the Affymetrix DNA microarray Human Gene 1.0 ST Array. 

We dedicate the next part of the thesis (PART 2) to describe in detail each –omics data set and 

the preprocessing and quality control analysis we applied. 

For the replication purposes, UBC tumor and blood data from the TCGA 

consortium (https://tcga-data.nci.nih.gov/tcga/) was used. Already preprocessed data (level 3) 

was downloaded with TCGA-Assembler (Zhu et al. 2014). The data was profiled for 905,422 SNPs 

with the Genome wide 6.0 Affymetrix array for tumor tissue and blood samples, 20,502 gene 

expression probes with the RNASeqV2 platform for tumor tissue, and 350,271 CpGs with the 

HumanMethylation450K Illumina array for tumor tissue. 238 individuals with overlapping data 

from the 3–omics measured in tumor tissue and 181 with overlapping data also from genomic 

blood samples contributed to replicate results from Chapter 2 - Part 3 and in the discovery phase 

of Chapter 3 - Part 3. 

 

 

  

https://tcga-data.nci.nih.gov/tcga/
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Chapter 6. Hypothesis, Objectives and Thesis organization 

6.1. Hypotheses 

This is mainly a methodological development endeavor based on the needs voluminous 

agnostic/exploratory studies require. While there is no a specific scientific hypothesis behind 

the –omics exploration, my thesis pretend to support the concepts that 1) integrative –omics 

studies is a tool to find new mechanisms to better characterize the complex genetic architecture 

of complex diseases and 2) the amount of –omics data generated needs from the development 

of appropriate methodological approaches to analyze them and overcoming the 

abovementioned challenges this field imposes. 

6.2. Objectives 

The general objective of this work was to dissect and fix the methodological challenges of –omics 

data integration by combining different –omics data sets (genomics, epigenomics, and 

transcriptomics) under the umbrella of systems biology to identify relationships between and 

within the different types of molecular structures.  

The specific objectives: 

1. To perform the integration of three –omics data measured in tumor tissue in a multi-

step process where all possible pairwise combinations are considering.  

2. To perform the integration in a multi-dimensional approach where three –omics are 

analyzed in the same model at the same time.  

3. To perform the integration of four –omics considering different levels of source material 

(tumor and blood samples) by adapting the previous developed tool to a 2 Stage 

Regression approach. 

6.3. Thesis organization 

The thesis is organized in 5 parts. PART 1 already presented an introduction to the –omics data 

integrative field and the resources upon which this thesis has been conducted. PART 2 describes 

in detail the pre-processing of the data and the quality control applied to each of the 3 –omics 

data used in this thesis. PART 3, structured as 3 scientific manuscripts, addresses the specific 

scientific and methodological objectives of this thesis. Within this part, Chapter 1 proposes a 

framework analysis for the integration of three –omics data based on a multi-step process 

integrating all the possible pairwise combinations. Chapter 2 proposes an integrative model to 

jointly analysis 3 –omics data using penalized regression methods. Chapter 3 proposes an 
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integrative eQTL –omics multi-material level analysis considering tumor tissue and blood 

samples. Finally, the last two parts are a general discussion (PART 4) and the conclusions of the 

thesis (PART 5).



 

 

 

 

 

 

 

 

 

  

PART 2.  

 
 

PRE-PROCESSING AND QUALITY CONTROL 
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The -omics data measures are subject to different noises and errors and a number of critical 

steps are required to preprocess the raw data. This part of preprocessing following of the 

appropriate Quality Control (QC) probably is the main and most important part of the entire 

integrative analysis. The different approaches to implement the preprocessing and QC are data 

type-depending and will differ over the –omics data types and the high-throughput technologies 

used. This is the initial stage of all the data integration process that will be follow of a basic 

analysis to visualize graphically and statistically the different data types. The integration process, 

and therefore the statistical approach to perform the integration analysis will be based on what 

it is identified in this stage. Also, in this stage any problem or anomaly of the data can be 

detected.  

In this part, the preprocessing, QC and basic analysis is described from the three types of –omics 

data from the SBC/EPICURO project that are used in this thesis. Chapter 1 describes the 

genomics from blood and tumor tissue and a comparison between both measures. Chapter 2 

describes the epigenomics data (DNA methylation) from tumor tissue and chapter 3 describes 

the transcriptomics data (gene expression) from tumor tissue.   
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Chapter 1: Genomics from blood and tumor tissue 

This chapter describes the preprocessing and QC of the genomic data from the SBC/EPICURO 

project used in this thesis as well as its basic analysis. A comparison between the genomic data 

measured in blood and tumor tissue are also assessed in this chapter.  

1.1. SNP genotype data from blood samples 

SNPs were genotyped in blood samples using two different platforms, the Illumina HapMap 1M 

array and the Illumina HumanHap Omni Express array. A total of 1,046,990 SNPs were 

genotyped in 39 individuals with the first platform and 703,525 SNPs were genotyped in 16 

individuals with the second array. The data generated by both Illumina array platforms were 

visualized and analyzed with BeadStudio software separately. For the first platform, since the 

number of individuals was quite small, we decided to obtain the genotype calling using the 

cluster file obtained when the same array was applied to germline DNA from 2,424 subjects 

included in the main SBC/EPICURO study. This cluster file was imported to the BeadStudio 

project and the cluster analysis was processed for all the SNPs generating a SNP matrix with the 

genotypes per individual and the information of each SNP (dbSNP name, variant, position and 

chromosome). For the second platform as the array was different from that applied previously 

in the SBC/EPICURO study and the sample size was very small, we used the cluster file from 

Illumina. In both cases, from Beadstudio the genotypes (AA, Aa, aa) were obtained in forward 

strand for those samples having a call rate higher than 90% and introduced to R software to 

perform the pre-processing and QC. First, the genotypes were transformed in numerical 

categories being 0 (the common homozygous), 1 (the heterozygous) and 2 (the variant 

homozygous). Second, the number of missing and the Minor Allele Frequency (MAF) was 

calculated. The categories are represented in Table 2.1.1 In the first column are represented the 

SNPs obtained from the first platform and in the second column the SNPs that are common for 

both platforms (547,068). For both array, the annotation was done using the UCSC hg19, NCBI 

build 37 to make them comparable and homogenize their position in the genome. 
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1.2. SNP genotype data from tumor tissue samples 

SNPs were genotyped using also the Illumina HumanHap 1M array in tumor samples. A total of 

1,047,101 SNPs were genotyped in 46 individuals. As in the genotyping in blood the genotype 

calling was performed using the cluster file from the same array applied to germline DNA from 

2,424 subjects included in the main SBC/EPICURO study. The same pre-processing and QC was 

applied and the SNPs by MAF and missingness categories are represented in the third column of 

Table 2.1.1. The annotation was also done using the UCSC hg19, NCBI build 37 to make the array 

comparable and homogenize its position in the genome. 

 

 Table 2.1.1: Summary of SNPs in blood and tumor 

 

The overlap between SNPs in blood and tumor was 543,244 for 29 individuals. For all the 

analysis, SNPs that have a MAF > 0.05, < 20% of missingness, a LD ≠ 1 and less that two individuals 

with the variant allele to avoid an increase number of false positives were considered.  

Based on the idea that tumors acquire frequent somatic alterations, a concordance analysis was 

performed to see whether the differences are enough significant to consider these two 

measurements as different –omics data sets. To perform this analysis, kappa weighted 

measurement was applied to obtain the disagreement between two SNPs (tumor vs. blood). 

Each pair is represented in a weighted matrix where cells located on the diagonal represent 

 SNP blood  

Illumina Hap 1M 

 

(n=39) 

SNP blood 

Illumina Hap 1M +   

Illumina HumanHap Omni  

(n=39+16) 

SNP tumor   

Illumina Hap 1M   

 

(n=46) 

Nº SNPs 1,046,990 547,068 1,047,101 

maf 

= 0.0 

(0.01 – 0.2] 

(0.2 – 0.4] 

> 0.4 

 

151,075 

399,767 

344,976 

151,172 

 

47,860 

221,748 

189,286 

88,174 

 

150,548 

420,716 

327,762 

148,075 

Nº missing 

No    missing 

5%   missing 

20% missing 

> 20% missing 

 

982,017 

44,545 

11,318 

9,110 

 

510,884 

28,551 

3,809 

3,824 

 

488,288 

400,918 

147,732 

10,163 
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complete agreement, while cells one off the diagonal are weighted 1, and cells two off the 

diagonal are weighted 2. Kappa takes values from 0 to 1, being 0 total disagreement and 1 total 

agreement. An example for one pair is shown in Box 1 where the disagreement between the 

SNP measures in blood and tumor was kappa = 0.35. 

  

Box 1. Example of the application of weighted kappa in a SNP pair  

               Blood 

Tumor 

0 (AA) 1 (Aa) 2 (aa) Total 

0 (AA) 17 3 0 20 

1 (Aa) 1 1 1 3 

2 (aa) 0 0 0 0 

Total 18 4 1 23 

𝑘𝑎𝑝𝑝𝑎 = 1 −
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ 𝑤𝑖𝑗𝑚𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1

, 𝑤ℎ𝑒𝑟𝑒  

𝑘 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒𝑠 𝑎𝑛𝑑  

𝑤𝑖𝑗, 𝑥𝑖𝑗  𝑎𝑛𝑑  𝑚𝑖𝑗  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑛𝑑 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

The expected values are:                                              The weighted matrix is:   

     

 

0 (AA) 1 (Aa) 2 (aa) Total   0 (AA) 1 (Aa) 2 (aa) 

0 (AA) 15.65 3.48 0.87 20  0 (AA) 0.0 1.0 2.0 

1 (Aa) 2.35 0.52 0.13 3  1 (Aa) 1.0 0.0 1.0 

2 (aa) 0 0 0 0  2 (aa) 2.0 1.0 0.0 

Total 18 4 1 23      

𝒌𝒂𝒑𝒑𝒂  = 1 −
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ 𝑤𝑖𝑗𝑚𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1

= 1

−
(17 ∗ 0 + 3 ∗ 1 + 0 ∗ 2 + 1 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 + 0 ∗ 2 + 0 ∗ 1 + 0 ∗ 0)

(15.65 ∗ 0 + 3.48 ∗ 1 + 0.87 ∗ 2 + 2.35 ∗ 1 + 0.52 ∗ 0 + 0.13 ∗ 1 + 0 ∗ 2 + 0 ∗ 1 + 0 ∗ 0)
 

= 1 −
5

7.7
= 𝟎. 𝟑𝟓 
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After applying this measure to the whole set of overlapping SNPs (543,244), we found that there 

were disagreement in all the chromosomes. This result is expected due to the somatic mutations 

produced in the tumor. Figure 2.1.1 represents the kappa coefficient by chromosome in a 

reverse Manhattan plot and Figure 2.1.2 represents the percentage of disagreement by 

chromosome considering the number of SNP pairs with kappa ≤ 0.8 divided by the total number 

of SNP pairs in the chromosome. 
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Figure 2.1.1 Kappa coefficient by chromosomes 
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Figure 2.1.2. Percentage of disagreement by chromosome considering the number of pair SNPs with kappa ≤ 0.8 divided by the total 
pair SNPs in the chromosome. 
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Chromosome 9 was the chromosome with the highest percentage of disagreement (25%) 

which can be explained with the early deletion of both arms of chromosome 9 in many UBC 

cases (Wu 2005). Chromosomes Y (13%), 17 (7%), 8 (5%) and 11 (5%) showed larger 

disagreement in comparison to the others. Deletions in the short arms of chromosomes 8 and 

11 were associated with bladder tumor progression (Wu 2005). These results supported to 

consider the two measurements (tumoral genotypes and germline genotypes) as two different 

–omics data sets.  

For chapters 1 and 2 in part 3 of this thesis, genomic measure in tumor was used. In chapter 1 

univariable analyses was applied and a sample without missing was not required, but in 

chapter 2, multivariable models were applied requiring no missing values to avoid problems 

with a very small sample size. For this reason, we performed an imputation analysis using 

BEAGLE 3.3.2. with the method for inferring haplotype phase and sporadic missing data in 

unrelated individuals (Browning & Browning 2007).   
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Chapter 2: Epigenomics from tumor tissue 
 
 

This chapter contains the preprocessing, QC, and exploratory single analysis of the epigenomic 

data from the EPICURO project.   

 

DNA methylation was assessed in 46 tumor samples with the Infinium Human Methylation 27 

BeadChip platform that quantitatively generate 27,578 CpG dinucleotides spanning 14,495 

genes. To generate the CpGs, first an initial bisulfite conversion step is performed before the 

automated Infinium assay. Unmethylated cytosines are chemically deaminated to uracil in the 

presence of bisulfite, while methylated cytosines are refractory to the effects of bisulfite and 

remain cytosine. After bisulfite conversion, each sample is purified and applied to the 

BeadChips. To estimate the methylation status, two bead types are used that correspond to 

each CpG locus –one to the methylated (M) and the other to the unmethylated (U) state. Both 

bead types for the same CpG locus will incorporate the same type of labeled nucleotide, 

determined by the base preceding “C” in the CpG locus (Figure 2.2.1). 

Figure 2.2.1. Infinium assay for methylation. (Copied from Illumina: 
http://www.illumina.com/documents/products/appnotes/appnote_dna_methylation_analys
is_infinium.pdf) 

 

Then, the array is fluorescently stained and the intensities of the methylated and 

unmethylated bead type are measured with the β-values that are recorded for each locus in 

each sample via BeadStudio software. The β-value is defined as: 

𝛽 =
max(𝑀, 0)

max(𝑈, 0) + max(𝑀, 0) + 100
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The maximum between signal intensity and 0 is used for β calculation to avoid the negative 

numbers caused by background subtractions, consequently, β-values rank between 0 

(unmethylated) and 1 (methylated).  The constant 100 was used to regularize the β-values 

when they were very small. β-value has a direct biological interpretation that corresponds to 

the percentage of methylated sites, but for analytical and statistical purpose, the β-value has 

severe heterocedasticity which impose a challenge in applying many statistical methods (Du 

et al. 2010); consequently M-value has been proposed as a logarithm transformation that is 

more statistically valid even though it does not have an intuitive biological meaning. The M-

value is calculated as follows:  

𝑀 = 𝑙𝑜𝑔2 (
max(𝑀, 0) + 1

max(𝑈, 0) + 1
) 

M-value ranges between -∞ (unmethylated) and +∞ (methylated). In our study, M-values 

were used when applying linear regression models, while β-values were used in the rest of the 

analyses.  

For the 46 tumor samples in EPICURO, we obtained the β-value from BeadStudio software 

with the detection p-values for the total number of 27,578 sites. CpGs with a detection p-value 

> 0.05 as Illumina recommended were rejected leaving 27,164 sites. Then, the CpGs with β-

values < 0 or > 1 were also excluded yielding 26,634 sites. The Infinium HumanMethylation27 

array detects some CpGs that are non-specific and map to genomic sequences and also some 

CpGs that cross-react with other sequences. (Chen et al. 2011) published a list of CpGs that 

are SNPs or cross reactive probes for this specific array that we used to filter CpGs in our 

analysis. A total number of 908 CpGs were SNPs and 2,985 were cross-reactive probes. Finally 

a total number of 23,034 CpGs were kept and used in chapter 1 and 2 in PART 3 of this thesis. 

The annotation was done using the UCSC hg19, NCBI build 37 to make the array comparable 

and homogenize its position in the genome. 

An exploratory analysis was performed to inspect the patterns of DNA methylation according 

to β-value and M-value. In the Figure 2.2.2 the distribution of β-values and M-values is 

represented according to CpGs located in the autosomal chromosomes for both sexes and the 

X-chromosome in females. Table 2.2.1 and Table 2.2.2 shows the distribution of the β-values 

and M-values respectively according to three categories of methylation levels (low, medium 

and high). 
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Figure 2.2.2. Distribution of the DNA methylation data. β-values for autosomal 
chromosomes (A) and X-chromosome (B) only females. M-values for autosomal 
chromosomes (C) and X-chromosome (D) only females. 

 

The differences observed in our data for autosomal chromosome and X-chromosome in 

females are concordant to the already known patterns due to the X-chromosome inactivation. 

This is a mechanism that silences the majority of the genes on one X chromosome in each 

female cell (Carrel & Willard 2005) to equalize the expression of sex-linked genes between 

males (XY) and females (XX) (Lyon 1961). DNA methylation plays an important role in these 

processes maintaining one of the X active (Xa) and the other inactive (Xi). Some studies have 

shown that CpG islands have a tendency to be methylated on the Xi and unmethylated on the 

Xa (Tribioli et al. 1992; Hellman & Chess 2007; Ibragimova et al. 2014; Sharp et al. 2011). In 

the figures, it is also observed that β-values follow a beta distribution in the autosomal 

chromosomes while the M-values follow a bimodal distribution that accomplishes the 
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homoscedastic characteristic. In both cases the majority of the values are in the low category 

as shown in the Tables 2.2.1 and 2.2.2. Low values of methylation were observed in 73% of 

the β-values and the 68% of the M-values. In the case of the X-chromosomes the distribution 

is approximated to a normal distribution having medium values of methylation. For this thesis, 

the M-values are used as the measured of DNA methylation. 

 

Table 2.2.1. Distribution of β-values by autosomal chromosomes both sexes and X-
chromosome in females classified by low, medium or high methylation.  

 
Low  

(β < 0.3) 

Medium  

(β ∈ 0.3-0.7) 

High  

(β > 0.7) 

Autosomal Chromosomes 

N 969,888 180,240 181,632 

Freq. (%)  73% 13% 14% 

X – Chromosome in females 

N 616 1,479 419 

Freq. (%) 24% 59% 17% 

 

 

Table 2.2.2. Distribution of M-values by autosomal chromosomes both sexes and X-
chromosome in females classified by low, medium or high methylation. 

 
Low  

(M < -2) 

Medium  

(M ∈ -2,2) 

High  

(M > 2) 

Autosomal Chromosomes 

N 907,730 289,295 134,735 

Freq. (%) 68% 22% 10% 

X – Chromosome in females 

N 393 1,847 274 

Freq. (%) 16% 73% 11% 
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Chapter 3: Transcriptomics from tumor tissue 
 
 

This chapter contains the preprocessing, QC and exploratory single analysis of the 

transcriptomics data from the EPICURO project.   

 

Gene expression data was obtained from 43 tumor samples with the Affymetrix DNA 

microarray Human Gene 1.0 ST platform with 32,321 probes. The DNA microarray is a 

collection of microscopic DNA spots attached to a solid surface. Each spot contains a specific 

DNA sequence known as probes. These are a short section of a gene or other DNA elements 

that are used to hybridize cDNA sample. Then, probe-target hybridization is usually detected 

and quantified by fluorescence that determines relative abundance of nucleic acid sequences 

in the target. Once the raw intensity levels are generated and stored in .CEL files, they are 

preprocessed using bioconductor affy package in R (Gautier et al. 2004) using the Robust 

Multi-Array Average (RMA) algorithm (Irizarry et al. 2003). This algorithm consist in three 

steps: (1) Background correction to remove local artifacts and background noise, (2) log2 

transformation to make variation similar across orders of magnitude and (3) quantile 

normalization to adjust data for technical variation. Finally, a linear model fits to the 

normalized data to obtain expression measure for each probe set.  

After preprocess the data, the QC was performed using Bioconductor arrayQualityMetrics 

package in R (Kauffmann et al. 2009). This package generates a report with several figures that 

detects if there are problems in the arrays. Figure 2.3.1 shows the distance between two 

arrays. This was computed as the mean absolute difference between the data of the array. 

Outlier detection was performed by looking for arrays for which the sum of the distance to all 

other arrays was exceptionally large. The array 22, 11, 19, 34, 32, 20 and 21 cluster differ from 

the rest of the arrays showing exceptionally large distance from the others and therefore likely 

outliers.  
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Figure 2.3.1. Distance between arrays. The color scale is chosen to cover the range of 
distances encountered in the dataset. Patterns in this plot can indicate clustering of the arrays 
either because of intended biological or unintended experimental factors (batch effects). 

 

Figure 2.3.2 shows the distribution per sample where one expects the boxes to have similar 

positions and widths. When the distribution is very different from the other, this may indicate 

experimental problems. The detection of outliers was performed by computing the 

Kolmogorov-Smirnov statistic between each array’s distribution and the pooled distribution. 

This test is applied to compare distributions and inspect whether they come from the same 

distribution or another. In this case, 20, 21, 22, 32 and 34 arrays were considered as outliers.  
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Figure 2.3.2. Boxplot representing the distribution corresponding to each array.  
 
 
Finally, Figure 2.3.3 shows the mass of the distribution of M and A defined as:  

M = log2 (I1) - log2 (I2) and A = 1/2 (log2 (I1) + log2 (I2)), where I1 is the intensity of the array 

studied, and I2 is the intensity of a "pseudo" array that consists of the median across arrays. 

The detection of outliers was performed by computing Hoeffding's statistic Da on the joint 

distribution of A and M for each array. The figure below shows the 4 arrays with the highest 

value of Da (top row) and 4 with the lowest (bottom row). This test defined an outlier when 

the statistic Da  > 0.15 and no outliers were marked in  our data.  
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Figure 2.3.3 MA plot representing the mass of the distribution of M and A. Typically, we 
expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, 
and there should be no trend in M as a function of A. 
 

After the inspection of these graphs, we considered to delete the arrays marked as outlier in 

the Figure 2.3.1 and Figure 2.3.2 to avoid any problem in further analysis. The RMA algorithm 

was re-run again with the final sample set of 37 and the QC was also re-run to ensure that no 

outlier was detected.   

After annotating the probes, we deleted the ones that were not assigned to any gene using 

the affymterix hugene 10 annotation data from Bioconductor in R (MacDonald JW). 20,899 

probes were annotated to genes for 37 individuals and these were used in chapter 1 and 2 in 

PART 3 of this thesis. They were annotated using the UCSC hg19, NCBI build 37 to make them 

comparable and homogenize their position in the genome.  

Figure 2.3.4 represents graphically the distribution of the final number of probes and samples 

after applying the RMA algorithm. It follows a normal distribution and therefore parametric 

statistics were applied to analyze these data. 
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Figure 2.3.4. Distribution of gene expression data after preprocessing and 
QC.



  

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

PART 3.  

 
 

NOVEL STATISTICAL APPROACHES FOR  
INTEGRATIVE –OMICS ANALYSIS 



 

 

 

 

 

The general objective of this thesis was to dissect and fix the methodological challenges of –

omics data integration where data from tumoral tissue (genomics, epigenomcis and 

transcriptomics) and data from blood samples (genomics) are combined. To this end, we 

planned three specific objectives: (1) to perform the integration in a multi-step process 

considering all possible pairwise combinations from tumoral samples, (2) to perform the 

integration in a multi-dimensional approach where all the –omics are combined together from 

tumoral samples and (3) to perform the integration at multi-material level using data from the 

different source material (tumor and blood).  

In this part, we address these three specific objectives structured in three scientific papers 

where first, a framework to integrate the three –omics data from tumoral tissue based on 

pairwise combinations is proposed (published: Pineda et al. 2015 Human Heredity). Second, 

penalized regression methods with a permutation-based MaxT method are performed to 

integrate the three –omics data from tumoral tissue in the same model at the same time 

(accepted with minor revision: Pineda et al. 2015 PlosGenetics) and, third, an integrative eQTL 

–omics multi-material level is proposed using the previous approach developed (submitted: 

Pineda et al. 2015 AJHG).   
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Chapter 1. Framework for the integration of genomics, epigenomics 
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Abstract 

Objectives: Different types of ‘omics’ data are becoming available in the post genome era; still 

a single ‘omics’ assessment provides limited insights to understand the biological mechanism 

of complex diseases. Genomics, epigenomics and transcriptomics data provide insight into the 

molecular dysregulation of neoplastic diseases, among them urothelial bladder cancer (UBC). 

Here we propose a detailed analytical framework necessary to achieve an adequate 

integration of the three sets of ‘omics’ data to ultimate identify previously hidden genetic 

mechanisms in UBC. Methods: We build a multi-staged framework to study possible pairwise 

combinations and integrate data in three-way relationships. SNP genotypes, CpG methylation 

levels, and gene expression levels were determined for a total of 70 individuals with UBC and 

with available fresh tumor tissue. Results: We suggest two main hypothesis-based scenarios 

for gene regulation based on the “omics” integration analysis where DNA methylation affects 

gene expression and genetic variants co-regulate gene expression and DNA methylation. We 

identified several three-way trans-association “hotspots” that are found at the molecular level 

and that deserve further studies. Conclusions: The proposed integrative framework allowed 

us to identify relationships at the whole genome level providing some new biological insights 

and highlighting the importance of integrating ‘omics’ data. 
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Introduction  

Big data at the molecular field (‘omics’ data) is being generated at an unprecedented pace, 

this including genome, methylome, transcriptome, and microbiome, among others. There is a 

growing interest in combining the different types of ‘omics’ datasets that are becoming 

available since a single ‘omics’ assessment provides limited insights into the understanding of 

the underlying biological mechanisms of a physiological/pathological condition. For example, 

even when many genome-wide association studies (GWAS) have identified several Single 

Nucleotide Polymorphisms (SNP) involved in complex diseases, the functional implications of 

the susceptibility loci are still poorly understood and they only partially account for the 

phenotype variability. Combining different ‘omics’ data types seems to be a more suitable 

approach, as it will likely reveal previously hidden information.  

The simplest form of data integration involves the combination of two different data types, 

common examples being genetic variants and gene expression or, more recently, genetic 

variants and DNA methylation. DNA methylation involves the addition of a methyl group to 

the 5’ position of the cytosine at a Cytosine-phosphate-Guanine (CpG) site. Genomic regions 

with high density of CpG dinucleotides are denominated CpG islands; they are often located 

in gene promoters and have important roles in gene regulation. CpG sites located up to 2kb 

from the island’s boundaries are called CpG shores and it has been demonstrated that they 

are also very important for gene regulation and that they are implicated in cancer (Irizarry et 

al. 2009). Both CpG islands and shores, when hypermethylated and located in the promoter 

region of a gene, negatively regulate gene repression (Jones 2012). Therefore, it is important 

to take into account the relationship between DNA methylation and gene regulation in order 

to better understand complex diseases (Portela & Esteller 2010). For example, it has been 

shown that hypermethylation of CpGs located in the promoter region of some tumor 

suppressor genes (INK4A, Rb, VHL, hMLH1, BRCA1, etc) contribute to cancer development 

(Esteller 2008).  Therefore, analyzing gene expression data without considering epigenetics 

provides an incomplete genomic explanation of the transcriptome. Moreover, as DNA 

methylation regulates gene expression, genetic variants affecting CpG sites might, in turn, 

affect gene expression too. It is well known that genetic variants can alter gene expression 

levels and hence the importance of connecting the DNA sequence to the RNA level. The 

identification of these expression quantitative trait loci (eQTL) relationships may help to 

identify regulators of gene expression (Cheung & Spielman 2009). These eQTLs have been 

extensively studied to find associations between common genetic variants and gene 

expression levels (Nica et al. 2010; Nicolae et al. 2010; Pickrell et al. 2010; Westra et al. 2013; 
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Zhernakova et al. 2013). By contrast, the study of potential associations between common 

variants, DNA methylation levels (methylation QTLs, methQTLs), and gene expression has 

generated less interest, so far (Heyn et al. 2014; Gibbs et al. 2010; Zhang et al. 2010; Bell et al. 

2011; Drong et al. 2013).  

Genome, transcriptome, and methylome data offer unique opportunities when combined in 

the same analyses. This strategy has been applied to HapMap cell lines (Bell et al. 2011), whole 

blood from healthy human subjects (Van Eijk et al. 2012), and human monocytes (Liu et al. 

2013). Furthermore, some studies have combined these types of data to better understand 

complex diseases, such as breast cancer (Li et al. 2013) or type 2 diabetes (Greenawalt et al. 

2012). As DNA methylation is tissue-specific, these analyses have also been applied to different 

types of tissues, such as human brain (Gibbs et al. 2010) or adipose tissue (Drong et al. 

2013)(Drong et al. 2013). It is worth noting that the majority of these studies have only 

assessed cis- relationships, but trans- effects deserve further study within the ‘omics’ context, 

especially as the complex organization of chromatin in the nucleus is better understood.  

In the present study we built and propose a multi-staged analytical framework to integrate 

‘omics’ data. We tested it in an urothelial bladder cancer (UBC) model using common genetic 

variants, DNA methylation, and gene expression transcripts data from 70 cancer patients. We 

proved the ability of the framework to identify some “multi-omics” relationships that provided 

further knowledge to better understand the biological mechanisms underlying the disease. 
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Material and Methods 

Study Subjects: SNP genotypes, CpG methylation levels, and gene expression levels were 

measured for a total of 70 individuals with available fresh tumor tissue that were recruited as 

part of the pilot phase of the EPICURO study. All of them were histologically confirmed UBC 

cases recruited in 2 hospitals in Spain during 1997-1998. Tumor DNA and RNA were extracted 

and used for ‘omics’ assessment. SNP data was available for 46 patients, CpG methylation for 

46 patients and gene expression for 43. The overlapping of patients between the three ‘omics’ 

was 31 for the expression-methylation relationship, 27 for the eQTL, and 46 for the methQTL 

studies.  

SNP genotype data: Genotyping was performed using Illumina HumanHap 1M array in tumor 

samples. A total of 1,047,101 SNPs were genotyped in 46 individuals. For genotype calling, we 

used the cluster file obtained when the same array was applied to germline DNA from 2,424 

subjects included in the main EPICURO study. We considered SNPs with <5% of missing values 

and with a minor allele frequency (MAF) ≥ 0.01. Standard Quality Control (QC) was performed 

using BeadStudio and R. From BeadStudio, the genotypes (AA, Aa, aa) were obtained in 

forward strand for those samples having a call rate higher than 90%.  

DNA methylation data: After bisulphite modification of 46 tumor DNA samples using EZ-96 

DNA METHYLATIONGOLD KIT (Zymo Research, Irvin, CA, USA), CpG methylation data was 

generated using the Infinum Human Methylation 27 BeadChip Kit that detected the CpG sites 

with two probes, one designed against the unmethylated site (signal U) and the other against 

the methylated site (signal M). The level of methylation was determined at each locus by the 

intensity of the two possible fluorescent signals (Bibikova et al. 2009). At each CpG site, the 

methylation levels were measured with the β-value, defined as: 

𝛽 =
max(𝑀, 0)

max(𝑈, 0) + max(𝑀, 0) + 100
 

The maximum between signal intensity and 0 is used for β calculation to avoid the negative 

numbers caused by background subtractions, consequently, β-values rank between 0 

(unmethylated) and 1 (methylated).  The constant 100 was used to regularize the β-values 

when they were very small. Although β-values are useful under some circumstances, it has 

been demonstrated that M-values are more statistically valid than β-values due to a better 

approximation of the homocedasticity (Du et al. 2010). This property is important when 

applying regression models that require this assumption. The M-value is calculated as follows:  
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𝑀 = 𝑙𝑜𝑔2 (
max(𝑀, 0) + 1

max(𝑈, 0) + 1
) 

It ranges between -∞ (unmethylated) and +∞ (methylated). In our study, M-values were used 

when applying linear regression models, while β-values were used in the rest of the analyses.  

The initial number of CpGs in the studied array was 27,578. We then applied BeadStudio 

software and R to preprocess the data. Background normalization was performed minimizing 

the amount of variation in background signals between arrays and, as recommended by 

Illumina, CpGs were rejected when detection p-value was > 0.05. The β-values < 0 or > 1 were 

also excluded. CpGs with SNPs (N=908) or cross reactive probes (N=2,985) were deleted based 

on earlier reports for the 27K array (Chen et al. 2011). After QC, a total number of 23,034 CpGs 

were kept for analysis.  These were classified in 3 categories for subsequent analyses: CpG 

islands (located in the promoter region of a gene), CpG island shores (in a sequence up to 2Kb 

from an island) and CpGs outside of an island or a shore. 

Gene expression data: Gene expression data were obtained from 43 tumor samples using the 

Affymetrix DNA Microarray Human Gene 1.0 ST Array with 32,321 probes. This array was 

based on 2006 (UCSC hg19, NCBI build 37) human genome sequence with coverage of RefSeq, 

Ensembl and putative complete CDS GenBank transcripts (www.affymetrix.com). QC was 

performed using Bioconductor libraries in R (www.bioconductor.org/). The 

arrayQualityMetrics package (Kauffmann et al. 2009) was used to implement a background 

correction and to carry out normalization of expression levels across arrays. Application of QC 

steps resulted in 20,899 probes and 37 individuals. The affy library in R (Gautier et al. 2004) 

was used to annotate the probes. 

Statistical Analysis 

First, tumoral DNA methylation levels in CpG sites and gene expression levels were compared 

using Spearman’s rank correlation for non-normally distributed variables. Second, we assessed 

eQTLs and methQTLs, via linear regression modeling for those expression-methylation pair 

probes that were strongly associated in the previous step. To perform these analyses, we 

obtained a linear regression model for each SNP as: 

 

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 = 𝛼 + 𝛽 ∗ 𝑆𝑁𝑃𝑖 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑝𝐺 𝑖 = 𝛼 + 𝛾 ∗ 𝑆𝑁𝑃î 

http://(www.affymetrix.com/
http://(www.bioconductor.org/


 

 
57 

 

PART 3. Novel statistical approaches for integrative –omics analysis 

Prior to analysis, we excluded those SNPs that had less than two individuals per genotype due 

to the imbalance that may produce a highly differential gene expression values, i.e: an 

individual with rare homozygous genotype and with an extreme gene expression value that 

could produce an artificial high significant p-value.  

Expression-methylation probe pairs and eQTLs and methQTLs were classified in three 

categories according to possible genomic distance effects: cis-acting, if probes were located 

within 1Mb; trans-acting, if probes were on the same chromosome but located more than 

1Mb apart; and trans-acting-outside, if they were on different chromosomes. To control the 

analyses for multiple testing we applied the Benjamini & Yekutieli  (Benjamini & Yekutieli 2001) 

FDR method that allows for panel dependencies between tests. We applied this correction 

taking into account the number of tests performed in the eQTL and the methQTL study 

independently. Finally, we checked the regions of the trait-associated SNPs already published 

for UBC.     

Third, in line with the study, we integrated the results obtained from pairwise analyses on 

genome, epigenome and trascriptome data. We checked the SNPs that were common in the 

eQTL and methQTL analysis based on those probes-CpGs that were previously correlated in 

order to have a complete view of the genome in individuals with UBC. We obtained the 

distribution of the triplets (SNP-CpG-Gene expression) that were significantly associated in the 

same relationship.  

Statistical analyses were performed with R and results were visualized with Circos software 

(Krzywinski et al. 2009).  
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Results  

The majority of the individuals included in our study were male (93%) and current (50%) or 

former (36%) smokers. According to established criteria based on tumor stage (T) and grade 

(G) for UBC, individuals were classified as having low-risk non-muscle invasive tumors (45%), 

high-risk non-muscle invasive tumors (22%) or muscle-invasive tumors (29%) (Table 3.1.1).  

Table 3.1.1. Characteristics of the studied patients 
 

Characteristics N (%) 

Total 72 

Gender 
          Male 
          Female 

 
67 (93) 
5   (7) 

Age 
          Mean (SD) 
          Min-max 

 
65.6 (9.5) 

41-80 

Region 
          Barcelona 
          Elche 

 
31 (43) 
41 (57) 

Smoking status 
          Non-smoker 
          Current 
          Former 
          Unknown 

 
8 (11) 

36 (50) 
26 (36) 
2   (3) 

Tumor-stage 
         Low-grade-NMIBC 
         High-grade-NMIBC 
         MIBC 
         Unknown 

 
32 (45%) 
16 (22%) 
21 (29%) 
3   (4%) 
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The description of the study results is organized in four sections following the framework steps 

proposed (Figure 3.1.1): (1) Description of the patterns of individual ‘omics’ data, globally and 

according to epidemiological data, (2) Correlation analysis between methylation and 

expression probes, (3) Identification of cis- and trans- eQTLs and methQTLs, and (4) Integration 

of results derived from the previous pairwise analysis. 
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Figure 3.1.1. Framework for data integration showing the steps to integrate genetic variants, 
DNA methylation levels, and gene expression levels. Step 1 corresponds to the preprocessed 
data, quality control and global patterns individually per data set. Steps 2, 3 and 4 are 
represented for purple boxes corresponding to the analysis performed and the input data, and 
green oval boxes correspond to the results and the input of the next step. 
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1. Patterns of individual ‘omics’ data. Table 3.1.2 shows the distribution of the genotypes 

according to their MAF; 14% had a MAF of 0 and were excluded from the analysis, 11% ranged 

between (0.01-0.05], 30% between (0.05-0.2] and 31% between (0.2-0.4]. Missingness <5% 

was observed in 84% of the SNPs.  

 
Table 3.1.2. Summary of SNPs genotyped 

SNPs N (%) 

Total number 1,047,101 

MAF 
      [0.0] 
      (0.0 – 0.01] 
      (0.01 – 0.05] 
      (0.05 – 0.2] 

(0.2 – 0.4] 
(0.4 – 1.0] 

 
150,548 (14) 

  0 (  0) 
108,496 (11) 
312,220 (30) 
327,762 (31) 
148,075 (14) 

Missingness 
      No    missing 
      5%   missing 
      20% missing 
   > 20% missing 

 
488,288 (47) 
400,918 (38) 
147,732 (14) 

10,163 (1) 

MAF = 0.0 means that all individuals are common  
homozygous for the measured SNP.  
 

The patterns for DNA methylation according to the β- and M-values were different for 

autosomal chromosomes and X-chromosomes in females due to the X-chromosome 

inactivation in females. The majority (71%) of CpGs in autosomal chromosomes were 

unmethylated (β < 0.3) while, as expected, the majority of the CpGs (66%) in the X-

chromosomes showed β-values in the range (0.3 ≤ β < 0.7). While the M-values for autosomal 

chromosomes displayed a bimodal distribution, X-chromosomes approximated a normal 

distribution (Figure 2.2.2). No significant different methylation patterns were found according 

to the clinical/epidemiological data considered, i.e. smoking status, tumor stage, age, and sex 

(Pearson’s χ2-test, data not shown).  

The expression of the gene probes after background correction and normalization followed a 

normal distribution (Figure 2.3.4). We did not find any significant difference according to the 

clinical/epidemiological data by applying student’s t-test (data not shown). 
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2. Correlation between gene expression and DNA methylation. While it is well established 

that DNA methylation may affect the expression of a gene, mainly when the relationship is in 

cis-, little is known when it is in trans-. We investigated a total of 481,387,566 possible 

correlations between gene expression and methylation both in cis- and in trans-. The number 

of comparisons performed was based on data derived from 31 individuals (Table 3.1.3). We 

obtained 19,335 strong-negative (ρ < -0.7) and 88,503 strong-positive (ρ > 0.7) associations 

between gene expression and methylation corresponding to 7,359 expression traits and 9,537 

CpG sites. The distribution of the stronger relationships according to the CpG location and 

direction is shown in Table 3.1.4: 5,414 (28%) were located in CpG islands, 1,690 (59%) in CpG 

shores and 2,433 (57%) outside of CpG islands/shores. There were 263 (0.03%) cis-acting 

correlations, 6,177 (0.02%) trans-acting correlations within the same chromosome, and 

101,398 (0.02%) trans-acting outside the chromosome (trans-out correlations). A whole list of 

CpGs with significant cis- association with a gene can be found in Table S3.1.1.  

 
 
Table 3.1.3. Strength of correlations between gene expression and DNA methylation 

Spearman’s rho Strength of correlation Nº of combinations 

(-0.9 : -1.0] Very Strong-negative 0 

(-0.7 : -0.9] Strong-negative 19,335 

(-0.4 : -0.7] Moderate-negative 9,266,544 

(-0.0 : -0.4] Weak-negative 238,601,864 

[0.0] No correlation 380,834 

(0.0 : 0.4] Weak-positive 223,165,638 

(0.4 : 0.7] Moderate-positive 9,864,848 

(0.7 : 0.9] Strong-positive 88,503 

(0.9 : 1.0] Very Strong-positive 0 
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Table 3.1.4. Strong correlation for cis-acting and trans-relationships between CpG methylation 
and gene expression 

  
Negative 

correlation 
N (%) 

Positive 
correlation 

N (%) 

Cis-acting 
(same gene) 

CpG island/shore 37 (80) 9 (20) 

CpG outside 3 (37) 5 (63) 

Cis-acting 
(dif. gene) 

CpG island/shore 41 (26) 116 (74) 

CpG outside 11 (21) 41 (79) 

Trans-acting 
CpG island/shoe 757 (17) 3,736 (83) 

CpG outside 412(24) 1,272 (76) 

Trans-acting-
outside 

chromosome 

CpG island/shore 11,860 (16) 63,054 (84) 

CpG outside 6,214 (23) 20,270 (76) 

 

3. Identification of cis- and trans- eQTLs and methQTLs. In order to detect genetic variants 

affecting gene expression or DNA methylation, we investigated a total of 7,359 expression 

traits and 9,537 CpG sites that were strongly correlated in the previous step. The number of 

SNPs considered here after QC was 429,892 for the eQTL and 492,189 for the methQTL 

analyses, resulting in a total of 3,163,575,228 eQTLs in 27 individuals and 4,694,006,493 

methQTLs explored in 46 individuals. After correction for multiple testing (FDR<0.05), we 

obtained 471,818 significant eQTLs involving 154,203 SNPs, and 643,095 methQTLs involving 

148,528 SNPs. These results pointed to the fact that multiple expression probes and CpGs were 

significantly associated with more than one SNP. We refer to this phenomenon as “hotspots” 

(Figure S3.1.1). We show the distribution of QTLs classified by genomic distance and MAF of 

the relationship for eQTLs in Table 3.1.5 and methQTLs in Table 3.1.6. When classifying the 

QTLs by genomic distance we observed 441 cis-eQTLs (0.02%), 23,685 trans-eQTLs (0.01%) and 

447,692 trans-out-eQTLs (0.01%); and 538 cis-methQTLs (0.01%), 29,938 trans-methQTLs 

(0.01%), and 612,619 trans-out-methQTLs (0.01%). When classifying the QTLs in terms of MAF 

the majority had a MAF ≤ 0.2 (0.006%), while 0.003% and 0.002% had MAFs of (0.2-0.4] and ≥ 

0.4, respectively. Detailed information regarding the cis- relationship is provided in Tables 

S3.1.2 and S3.1.3. When we checked how the significant findings are distributed in terms of 

the direction of the relationship, there were more QTLs positively than negatively (60% vs. 

40% eQTL, 63% vs. 37% methQTLs) associated implying that having more copies of the rare 

allele increases the levels of the gene expression or the levels of methylation. Lastly, we 

investigated, for QTL associations in our study, how many of the SNPs involved have been 
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previously reported as a trait associated SNPs for UBC. We found that the SNP rs401681-

TERT/CLPTM1L on chromosome 5 was associated with the expression of FRMD6 located on 

chromosome 14 (p-value = 3.7*10-5), and with the cg18368125-TMED6 on chromosome 16 (p-

value = 4.8*10-5). Also, the SNP rs1495741-NAT2 on chromosome 8 was associated with the 

expression of C19orf73 located in chromosome 19 (Figure 3.1.2). 

Table 3.1.5: Significant (FDR<0.05) cis-eQTLs and trans-eQTLs by MAF and sign of the 
association 

MAF Sign cis-eQTL 
N (%) 

trans-eQTL 
N (%) 

Trans-out-eQTL 
N (%) 

 (0.01-0.2] 

Positive 
106 

(0.005) 
7,026 

(0.005) 
127,177 
(0.004) 

Negative 
56 

(0.002) 
2,857 

(0.002) 
61,134 
(0.002) 

 (0.2-0.4] 

Positive 
95 

(0.003) 
4,759 

(0.003) 
88,213 
(0.003) 

Negative 
66 

(0.002) 
3,220 

(0.002) 
65,457 
(0.002) 

> 0.4 

Positive 
57 

(0.003) 
2,930 

(0.002) 
54,087 
(0.002) 

Negative 
61 

(0.003) 
2,893 

(0.002) 
51,624 
(0.002) 

%: Percentage of significant eQTLs after multiple testing correction over the total number of 
cis- (2,331,808), trans- (151,738,928) and trans-out (3,009,504,492) eQTL  
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Table 3.1.6: Significant (FDR<0.05) cis-methQTLs and trans-methQTLs by MAF and sign 

MAF Sign 
cis-methQTL 

N (%) 
trans-methQTL 

N (%) 

trans-methQTL-
out 

N (%) 

 (0.01-0.2] 

Positive 
137 

(0.004) 
8,576 

(0.004) 
190,221 
(0.004) 

Negative 
61 

(0.002) 
3,554 

(0.002) 
72,611 
(0.002) 

 (0.2-0.4] 

Positive 
118 

(0.003) 
6,864 

(0.003) 
139,830 
(0.003) 

Negative 
139 

(0.004) 
5,230 

(0.002) 
98,068 
(0.002) 

> 0.4 

Positive 
39 

(0.001) 
3,090 

(0.001) 
57,476 
(0.001) 

 
Negative 44 

(0.001) 
2,624 

(0.001) 
54,413 
(0.001) 

%: Percentage of significant methQTLs after multiple testing correction over the total number 
of cis- (3,499,636), trans- (224,328,090) and trans-out (4,466,178,767) methQTL. 
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Figure 3.1.2. GWAS-reported SNPs significantly associated with gene expression levels 
and/or DNA methylation levels in UBC. 

 

4. Integration of results derived from the pairwise analysis. From the final subset of eQTLs 

and methQTLs, we obtained 49,708 common SNPs (50% from the total SNPs for eQTLs and 

methQTLs), affecting a total of 227,572 eQTLs (207 cis-acting) and 298,869 methQTLs (247 cis-

acting). Multiple expression probes and CpGs were significantly associated with more than one 

SNP and vice versa. We found that 1,469 QTLs belonged to a triple relationship (SNP-CpG-Gene 

expression) (Table S3.1.4). Regarding the association patterns, majority (29%) of these 1,469 

triplets show a positive association pattern, that is, the higher the methylation the higher the 

expression, where the rare allele is classified with higher expression and methylation levels. A 

second pattern (19%) regarded to “the higher the methylation the lower the expression”, 

where the rare allele is associated with high expression levels and low methylation levels. 

When restricted to cis-relationship, no triplets were found but there were 19 pairs (1 eQTL, 1 

methQTL and 17 CpG-Gene expression pairs) that were in cis. The distribution of these triplets 
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was completely different than that of the rest of the triplets. The most frequent pattern (32%) 

show a positive association between the SNP and methylation and negative for the association 

of both (SNPs and CpGs) with the expression. All the possible patterns with their percentages 

are shown in Table 3.1.7. Lastly, we checked for the “hotspots” in these triplets and we found 

some of them for SNPs, CpGs and Gene Expression probes (Figure 3.1.3).  

 
Table 3.1.7: Distribution of the 1,946 triple relationships directions per pairwise analysis  

eQTL methQTL Expr-methy N1 (%) N2 (%)  

+ + + 419 (29) 1 (5) 

- - - 58 (4) 3 (16) 

+ - - 276 (19) 4 (21) 

- + + 78 (5) 1 (5) 

- + - 262 (18) 6 (32) 

+ - + 62 (4) 3 (16) 

- - + 250 (17) 1 (5) 

+ + - 64 (4) 0 (0) 

1 The total distribution for the 1,469 triplets 
2 The distribution only for the ones that had one pair in cis-effect 
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Figure 3.1.3. Circular representation of the “hotspots” found for SNPs (A), CpGs (B) and gene 
expression probes (C) extracted from the relationships on the triplets. Each chromosome is 
represented with a different color and the color of the lines corresponds to the SNPs, CpGs or 
gene expression probes that are located in the chromosome that share the color with. The 
name of the genes is located in the gene with the “hotspot”. 
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Discussion 

The post genome era delivers a wealth of ‘omics’ data allowing to explore the relationships 

between genetics, epigenetics and gene expression being of great importance to better 

understand the biological mechanism underlying a disease. In the cancer field, this integrative 

approach becomes particularly crucial on the basis of the knowledge indicating that SNPs, 

CpGs, and gene expression play an important role in the development of these complex 

diseases (You & Jones 2012; Kanwal & Gupta 2012). 

In this work, we propose an ’omics’ integrative analytical framework based on a multi-staged 

strategy and we apply it to explore the relationships between three sets of data measured at 

a genome-wide level in UBC tumor samples. We provide further evidences on how common 

genetic variation and DNA methylation are statistically associated with the regulation of gene 

expression. Based on the knowledge that DNA is looped, allowing the interaction between two 

DNA regions located far away from each other, we not only studied cis- but also trans- 

relationships (Bickmore & van Steensel 2013). Here, we show that some SNPs are associated 

with DNA methylation, that the latter is associated with gene expression, and that some SNPs 

associate with both DNA methylation and gene expression.  

Individual and pairwise analysis: 

The global pattern for methylation observed in our study (Figure 2.2.2) parallels that reported 

previously for germline (blood) (Bell et al. 2011). Consistently with previous studies performed 

in blood (Bell et al. 2011; Van Eijk et al. 2012) and human brain samples (Zhang et al. 2010), 

we found that - when located in an island/shore - the correlations between DNA methylation 

and gene expression from the same gene are predominantly negative, supporting the known 

biological mechanisms of gene regulation (80%). DNA methylation occurs near the 

Transcription Start Site (TSS) of a gene, blocking the initiation of gene expression (Review in 

(Jones 2012)). To highlight relevant results, four different CpGs (cg01354473, cg07778029, 

cg25047280, cg26521404) located in a CpG island of HOXA9 gene on chromosome 8 were 

negatively correlated with the expression of the gene. It was reported that HOXA9 acts as a 

tumor suppressor gene in oral cancer (Uchida et al. 2014) while methylation of this gene has 

been associated with the regulation of its expression in UBC (Reinert et al. 2011) and with risk 

of different cancers such as breast (Gilbert et al. 2010), oral cavity (Guerrero-Preston et al. 

2011), and ovarian (Wu et al. 2007), as well as with risk of recurrence in UBC (Reinert et al. 

2012). The observed negative association between four CpGs and HOXA9 expression in our 



 

 
70 

 

PART 3. Novel statistical approaches for integrative –omics analysis 

study suggests that the inhibition of HOXA9 expression may affect the development of UBC 

and supports the approach applied in this study.  

On the other hand, the ENCODE Project provided some clues in the understanding of the 

biological behavior of trans- relationships and of the CpGs belonging to cis-relationships when 

located in a different gene (Encode Project Consortium 2004). In our study, we mainly 

observed positive correlations (79%) in all of these scenarios, meaning that increasing levels 

of methylation correlates with increasing levels of gene expression or the other way around, 

suggesting either a direct mechanism or an indirect mechanism where methylation affects 

expression of a gene repressor, thus leading to apparent association with increased gene 

levels.  These results warrant further mechanistic studies explaining the complex association 

between DNA methylation and gene expression. 

Little is known about the relationship between genetic variants and DNA methylation. Heyn et 

al. (2014) recently published a methQTL analysis using the cancer genome atlas data but only 

with SNPs detected in GWAS studies and cis-acting methQTLs. They detected one methQTL in 

UBC where the SNP rs401681 in TERT_CLPTM1L was associated with cg06550200 located in 

CLPTM1L; unfortunately we have not been able to replicate this association as this CpG is not 

present in the 27K methylation array. Nonetheless, for the first time we have performed cis- 

and trans- acting methQTL analysis in UBC tumor tissue samples using CpGs that were 

previously correlated with gene expression. From this assessment, we found 538 cis- 

relationships listed in the Table S3.1.3 with all necessary information for further studies and 

validation. More frequently, cis- relationships between genetic variants and gene expression 

levels have been assessed. We also performed eQTL association studies in cis- and trans- in 

the same conditions that for methQTLs and found 441 cis-eQTLs (Table S3.1.2). We performed 

these analyses on significant expression-methylation correlated probes identified in the first 

step upon the assumption that epigenetics interferes with the gene expression levels.  

The proportion of eQTLs (0.01%, 471,818) and methQTLs (0.01%, 643,477) was similar, 

although more SNPs were involved in eQTLs (32.6%, 154,203) than in methQTLs (22.7%, 

148,528), possibly because of the smaller sample size of the former. Similarly, we found no 

major differences in the percentages of QTL associations classified as cis-, trans- and trans-out 

according to the genomic distance defined before. Nevertheless, when considering the MAF 

distribution, a higher number of QTLs were observed for SNPs with MAF ≤ 0.2. While these 

results should be interpreted cautiously, due to the possibility of false positives, it is worth 

highlighting that we found a greater number of positive than negative QTLs relationships, 
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meaning that having the rare allele is associated with increased gene expression or 

methylation levels.  

Some studies have related SNPs associated with complex diseases at genome-wide 

significance level to gene expression or methylation levels (Heyn et al. 2014; Westra et al. 

2013; Fu et al. 2012). Out of the 14 GWAS UBC SNPs (N Rothman et al. 2010), two showed to 

be associated with gene expression and methylation in trans-relationships (Figure 3.1.2). 

Interestingly, rs401681-TERT/CPTL1M, a variant strongly associated with low grade and low 

risk UBC (N Rothman et al. 2010), was found associated with a lower expression of FRMD6 in 

our study, a gene that was reported to be involved in the inhibition of proliferation in human 

cells (Visser-Grieve et al. 2012). 

Integrative analysis: 

We observed an enrichment of significant associations of genetic variants with methylation 

and gene expression with 49,708 SNP related to 227,572 eQTLs and 298,869 methQTLs (207 

eQTLs and 247 methQTL in cis-) suggesting a co-regulated expression and methylation. The 

percentage of enrichment associated with eQTLs (11.5%) and methQTLs (10.0%) was similar 

to that found by Wagner et al. (2014) who detected an enrichment of 9.5% in fibroblasts.  Bell 

et al. (2011) also found an enrichment in lymphoblastoid cell lines. By contrast, Gibbs et al. 

(2010) found only a modest overlap between both data in brain tissues, while Drong et al. 

(2013) found no enrichment in adipose tissue. This highlights the fact that a specific genetic 

variants may show tissue-specific effects and that little is known about them at a genome wide 

level. We also found a total of 1,469 QTLs where the same SNP was significantly associated 

with both eQTL and methQTL in previously identified gene expression-CpG significant pairs. 

This three-way type relationship between SNP-CpG-Gene expression supports the notion that 

the three data sets implemented in this study are closely related in regulating part of the 

genome, an observation that may provide new insight into the genetics of this complex 

disease. Furthermore, we observed that the most frequent pattern (29%) in these three way 

relationships is a positive association pattern, suggesting that hypermethylation may act 

through a direct mechanisms or affect a repressor gene associated with an over-expression of 

gene levels. In addition, having the rare allele is associated with hypermethylation and over-

expression pattern. This finding together with the fact that, in our study, we have 

demonstrated that 82% of the CpGs that are related with gene expression in trans-effect are 

positively correlated suggest that if one SNP is co-regulating both, this relation should be 

positive. Thus, we could hypothesize that the rare allele of the SNP associates with 
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hypermethylation that, at the same time, associates with over-expression, as a possible 

regulation scenario in trans-effect. When inspecting the cis-relationships, no triplets were 

found, but there were 19 pairs (1 eQT, 1 methQTL and 17 CpG-gene expression pairs) that 

were in cis. In this scenario, the most frequent pattern (32%) suggests that having the rare 

allele is associated with hypermethylation and under-expression where the expression and 

methylation are associated inversely. This fact suggests another possible regulation scenario 

based on previous findings. We demonstrated that the 79% of the CpGs located in the 

promoter region of the gene are negatively correlated in cis with the gene expression levels; 

meaning that higher methylation levels may affect to a decrease in the gene expression levels. 

An example of this scenario is shown in Figure 3.1.4 where the SNP rs289516 located in gene 

DLC1 is negatively associated in trans with the expression of HOXA9 (β = -1.1; p-value = 3.7*10-

5) and positively with the cg01354473 located in the island of the HOXA9 gene (β = 1.8; p-value 

= 9.9*10-5). The relationship between the expression and the methylation levels in HOXA9 

gene was already reported as negatively correlated (r2 = -0.7; p-value = 1.4*10-5).  It has been 

already published that the methylation of HOXA9 is negatively correlated with the gene 

expression in UBC (Reinert et al. 2011) as we observed in our study. We added a new step on 

this complex scenario, since the SNP rs289516 is also involved in this triple relationship. This 

SNP belongs to the DLC1 gene considered as a tumor suppressor gene and the particular SNP 

has been picked up in two GWAS, one for asthma (Moffatt et al. 2010) and one for breast 

cancer (Hunter et al. 2007), but any of them passed the GWAS significant threshold. Other 

examples with biological support are the triplet composed by the SNP rs29658399 located in 

gene DNAH11, the gene expression of HSPA1A, and the cg00929855 located in gene HSPA1A. 

It has been published that the HSPA1A promoter methylation underlies the defect in gene 

expression reduction observed in UBC cell lines (Qi et al. 2013). In addition we found some 

“hotspots” in these triplets regarding SNPs, CpGs and gene expressions probes. In the circos 

plot (Figure 3.1.3 A) we observed a predominant relation for one SNP (rs10569 located in the 

gene PGM2) in chromosome 4. PGM2 is a protein-coding gene and is associated with diseases 

such as pneumonia and hypoxia. While alterations in this gene have not yet been directly 

associated with cancer, hypoxia is a known relevant process for tumor survival. This SNP was 

positively associated with the expression of SETBP1, coding for an important cancer gene 

located in chromosome 18 that is observed also as a predominant “hotspot” in Figure 3.1.3 C. 

Somatic mutations in SETBP1 (Piazza et al. 2013), as well as its expression patterns (Makishima 

et al. 2013), are related with myeloid leukemia disease. Moreover in Figure 3.1.3 B we 

observed a very predominant “hotspot” regarding three CpGs belonging to three different 

genes but close located in chromosome 6; Two of them (cg02622316 located in the gene 

http://www.malacards.org/card/pneumonia
http://www.malacards.org/card/hypoxia
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ZNF96 and cg02599464 located in the gene HIST1H41) were already published as 

hypermethylated in individuals with muscle invasive bladder cancer (Ibragimova et al. 2014). 

The first one is associated positively with many SNPs and gene expression probes and the 

second is associated positive and negative with some SNPs and positively with some gene 

expression probes. A more detailed discussion of the potential biological findings than 

involved the triple relationships is beyond this particularly study and detailed results about all 

the combinations are provided in Table S3.1.4.  

Figure 3.1.4. Example of one triple relationship where integrated common genetic variants 
with DNA methylation and gene expression in one of the main possible scenarios for 
regulation.  
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The integrative framework:  

We built and propose a multi-staged ‘omics’ integration framework that its application does 

not require a strong methodological knowledge, being easy and effective to use. The multi-

staged framework we applied has the advantage of analyzing data of all subjects that overlap 

among pairs of data and has not to restrict only to the few individuals with a complete overlap 

among all the data types. Thus, we take advantage of more samples using this framework than 

integrating the data in a multi-dimensional model. Therefore, we show here the application 

for the first time of multi-staged framework that allowed us to (1) integrate more than two 

‘omics’ data for the same set of individuals, (2) dissect the biological relationships that may 

point to new mechanisms involved in the development/progression of UBC through a 

hypothesis-based models built step by step, and (3) to envision the complexities of the general 

scenario of genomic regulation.  

Conclusions: 

While these results are exciting, we acknowledge the following limitations. First, in this study 

we use the 27K methylation array that only covers a selection of CpG sites making infeasible 

to replicate previous reported findings using the 450k array. Second, statistical power is a 

commonplace in any QTL analysis given the extensive amount of data analyzed and the small 

sample size. While this limitation needs to be considered in the interpretation of the results, 

it is worth mentioning that a large enough size will unlikely be available to meet the standard 

criteria of statistical power; therefore, our study represents a proof of concept in the 

integrative ’omics’ field. In addition, while we might not be able to address for unmeasured 

confounding factors, no differences were found between demographic factors and 

methylation and gene expression in our series. Validation of these results to discard false 

positive findings is not trivial due to the multiple genomic factors, the models considered, and 

the characteristics of the series. Despite these limitations, this study has several strengths. We 

have performed the study in tumor samples what gave us the opportunity to study in detail 

the regulation of three types of ‘omics’ data in UBC providing some evidences on the genomics 

regulation of the tumor. We have applied an easy, reproducible, and detailed framework to 

perform an integrative study of the relationships between genetic variations, DNA methylation 

and gene expression, showing a whole spectrum of the associations between them. We have 

shown that ‘omics’ data integration helps unraveling biological mechanisms involved in UBC. 

All these relations may help in the identification of new molecular targets to be further 

explored in detail, mainly regarding trans- relationships.  
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In conclusion, this study provides the scientific community with a pipeline to integrate more 

than two sets of ‘omics’ data that can be applied in future analyses seeking to better 

understand the biology behind the complex diseases. In addition, we highlight the importance 

of integrating ‘omics’ data to identify new genetic mechanisms in UBC. While several pieces 

of evidences support these findings, they still require of experimental validation to be 

considered conclusive.
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Chapter 2. Integration analysis of three –omics data using penalized 

regression methods: An application to bladder cancer 
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Abstract 

Omics data integration is becoming necessary to investigate the genomic mechanisms involved 

in complex diseases. During the integration process, many challenges arise such as data 

heterogeneity, the smaller number of individuals in comparison to the number of parameters, 

multicollinearity, and interpretation and validation of results due to their complexity and lack of 

knowledge about biological processes. To overcome some of these issues, innovative statistical 

approaches are being developed. In this work, we propose a permutation-based method to 

concomitantly assess significance and correct by multiple testing with the MaxT algorithm. This 

was applied with penalized regression methods (LASSO and ENET) when exploring relationships 

between common genetic variants, DNA methylation and gene expression measured in bladder 

tumor samples. The overall analysis flow consisted of three steps: (1) SNPs/CpGs were selected 

per each gene probe within 1Mb window upstream and downstream the gene; (2) LASSO and 

ENET were applied to assess the association between each expression probe and the selected 

SNPs/CpGs in three multivariable models (SNP, CPG, and Global models, the latter integrating 

SNPs and CPGs); and (3) the significance of each model was assessed using the permutation-

based MaxT method. We identified 48 genes whose expression levels were significantly 

associated with both SNPs and CPGs. Importantly, 36 (75%) of them were replicated in an 

independent data set (TCGA) and the performance of the proposed method was checked with a 

simulation study. We further support our results with a biological interpretation based on an 

enrichment analysis. The approach we propose allows reducing computational time and is 

flexible and easy to implement when analyzing several types of omics data. Our results highlight 

the importance of integrating omics data by applying appropriate statistical strategies to 

discover new insights into the complex genetic mechanisms involved in disease conditions. 

Author summary 

At present, it is already possible to generate different type of omics – high throughput – data in 

the same individuals. However, we lack methodology to adequately combine them. Many 

challenges arise while the amount of data increases and we need to find the way to identify and 

understand the complex relationships when integrating data. In this regard, new statistical 

approaches are needed, such as the ones we propose and apply here to integrate three types of 

omics data (genomics, epigenomics, and transcriptomics) generated using bladder cancer tumor 

samples. These innovative approaches (LASSO and ENET combined with a permutation-based 

MaxT method) allowed us to find 48 genes whose expression levels were significantly associated 

with genomics and epigenomics markers. The adequacy of this approach was confirmed by the 

use of an independent data set from The Cancer Genome Atlas Consortium: 75% of the genes 

were replicated. Previous sound biological evidences further support the results obtained.  
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 Introduction 

Integrating different omics data types, such as genomics, epigenomics and transcriptomics, may 

provide a new strategy to discover unknown genomic mechanisms involved in complex diseases 

(Greenawalt et al. 2012; Li et al. 2013; Serizawa et al. 2011). In cancer, tumor initiation and 

progression are the consequence of alterations in multiple pathways and biological processes 

including gene mutations, epigenetic changes, modifications in gene regulation, and 

environmental influences. In the process to integrate all of this information many challenges 

arise, among them the high dimensionality of data - since >2 omics data sets with millions of 

measurements are available from the same set of individuals - and the huge heterogeneity of 

omics data due to the different measurement scales (Hamid et al. 2009). Besides that, the data 

might be highly correlated, i.e. Single Nucleotide Polymorphisms (SNPs) that are in high linkage 

disequilibrium (LD) block or DNA CpG sites that belong to the same CpG island, contributing to 

multicollinearity in the analysis. Another challenge in omics data integration regards to the very 

small number of individuals in comparison to the number of parameters (“n << p”). In addition, 

interpretation and validation of omics derived results require of resources that are still lacking 

at present. In this rapidly evolving scenario, advanced methodological techniques are 

continuously emerging, demanding the development of improved data analysis tools (Chadeau-

Hyam et al. 2013; Kristensen et al. 2014; Ritchie et al. 2015). 

Integrative omics analysis refers to the combination of at least two different types of omics data. 

Relationships between two sets of omics parameters such as the expression quantitative trait 

loci (eQTL) (Shpak et al. 2014; Bryois et al. 2014; Li et al. 2013) or the methylation-QTL (methQTL) 

(Serizawa et al. 2011; Drong et al. 2013; Heyn et al. 2014), have been recently reported. The 

approach most commonly used for this type of pairwise analysis has been univariate models 

(i.e., Spearman/Pearson correlation or linear regression models), assuming that the changes in 

gene expression levels are only affected by one parameter. Until present, the combination of >2 

omics data has been less explored. Towards this end, the previously mentioned challenges are 

magnified and there is a lack of advanced methodologies to deal with them. Recently, we 

published an integrative framework as a first approach to integrate genomics, epigenomics, and 

transcriptomics in individuals with urothelial bladder cancer (UBC) (Pineda, Gomez-Rubio, et al. 

2015). In that work, we found that some gene expressions were co-regulated by both DNA 

methylation and genetic variants, both acting together in trans relationships. Therefore, the 

integration of multiple types of omics data by applying multivariable approaches becomes 

essential to understand the intricacy of the genomic mechanisms behind complex diseases and 

to overcome the above mentioned challenges.  
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In this regard, previous developments are Principal Component Analysis (PCA), to reduce data 

dimensionality, or Canonical Correlation Analysis (CCA) to investigate the overall correlation 

between two sets of variables. However, these methods are descriptive or exploratory 

techniques rather than hypothesis-testing tools. While some statistical applications have been 

developed in an omics integrative framework (sparse canonical correlation analysis 

(Parkhomenko et al. 2009), multiple factor analysis (de Tayrac et al. 2009), or multivariate partial 

least square regression (Palermo et al. 2009)), none of them offers the possibility to combine >2 

omics data together in the same model.  

The Least Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani in 1996 

(Tibshirani 1996) and the Elastic Net (ENET) proposed by Hui Zou and Trevor Hastie in 2005 (Hui 

Zou 2005) are penalized regression methods that, after appropriate standardization, can model 

more than one type of omics data, face multicollinearity issues, and mitigate the “n << p” 

problem. More importantly, both methods simultaneously execute variable selection and 

parameter estimation, thus reducing the computation time, while the traditional methods work 

on the two problems separately, first selecting the relevant parameters and then computing the 

estimates. LASSO and ENET have already been applied to GWAS studies (Pineda et al. 2014; Cho 

et al. 2010; Zhou et al. 2010) as well as in the context of integrative studies (Mankoo et al. 2011). 

One limitation of penalized regression techniques is that the penalty produces biased 

estimators; consequently, standard errors are not meaningful and cannot provide p-values to 

assess significance. Here, we propose a permutation-based approach to assess significance and 

we combine it with a correction for Multiple Testing (MT) using the MaxT algorithm (Peter H. 

Westfall & Young 1993). We apply this permutation-based MaxT method with LASSO and ENET 

to identify relationships between common genetic variation, DNA methylation, and gene 

expression, all determined in UBC tumor samples. Specifically, we first built a two omics 

integrative model associating SNPs or CpGs with gene expression levels and, then, we integrated 

the three omics data to assess whether changes in gene expression levels could be 

confounded/modified by genetic variants and/or DNA methylation. 
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Material and Methods 

Penalized Regression Methods 

LASSO and ENET penalized regression methods are applied to high-dimensional problems with 

a large number of parameters. The penalization produces a shrinkage of the regression 

coefficients towards zero given a sparse model reducing the irrelevant parameters. Both 

methods deal with highly correlated variables though in a different way. LASSO tends to select 

one variable from a group of correlated features whereas ENET selects the whole group of 

variables, when evidence for their relevance exists. The shrunk estimators introduce a bias while 

reducing the variance resulting in a better precision and accuracy model and, therefore, 

increasing its statistical power. 

Definition of the methods 

Consider the standard linear regression model where 𝑦 = (𝑦1, … 𝑦𝑛)𝑡 is the response variable 

and 𝑥 = (𝑥1𝑗, … 𝑥𝑛𝑗)𝑡  𝑗 = 1, … 𝑝 are the standardized predictors, the LASSO solves the l1 

penalized regression problem, the Ridge regression (Hoerl & Kennard 1970) solves the l2 

penalized regression problem and the ENET is the combination between the l1 and l2 penalized 

regression problem.  

For the LASSO and ENET estimates 𝛽0 ,̂  �̂� = (�̂�1, … , �̂�𝑝)𝑡;    ( 𝛽0 ,̂ �̂�) are defined by 

( 𝛽0 ,̂ �̂�) = arg 𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

}  

 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠: 

∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡 (𝐿𝐴𝑆𝑆𝑂), (1) 

 ∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡  , ∑ 𝛽𝑗
2

𝑝

𝑗=1

≤ 𝑡   (𝐸𝑁𝐸𝑇). (2) 

Here, 𝑡 ≥ 0 is the tuning parameter that controls the amount of shrinkage that is applied to the 

estimates. For �̂�𝑗
0 the un-penalized least squares estimate, 𝑡0 = ∑|�̂�𝑗

0|. Values of 𝑡 < 𝑡0 will lead 

to shrinkage towards 0; some coefficients may be exactly equal to 0.  Using the Lagrangian form, 

this optimization problem is equivalent to  

(LASSO): (3) 
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�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

} 

 where λ is the penalty parameter related to t. To obtain the optimal penalty,  k-fold cross 

validation (CV) was applied (Trevor Hastie; Rob Tibshirani; Jerome Friedman 2001) maximizing 

the penalized log-likelihood function. 

(ENET): 

�̂�𝑒𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + 𝜆1 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

+ 𝜆2 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} , (4) 

where λ1, λ2 are the penalty parameters related to t. In this sense, ENET can be viewed as a 

penalized least squares method. With 𝛼 = 𝜆2/(𝜆1 + 𝜆2), solving �̂�𝑒𝑛𝑒𝑡 in equation (4) is 

equivalent to the following optimization problem: 

�̂�𝑒𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖𝛽)2 + (1 − 𝛼) ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

+ 𝛼 ∑ 𝛽𝑗
2

𝑝

𝑗=1

}  (5) 

This expression involves a convex combination of the LASSO and ridge penalty. When 𝛼 = 1 the 

ENET becomes ridge regression and when 𝛼 = 0 the ENET becomes LASSO. To obtain the 

optimal penalty (λ), k-fold CV selecting the best 𝛼 was applied. This value was obtained using a 

vector of  𝛼𝜖(0.01, 0.99) 𝑏𝑦 0.01. The LASSO and ENET methods described above were applied 

to our data with the R package glmnet, that relies on cyclical coordinate descent, computed 

along a regularization path (Jerome Firedman; Trevor Hastie; Rob Tibshirani 2010). To avoid 

small sample size limitations in variable selection while not introducing an important bias k = 5 

was used in the k-fold CV.  

These methods are promising in the context of high-throughput data but one of their drawbacks 

is that they do not provide p-values to assess statistical significance of relationships, nor give a 

formal assessment of the overall goodness-of-fit. Therefore, a permutation based strategy was 

adopted to assess significance of discovered relationships combined with a MT correction 

approach (MaxT algorithm (Peter H. Westfall & Young 1993)) building upon the statistical 

concept of deviance. The deviance is used to compare two models and in this case we defined 

it as:  

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2[𝑙𝑜𝑔𝑙𝑖𝑘(𝑓𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙) − 𝑙𝑜𝑔𝑙𝑖𝑘(𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙)]. 
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Here 𝑙𝑜𝑔𝑙𝑖𝑘 is the loglikelihood function, 𝑓𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙 refers to the model with the parameters 

selected by LASSO or ENET, and 𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙 is the model with only the intercept estimated. Thus, 

the interpretation would be, the higher the deviance the better the model.  

Permutation-based MaxT method  

MaxT algorithm of Westfall & Young (Peter H. Westfall & Young 1993) is a step-down FWER-

controlling MT procedure. The method uses the raw p-values or directly the statistics as 

explained in (Ge et al. 2003). Using this aproach, the permutation needed to obtain the p-values 

was combined with the one needed to apply the MaxT algorithm saving computational time. In 

this work, we used the deviance obtained per each of the permuted LASSO/ENET model to 

compute the MaxT algorithm and individuals within gene expression measure were permuted, 

that is the dependent variable in the models. The algorithm is explained in Box 2.  

 

Discovery phase: The Spanish Bladder Cancer/EPICURO Study  

70 patients with a histologically confirmed UBC were recruited in 2 hospitals during 1997-1998 

as part of the pilot phase of the Spanish Bladder Cancer/EPICURO Study. According to 

established criteria based on tumor stage and grade for UBC, the tumors were classified as low-

grade non-muscle invasive, high-grade non-muscle invasive, and muscle invasive. Three sets of 

omics data were obtained using fresh tumor tissue, including common genetic variation 

(GSE51641), DNA methylation (GSE71666), and gene expression (GSE71576). The three omics 

Box 2. Permutation-based MaxT method 

From the original data, order the deviance obtained per each observed statistics:  

|𝐷𝑠1| ≥ |𝐷𝑠2| ≥ |𝐷𝑠3| ≥ ⋯ ≥ |𝐷𝑠𝑚|. 

For the bth permutation, b=1…B 

1. Permute the n individuals of each of the vectors 𝑌𝑚 = (𝑦1, … 𝑦𝑛)𝑚 

2. Compute the statistics  𝐷1𝑏,…𝐷𝑚𝑏 

3. Compute the 𝑈𝑖,𝑏 = max𝑙=𝑖…𝑚|D𝑠𝑙,𝑏| , the successive step-down 

procedure is: 𝑈𝑚,𝑏 = |D𝑠𝑚,𝑏|   

… 

𝑈2,𝑏 = max|D𝑠2,𝑏 , D𝑠3,𝑏, … , D𝑠𝑚,𝑏| 

𝑈1,𝑏 = max|D𝑠1,𝑏 , D𝑠2,𝑏, D𝑠3,𝑏 , … , D𝑠𝑚,𝑏| 

4. The steps are repeated B times and the adjusted p-values are estimated 

by: 

𝑃𝑎𝑑𝑗,𝑖 =
#{𝑏; 𝑈𝑖𝑏 ≥ |𝐷𝑠𝑖|}

𝐵
 𝑓𝑜𝑟 𝑖 = 1 … 𝑚 
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data overlapped in 27 individuals that are included in this study and comprise 44% low-grade 

non-muscle invasive tumors, 30% high-grade non-muscle invasive tumors and 26% muscle 

invasive tumors. S3.2.1 Table shows the IDs of the 27 samples used in the following analysis. The 

local ethics committee of the participating centers approved the study and written informed 

consent was obtained from all participants at the time of recruitment. 

Genotyping of tumor samples was performed using Illumina HumanHap 1M array. A total of 

1,047,101 SNPs were determined in 46 individuals and, after the standard quality control and 

filter the SNPs that were in perfect LD (r2=1), they resulted in 567,513 SNPs. The application of 

multivariable models required no missing values, so genotypes were imputed with BEAGLE 3.0 

method (Browning & Browning 2007). CpG methylation data was generated using the Infinium 

Human Methylation 27 BeadChip Kit. At each CpG site, the methylation levels were measured 

with M-values using the log2 transformation of the β-values since they are more statistically 

valid due to a better approximation of the homoscedasticity. The initial number of CpGs in the 

studied array was 27,578 and after background normalization and QC, a total number of 23,034 

CpGs were left for analysis. Gene expression data were obtained from 44 tumor samples using 

the Affymetrix DNA Microarray Human Gene 1.0 ST Array with 32,321 probes. After the 

application of QC, it resulted in 20,899 probes determined in 37 individuals. Further details 

about the preprocessing of the data and the quality control applied can be found 

elsewhere(Pineda et al. 2015). The three measures were annotated using the UCSC hg19, NCBI 

build 37 to make them comparable and homogenize their position in the genome. 

Simulation Study 

To generate a simulation sample, the association between SNPs and/or CpGs with gene 

expression was broken and therefore no significant results should be observed. To do that, 10-

gene expression probes were randomly selected from our discovery sample showing no 

correlation structure between the probes and following a multivariate normal distribution. 

Then, the mean (µ= 8.4) and variance (σ2= 0.4) of all the probes together were obtained. Finally, 

a simulated set of gene expression probes was generated using the normal distribution obtained 

and considering the same sample size of the discovery phase (p= 20,899 probes and N= 27 

individuals). 

Replication phase: The Cancer Genome Atlas (TCGA) 

UBC tumor data were obtained from The Cancer Genome Atlas (TCGA) consortium (https://tcga-

data.nci.nih.gov/tcga/) to replicate our findings. Data was downloaded and processed with the 

TCGA-Assembler (Zhu et al. 2014). The study included only individuals with muscle invasive UBC 

and the tumors were profiled with genome wide 6.0 Affymetrix, RNASeqV2, and 
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HumanMethylation450K Illumina arrays yielding data for 20,502 gene expression probes, 

905,422 SNPs, and 350,271 CpGs. The total number of individuals with overlapping data from 

the three platforms was 238 and they were used in the replication phase of this contribution. 

S3.2.2 Table shows the IDs corresponding to these 238 samples. 

Overall analysis flow 

Penalized regression methods LASSO and ENET were applied to the discovery data in 

combination with the proposed permutation-based MaxT method to select the SNPs and/or 

CpGs associated with gene expression levels in the following multivariable models: 

 

SNP model: 

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠𝑖 = 𝛼1𝑆𝑁𝑃1 + 𝛼2𝑆𝑁𝑃2 + ⋯ + 𝛼𝑝𝑆𝑁𝑃𝑝; 𝑖 = 1 … 𝑚   

CPG model: 

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠𝑖 = 𝛾1𝐶𝑃𝐺1 + 𝛾2𝐶𝑃𝐺2 + ⋯ + 𝛾𝑝𝐶𝑃𝐺𝑝; 𝑖 = 1 … 𝑚   

Global model = SNP + CPG model:  

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠𝑖 = 𝛼1𝑆𝑁𝑃1 + ⋯ + 𝛼𝑝𝑆𝑁𝑃𝑝 + 𝛾1𝐶𝑃𝐺1 + ⋯ + 𝛾𝑝𝐶𝑃𝐺𝑝; 𝑖 = 1 … 𝑚 

 

To apply this integrative idea to our set of data the following steps were performed: (1) SNPs 

and CpGs that were in a 1MB window upstream and downstream were selected from each probe 

in the gene expression array; (2) LASSO and ENET were applied to each probe and model (SNP, 

CpG, and Global models) obtaining the deviance per model; and (3), the permutation-based 

MaxT method was applied to obtain the adjusted p-values (B= 100 permutations and significant 

adjusted p-value < 0.1). The scenario and workflow is represented in Figure 3.2.1.  
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Figure 3.2.1. Scenario and workflow of the overall analysis implemented. The proposed 
integrative framework is based on three steps. Step 1 corresponds to the selection of SNPs 
and CpGs in 1MB window upstream and downstream from each probe in the gene 
expression array. Step 2 corresponds to the application of the LASSO and ENET to each 
probe obtaining the deviance per probe. Step 3 corresponds to the permutation-based 
MaxT method application where individuals are permuted B=100 times obtaining the 
deviance per probe.  
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Subsequently, this analysis flow was applied to the simulated data set using the same criteria. 

In the replication scenario, we aimed at determining whether the genes that were significant in 

the discovery phase were also significant in the replication dataset. Therefore, the analysis was 

restricted to the genes found to be significant in the discovery phase considering all models 

(SNP, CPG and/or Global) and methods (LASSO and/or ENET). Following the pipeline shown in 

Figure 3.2.1, we focused on the significant genes found in the discovery phase and SNPs and 

CpGs were selected in 1MB window from the TCGA database, even if the SNPs and CpGs were 

not the same as those analyzed in the discovery phase. Second, LASSO and/or ENET were 

conducted to SNP, CPG, and/or Global models. Finally, the permutation-based MaxT method 

was applied to obtain significance and correct for multiple testing. The replication analysis was 

performed with the same software and criteria as in the discovery analysis.   

Gene enrichment analysis 

To provide a biological interpretation to the results, the entire list of the significant genes 

identified in the discovery phase by both LASSO and ENET, and by the three models, was used 

to perform a gene enrichment analysis with the bioinformatics tool DAVID (Dennis et al. 2003; 

Huang et al. 2009). The functional annotation clustering analysis module offered by DAVID was 

used. The gene term annotation is based on 14 annotation categories (Gene Ontology (GO), 

Biological process, GO Molecular Function, GO Cellular Component, KEGG Pathways, BioCarta 

Pathways, Swiss-Prot Keywords, BBID Pathways, SMART Domains, NIH Genetics Association DB, 

UniProt Sequence Features, COG/KOG Ontology, NCBI OMIM, InterPro Domains, and PIR Super-

Family Names) collected in the DAVID tool knowledgebase 

(https://david.ncifcrf.gov/knowledgebase/DAVID_knowledgebase.html). The method identifies 

related genes by measuring the similarity of their global annotation profiles. So, the “grouping 

term” is based on the idea that two genes that have similar annotation profiles are functionally 

related. Each group term provides an enrichment score (ES) that indicates biological significance 

when ≥1.3 (equivalent to non-log scale 0.05). DAVID also provides a p-value to examine the 

significance of gene-term enrichment, which is corrected by Benjamini MT (Benjamini & 

Hochberg 1995).  

https://david.ncifcrf.gov/knowledgebase/DAVID_knowledgebase.html
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Results 

Discovery Phase 

LASSO and ENET were applied to 20,899 gene expression probes in each of the three models. 

Under the conditions mentioned above, LASSO yielded 9 genes with a significant signal in the 

SNP models, 19 in the CpG models, and 23 in the Global models. In Table 3.2.1, we list the 

significant genes mapped to each probe with its deviance and p-value. Figures 3.2.2A, 3.2.2B, 

and 3.2.2C display all the probes analyzed with their deviances represented across the genome. 

Detailed information about the SNPs and/or CpGs mapped to these genes is provided as 

Supplementary Material (S3.2.1 – S3.2.6 Excel). ENET identified a lower number of significant 

genes: 11 in the SNP model, 6 in the CpG model, and 4 in the Global model. These results are 

shown in Table 3.2.2 and Figures 3.2.2D, 3.2.2E, and 3.2.2F. When the MT correction threshold 

was relaxed, ENET provided additional significant genes.  

Some genes overlapped between methods and models: CLIC6 was identified by the three LASSO 

models; AIM2 and SCNN1A came out in the SNP and CpG models; four genes PTN, CRTAC1, 

SERPINB3 and SERPINB4 were identified in the SNP and Global models; and five genes (S100A9, 

IGJ, FREM2, C15orf48 and KRT20) emerged in the CpG and Global models. Interestingly, 15 genes 

showed significance in the Global model when combining 3 omics data while they were not 

detected when analyzing only 2 types of omics data. The overlap of genes identified by the ENET 

model was lower: MSMB and IGF2 were identified by the SNP and CpG models, and PTN and 

SERPINB3 were selected by the SNP and the Global model. When comparing the methods we 

found overlap between LASSO and ENET in four (PTN, SERPINB3, SERPINB4 and CEACAM6), one 

(MSMB), and three (SERPINB3, PTN and IGHD) significant genes in the SNP, CpG, and Global 

models, respectively. These results are displayed in Figure 3.2.3 using Venn diagrams. In the 

simulation study, as expected, no gene was significantly associated with any of the two methods 

and the three models. An example with LASSO and SNP model is shown in Figure S3.2.1. 
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Table 3.2.1. Statistically significant genes associated with SNPs and/or CpGs selected by 
LASSO&Permuted based maxT algorithm 

Gene Name Chromosome Model Deviance p-value1 

AIM2 1 
SNPs 

CpGs 

55.8 

61.5 

0.1 

0.06 

PLA2G2A 1 CpGs 71.4 0.01 

S100A9 1 
CpGs 

SNPs + CpGs 

53.7 

52.4 

0.03 

0.08 

HMGCS2 1 CpGs 53.3 0.02 

PIGR 1 CpGs 75.8 < 0.01 

CTSE 1 CpGs 60.7 0.06 

S100A2 1 SNPs + CpGs 58.7 0.04 

CP 3 CpGs 51.1 0.02 

TMEM45A 3 SNPs + CpGs 57.3 0.08 

IGJ 4 
CpGs 

SNPs + CpGs 

58.4 

59.0 

0.03 

0.09 

UBD 6 SNPs + CpGs 75.0 0.07 

TRIM31 6 SNPs + CpGs 47.1 0.1 

PTN 7 
SNPs 

SNPs + CpGs 

67.0 

92.0 

0.08 

< 0.01 

ARHGEF35 7 SNPs + CpGs 49.6 0.09 

CRH 8 SNPs + CpGs 56.7 0.1 

CRTAC1 10 SNPs 66.2 0.03 

MSMB 10 CpGs 67.3 0.06 

CRTAC1 10 
SNPs 

SNPs + CpGs 
60.9 0.1 

TNNT3 11 CpGs 44.9 0.09 

SAA1 11 SNPs + CpGs 127.8 0.04 

SCCN1A 12 
SNPs 

CpGs 

57.9 

58.8 

0.08 

0.03 

KRT5 12 CpGs 58.2 0.03 

TSPAN8 12 SNPs + CpGs 67.2 0.05 

MYBPC1 12 SNPs + CpGs 74.5 0.08 

SLC38A4 12 SNPs + CpGs 51.7 0.08 

GTSF1 12 SNPs + CpGs 46.7 0.1 
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OLFM4 13 CpGs 60.0 0.06 

FREM2 13 
CpGs 

SNPs + CpGs 

46.0 

70.2 

0.06 

0.06 

IGHD 14 SNPs + CpGs 59.4 0.1 

C15orf48 15 
CpGs 

SNPs + CpGs 

49.9 

83.7 

0.02 

0.05 

CAPNS2 16 SNPs + CpGs 54.9 0.07 

KRT20 17 
CpGs 

SNPs + CpGs 

48.4 

93.7 

0.05 

< 0.01 

KRT13 17 CpGs 53.6 0.02 

SERPINB4 18 
SNPs 

SNPs + CpGs 

98.4 

68.5 

< 0.01 

0.03 

SERPINB3 18 
SNPs 

SNPs + CpGs 

171.6 

162.7 

< 0.01 

< 0.01 

CEACAM7 19 CpGs 76.0 < 0.01 

CEACAM6 19 SNPs 79.6 0.01 

CXCL17 19 SNPs + CpGs 46.8 0.1 

CLIC6 21 

SNPs 

CpGs 

SNPs + CpGs 

75.3 

45.1 

75.3 

0.01 

0.09 

0.07 

GSTT1 22 SNPs 40.4 0.07 

1The p-value was obtained after applying the permuted based – maxT 
algorithm and were therefore corrected for MT.  
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Table 3.2.2. Statistically significant genes associated with SNPs and/or CpGs selected by 
ENET&Permuted based maxT algorithm. 

Gene Name Chromosome Model Deviance p-value1 

REN 1 CPG 84.3 0.03 

CRABP2 1 CPG 65.2 0.09 

ANXA10 4 SNP 137.0 0.01 

PTN 7 
SNP 

SNP + CPG 

97.2 

102.5 

0.07 

0.09 

MSMB 10 
SNP 

CPG 

91.8 

78.9 

0.07 

0.06 

MMP7 11 SNP 94.8 0.06 

TCN1 11 SNP 88.9 0.07 

IGF2 11 
SNP 

CPG 

101.6 

92.1 

0.05 

0.04 

MMP7 11 SNP + CPG 99.4 0.08 

GTSF1 12 SNP 109.6 0.05 

IGHD 14 SNP + CPG 97.5 0.1 

SERPINB4 18 SNP 105.2 0.04 

SERPINB3 18 
SNP 

SNP + CPG 

171.6 

171.3 

0.02 

0.01 

CEACAM6 19 SNP 108.4 0.03 

NRLP2 19 CPG 84.2 0.04 

CEACAM5 19 CPG 92.1 0.06 

IGLJ3 22 SNP 97.7 0.05 

1The p-value was obtained after applying the permuted based – maxT 
algorithm and corrected by MT.  
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Figure 3.2.2. Deviance across the genome when applying LASSO and ENET to select SNPs, CpGs 

or both (Global model). The dots in the figure indicate the deviance of each gene located in the 

corresponding position in the genome. There are a total of 20,899 gene expression probes 

measured. Significant genes after applying the permutation-based MaxT method are tagged. 

The figures represent the deviance per gene expression probe using LASSO for the SNP model 

(A), the CpG model (B) and the Global model (C) and using ENET for the SNP model (D), the CpG 

model (E) and the Global model (F). 



 

 
94 

 

PART 3. Novel statistical approaches for integrative –omics analysis 

Figure 3.2.3. Venn diagrams showing the overlap between the significant genes compared by 
the two methods (LASSO and ENET) and models (SNPs, CpGs and Global). (A) Number of 
significant genes using the LASSO method for the three models (SNP, CPG, and Global); (B) 
number of significant genes using the ENET method for the three models (SNP, CPG and Global); 
and (C) number of significant genes per model comparing the two methods (LASSO and ENET). 
 

Replication Phase  

The replication study was restricted to those genes (n=48) that showed significant results in the 

discovery phase and we applied the same models, methods, and criteria of analysis to the TCGA 

data. Overall, we were able to replicate 75% of the results: 36 out of the 48 genes yielded a 

significant association at least in one of the models considered. Regarding the LASSO models, 

we replicated 3/9 genes from the SNP models, 17/19 genes from the CPG models, and 19/23 

genes from the Global models (Table 3.2.3). Regarding ENET, we replicated 3/10 genes from the 

SNP model, 3/6 genes from the CPG model, and 3/3 genes from the Global model (Table 3.2.4).
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Table 3.2.3. Significant genes obtained by LASSO&Permuted based maxT algorithm for the three models (SNP, CPG, and Global) in the original dataset 

(EPICURO Study) and the replication dataset (TCGA). 

 Original Data (EPICURO)   Validation Data (TCGA) 

 
Gene probeset Chr Start end Dev 

p-

value 

SNPs 

(N) 

CpGs 

(N) 
Dev p-value1 

SNPs 

(N) 

CpGs 

(N) 

SNPs 

(overlap) 

SNPs 

(rep) 

CpGs 

(overlap) 

CpGs 

(rep) 

SN
P

 m
o

d
el

  

SERPINB3 8023696 18 61322433 61329197 171.6 <0.01 29  0 1 0  3 0   

SERPINB4 8023688 18 61304495 61311502 98.4 <0.01 15  0 1 0  2 0   

CEACAM6 8029098 19 42259398 42276113 79.6 0.01 10  0 1 0  0 0   

CLIC6 8068383 21 36041688 36090519 75.3 0.01 30  3.5E-08 0.9 1  14 0   

CRTAC1 7935535 10 99624758 99790585 66.2 0.03 18  2.4E+09 0.001 12  4 1 (LD)   

GSTT1 8074980 22 24376141 24384284 40.4 0.07 16  8.3E+07 <0.001 34  4 1 (LD)   

PTN 8143144 7 136912092 137028546 67.0 0.08 9  0 1 0  1 0   

SCNN1A 7960529 12 6456011 6486523 57.9 0.08 26  0 1 0  8 0   

AIM2 7921434 1 159032275 159046647 55.8 0.1 6  5.7E+05 0.03 1  2 0   

 CEACAM7 8037053 19 42177235 42192096 76.0 < 0.01  19 1.5E+07 < 0.001  2   17 0 
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 PIGR 7923929 1 207101869 207119811 75.8 < 0.01  21 6.4E+08 0.001  19   18 1 

 PLA2G2A 7913216 1 20301925 20306932 71.4 0.01  10 5.2E+09 < 0.001  57   9 0 

 CP 8091385 3 148890292 148939832 51.1 0.02  3 1.6E+09 < 0.001  24   1 0 

 HMGCS2 7919055 1 120290620 120311555 53.3 0.02  8 0 1  0   8 - 

C
P

G
 m

o
d

el
 

KRT5 7963427 12 52908361 52914243 58.2 0.02  25 3.6E+12 < 0.001  112   24 5 

C15orf48 7983478 15 45722763 45725645 49.9 0.02  7 1.5E+08 < 0.001  23   5 0 

KRT13 8015323 17 39657233 39661865 53.6 0.02  8 8.2E+11 < 0.001  5   6 0 

IGJ 8100827 4 71521259 71532348 58.4 0.03  2 4.2E+08 < 0.001  19   2 0 

SCNN1A 7960529 12 6456011 6486523 58.8 0.03  29 2.1E+09 < 0.001  12   27 0 

S100A9 7905571 1 153330330 153333502 53.7 0.04  11 5.0E+11 < 0.001  33   9 1 

KRT20 8015124 17 39032141 39041495 48.4 0.05  3 5.9E+09 < 0.001  45   3 0 

CTSE 7909164 1 206317459 206332103 60.7 0.06  12 3.4E+09 < 0.001  36   12 1 

AIM2 7921434 1 159032275 159046647 61.5 0.06  8 4.7E+07 0.002  27   4 0 

OLFM4 7969288 13 53602972 53626186 60.0 0.06  10 1.6E+10 < 0.001  47   9 6 

MSMB 7927529 10 51549553 51562590 67.3 0.06  7 0 1  0   6 0 
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FREM2 7968678 13 39261173 39461265 46.0 0.08  2 4.4E+07 < 0.001  13   1 0 

CLIC6 8068383 21 36041688 36090519 45.1 0.09  4 1.2E+08 < 0.001  19   4 0 

TNNT3 7937749 11 1940799 1959935 44.9 0.09  26 5.2E+08 < 0.001  72   22 0 

 SERPINB3 7920285 18 61322433 61329197 162.7 <0.01 15 0 3.0E+09 <0.001 6 4 1 0 0 0 

KRT20 7905571 17 39032141 39041495 93.7 <0.01 19 7 5.7E+09 <0.001 8 38 0 0 0 0 

PTN 7935535 7 136912092 137028546 92.0 <0.01 12 0 2.6E+08 <0.001 0 1 0 0 0 0 

SERPINB4 7938758 18 61304495 61311502 68.6 0.03 4 0 7.9E+08 <0.001 27 11 0 0 0 0 

G
lo

b
al

 m
o

d
el

 

SAA1 7962559 11 18287808 18291521 127.8 0.04 20 1 7.9E+08 0.6 0 1 5 1 0 0 

S100A2 7957966 1 153533587 153538306 58.7 0.04 20 7 1.0E+11 <0.001 1 5 5 0 3 0 

C15orf48 7964927 15 45722763 45725645 83.7 0.05 19 6 1.7E-07 <0.001 1 6 0 0 0 0 

TSPAN8 7963817 12 71518877 71551779 67.2 0.05 8 1 9.9E+05 0.02 1 0 3 0 1 0 

FREM2 7968678 13 39261173 39461265 70.2 0.06 14 2 2.9E+07 <0.001 3 10 3 0 1 0 

CLIC6 7983478 21 36041688 36090519 75.3 0.07 25 2 1.4E+08 <0.001 21 15 0 1 (LD) 0 0 

UBD 7995712 6 29523390 29527702 75.0 0.07 6 5 8.8E+08 <0.001 0 25 0 0 0 0 

CAPNS2 7981724 16 55600584 55601592 54.9 0.07 8 1 5.8E+07 <0.001 10 12 0 0 0 0 
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MYBPC1 8023688 12 101988747 102079657 74.5 0.08 23 3 9.9E-08 1 0 1 2 0 2 0 

TMEM45

A 
8037197 3 100211463 100296285 57.3 0.08 12 0 1.6E+08 0.001 11 19 0 1 (LD) 0 0 

S100A9 8015124 1 153330330 153333502 52.5 0.08 6 4 4.9E+11 <0.001 15 24 0 1 (LD) 4 1 

SLC38A4 8023696 12 47158544 47219780 51.7 0.08 15 1 1.6E+08 0.001 8 15 6 0 1 0 

IGJ 8068383 4 71521259 71532348 59.0 0.09 3 2 3.3E+08 0.003 1 3 0 0 0 0 

ARHGEF5 8081288 7 143883177 143892791 49.6 0.09 8 0 1.2E+07 <0.001 11 8 0 1 (LD) 0 0 

CRTAC1 8100827 10 99624758 99790585 60.9 0.1 7 5 3.8E+09 <0.001 7 9 1 0 3 1 

IGHD 8136981 14 106303102 106312014 59.4 0.1 7 1 - - - - - - - - 

CRH 8151092 8 67088612 67090846 56.7 0.1 3 0 9.4E+08 <0.001 7 10 0 0 0 0 

TRIM31 8178330 6 30070674 30080867 47.1 0.1 23 4 5.8E+08 <0.001 0 43 0 0 0 0 

 CXCL17 8143144 19 42932696 42947136 46.8 0.1 3 5 7.4E+08 <0.001 8 11 0 0 0 0 

GTSF1 8124650 12 54849737 54867386 46.7 0.1 2 1 2.1E+07 <0.001 18 46 2 0 1 1 

1Bonferroni correction for the p-value were: 0.005 (SNP model), 0.003 (CPG model) and 0.002 (Global model); SNPs (N) and CpGs (N) are the number of SNPs and 
CpGs that were selected by LASSO per each gene expression probe in EPICURO data with  the Illumina HumanHap 1M array and the Methylation 27k array; SNPs 
(overlap) and CpGs (overlap) are the number of SNPs and CpGs that were present in the TCGA data with the Genome wide 6.0 Affymetrix and the Methylation 450k 
array; and the SNPs (rep) and CpGs (rep) are the ones selected by LASSO in the TCGA data in common with the EPICURO data. The gene with “no p-value” is a gene 
that was not present in the RNASeqV2 in TCGA data. 
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Table 3.2.4. Significant genes obtained by ENET&Permuted based maxT algorithm for the three models (SNP, CPG, and Global) in the original dataset (EPICURO 
Study) and the replication dataset (TCGA). 

 Original Data (EPICURO)    Validation Data (TCGA) 

 
Gene probeset Chr Start end Dev 

p-

value 

SNPs 

(N) 

CpGs 

(N) 
Dev p-value1 

SNPs 

(N) 

CpGs 

(N) 

SNPs 

(overlap) 

SNPs 

(rep) 

CpGs 

(overlap) 

CpGs 

(rep) 

SN
P

 m
o

d
el

 

ANXA10 8098246 4 169013707 169108891 137.0 0.01 17  1.4E+08 <0.001 13  7 1   

SERPINB3 8023696 18 61322433 61329197 171.6 0.02 30  1.4E+09 0.08 32  3 0   

CEACAM6 8029098 19 42259398 42276113 108.4 0.03 28  1.4E+09 0.04 4  5 0   

SERPINB4 8023688 18 61304495 61311502 105.2 0.04 31  1.1E+08 0.07 10  8 1 (LD)   

GTSF1 7963817 12 54849737 54867386 109.6 0.05 19  1.6E+06 0.08 7  9 2 (LD)   

IGF2 7937772 11 2150348 2170833 101.6 0.05 56  3.9E+12 0.002 31  12 0   

IGLJ3 7981730 22 23247030 23247205 97.7 0.05 183  - - -  - -   

MMP7 7951217 11 102391240 102401478 94.8 0.06 19  2.8E+08 0.004 10  6 1 (LD)   

PTN 8143144 7 136912092 137028546 97.2 0.07 24  0 1 0  10 0   

MSMB 7927529 10 51549553 51562590 91.8 0.07 78  0 1 0  0 0   

TCN1 7948444 11 59620281 59634041 88.9 0.07 122  0 1 0  0 0   
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  C
P

G
 m

o
d

el
 

 

C
P

G
 m

o
d

el
 

C
P

G
 m

o
d

el
 

REN 7923608 1 204123944 204135465 84.3 0.03  22 0 1  1   22 0 

IGF2 7937772 11 2150348 2170833 92.1 0.04  15 8.1E+12 <0.001  609   12 7 

NLRP2 8031398 19 55476652 55512508 84.2 0.04  34 8.0E+08 < 0.001  10   28 2 

CEACAM5 8029086 19 42212530 42234436 92.1 0.06  26 9.3E+08 0.009  1   23 0 

MSMB 7927529 10 51549553 51562590 78.9 0.06  9 6.2E+07 0.3  36   7 1 

CRABP2 7921099 1 156669410 156675375 65.2 0.09  39 1.1E+10 <0.001  132   35 11 

G
lo

b
al

 m
o

d
el

 

SERPINB3 7920285 18 61322433 61329197 171.3 0.01 27 1 5.3E+09 <0.001 37 15 0 0 1 1 

MMP7 7951217 11 102391240 102401478 99.4 0.08 62 18 2.3E+08 0.003 5 2 0 0 0 0 

PTN 8143144 7 136912092 137028546 102.5 0.09 20 0 6.1E+08 <0.001 16 15 0 0 0 0 

IGHD 7981724 14 106303102 106312014 97.5 0.1 35 6 - - - - - - - - 

1Bonferroni correction for the p-values is: 0.008 (CPG model) and 0.01 (Global model); SNPs (N) and CpGs (N) are the number of SNPs and CpGs that were selected by 
ENET per each gene expression probe in EPICURO data with the Illumina HumanHap 1M array and the Methylation 27k array; SNPs (overlap) and CpGs (overlap) are the 
number of SNPs and CpGs that were present in the TCGA data with the Genome wide 6.0 Affymetrix and the Methylation 450k array and the SNPs (rep) and CpGs (rep) 
are the ones selected by ENET in the TCGA data in common with the EPICURO data. The gene with no p-value is a gene that was not present in the RNASeqV2 in TCGA 
data. 



 

 
101 

 

PART 3. Novel statistical approaches for integrative –omics analysis 

Gene enrichment study  

Using DAVID, 46 out of 48 genes showing significant signals in the discovery phase were 

annotated from 14 public categories. After enrichment analysis, 7 clusters with an ES ≥1.3 

were found (S3 Table). The cluster with the highest ES (3.5) regarded to the terms 

“extracellular region, secreted, and signal peptide” grouping the genes OLFM4, CRTAC1, 

MSMB, IGJ, MMP7, IGF2, PIGR, TCN1, CXCL17, S100A9, SAA1, IGHD, CRH, CTSE, FREM2, 

PLA2G2A, CEACAM7, CEACAM6, CEACAM5, REN, PTN, CP. The rest of the clusters with an ES 

≥1.3 were not significant after MT correction. Cluster 5 (ES=1.4) contains 3 genes coding for 

keratins (KRT5, KRT13, KRT20), cytoskeletal components that are regulated during urothelial 

differentiation, whose expression is altered in UBC, that have been proposed as markers for 

the molecular taxonomy of UBC (Choi et al. 2014). In addition, cluster 7 “EF hand and calcium 

ion binding” (ES= 1.3) contains multiple genes shown to play an important role in cancer 

(S100A9, S100A2, CAPNS2, ANXA10, CRTAC1, FREM2, MMP7, PLA2G2A), including two 

members of the S100A family of proteins. 
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Discussion 

Integration analysis is an emerging area in the field of omics data analysis to find new biological 

insights into complex traits (Knowles & Hurst 2014). In this regard, our pathophysiological 

understanding of cancer could be improved by using innovative approaches based on omics 

data to identify hidden mechanisms in which multiple factors are involved. We previously 

analyzed the set of omics data used here following a multi-stage approach by proposing an 

omics integration analysis framework. The results of this previous work highlighted relevant 

omics trans-acting relationships in UBC (Pineda, et al. 2015). Here, we propose an omics 

integrative analysis pipeline using LASSO and ENET, and focus on cis-acting relationships that 

appear to have a predominant role in the regulation of gene expression (Leung et al. 2015). 

The three omics data are combined in a large input matrix and then a permutation-based MaxT 

method is adapted to assess the significant models while correcting for MT.  

In comparison with classical approaches (Kristensen et al. 2014; Ritchie et al. 2015), our 

strategy has several advantages, including the possibility of working with a large number of 

parameters, even if the sample size is small, dealing with more than one set of heterogeneous 

data with highly-correlated variables, and providing MT corrected p-values to assess the 

models’ goodness of fit. Furthermore, the results are easily interpretable due to the 

dimensionality reduction during the variable selection process.  

The expression of 48 genes was found to be significantly associated with SNPs and CpGs in 

UBC, pointing to new mechanisms in an intricate scenario where common genetic variants and 

DNA methylation regulate gene expression in cis-acting (1MB) relationships. Some of the 

genes were identified by the three models and by the two methods, likely underscoring the 

existence of true relationships.  

The application of LASSO and ENET as part of the aforementioned integrative analysis 

framework led to different results. This is not surprising, mainly for two reasons: (1) the α 

parameter (equation 5) used by LASSO is always equal to 1 while ENET uses α < 1. This gives a 

smaller penalization and therefore more variables with β ≠ 0 were foreseen using ENET; and 

(2) the fact that SNPs and CpGs may be correlated, mainly when they are closely positioned in 

the genome, leads LASSO to select one from the set of parameters that are highly correlated 

while ENET forms groups of nets with these variables. In our analysis, only 4/24 (SNP model), 

1/25 (CpG model) and 3/28 (Global model) genes were shared by both methods. The genes 

detected only by LASSO showed large deviances and borderline p-values with ENET. 

Waldmann et al (Waldmann et al. 2013) reported that ENET usually detects more true and 

false positive associations. In our case, this may result in an increased probability of having 
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significant associations by chance. In turn, this can lead to reduced power. On the other hand, 

ENET selected some genes that were not selected by LASSO, mainly due to the correlated 

structure of the parameters. An example of this is displayed in Figure 3.2.4, showing that 

MMP7 has three correlation nets that probably are responsible for the gene selection with 

ENET and not with LASSO. These comparisons are shown in Table S3.2.2.   

 

Figure 3.2.4. Example of a correlation plot for MMP7 detected by the Global model using 
ENET but not using LASSO. The bar color represented the levels of correlation from 0 (no 
correlation) to 1 (perfect correlation) between SNPs and CpGs that were selected for the 
MMP7 models. Three nets of correlated variables are the ones responsible that the gene is 
only selected by ENET and not by LASSO.   
 
Regarding the differences between the models, 13/25 and 6/20 significant genes in the CpG 

and 6/20 the SNP models, respectively, were not significant in the Global model. It is reported 

in the literature that 10% of SNPs are associated with gene expression and DNA methylation 

(Wagner et al. 2014; Bell et al. 2011), hence DNA methylation may confound or modify the 

association between SNP and gene expression. Even though this is a potential explanation, 
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discordances resulting from sample size cannot be discarded since the penalty function is 

selected by CV. However, k = 5 was used to apply the k-fold CV to decrease the problem of 

small sample size without increasing bias. In the reverse scenario, 16 genes were selected 

exclusively in the Global model. Some of the genes identified had high deviances and 

borderline p-values, probably because the Global models increase the deviance due to the 

addition of more information when integrating data. For the non-significant genes, the 

explanation could be the existence of an interaction effect between SNPs and CpGs (Table 

S3.2.3). This further supports the importance of integrating omics data to discover hidden 

information.   

The validity of the strategy that we have developed, and of the results obtained, is supported 

by the fact that 75% (36/48) of the genes identified in the discovery phase were replicated 

using TCGA data by applying the same strategy. This represents 64% of all gene models found 

since some of the genes overlap between models and approaches. Also, the null results of the 

simulation study indicate that the significant associations found are unlikely to be due to 

chance. 

Importantly, several of the genes that emerged from our analyses have been previously shown 

to be important in bladder cancer biology, including KRT20, IGF2, CTSE, ANXA10 and CRH. 

These genes have already been proposed for a panel of molecular markers to improve the 

diagnosis and follow-up of UBC as part of a 12-gene expression urine signature to identify 

patients suffering from UBC and predict tumor aggressiveness (Mengual et al. 2010). The five 

genes aforementioned were also replicated in the TCGA data. Furthermore, KRT20, IGF2, and 

CTSE have also been previously associated with UBC. KRT20 is a highly specific marker of 

umbrella cells in normal urothelium and its expression is commonly altered in papillary non 

muscle-invasive UBC as well as in muscle-invasive UBC. It has been proposed that the 

correlation between FGFR3 mutations with normal KRT20 expression pattern may indicate 

that the mutation occurs earlier (van Oers et al. 2007). Loss of imprinting (LOI) is a common 

epigenetic event in cancer and a LOI of IGF2 has been reported in UBC (Byun et al. 2007). In 

our analysis, IGF2 was detected in the SNP and CPG models suggesting that both type of factors 

may be involved in regulating the expression levels of this gene. CTSE expression was 

significantly associated with progression-free survival in pTa tumors in a study of gene 

expression profiles in UBC (Wild et al. 2005).  

We also performed a gene enrichment analysis to assess whether the significant genes had 

related biological functions. The cluster with the highest ES was ”Extracellular region, secreted, 

and signal peptide”. Secreted proteins are known to play a crucial role in cell signaling and the 

cellular secretome has a major impact on multiple aspects of tumor cell biology (cell growth, 
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migration, invasion, and angiogenesis) (Karagiannis et al. 2010). One cluster highly enriched in 

keratins points to the regulation of cell differentiation, known to be important in the molecular 

classification of UBC. In addition, some genes - including S100A9 and S100A2 - were grouped 

under the “EF hand and calcium ion binding” term. The S100 family is composed of, at least, 

24 members carrying the Ca2+ binding EF-hand motif. Expression of S100 protein family 

members is regulated during inflammation and carcinogenesis and has been associated with 

poor prognosis in patients with UBC (Yao et al. 2007). Other studies have reported an 

overexpression of S100A9 in UBC tissue (Dokun et al. 2008; Minami et al. 2010).  

Limitations of this work are the small sample size of the discovery phase study, due to the lack 

of enough fresh tumor tissue from the same set of individuals, and the lack of a comparable 

and independent UBC patient series with the 3-omics data available to replicate our results. 

While the discovery EPICURO study recruited all patients with UBC, the TCGA project focused 

on muscle-invasive UBC. In addition, different high-throughput technologies/platforms were 

used in each of the studies. The SNP arrays genotyped different SNPs and, consequently, 

provided different genomic coverage. The TCGA used a DNA methylation array of 450k with 

much higher resolution than the 27k the one used in the EPICURO study. Finally, the use of 

different technologies to measure transcriptomics is a considerable limitation. In the EPICURO 

discovery phase, gene expression levels were measured with microarrays which provide 

relative values at probe set level, that is, for one gene different expression levels can be 

obtained from each mapped probe, while in the TCGA study gene expression was measured 

with RNA-seq which gives absolute gene expression values. These differences between data 

sets introduce a massive heterogeneity that makes the replication even more difficult. In spite 

of that, we replicated 75% of the identified genes (64% of the models) with TCGA data, 

providing strong support to the appropriateness of our approach and the relevance of the 

results obtained. Another potential limitation is the fact that tumor samples are 

heterogeneous regarding neoplastic cell content and stromal cell composition. Consequently, 

we checked the expression of all significant genes in a panel of UBC cell lines with available 

microarray expression data (Earl et al. 2015) and found that all but one (IGJ) are expressed in 

urothelial tumor cells, indicating that our analyses likely reflect genomic regulatory events in 

the tumor cells. It is, however, likely that relevant genomic interactions control gene 

expression not only in neoplastic cells but also in the stroma. Given the importance of the 

latter in tumor progression, further integrative omics studies using microdissected material 

will be highly informative. 

One important strength of the approach used here is the lack of need to filter by LD in SNPs, 

or grouping CpGs within CpG islands, when dealing with a huge number of heterogeneous and 
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correlated parameters delivered by different arrays. This emanates from the fact that LASSO 

and ENET can deal with highly correlated variables while performing variable selection. By 

performing data reduction/filtering before applying the statistical methods, there is a chance 

to filter out the functional SNPs and/or CpGs and thereby lose their association with gene 

expression. The adaptation of a strategy that performs a permutation and the maxT algorithm 

to assess p-values and to correct by MT, avoiding a double permutation and therefore reducing 

computational time, is also worthwhile emphasizing. In this regard, the permutation-based 

method considers the permutation of individuals within each gene, allowing to control for the 

possible dependence structure between genes. In addition, the MaxT algorithm is a 

permutation-based FWER controlling procedure which is adapted to the correlation structure 

found in the data and has been shown to be asymptotically optimal under dependence 

(Meinshausen et al. 2011).  

In summary, we demonstrate that the integration of multiple omics data types allows the 

identification of hidden mechanisms that were missed when analyzing single omics data types 

individually. There is an urgent need to develop statistical methods to fill the gap between the 

huge amount of data generated and the mechanistic understanding of complex diseases. Here, 

we present two penalized regression methods (LASSO and ENET) in combination with a 

permutation – based strategy (permutation-based MaxT method) to deal with common 

problems found in integrative analysis: heterogeneity between data types, number of 

individuals much smaller than the parameters to assess, multicollinearity, and sparseness to 

facilitate the interpretation of the results. This approach is flexible and easy to implement in 

different omics data and diseases as well as when considering interaction terms in the model.  

We contribute to the field with a methodological development and with several significant 

and sound molecular associations conforming part of the genetic architecture of UBC. By using 

this cancer as an example, we conclude that modeling the intricacy of omics data variation 

with appropriate statistical strategies will certainly improve our knowledge of the mechanisms 

involved in complex diseases. 
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Responses to the Reviewer’s comments 

 

Reviewer #1 

 

Reviewer #1: Pineda et al use Lasso and elastic net with correct for multiple testing with MaxT 

to integrate several genomics platforms. 27 patients from the Spanish Bladder Cancer 

EPICURO study had SNP data, DNA methylation and gene expression data for testing the 

method. This is an interesting approach that could also be used to model subtypes and 

outcomes. 

 

(1) For lasso and elastic net, you can adjust the parameters of alpha and lambda. Is there a big 

difference in the parameters between the individual SNP and individual CpG analysis vs the 

combined analysis? 

It would be good to add to the supplement the parameters used. Is your elastic net model 

leaning towards lasso or ridge regression? 

 

For each model assessed, the parameters were re-estimated using cross validation. To obtain 
the lambda by LASSO penalty, a 5-fold cross validation was applied maximizing the penalized 
log-likelihood function. For ENET, the optimal penalty for lambda was obtained using the same 
strategy (5-fold cross validation maximizing the penalized log-likelihood) but in this case we 
selected the best alpha using an alpha vector of α ϵ (0.01, 0.99) by 0.01 as explained in Material 
and Methods, line 130 (LASSO) and line 139 (ENET). So, we obtained one estimation per model 
and method making a total of 125,394 lambdas and 62,697 alphas. Therefore, it was not 
possible to study one by one but checking globally if there were patterns of the parameters 
lambda and alpha that deserve further attention.  
Regarding the differences observed between models, for LASSO the mean(lambda) = 0.135, 
0.08 and 0.129 for SNP, CPG and Global model respectively. For ENET, the mean(alpha) = 0.46 
and sd(alpha) = 0.31 with minimum value = 0.01 and maximum value = 0.99 for all of the 
models (SNP, CPG and Global model). Therefore we could not assume any pattern or leaning 
towards lasso or ridge regression between the three models and approaches. 
 

If the tuning parameters for SNP were drastically different from what was seen for CpG, could 

you bias feature selection in the combined model if a suboptimal alpha and lambda was picked 

for one or both of the data platforms. In tables 3 and 4 it looks like there is a preferential pick 

of SNPs over CpGs in the combined model.  

 

The tuning parameters between SNP and CPG models were different because this is the way 
that penalized regression methods control for different scales. SNPs are categorical and CpGs 
are continuous in our analysis, thus it is normal to have different tuning parameters. In our 
previous answer we showed that Global model had a tuning parameter in the middle but 
closer to the SNP model at global numbers. The tuning parameter is not the responsible for 
selecting more SNPs but it is closer to the SNP model because more SNPs are selected. In any 
case, the numbers showed are global and we cannot extract any conclusion without studying 
individually one by one, a task that becomes impossible because of the amount of lambdas 
and alphas estimated. This question of big numbers is one of the challenges we try to answer 
in this paper when analyzing high-throughput data.  
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A potential explanation to the question of why the Global model selected more SNPs than 
CpGs is stated in the manuscript (Page 31). In the introduction we hypothesized that the 
biological idea behind the integration is based in previous finding where gene expression was 
affected by both DNA methylation and genetic variants, both co-regulating different genome 
spaces interpreting that the regulation of expression of a given gene results from the 
combination of genetic variants that, at the same time, could be influenced by the levels of 
DNA methylation in specific CpGs. In Results we showed that, when integrating, different 
associations are found and in the Discussion we commented on the differences and its 
potential causes such as correlation, confusion and/or modifier factors. We do not detail each 
specific example to not enlarge the length of the manuscript but, in supplementary material, 
we provide the entire list of genes, SNPs, and CpGs per model and method to allow the readers 
go through these details if interested.  
 

(2) I highly recommend a supplemental table that lists the samples used for analysis from both 

the EPICURO and the TCGA study so that people could have the exact data set if they want to 

implement and test your method. It would be useful since your performed your analysis on 27 

of the 70 patients in EPICURO and 238 of the over 400 TCGA samples.  

 

Following the reviewer’s recommendation we have added S1 Table with information on the 

27 samples from EPICURO data and S2 Table with information on the 238 samples from the 

TCGA data used in the analysis. With this change, the previous S1-S3 Tables are now S3-S5 

Tables. 

 

(3) Gene expression was modeled by your methods with SNP data alone, CpG data alone, and 

SNP and CpG data combined. Did you limit to the same 27 EPICURO patients for all analyses? 

 
Yes, we used the same population in the three models to make them comparable. S1 and S2 
Tables specify now the samples we have used. 
 

(4) The Discovery phase was performed on a probe level for the gene expression data vs the 

replication phase which was performed on a gene-level. In your final 48 genes selected from 

your model, where there probes for the same gene (from the microarray) that were 

discordant? If there were, could these be some that didn't replicate in the TCGA data.  

 

It is very well pointed that the discordance in the replication phase could be explained by 
differences between the approaches used to measure gene expression levels in the two 
phases. We comment on this in the Discussion, line 480, one of the limitations of this type of 
analysis being the considerable heterogeneity introduced by the different methods applied by 
the replication study.  
As the reviewer points correctly, we observed that from the set of the 48 genes significantly 
associated in the EPICURO data (microarray technology), four were mapped for more than one 
probe, from which only one gene (SAA1) was not replicated in the TCGA data (RNAseq). One 
possible reason could be that microarray technology maps the probes to the genes for 
different transcripts given relative values of gene expression while RNAseq gives the absolute 
value of gene expression. Consequently the expression levels observed by one technology 
cannot be observed by the other. Effectively, SAA1 had a Pearson coefficient = 0.58 between 
probes while the other three had Pearson coefficients = 0.94, 0.90 and 0.98. This illustrates 
one type of the problems found in replicating when data heterogeneity is introduced. We have 
now specified in the Discussion, line 479, the differences between microarray and RNAseq.  
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(5) There were a few genes that made the SNP only and the CpG only models but not the 

combined model. Any thoughts as to why? 

 

In line 421, we discussed that, in the literature, 10% of SNPs are associated with gene 

expression and DNA methylation, so DNA methylation may confound or modify the association 

between SNP and gene expression. Although, we believe this is one possible explanation, we 

cannot discard small sample size may also be an issue since we estimated the optimal 

parameters using k-fold cross-validation. In any case we used the smallest k possible (k=5) to 

apply cross validation to avoid sample size problems in variable selection while not introducing 

big bias. We have clarified the k used in line 143 and further comment on sample size limitation 

when using cross validation in the Discussion, line 427.  

 

(6) It would also be useful to know if these are muscle invasive or non-muscle invasive or 

histology designations such as papillary and squamous. The fact that only 75% of your genes 

were replicated in TCGA could be because of a different patient population in addition to the 

difference in data platforms. 

 
In line 473, we discuss about this issue since the TCGA samples are only muscle invasive UBC 
while in EPICURO are both, muscle-invasive and non-muscle invasive. Consequently this could 
also be one of the reasons why the replication is only 75% of the genes. To clarify these 
differences we have now added in Material and Methods, lines 170 and 212, the information 
from both EPICURO data and TCGA data. 
  

 

Reviewer #2 

 

Reviewer #2: In this manuscript, the authors describe a permutation-based algorithm for 

assessing the significance of relationships uncovered by penalized regression methods (LASSO 

and ENET) in “multi-omic” databases, concomitantly using the MaxT algorithm to correct for 

multiple hypothesis testing. The method is applied to combined mutation, DNA copy number, 

and gene expression data from the authors’ own urothelial bladder cancer (UBC) studies and 

“replicated” by analysis of the TCGA UBC data. They then follow up with simulation studies 

and a Gene Ontology enrichment analysis. As stated in the cover letter, the principal 

contribution is methodological. It follows up on a more biologically-focused version of the 

analysis by the authors (Pineda, et al., Human Heredity, in press). 

None of the individual ingredients of the method are novel, but they are combined (and 

customized for the particular types of omic data) in an interesting way. Penalized regression 

methods should probably be used in omic analysis even more often than they are -- because 

of the typical mismatch between number of variables and number of cases. And careful 

attention to multiple hypothesis testing is vital to proper control of Type I statistical error.  

 

(1) I don't THINK that lack of independence of the vectors over genes or unequal variances are 

issues that would compromise the validity of the permutation test in this algorithm. But, since 

the authors have presumably thought deeply about those questions, they should address 

them briefly but directly -- at a place of their choosing in the manuscript.  
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The permutation test was done permuting individuals within the genes with the intention of 

avoiding any problem of dependence structure between genes. When we considered to apply 

a permutation-based approach to assess significance, we thought in two possibilities, one 

permuting individuals within each gene and two, permuting genes within each individual. The 

results from the second approach were more restrictive due to the potential correlation 

structure of the genes since gene expressions may be correlated between them. For that 

reason, we decided to use the permutation-based approach permuting individuals. In addition 

to this, the MaxT algorithm is a permutation-based FWER controlling procedure that is 

adapted to the correlation structure found in the data and has been shown to be 

asymptotically optimal under dependence. Following the reviewer’s recommendation we 

briefly and directly comment on this in the Discussion, line 514, by adding also a new reference 

(Meinshausen et al. 2011) 

 

(2) The level of writing is uneven. I suggest careful copy-editing of the text prior to publication. 

 

We have carefully edited the manuscript. 

(3) Relatively minor comments/questions: 

 

1. Line 244: I assume that the gene enrichment analysis using David was based on the Gene 

Ontology. If so, that should be stated directly, along with specification of the database type 

and evidence parameters used for the analysis.  

 

The gene enrichment analysis is based on 14 annotation categories (Gene Ontology (GO), 

Biological process, GO Molecular Function, GO Cellular Component, KEGG Pathways, BioCarta 

Pathways, Swiss-Prot Keywords, BBID Pathways, SMART Domains, NIH Genetics Association 

DB, UniProt Sequence Features, COG/KOG Ontology, NCBI OMIM, InterPro Domains, and PIR 

Super-Family Names) collected in the DAVID knowledgebase 

(https://david.ncifcrf.gov/knowledgebase/DAVID_knowledgebase.html). 

 Even though this information can be found in the reference we provide in the manuscript, we 

specify now in the manuscript line 267. 

 

2. Line 312 – 320. “Importantly, we replicated results for 36 (75%) of them in an independent 

data set (TCGA).” Does “restricting the analysis to those genes …” mean that the calculation 

was done over the entire set but that only the results for the 48 genes (i.e., 75% replication) 

are being reported here? The figures given would seem to relate to the sensitivity of 

replication but not its specificity. What about the numbers related to specificity? Overall, I 

think the replication study needs further description and (no pun intended) specificity. 

 

The replication phase is done by restricting it to all significant genes detected in the discovery 
phase (48 genes) considering all models (SNP, CPG and/or Global) and methods (LASSO and/or 
ENET). That is, we focused only to the genes significantly associated in the discovery phase 
and applied the same strategy used in the first phase to check whether they were also 
significantly associated with the SNPs and CpGs in the TCGA data. Following the reviewer’s 

https://david.ncifcrf.gov/knowledgebase/DAVID_knowledgebase.html
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suggestion, we have now further commented this point in Material and Methods, line 250, to 
better clarify about the replication effort.  
 
Regarding sensitivity and specificity, we do not consider the 75% of replicated genes as a 
sensitivity estimation rate because we cannot consider our results as a “gold standard” and 
therefore, the estimation of specificity is behind the same consideration. In spite of this, to be 
sure we were doing the replication properly, we performed the same replication study with a 
set of genes randomly selected from the TCGA data. We observed that the percentages of 
significant genes were much lower than when considering the significant genes in our 
discovery phase. However, sample size is much higher in TCGA, so we cannot differentiate 
between a true positive due to power issues, a true positive due to a threshold selection, and 
a false positive in the replication dataset.  
 
It’s appropriate that the authors list the major differences in the two studies (platform, etc.) 

and that the level of concordance is perhaps surprising. 

We were conscious of the different platforms used in the two studies, among other 

methodological aspects, was a limitation and we believe that this is one of the reasons that 

may explain why we do not replicate the 100% of the associations at the gene level. We already 

commented about this limitation in line 474. However, as suggested by the reviewer, we have 

now added in this part of the Discussion more details about the different platforms used in 

both studies to further point out this limitation. Regarding the level of concordance, it should 

be consider that the small sample size in the discovery phase may also be an important 

limitation and those significant genes identified are probably the ones with the highest signal.   

 

3. Lines 337 – 346: This manuscript is focused on methodology, not biology, but, nonetheless, 

the reader will wonder whether there’s any biological significance to the categories that 

showed up in the gene ontology analysis. Do the authors think there’s any meaning to the 

categories or are they just ones that happened to show up despite the multiple hypothesis-

testing correction? 

 

Indeed, the genes identified correspond to pathways or processes that are known to be 

important in bladder cancer. We did not wish to emphasize this too much in our previous 

version of the ms. but we appreciate that this comment gives us the opportunity to make this 

point further and we have done so in the last section of Results as well as in the Discussion.  

 

4. Lines 371 – 381: Could another reason for the lack of concordance between LASSO and ENET 

be the sheer statistical arbitrariness of selecting just a handful of top genes out of many 

thousands -- especially given the occurrence of high correlations among the vectors for 

different genes? 

 

The necessity of giving a threshold to correct my multiple testing is always problematic. The 
equilibrium between type I error and type II error is one of the most important issues in 
statistical genetics. Which is the threshold of false positives we are able to assume while no 
detecting false negatives? One of the differences we observed that can be seen in Table S4 
(Table S2 before) and we comment in the Discussion, line 405, is that some of the genes 
selected by LASSO are borderline with ENET. So the arbitrariness of the statistical threshold is 
an important issue. In the reference we provide, Waldmann et al. demonstrated that ENET 
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usually detects more true and false positives associations and can provoke a decrease in 
power. 
 

5. Line 449. What does it mean in terms of the data to say that only one gene was “found not 

expressed in UBC cell lines”. What cell lines? Below detection limit? How does “being 

expressed” relate to enrichment? 
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Chapter 3. Integrative eQTL –omics analysis considering tumor tissue 
and blood samples in individuals with bladder cancer 
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Abstract 

Integrative –omics analysis approaches to combine different data are emerging. These data 

are mainly determined in the same source material (i.e., tumor sample). However, the 

integration of data from different material levels (i.e., blood and tumor) may also reveal 

important knowledge on the human genetic architecture. To model this multi material-level 

structure, integrative-eQTL analysis applying 2-Stage Regression (2SR) has been proposed. This 

approach consists on two stages, (1) gene expression levels are regressed with markers at 

somatic level and (2), the residuals-adjusted are regressed with the germline genotypes. Such 

an approach relies on several assumptions needed to overcome challenges high-throughput -

omics data impose. Previously, we have shown that penalized regression methods in 

combination with a permutation–based MaxT method are promising to this regard. In this 

report, we assess whether our previously developed strategy can also be considered when 

integrating different data source material and we compared it with two different ways of 

parameter estimation in the 2SR-approach, one using multiple linear regression (MLR) and 

other using LASSO to control for correlated data. We applied the three strategies to integrate 

genomic, epigenomic and transcriptomic data from tumor tissue with germline genotypes 

from 181 individuals with bladder cancer from the TCGA Consortium. Our study showed no 

significant results when the 2SR-MLR was applied supporting, as previously showed, the 

underestimation of this approach when variables are correlated, in contrast of the other two 

approaches. Furthermore, our approach propose a list of relevant eQTLs including and 

extending the ones found by the 2SR-LASSO approach to be considered in future analysis.  
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Integrative –omics data analysis (IODA) are starting to emerge for the combination of different 

high-throughput platform biological derived information to better understand the complexity 

of biological systems. IODA are mainly focused in the combination of –omics data from the 

same source material, such as tumor samples (Mankoo et al. 2011), human brain (Zhang et al. 

2010; Gibbs et al. 2010) or blood samples (Van Eijk et al. 2012). However, the integration of 

data from different material levels (i.e., blood and tumor) may also reveal important 

knowledge about the hierarchy of the human genetic architecture. For instance, the influences 

of germline variants in gene expression are normally studied in cell lines and normal tissue but 

not in tumor tissue due to the complexity of the transcript regulation caused by the somatic 

changes produced in the tumor (Fredriksson et al. 2014). To approach this further level of 

complexity, Li et al. (Li et al. 2013; Li et al. 2014) performed cis-eQTL analysis in breast cancer 

by applying a 2-stage regression (2SR) approach. In stage one, the gene expression level was 

regressed with all somatic changes (copy number variation and DNA methylation) in cis-

relationship. In stage two, the residual-adjusted outcome was regressed with the germline 

genotypes also in cis-relationship. While this approach presents computational and data 

management advantages, its validity relies on assumptions that are not met in the majority of 

large scale genomic studies, namely the risk factor of interest should not to be correlated with 

the rest of the covariates and the tumor SNPs and/or CpGs may be highly correlated between 

them. When this occurs, the 2SR approach may introduce a bias resulting in a loss of power as 

demonstrated by Demissie et al.(Demissie & Cupples 2011) and Che et al.(Che et al. 2012) in 

comparison with a multiple linear regression (MLR) approach. Similarly, an application of the 

2SR approach for detection of QTLs has shown a loss of power when covariates are correlated 

(Zeegers et al. 2004). Another limitation of the method proposed by Li et al. is that they applied 

MLR, a method that cannot be applied when the number of parameters to be estimated in the 

model is larger than the sample size (n<<p problem), a prevalent scenario in large genomics 

studies. Demissie et al(Demissie & Cupples 2011) and Che et al.(Che et al. 2012) also 

mentioned on the critical issue when applying 2SR and MLR because when a study involves 

correlated independent variables, the two approaches produced incongruent results. This is a 

fact in the majority of the genomic analyses, since variables such as SNPs and CpGs may be 

highly correlated between them and therefore the eQTLs may suffer of harmful 

multicollinearity, thus, none of the two approaches are valid.  

To overcome these limitations, we propose to adapt an integrative method we previously 

developed and which is based on penalized regression (LASSO and ENET) in combination with 

permutation-based maxT method(Peter H. Westfall & Young 1993) to obtain p-values and 

correct them for multiple testing (Pineda, et al. 2015). This approach can deal with the 
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challenges that large genomic studies impose and it is well suited to perform eQTL assessment 

when –omics multi material-level data need to be integrated. Here, we apply our method by 

performing an eQTL- IODA analysis and compare our strategy with the 2SR approach and with 

a 2SR using LASSO to deal with the n<<p problem and correlated variables. 

Urothelial bladder cancer (UBC) tumor data and blood sample from the same patients were 

obtained from The Cancer Genome Atlas (TCGA) consortium (https://tcga-

data.nci.nih.gov/tcga/) by downloading and processing them with the TCGA-Assembler(Zhu et 

al. 2014). The data was profiled with Genome wide 6.0 Affymetrix, RNASeqV2, and the 

HumanMethylation450K Illumina array. A total number of 905,422 SNPs, 20,502 gene 

expression probes, and 350,271 CpGs were obtaining from tumor samples and 905,422 SNPs 

from blood samples for 181 individuals. SNPs were measured with the same platform in blood 

and tumor samples expecting to have some differences due to somatic mutations within the 

tumor. Consequently, we performed an agreement study by pairs of SNPs to check the rate of 

disagreement between tumor and blood using the weighted Kappa Index (wKI). Each pair was 

represented in a weighted matrix where cells located on the diagonal represent agreement, 

while cells one off the diagonal are weighted 1, and cells two of the diagonal are weighted 2. 

Figure 3.3.1 displays the percentage of disagreement (wKI) per chromosome. The highest 

disagreement is observed in chromosome 9 (29%) supporting the deletion of both arms of the 

chromosome 9 frequent in bladder cancer patients (Wu 2005).  
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Figure 3.3.1. Percentage of disagreement per chromosome for the genotypes measured in tumor and blood. Each percentage is 
calculated with the number of genotypes within the chromosome with kappa < 0.8 divided by the total number of genotypes within 
the chromosome.  

 

  



 

 
118 

 

PART 3. Novel statistical approaches for integrative –omics analysis 

Tumors acquire frequent somatic alterations as observed with the non-concordance between 

tumor and germline polymorphism, which can directly impact in tumor gene expression. Thus, 

to integrate genomic data from both DNA sources, we excluded those tumor genotypes in 

agreement (wKI >0.8) between the 2 sources. As chromosome 9 was the one with the highest 

rate of disagreement, we restricted the study to this chromosome. The fact that we selected 

the chromosome 9 which is the one with the highest disagreement should be not affect the 

study, since we deleted those SNPs in tumor that has a wKI > 0.8 since that information was 

already account with the blood SNPs. The analysis was hence performed in a total number of 

33,735 germline SNPs with minor allele frequency (MAF) >0.05, 8,845 tumor SNPs with MAF 

>0.05, 6,617 tumor CpGs located in the chromosome 9 filtered by the cross reactive probes 

and the polymorphic CpGs, and 717 gene expression probes with at least 20% of the 

individuals with expression levels >0. Three different models were applied to find the 

association between germline SNPs located in 1MB window (cis-relationship) with gene 

expression levels [Box 3]. 

 

Model 1 (Global-LASSO) is an extension from our previous approach where germline 

genotypes are introduced in a linear LASSO model with the 3 tumor –omics datasets. Model 2 

Box 3. Models applied to the subset of chromosome 9 for the integration of 3 

tumor –omics and 1 blood -omic datasets 

Model 1: Global – LASSO (4-omics) 

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑡𝑢𝑚𝑜𝑟𝑖 = 𝛼1𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟1 + 𝛼2𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟2 + ⋯ +

𝛼𝑝𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟𝑝 + 𝛾1𝐶𝑝𝐺1 + 𝛾2𝐶𝑝𝐺2 + ⋯ + 𝛾𝑝𝐶𝑝𝐺𝑝 + 𝛼1𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑1 +

𝛼2𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑2 + ⋯ + 𝛼𝑝𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑𝑝; 𝑖 = 1 … 𝑚  

Model 2 (2SR-MLR) & Model 3 (2SR-LASSO):  

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑡𝑢𝑚𝑜𝑟𝑖

= 𝛼1𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟1 + 𝛼2𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟2 + ⋯ + 𝛼𝑝𝑆𝑁𝑃𝑡𝑢𝑚𝑜𝑟𝑝

+ 𝛾1𝐶𝑝𝐺𝑡𝑢𝑚𝑜𝑟1 + 𝛾2𝐶𝑝𝐺𝑡𝑢𝑚𝑜𝑟2 + ⋯ + 𝛾𝑝𝐶𝑝𝐺𝑡𝑢𝑚𝑜𝑟𝑝; 𝑖 = 1 … 𝑚  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑡𝑢𝑚𝑜𝑟𝑖 =  𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡𝑢𝑚𝑜𝑟 − 𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛̂  𝑡𝑢𝑚𝑜𝑟  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑡𝑢𝑚𝑜𝑟𝑖

= 𝛼1𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑1 + 𝛼2𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑2 + ⋯ + 𝛼𝑝𝑆𝑁𝑃𝑏𝑙𝑜𝑜𝑑𝑝; 𝑖

= 1 … 𝑚 

 

Residuals in model 2 are obtained from MLR and for model 3 from LASSO 
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follows the 2SR approach applying MLR (2SR-MLR) and model 3 also follows the 2SR method 

but applying LASSO (2SR-LASSO) to overcome with the correlated structure between markers 

that cannot be made when using 2SR-MLR. Large genomic studies need to deal also with a 

higher number of parameters than individuals (p > n) what represents a limitation for 2SR-

MLR since MLR requires n < p. To fix this issue, we used the markers selected by LASSO in 2SR-

LASSO to run 2SR-MLR. The same strategy with the permutation – based MaxT method 

developed in (Pineda, et al. 2015) to obtain p-values and assess for Multiple Testing (MT) was 

applied in both Global-LASSO and 2SR-LASSO, and extended to 2SR-MLR to make the results 

comparable. Finally, we performed a simulation study with synthetic-data where the 

association between markers (SNPs tumor and blood and CpGs tumor) and gene expression 

levels was broken. We generated a gene expression sample with the same number of genes 

and individuals than in the observed data (p= 717, N= 181) considering all the genes following 

a normal distribution with mean (µ= 6.9) and standard deviation (σ= 0.61) extracted for the 

total mean and total variance from the TCGA sample.  

Table 3.3.1 shows the results of the three models. After MT correction, 2SR-MLR did not 

selected any significant eQTL when permutation-based MaxT method is applied. In contrast, 

Global-LASSO selected 4,896 eQTLs involving 491 genes and 2SR-LASSO selected 266 eQTLs 

involving 13 genes. 2SR-MLR selected one eQTL (rs16917078-TSTD2) after applying Benjamini 

& Yekutieli (BY) (Benjamini & Yekutieli 2001) FDR correction to the single p-values obtained in 

stage 2 from the MLR model. This eQTL was also detected by Global-LASSO but not by 2SR-

LASSO. As expected, Global-LASSO selected the eQTLs identified in 2SR-LASSO. The 

overlapping between genes and germline SNPs is represented in Figure 3.3.2 For the 

simulation study, 2SR-MLR did not detect any significant results with any of the MT correction 

methods; models Global-LASSO and 2SR-LASSO detected significant genes (6% and 3%, 

respectively) and germline SNPs (2% and 1%, respectively) pointing to lower proportion of 

false positive results yielded by 2SR-LASSO. 
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Table 3.3.1.Genes and germline SNPs selected by the three models in the original data 
(TCGA data) and the simulated dataset. 

1After applying Benjamini and Yekutieli for multiple testing correction 

 

 

Figure 3.3.2. Overlapping of the number of genes (A) and germline SNPs (B) after MT 
correction using permutation – based MaxT method for model 1 and 3 and BY for model 2.  

  

 Model 1  

(Total) 

Model 2  

(2SR- MLR) 

Model 3  

(2SR-LASSO) 

Original data 

 (TCGA) 

   

Nº genes 491 0 (1-BY)1 13 

Nº SNPs Germline 4,896 0 (1-BY)1 266 

Synthetic data   

N(µ = 6,σ = 0.6) 

   

Nº genes 43 (6%) 0 20 (3%) 

Nº SNPs Germline 800 (2%) 0 566 (1%) 
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Most of the eQTLs studies addressing tumor expression have been performed without 

consideration of genetic and epigenetic changes in tumors (Kristensen et al. 2006; Loo et al. 

2012; Chen et al. 2014). However, advances in high-throughput technologies have enabled the 

exploration of somatic alterations in cancer genomes(Watson et al. 2013). To perform such 

studies, integrative analysis are needed and consequently appropriate statistical approaches 

to implement them. In this study, we have shown that the multi-level integration of different 

source material to perform integrative eQTL assessment can be easily assess with the 

implementation of our approach previously proposed.  

Our results confirm that the 2SR method considering MLR residuals (model 2) underestimates 

the associations and fail to detect eQTLs as showed in (Demissie & Cupples 2011; Che et al. 

2012). This method did not produce any significant results when the permutation based MaxT 

method was applied to correct for MT. Moreover, when FDR was used to correct by MT only 

one eQTL remains significant demonstrating that the absence of significant results is not 

attributable to the MT method applied. In contrast, the extension of this strategy using the 

residuals from LASSO (model 3) produced interesting results showing an increase in power 

detection when using the penalized residuals, likely explained because the correlation 

problem between variables may be controlled by using LASSO (Tibshirani 1996). More 

important are the results that our strategy (model 1) provides including all the genes detected 

by 2SR–LASSO and the one detected with 2SR–MLR when FDR for MT correction is applied. 

One of the most important aspects in statistical genetics is the control for false positives, this 

requiring of not being too restrictive to lose valuable information (false negatives). The optimal 

method would provide a satisfactory balance between false positives and false negatives 

(Goeman & Solari 2014). In this study, to control the amount of false positives we performed 

a simulation study estimating that the proportion of eQTLs detected when the signal between 

gene expression and markers is broken was 2% (Global-LASSO) and 1% (2SR-LASSO). These 

percentages suggest a small proportion of signals detected that may be assumed as a rough 

estimation of false positives. Nonetheless, our approach detects a higher number of eQTLs 

than the other two approaches, thus, to be sure that the significant results were not due to an 

artifact of the strategy applied we run 100 times the Global-LASSO with the observed data and 

we applied the MaxT algorithm to assign p-values and correct for MT. With this validation, we 

should expect no significant results and indeed no significant results were obtained. 

Consequently, our approach allows to decrease the false negative rate and serve as a 

prioritization of interesting genes producing list of candidate genes and candidate loci to be 

explored in detail in future analysis. Importantly, it is that even knowing that some results may 

be false positives, the ones detected by the 2SR models are found also with ours and from the 
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list of genes generated with our approach many of them have been already associated with 

UBC. Further details on these findings are out of the purpose of this report. The entire list of 

genes and associated eQTLs is provided as supplementary material (Excel S1).  

Furthermore, our approach used in the Global-LASSO model is easily applicable and can 

accommodate any type of –omics data regardless of heterogeneity, collinearity, or number of 

factors in the study. Another important advantages is the reduction of computational time 

since the 2SR approach needs to adjust two models per gene analyzed while in our approach 

just one model is needed. This is a very important property when the study is extended at the 

genome wide level.   

To conclude, eQTL IODA using different sources material may improve our knowledge in 

cancer risk but proper statistical methods are needed to consider the large amount of –omics 

data generated. We demonstrate that our approach provides a list of eQTLs that can serve for 

future analysis or as a prioritization to perform functional analysis. The approach is easy to 

apply and adaptable to any type of data being an important contribution for integrative 

analysis.  
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Single –omics analysis revealed significant findings that contributed to better characterize UBC. 

These studies involved genetic susceptibility factors detected trough GWAS (Nathaniel Rothman 

et al. 2010) and EWAS (Marsit et al. 2011), or somatic DNA alterations (The Cancer Genome Atlas 

Research Network 2014) or gene expression signatures to predict disease progression (Kim et 

al. 2014), but the integration of two or more –omics considering a multi –omics approach will 

decipher further interrogations not covered by a single –omics data type analysis. However, 

dealing with such amount of data, coming frequently from high-throughput technologies, 

impose many challenges than need to be addressed appropriately (Hamid et al. 2009; Chadeau-

Hyam et al. 2013; Kristensen et al. 2014; Ritchie et al. 2015). Having this scenario in mind, our 

objective was to dissect and fix some of the methodological challenges posed by –omics data 

integration. The work described in part 3 of this thesis shows that applying appropriate –omics 

integrative statistical strategies, sound biological insights in the complexity of UBC are 

discovered.  

The first step in any integrative –omics approach implementation is to conduct data quality 

control and assess data scale and dimensionality for each dataset component. A detailed single 

analysis of each –omics component was described in part 2. Regarding genomics, we highlight 

the differences found when measure them in blood and tumor (Figure 2.1.2) due to the somatic 

mutations acquire in the tumor. While it is known that tumor DNA is affected by somatic 

mutations, to our knowledge, no articles are published assessing it at SNP level. Only few studies 

showed that variants on pharmacogenetic genes are not affected by differences between 

germline and tumoral SNPs (McWhinney & McLeod 2009; Weiss et al. 2007; Marsh et al. 2005). 

We found that in bladder cancer, the blood-tumor genotypes differences are frequent in terms 

of disagreement percentages, especially for chromosome 9 (25%), Y (13%), 17 (7%), 8 (5%) and 

11 (5%). The differences in chromosome 9 are explained due to the deletion of both arms of this 

chromosome that occurs early during the urothelial tumorigenesis (Wu 2005). Also deletions in 

the short arms of chromosome 8 and 11 are associated with tumor progression (Wu 2005). We 

also performed this study using the TCGA data (Figure 3.3.1) where the blood-tumor genotypes 

differences in chromosome 9 (29%), Y (25%) and 17 (19%) are also observed in MIBC, differences 

in chromosome Y and 17 being even larger. Importantly, these results suggest that there is 

enough disagreement between both measures to consider this data as two different –omics data 

sets. In the epigenomics single analysis, we highlight the differences found between autosomal 

chromosomes and X-chromosome (Figure 2.2.2) supporting previous evidences  (Bell et al. 2011) 

and is explained by one of the X-chromosome inactivation in females through methylation 

mechanisms. It is also important to consider the differences observed between the distributions 
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of the β- and the M-values. While the former follow a beta distribution in the autosomal 

chromosomes taking values from 0 to 1, the later follow a bimodal distribution taking values 

from -∞ to +∞. This last measure achieves the homocedastic characteristic which is a needed 

assumption in most of the statistical methods including the ones used in this thesis. Gene 

expression data follow a normal distribution as showed in Figure 2.3.4 facilitating the use of 

parametric statistical methods for its analysis. 

This thesis represents an important advancement in –omics data integration not only because 

of the number of –omics data sets that have been combined (3 –omics data in tumor plus 1 –

omics data measured in a different source: blood) but mainly because of the innovative 

analytical methods we propose and apply in their integration. First, a framework build upon a 

multi-staged strategy analyzing all the possible pairwise relationships between genomics, 

epigenomics and trasncriptomics was proposed and applied using tumor data from individuals 

with UBC included in the EPICURO pilot phase. The framework (Figure 3.1.1) proposes 4 

consecutive steps starting with the preprocessing and QC of each –omics dataset 

aforementioned (Step 1). In Step 2, the pairwise analysis between genomics and transcriptomics 

is assessed showing interesting correlations between DNA methylation and gene expression. In 

Step 3, the eQTL and metQTL analysis is performed with the correlated expression-methylation 

pairs (ρ ≥ |0.7|) obtained in Step 2. Finally, in the Step 4, the combination of the pairwise analysis 

in an integrative way is assessed showing interesting results: a 10% of enrichment of commonly 

associated genetic variants (49,708 SNPs) with both, the eQTLs and methQTLs, a total of 1,469 

trans triple relationships (SNP – CpG – Expression), being 19 of the pairs involved in a cis 

relationship and regions with hotspots (Figure 3.1.3) showing some important biological 

relationships.  

This framework, in comparison with other integrative analysis using the same three –omics data 

types, integrates step by step the pairwise relationships resulting in a final combination showing 

triples relationships that are lastly explored in more detail. For example, in comparison with the 

analysis showed by Gibbs et al. (2010) and  Bell et al. (2011), they both perform first, the eQTL 

and methQTL analysis and then check for the overlapping SNPs between both analyses. But, 

they do not show a combination between the three types of data as we do, although they do 

not restrict the eQTLs and methQTLs to the correlated expression-methylation pairs as we do. 

The reason why we restricted the analysis is because we were interesting in provide a framework 

to integrate the 3-omics over the specific pairwise relationship analysis. Another example is the 

study of Wagner et al. (2014) that perform an integrative analysis, first analyzing eQTLs and 

methQTLs and then looking at the correlation between gene expression and DNA methylation 
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to find the overlapping between the three data types. They used genes rather than CpGs or SNPs 

as the primary unit of interest for the overlapping, while we used the specific SNPs and CpGs for 

the overlapping. Also they only considered cis-relationships while we considered both, cis and 

trans. It is well established that gene expression levels are controlled by a combination of cis 

and trans-acting regulators (Cheung & Spielman 2009). Therefore, the study of trans 

relationships it is very important to consider in the biological complexity of cancer. In the case 

of  Zhang et al. (2010), Drong et al. (2013) and Olsson et al. (2014), they focus the analysis in the 

methQTL analysis and then, with the SNPs that were significant, perform subsequent eQTLs 

analysis. This limit the study to differentially methylated regions of interest but not at genome 

wide level. One study that could be considered that integrates all the pairwise analysis at 

genome wide level as we do, is Van Eijk et al. (2012) that first, obtain the correlation between 

DNA methylation and gene expression levels and then perform eQTL and methQTLs analysis. 

They perform an accurate multi-staged analysis where they assess with the final subset of 

significant relationships a causal relationships study between the three types of data while we 

assess specific triples relationships to find patterns of relationships and interesting regions 

(hotspots). In conclusion, our framework not only accomplish pairwise analysis, but also 

provides the integration of the three –omics data combining the significant results from the 

pairwise analysis  as showed in Step 4. 

While the previous approach allows advancing in the integration process by dissecting the 

pairwise relationships between the three –omics data step by step, it does not permit the 

assessment of all potential associations and adjustments among the whole set of markers. To 

advance in this more comprehensive regard, all –omics data were combined in a large input 

matrix using penalized regression methods and we adapted a permutation –based MaxT method 

to correct for multiple testing and provide p-values. In the introduction, we commented about 

the challenges –omics integrative analysis imposes (heterogeneity, dimensionality, n << p, 

correlation, interpretation, replication and validation) which the majority are addressed in this 

work by using two types of penalized regression methods, LASSO and ENET. We also commented 

on the pitfalls of these two methods regarding the absence to assess significance and 

consequently correct by MT. With this work we are able to deal with these methodological 

challenges. LASSO and ENET are flexible strategies and can be applied even if the variables have 

different scale. They are variable selection methods and consequently they can deal with high 

dimensionality. They can be applied when the sample size is smaller than the number of 

parameters and also when the variables are correlated. Besides, with the permutation –based 

MaxT method, we are able to obtain p-values and correct by MT capturing only the significant 
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models that have passed the threshold for MT, thus they produce sparse results to be 

interpretable. After applying the workflow proposed in material&methods (Figure 3.2.1), the 

expression of 48 genes was found significantly associated with several SNPs and CpGs in cis-

acting effect. Interesting are the differences found by applying the two methods LASSO and 

ENET to the three models, SNP model, CPG model and Global model (SNP+CPG). The reason is 

due to the selection process of both methods. ENET tends to select nets of variables that are 

highly correlated while LASSO select just one representative variable of the net. Also differences 

were found when applying the three models. The main difference between models regards to 

the genes identified only when combining together SNPs and CpGs likely explained because of 

the addition of more information when integrating, a fact that further supports the importance 

of integrating –omics data to discover hidden information.  

As we highlighted in the introduction, the validation of these complexities is a big challenge and 

new ideas for replicating are needed. Typically, replication studies have been based in 

reproducing the same relationship between the marker and the trait in the study, but this is very 

difficult in the –omics field due to the lack of a similar population with same –omics data sets 

measured in the same platforms. The TCGA has generated data for individuals with UBC though 

they are MIBC and all the –omics platforms used are different from ours. Because of this massive 

heterogeneity, a replication study at gene level was considered in this work by wandering 

whether the genes selected in our study considering 1Mb window up- and downstream were 

also selected in the TCGA series using the same analytical strategy. Importantly, we found that 

the 75% of the identified genes (64% of the models) were replicated supporting our approach. 

In addition, to validate our approach, we checked the literature and we found that several genes 

were previously shown to be important in bladder cancer (KRT20, IGF2, CTSE, ANXA10 and CRH) 

(Mengual et al. 2010). Furthermore, an enrichment analysis was also performed for biological 

validation and two clusters were found, the “EF hand and calcium ion binding” that includes two 

important genes (S100A9 and S100A2) being previously associated with UBC (Yao et al. 2007; 

Dokun et al. 2008; Minami et al. 2010). This approach demonstrates that the integration of 

multiple –omics data allows the identification of hidden information missed when only one –

omics is studied. Previous advantages have been performed to combine data matrices for each 

sample into one large input matrix to perform integrative analysis (Fridley et al. 2012; Mankoo 

et al. 2011; Kim et al. 2013). They all applied different and valid approaches to integrate omics 

data, but they all predict one phenotype, such as survival risk or drug cytotoxicity. Thus, they all 

have the limitation to integrate –omics data considering more than one output variable to be 

estimated as we do considering all the probes in the gene expression array as independent 
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output variables. Our approach is flexible and easy to implement in different –omics data and 

disease models as well as adaptable to consider interaction terms in the model. 

The developed approach abovementioned, we also used to perform an integrative eQTL analysis 

considering two types of source material (blood and tumor). This approach was compared with 

the 2SR strategy using MLR for eQTL integrative analysis conducted in other studies (Li et al. 

2014; Li et al. 2013). Our results showed no significant eQTLs when using 2SR approach 

according to the evaluation performed of this method by Demissie & Cupples (2011) and Che et 

al. (2012) confirming the underestimation and loss of power of the results. We proposed 

extending this method applying LASSO and using its residuals to avoid the problem that MLR 

have with correlated variables. By doing this, we found significant results suggesting an increase 

of power of the method. Considerable are the results from our approach that increase 

remarkably the number of significant results including the ones from the other approaches. We 

are aware that false positives may be an issue but one of the most important aspects in statistical 

genetics with difficult solution until now, is how to control by MT while not being too restrictive 

(Goeman & Solari 2014). Assuming that a proportion of false positives may occur, our approach 

can serve as a prioritization of interesting results producing a list of candidate genes and loci to 

be explored in detail in future analyses with the advantages that it can be applied easily 

accommodating different –omics, it deals with heterogeneity and collinearity or the number of 

factors, and it reduces computational time. 

Overall, this work has strengths and limitations that should be mentioned. The sample size is a 

limitation in –omics integrative studies and certainly in this thesis. Nevertheless, one of the 

strengths for the multi-staged approach responds to the fact that the overlap for the samples 

available between pairs (epigenomics – transcriptomics = 31, genomics-epigenomics = 46, 

genomics – transcriptomics = 27) is higher than the overlap between triplets (genomics-

epigenomics-transcriptomics = 27). In the multi-staged approach, pairwise combinations are 

applied to obtain the integrative results using the specific sample in each step increasing them 

the size. Despite this issue, the problem of the n << p obligates to perform a one marker analysis 

per model which always is a limitation when correcting by MT. In contrast, LASSO and ENET deal 

with this issue although sample size is very small to yield strong biological conclusions. This work 

needs to be seen as a methodological contribution that adds different –omics data integrative 

approaches to be applied in bigger sample sizes. In this regards, interesting is that when applying 

LASSO & permutation –based MaxT method to perform the integrative eQTL analysis with a 

bigger sample size (181 individuals) as showed in chapter 3 of PART3, the number of eQTLs 

detected increase remarkably. One potential explanation could be the increase in power due to 
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the increase of sample size, although we need to be cautious when comparing these two studies 

because the first one applied to EPICURO data, the gene expression levels are measured with 

microarray technology, while the second one applied to TCGA data, the expression levels are 

measured with RNA sequencing. Microarray data follows a normal distribution and does not 

contain zeros giving a relative value of gene expression levels while RNA sequencing gives the 

absolute values of gene expression levels with zero value when the gene is not expressed that, 

in fact, makes the genes not being normally distributed.  

For this thesis, no filter by LD in SNPs or grouping CpGs in a CpG island was considered. The 

reason is that by performing data reduction the causal markers may be filtered and thereby the 

true association may be lost. Also, some of the statistical methods that perform data reduction, 

such as PC or FA, convert the markers into linear combinations of the original ones making 

difficult the understanding of the original values. In the first approach from our work, as no filter 

was performed, to avoid the problem of the possible correlation between p-values due to the 

correlation between variables, Benjamini and Yekuteili FDR (Benjamini & Yekutieli 2001) MT 

approach was applied since this method can be used under general dependence between tests 

through the null distribution resampling. In the second approach, LASSO and ENET can deal 

directly with collinearity and high dimensionality and hence no filtering was needed. 

It is very important to take into consideration in which type of data the integrative analysis is 

performed. Tissue selection is an important factor to consider for eQTL analysis and 

consequently for any genomics integrative analysis. For instance, the effect of a SNP on a 

transcript may only be revealed in a tissue-specific manner. Studies that have been performed 

in individuals with breast cancer showed an association between a specific locus and FGFR2 in 

tumor tissue (Meyer et al. 2008), but the association was not showed in normal tissue (Seo et 

al. 2013). For this reason, in this thesis we have been cautious with the type of data considered 

in each analysis. For the two first approaches we used tumor tissue which gave us the 

opportunity to study in detail the regulation in the tumor setting, and in the last work, tumor 

tissue was considered to estimate the somatic alterations before assessing the risk of loci in 

blood samples associated with tumoral gene expression. On the other hand, a potential 

limitation derived from the use of tumor samples, since they can be contaminated by stroma 

cells, such as for example one of the genes found significant in the second approach (IGJ) was 

not expressed in UBC cell lines (Earl et al. 2015). 

An important consideration in all –omics studies is how to validate results both at the biological 

interpretation level of the list of results generated and on at the replication level to determine 
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whether the results are more likely to be true positives than false positives. In this thesis, a 

biological validation-like was performed looking for the existence of published results that would 

help in the interpretation. In addition, an enrichment analysis was performed with DAVID 

bioinformatics tool to find clusters within our final results showing interesting biological 

information that further support our approaches. Nevertheless the biological interpretation is 

still a challenge to deal with because of the lack of biological information at present. In regards 

with the replication, the ideal scenario would be to replicate the results in an independent data 

set, but the lack of a comparable and independent UBC patient series with the three –omics data 

available makes this difficult. As pointing in the introduction, new ideas of validating, replicating 

and interpreting this type of results are needed. 

The future directions for this work are based on the generation of high-throughput –omics data 

in very large sample sizes that will be soon possible due to the decrease in cost and the amount 

of public data/samples available. Playing with these voluminous dataset, we will be able to 

improve our statistical strategies to integrate them. A consequent issue of this is the 

computational storage and the computational time from which to find the best computational 

strategies will be needed to work with big data. This is a field were the statistics, the biology and 

the informatics are crossed and it is clear that we will require of a strong knowledge from 

different skills and therefore multidisciplinary teams and collaborative work will be needed. But 

in this equation, the role of the epidemiology is lacking.  Epidemiologist aim to integrate this 

massive amount of –omics data generated with the non–omics information coming from other 

sources, such as questioners, candidate markers, etc. Adding this information to the integrative 

type of analysis that is shown in this thesis will lead to the building of better predictive risk 

models. But the integration of these non-omics type of data poses other methodological 

challenges that all together need to face. As an attempt to approach the –omics and non-omics 

data integration, (López de Maturana et al. 2015) has submitted a review on this regard where 

I also collaborate.  

Another future endeavor is to model the causal relationships between the omics data to link 

them to the phenotype outcome. Among the proposals, is the one used in (Olsson et al. 2014) 

where they used a causal inference test (CIT) (Millstein et al. 2009) to model the causal 

relationship between genotype, DNA methylation and phenotypic outcome, or the one used in 

(Van Eijk et al. 2012) were they infer the directionality in the relationship between genetic 

variants, methylation and expression with the local edge oriented (LEO) scores based on 

structural equation models (Aten et al. 2008).  
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To finish, integrative –omics analysis are needed to find missing, hidden or unreliable 

information. For instance, examining genetic and epigenetic changes in gene expression pattern 

improves the identification of causal changes that lead to disease phenotypes. Evolving 

statistical procedures that operates in the integration of more than one single -omics will be 

critical to extract information related to complex diseases, as research goes beyond a single –

omics focus. The early success of the approaches described in this thesis to better characterize 

bladder cancer, will significantly enhance the identification of key drivers of disease beyond 

what could be achieved by one –omics assessment alone. 
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 Conclusions in English 

1. We demonstrated that appropriate integrative –omics data analysis allows to identify 
hidden genomics mechanisms not observed when analyzing a single –omics data type by 
implementing  

a. A multi-stage framework to analyses pairwise combinations;  
b. A multidimensional approach using penalized regression methods with a 

permutation-based MaxT approach to integrate >2 –omics data in the same model; 
and 

c. An extension of the previous approach to integrate >2 –omics data from different 
levels (tumor and blood). 

 

2. The propose multi-stage framework not only accomplished pairwise analysis, but also 

allowed the integration of the three –omics data by combining the significant results from 

each pairwise analysis. Applying the integrative framework to the SBC/EPICURO Study data, 
relevant integrative results were found:  

a. 10% of enrichment of common genetic variants (49,708 SNPs) associated with both 
gene expression (eQTLs) and methylation (methQTLs); 

b. 1,469 trans-acting triple significant relationships (SNP – CpG – expression);  

c. 19 pairs involved in a cis-acting relationship, and  
d.  “hotspots” genetic regions suggesting predominant relationships. 

 

3. The multidimensional approach using penalized regression methods (LASSO and ENET) 
allowed us to deal with some of the main challenges –omics data integration impose 
(heterogeneity, dimensionality, n << p and multicolinearity). In addition, in combination with 

a permutation –based MaxT method, we were able to assess the statistical significance of 

the models and to provide a multiple testing corrected p-value for each association.  
 

4. Applying the penalized regression & permutation –based MaxT strategy to the SBC/EPICURO 
Study data, we found a list of 48 genes differently expressed according to several SNP 
genotypes and CpGs levels in cis-acting relationship. 75% of the identified genes were 

replicated in an independent data set (TCGA Consortium data) despite of the important 
heterogeneity between data sets. Furthermore, we provided biological interpretation of the 

results with an enrichment analysis highlighting the “EF hand and calcium ion binding” 

cluster involving two genes (S100A9 and S100A2) previously associated with UBC. 
 

5. Using the penalized regression & permutation –based MaxT strategy to integrate 4-omics 
data from different levels (3-omics in tumor, 1-omics in blood), we were able to perform an 

integrative eQTL analysis with TCGA Consortium data. This strategy permited us to adjust 
for potential alterations in tumor when assessing the association of germline SNPs with 
tumor gene expression. We demonstrated that our strategy found the same results than the 

2SR-LASSO approach (an extension of the 2SR-MLR), in addition to increase a higher number 
of significant eQTLs, suggesting an increase in statistical power. 

 

 

 



 

 
 

 

 Conclusiones en Español 

1. Hemos demostrado que la aplicación de análisis de integración de varios datos –ómicos 
permite identificar mecanismos genómicos ocultos no observados con el análisis de un solo 
tipo de dato –ómico. Ello ha sido posible implementando: 

a. Un marco de análisis en varias fases para combinar datos –ómicos por parejas; 
b. Un enfoque multidimensional utilizando métodos de regresión penalizada con un 

método basado en permutaciones MaxT para integrar >2 datos –ómicos en el mismo 
modelo; y 

c. Una extensión del enfoque anterior para integrar  >2 datos –ómicos de diferentes 
niveles (tumor y sangre). 

 

2. El marco de análisis en varias fases no sólo analiza las combinaciones por pares, sino que 

también proporciona la integración de los tres datos –ómicos combinando los resultados 

significativos del análisis por pares. Aplicando este marco a los datos del estudio 
SBC/EPICURO, se encontraron los siguientes resultados relevantes:  

a. Un enriquecimiento del 10% en 49,708 variantes genéticas comunes asociadas con 
ambos expresión del gen (eQTLs) y metilación de ADN (methQTLs);  

b. Un total de 1,469 relaciones triples en trans-acting (SNP - CpG - Expresión); y  

c. Regiones genéticas llamadas "puntos calientes" que concentran relaciones con otras 
regiones del genoma. 

 

3. El enfoque multidimensional usando métodos de regresión penalizada (LASSO y ENET) nos 
permitió hacer frente a algunos de los principales retos que los datos –ómicos imponen 
(heterogeneidad, dimensionalidad, n << p y multicolinealidad). Además, en combinación con 

un método basado en permutaciones MaxT, fuimos capaces de evaluar la bondad de ajuste 

de los modelos y proporcionar un p-valor corregido por comparaciones múltiples. 
 

4. Aplicando métodos de regresión penalizada y un método basado en permutaciones MaxT a 
los datos del estudio SBC/EPICURO, encontramos una lista de 48 genes asociados a varios 
polimorfismos y niveles de metilación del ADN en relaciones cis-acting. Además, replicamos 

el 75% de los genes identificados con una base de datos independiente (datos del consorcio 
TCGA) a pesar de la gran heterogeneidad entre estas dos bases de datos. Además, 

proporcionamos una interpretación biológica de los resultados mediante un análisis de 

enriquecimiento destacando el "EF-hand and calcium ion binding" como un grupo que 
contiene a dos genes (S100A9 y S100A2) previamente asociados con cáncer de vejiga. 

 
5. Usando métodos de regresión penalizada y un método basado en permutaciones MaxT para 

integrar 4 tipos de datos -ómicos procedentes de material diferente (3-ómicas en tumor, 1-
ómica en sangre) a los datos del Consorcio TCGA, hemos sido capaces de realizar un análisis 
de integración de eQTLs ajustando primero las posibles alteraciones -ómicas en el tumor y 

analizando después los SNPs en línea germinal asociados a los niveles de expresión del gen 
en estudio. Hemos demostrado que usando nuestra estrategia, no sólo encontramos los 
mismos resultados que con la regresión en 2 etapas aplicando LASSO (una extensión de la 

regresión en 2 etapas aplicando regresión múltiple), sino que también aumentamos el 
número de eQTLs significativas sugiriendo un incremento de poder estadístico.  
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 Conclusions en Française 

1. Nous avons montré que l’integration  de données –omiques nous permettait d'identifier des 
mécanismes génomiques cachés non observés dans l'analyse d'un seul type de donnée -
ómique via: 

a. Une stratégie multi-étapes qui propose un cadre en utilisant les combinaisons de 
paires ; 

b. Une stratégie multidimensionnelle, utilisant des méthodes de régressions pénalisées 
avec des permutations MaxT pour intégrer >2 données -omiques dans le même 
modèle ; et 

c. Une extension de celui-ci pour intégrer >2 données -omiques issues de matériaux 
différent (tumeur et sang). 

  

2. Le cadre proposé permet non seulement l’analyse des combinaisons de paires, mais fournit 

également l'intégration des trois données -omiques en combinant les résultats d'analyse des 
paires significatives. L'application de ce cadre aux données de l'étude SBC/EPICURO, a 
conduit à des résultats significatifs: 

a. Un enrichissement de 10% des 49,708 variantes génétiques communément  associés 
conjointement aux eQTLs et methQTLs ; 

b. Un total de 1,469 relations trans triples (SNP - CPG - expression) ; 
c. Certaines régions génétiques "points chauds" qui suggèrent des concentrations des 

relations avec d’autres régions du génome. 

 
3. Grace à une approche multidimensionnelle utilisant des méthodes de régression pénalisés 

(LASSO et ENET), nous avons pu relever certains défis majeurs imposés par les données -

omiques (hétérogénéité, dimensionnalité, n << p multicolinéarité). Par ailleurs, en 

combinaison avec une méthode basée sur des permutations MaxT, nous avons été en mesure 
d'évaluer la qualité de l'ajustement des modèles et de fournir une valeur de p corrigée pour 

les comparaisons multiples pour chaque association. 
  

4. En appliquant des méthodes de régressions pénalisées et une méthode basée sur des 

permutations MaxT aux données de l’étude SBC/EPICURO, nous avons trouvé une liste de 48 
gènes exprimés différentiellement en fonction des polymorphismes et des différents niveaux 

de méthylation de l'ADN dans une relation cis-acting. Nous reproduisons 75% des gènes dans 

une base de données distincte (données du Consortium TCGA) malgré la grande 
hétérogénéité entre ces deux bases de données. Nous fournissons également une 

interprétation biologique des résultats dans une analyse d’enrichissement pointant le groupe 
" EF-hand and calcium ion binding" impliquant deux gènes (S100A9 et S100A2) 

précédemment associés avec le cancer de la vessie. 
 

5. L'application des méthodes de régression pénalisée et d’une méthode basée sur des 

permutations MaxT pour intégrer quatre -omiques issus de différents matériaux biologiques 

(3-omiques tumeur, 1-omique sang) sur les données d'étude TCGA, a permis d’effectuer une 

analyse d'intégration des eQTLs. Les modèles ont été ajustés aux possibles altérations dans 

la tumeur permettant d’identifier des variants germinaux associés aux niveaux d'expression 

des gènes à l'étude. Nous avons démontré que l'utilisation de notre stratégie permettait non 

seulement d’identifier les mêmes résultats qu'avec la régression en deux étapes utilisant le 

LASSO (une extension de la régression en deux étapes à l'aide de la régression multiple), mais 

aussi d'augmenter le nombre des eQTLs significatifs suggérant une puissance statistique 

accrue.
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Supplementary Material:  PART 3 - Chapter 1  
 

Table S3.1.1: Strong correlations between gene expression and methylation located in the same 
gene. 

Table S3.1.2: cis-eQTLs significant (FDR < 5%)   

Table S3.1.3: cis-mQTLs significant (FDR < 5%)   

Table S3.1.4: Triple relationship (SNP-CpG-Expression) 

Tables S3.1.1-S3.1.4 refer to the accompanying CD  

 
 

Figure S3.1.1: Distribution of significant multiple QTLs per expression probes (A) and 
per CpGs (B). Distribution of significant multiple eQTLs (C) and methQTLs (D) per SNPs 
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Supplementary Material:  PART 3 - Chapter 2  
 

S3.2.1 Excel: SNP-LASSO model. Information about SNPs associated with gene expression 
using LASSO with SNP model for the discovery and replication phase. 
 
S3.2.2 Excel: CPG-LASSO model. Information about CpGs associated with gene expression 
using LASSO with CPG model for the discovery and replication phase. 
 
S3.2.3 Excel: Global-LASSO model. Information about SNPs and CpGs associated with gene 
expression using LASSO with Global model for the discovery and replication phase. 
 
S3.2.4 Excel: SNP-ENET model. Information about SNPs associated with gene expression using 
ENET with SNP model for the discovery and replication phase. 
 
S3.2.5 Excel: CPG-ENET model. Information about CpGs associated with gene expression using 
ENET with CPG model for the discovery and replication phase. 
 
S3.2.6 Excel: Global-ENET model. Information about SNPs and CpGs associated with gene 
expression using ENET with Global model for the discovery and replication phase. 
 

S3.2.1-S3.2.6 Excel refer to the accompanying CD  
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Figure S3.2.1: Deviance across the genome when applying LASSO for the SNP model for the simulated data. The number of genes simulated 

are 20,899 for 27 individuals using a multivariate normal distribution (µ = 8.4, σ2 = 0.4). No gene was significantly associated after the 

permutation-based MaxT algorithm. 
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Table S3.2.1: IDs corresponding to the 27 samples from EPICURO data used in this analysis 
 

 
GSE71666 GSE71576 GSE51641 

10090510 10090510 4118698416 

10090910 10090910 4235966055 

10091310 10091310 4235966030 

10091710 10091710 4235966045 

10091910 10091910 4118698575 

10092810 10092810 4235966022 

10093010 10093010 4239166109 

10093110 10093110 4235966295 

10093210 10093210 4118698560 

10093310 10093310 4235966250 

10093410 10093410 4118698403 

10093510 10093510 4239166219 

10093710 10093710 4118698451 

10094010 10094010 4235966024 

10094310 10094310 4239166062 

10094410 10094410 4239166175 

30105412 30105412 4118698428 

30105711 30105711 4118698441 

30106516 30106516 4235966298 

30106619 30106619 4118698433 

30107012 30107012 4235966076 

30107610 30107610 4235966233 

30107713 30107713 4235966253 

30107919 30107919 4118698426 

30108817 30108817 4235966029 

30109911 30109911 4118698434 

30110214 30110214 4118698427 
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Table S3.2.2: IDs corresponding to the 238 samples from the TCGA data used in this analysis 
 

   

A0S7 A0YX A0F0 A0F6 A0YN A0YR A0YO A1HR 

A1A3 A20J A20N A20O A20P A20Q A20T A20U 

A0C8 A13J A1A5 A1A6 A1A7 A1AA A1AB A1AC 

A1AG A1AF A20R A20X A2LA A2LB A27C A2HX 

A2I6 A2PC A3B3 A3B4 A3EE A2EC A2EF A2EJ 

A2EO A2ES A2C5 A2HO A2HQ A2OE A3JX A3JW 

A2LD A3B6 A3IT A3IL A3IN A3B8 A3MF A3MI 

A3B7 A3MH A3IB A3IU A3IS A3IM A2I4 A3IV 

A3B5 A3JM A3JZ A3N6 A3KJ A3PH A3PJ A3PK 

A3OQ A3OS A3JV A3QG A3QH A3QI A3QU A3YL 

A3X1 A3X2 A3X6 A3Y1 A3SJ A3SL A3SM A3SN 

A3SQ A3SR A3SS A3VY A3BM A3OO A3RC A3RD 

A3WS A3WV A0F1 A0F7 A0EZ A42C A3WW A3ZE 

A42R A40E A40G A3Z7 A42F A42E A47T A47S 

A47X A47Y A43N A43P A43S A43U A43X A42P 

A5UA A5W6 A5KE A5KF A5BY A5BZ A5C0 A5C1 

A5RJ A5Z6 A4IJ A4XJ A541 A43Y A5BR A5BS 

A5BV A5BX A3Z9 A4ZW A2OF A5ND A4AC A54R 

A6AV A6AW A6B0 A6B1 A6B2 A6B5 A6B6 A4TZ 

A677 A678 A62N A62O A62P A62S A61P A6I1 

A5RH A6FZ A6MB A66R A6FI A6FN A69X A6DX 

A6MF A7DU A6TF A6TG A6TH A6TI A76B A763 

A72E A7DV A6TA A6TB A6TC A6TD A6TE A6TK 

A41N A41P A41Q A41S A78K A78L A78N A78O 

A20V A1AE A2I2 A2EL A3MG A3NA A3N5 A3OP 

A3SP A3QF A3YS A47W A5U8 A5RI A5BU A5ZZ 

A6C6 A6ME A767 A6ZA A13I A20W A1AD A2I1 

A2EK A3I6 A3IE A3IK A3RB A3WX A3SO A3WC 

A3ZF A47V A42Q A5NE A5BT A51V A4U1 A6I3 

A3IQ A766 A762 A1HS A3WY A519   
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Table S3.2.3: Functional Annotation Clustering from DAVID tool (Enrichment score ≥ 1.3) 

Cluster 1 Enrichment Score: 3.5   

Category Term Count PValue Genes Benjamini 

GOTERM_CC_FAT 
GO:0005576~extracellular 

region 
17 1.05E-05 

OLFM4, CRTAC1, MSMB, IGJ, MMP7, 
IGF2, PIGR, TCN1, CXCL17, FREM2, SAA1, 
REN, IGHD, CRH, PLA2G2A, PTN, CP 

7.79E-04 

SP_PIR_KEYWORDS Secreted 15 1.41E-05 
OLFM4, CRTAC1, MSMB, S100A9, MMP7, 
IGF2, PIGR, TCN1, CXCL17, SAA1, REN, 
IGHD, CRH, PTN, CP 

2.02E-03 

SP_PIR_KEYWORDS signal 20 3.81E-05 

OLFM4, CRTAC1, MSMB, IGJ, MMP7, 
IGF2, PIGR, TCN1, CXCL17, SAA1, FREM2, 
REN, CRH, CTSE, CEACAM7, PLA2G2A, 
PTN, CEACAM6, CEACAM5, CP 

2.72E-03 

UP_SEQ_FEATURE signal peptide 20 4.17E-05 

OLFM4, CRTAC1, MSMB, IGJ, MMP7, 
IGF2, PIGR, TCN1, CXCL17, SAA1, FREM2, 
REN, CRH, CTSE, CEACAM7, PLA2G2A, 
PTN, CEACAM6, CEACAM5, CP 

8.55E-03 

GOTERM_CC_FAT 
GO:0044421~extracellular 

region part 
11 1.02E-04 OLFM4, CRTAC1, SAA1, FREM2, MSMB, 

REN, MMP7, PLA2G2A, PTN, IGF2, CP 
3.78E-03 

GOTERM_CC_FAT 
GO:0005615~extracellular 

space 
9 2.74E-04 OLFM4, SAA1, MSMB, REN, MMP7, 

PLA2G2A, PTN, IGF2, CP 
6.74E-03 

UP_SEQ_FEATURE disulfide bond 16 1.08E-03 
OLFM4, CRTAC1, MSMB, IGJ, IGF2, PIGR, 
TCN1, CXCL17, REN, IGHD, CTSE, 
CEACAM7, PLA2G2A, PTN, CEACAM6, CP 

1.05E-01 
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SP_PIR_KEYWORDS disulfide bond 16 1.48E-03 
OLFM4, CRTAC1, MSMB, IGJ, IGF2, PIGR, 
TCN1, CXCL17, REN, IGHD, CTSE, 
CEACAM7, PLA2G2A, PTN, CEACAM6, CP 

6.81E-02 

SP_PIR_KEYWORDS glycoprotein 19 4.63E-03 

SLC38A4, OLFM4, CRTAC1, IGJ, KRT13, 
IGF2, TSPAN8, PIGR, TCN1, FREM2, REN, 
IGHD, CTSE, CEACAM7, CEACAM6, 
CEACAM5, SERPINB4, SERPINB3, CP 

1.24E-01 

UP_SEQ_FEATURE 
glycosylation site:N-linked 

(GlcNAc...) 
14 1.37E-01 

SLC38A4, OLFM4, IGJ, TSPAN8, PIGR, 
TCN1, FREM2, REN, IGHD, CTSE, 
CEACAM7, CEACAM6, CEACAM5, CP 

9.20E-01 

Cluster 2 Enrichment Score: 1.8   

Category Term Count PValue Genes Benjamini 

GOTERM_BP_FAT 

GO:0032101~regulation of 

response to external stimulus 4 5.63E-03 
SAA1, PLA2G2A, TSPAN8, IGF2 

7.77E-01 

GOTERM_BP_FAT 

GO:0050727~regulation of 

inflammatory response 3 1.30E-02 
SAA1, PLA2G2A, IGF2 

7.52E-01 

GOTERM_BP_FAT 

GO:0006952~defense 

response 5 5.03E-02 
SAA1, S100A9, CRH, PLA2G2A, IGF2 

8.40E-01 

Cluster 3 Enrichment Score: 1.7   

Category Term Count PValue Genes Benjamini 
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GOTERM_BP_FAT 
GO:0050708~regulation of 

protein secretion 
3 7.76E-03 SAA1, IGF2, KRT20 7.49E-01 

GOTERM_BP_FAT 
GO:0051046~regulation of 

secretion 
4 1.08E-02 SAA1, CRH, IGF2, KRT20 7.65E-01 

GOTERM_BP_FAT 
GO:0060341~regulation of 

cellular localization 
4 1.87E-02 SAA1, CRH, IGF2, KRT20 8.13E-01 

GOTERM_BP_FAT 
GO:0051223~regulation of 

protein transport 
3 2.79E-02 SAA1, IGF2, KRT20 7.78E-01 

GOTERM_BP_FAT 

GO:0070201~regulation of 

establishment of protein 

localization 

3 3.12E-02 SAA1, IGF2, KRT20 7.84E-01 

GOTERM_BP_FAT 
GO:0032880~regulation of 

protein localization 
3 3.96E-02 SAA1, IGF2, KRT20 8.09E-01 

Cluster 4 Enrichment Score: 1.5  

Category Term Count PValue Genes Benjamini 

GOTERM_BP_FAT GO:0007610~behavior 6 3.95E-03 CXCL17, SAA1, REN, S100A9, CRH, PTN 8.78E-01 

GOTERM_BP_FAT GO:0006935~chemotaxis 3 5.17E-02 CXCL17, SAA1, S100A9 8.29E-01 
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GOTERM_BP_FAT GO:0042330~taxis 3 5.17E-02 CXCL17, SAA1, S100A9 8.29E-01 

GOTERM_BP_FAT 
GO:0007626~locomotory 

behavior 
3 1.30E-01 CXCL17, SAA1, S100A9 9.48E-01 

Cluster 5 Enrichment Score: 1.4  

Category Term Count PValue Genes Benjamini 

UP_SEQ_FEATURE region of interest:Coil 2 3 9.54E-03 KRT5, KRT13, KRT20 4.82E-01 

UP_SEQ_FEATURE region of interest:Linker 12 3 9.54E-03 KRT5, KRT13, KRT20 4.82E-01 

UP_SEQ_FEATURE region of interest:Coil 1B 3 1.13E-02 KRT5, KRT13, KRT20 4.44E-01 

UP_SEQ_FEATURE region of interest:Coil 1A 3 1.13E-02 KRT5, KRT13, KRT20 4.44E-01 

UP_SEQ_FEATURE region of interest:Linker 1 3 1.13E-02 KRT5, KRT13, KRT20 4.44E-01 

UP_SEQ_FEATURE region of interest:Rod 3 1.16E-02 KRT5, KRT13, KRT20 3.83E-01 

UP_SEQ_FEATURE region of interest:Head 3 1.23E-02 KRT5, KRT13, KRT20 3.46E-01 

UP_SEQ_FEATURE region of interest:Tail 3 1.29E-02 KRT5, KRT13, KRT20 3.18E-01 

SP_PIR_KEYWORDS Intermediate filament 3 1.38E-02 KRT5, KRT13, KRT20 2.46E-01 

INTERPRO 

IPR018039:Intermediate 

filament protein, conserved 

site 

3 1.42E-02 KRT5, KRT13, KRT20 2.85E-01 
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INTERPRO IPR016044:Filament 3 1.42E-02 KRT5, KRT13, KRT20 2.85E-01 

INTERPRO 
IPR001664:Intermediate 

filament protein 
3 1.46E-02 KRT5, KRT13, KRT20 2.41E-01 

PIR_SUPERFAMILY 
PIRSF002282:cytoskeletal 

keratin 
3 1.78E-02 KRT5, KRT13, KRT20 3.84E-01 

SP_PIR_KEYWORDS keratin 3 4.29E-02 KRT5, KRT13, KRT20 4.66E-01 

GOTERM_CC_FAT 
GO:0005882~intermediate 

filament 
3 8.06E-02 KRT5, KRT13, KRT20 7.12E-01 

GOTERM_CC_FAT 
GO:0045111~intermediate 

filament cytoskeleton 
3 8.37E-02 KRT5, KRT13, KRT20 6.60E-01 

GOTERM_MF_FAT 
GO:0005198~structural 

molecule activity 
4 1.79E-01 KRT5, MYBPC1, KRT13, KRT20 9.94E-01 

GOTERM_CC_FAT GO:0044430~cytoskeletal part 5 2.29E-01 TNNT3, KRT5, MYBPC1, KRT13, KRT20 8.82E-01 

GOTERM_CC_FAT GO:0005856~cytoskeleton 5 4.84E-01 TNNT3, KRT5, MYBPC1, KRT13, KRT20 9.93E-01 

SP_PIR_KEYWORDS coiled coil 5 6.92E-01 OLFM4, KRT5, TRIM31, KRT13, KRT20 9.99E-01 
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GOTERM_CC_FAT 
GO:0043232~intracellular non-

membrane-bounded organelle 
6 8.29E-01 TNNT3, KRT5, MYBPC1, S100A9, KRT13, 

KRT20 
1.00E+00 

GOTERM_CC_FAT 
GO:0043228~non-membrane-

bounded organelle 
6 8.29E-01 TNNT3, KRT5, MYBPC1, S100A9, KRT13, 

KRT20 
1.00E+00 

Cluster 6 Enrichment Score: 1.3   

Category Term Count PValue Genes Benjamini 

GOTERM_BP_FAT 
GO:0051046~regulation of 

secretion 
4 1.08E-02 SAA1, CRH, IGF2, KRT20 7.65E-01 

GOTERM_BP_FAT 
GO:0060341~regulation of 

cellular localization 
4 1.87E-02 SAA1, CRH, IGF2, KRT20 8.13E-01 

GOTERM_BP_FAT 

GO:0048585~negative 

regulation of response to 

stimulus 

3 2.19E-02 SAA1, CRH, IGF2 8.14E-01 

GOTERM_BP_FAT 
GO:0051047~positive 

regulation of secretion 
3 2.57E-02 SAA1, CRH, IGF2 7.85E-01 

GOTERM_BP_FAT 
GO:0006954~inflammatory 

response 
4 3.76E-02 SAA1, S100A9, CRH, IGF2 8.17E-01 
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GOTERM_BP_FAT 
GO:0006952~defense 

response 
5 5.03E-02 SAA1, S100A9, CRH, PLA2G2A, IGF2 8.40E-01 

GOTERM_BP_FAT 
GO:0051050~positive 

regulation of transport 
3 9.21E-02 SAA1, CRH, IGF2 9.24E-01 

GOTERM_BP_FAT 

GO:0051240~positive 

regulation of multicellular 

organismal process 

3 1.07E-01 SAA1, CRH, IGF2 9.27E-01 

GOTERM_BP_FAT 
GO:0009611~response to 

wounding 
4 1.20E-01 SAA1, S100A9, CRH, IGF2 9.41E-01 

GOTERM_BP_FAT GO:0007267~cell-cell signaling 4 1.57E-01 S100A9, CRH, CEACAM6, IGF2 9.61E-01 

Cluster 7 Enrichment Score: 1.3  

Category Term Count PValue Genes Benjamini 

GOTERM_MF_FAT 
GO:0005509~calcium ion 

binding 
8 4.19E-03 CAPNS2, ANXA10, CRTAC1, FREM2, 

S100A9, MMP7, PLA2G2A, S100A2 
3.57E-01 

SP_PIR_KEYWORDS calcium 6 3.55E-02 CAPNS2, FREM2, S100A9, MMP7, 
PLA2G2A, S100A2 

4.37E-01 

UP_SEQ_FEATURE domain:EF-hand 1 3 6.58E-02 CAPNS2, S100A9, S100A2 7.89E-01 

UP_SEQ_FEATURE domain:EF-hand 2 3 6.58E-02 CAPNS2, S100A9, S100A2 7.89E-01 
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INTERPRO IPR018249:EF-HAND 2 3 1.02E-01 CAPNS2, S100A9, S100A2 6.75E-01 

INTERPRO IPR018247:EF-HAND 1 3 1.04E-01 CAPNS2, S100A9, S100A2 6.43E-01 

INTERPRO IPR011992:EF-Hand type 3 1.19E-01 CAPNS2, S100A9, S100A2 6.62E-01 
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Table S3.2.4: Comparison of the deviance, p-value and SNPs and/or CpGs detected by each 
model between LASSO and ENET methods 

  LASSO ENET 

 
GENE Dev. p.value 

markers 
detected 

Dev. P.value 
markers 
detecte
d 

SN
P

 m
o

d
el

 

AIM2 55.8 0.1 6 91.8 0.13 18 

CRTAC1 66.2 0.03 18 72.8 0.24 23 

SCNN1A 57.9 0.08 26 54.1 0.55 47 

CLIC6 75.3 0.01 30 75.3 0.17 104 

GSTT1 40.4 0.07 16 43.8 0.9 24 

ANXA10 0 - - 137.0 0.01 17 

MSMB 4.0 1 3 91.8 0.07 78 

MMP7 0 - - 94.8 0.06 19 

TCN1 16.3 0.88 1 88.9 0.07 122 

IGF2 10.5 0.98 1 101.6 0.05 55 

GTSF1 50.4 0.23 2 109.6 0.05 19 

IGLJ3 0 - - 97.7 0.05 182 

C
P

G
 m

o
d

el
 

S100A9 52.5 0.08 10 74.6 0.53 42 

S100A2 58.7 0.04 27 58.7 0.66 56 

CRTAC1 60.9 0.1 12 62.3 0.55 12 

SAA1 
127.

8 
0.04 21 102.7 0.31 35 

MYBPC1 74.5 0.08 26 74.5 0.55 34 

SLC38A4 51.7 0.08 16 56.0 0.74 21 

GTSF1 46.7 0.1 3 82.2 0.28 9 

TSPAN8 67.2 0.05 9 69.3 0.55 9 
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FREM2 70.2 0.06 16 76.0 0.52 27 

C15orf48 83.7 0.05 25 42.7 0.23 9 

CAPNS2 54.9 0.07 9 66.5 0.48 21 

KRT20 93.7 <0.01 26 93.7 0.11 53 

SERPINB4 68.5 0.03 4 94.0 0.12 18 

CXCL17 46.8 0.1 8 45.5 0.24 7 

CLIC6 75.3 0.07 27 75.3 0.51 31 

TMEM45A 57.3 0.08 13 66.2 0.48 61 

IGJ 59.0 0.09 5 174.6 1 32 

UBD 75.0 0.07 11 75.5 0.51 11 

ARHGEF35 49.6 0.09 9 51.9 0.8 14 

CRH 56.7 0.1 4 60.1 0.59 5 

TRIM31 47.1 0.1 27 40.6 0.32 55 

MMP7 0 - - 99.4 0.08 64 

G
lo

b
al

 m
o

d
el

 

S100A9    
53.6

6 
0.03 11 46.06 0.59 8 

CTSE    60.7 0.06 12 70.12 0.23 17 

PLA2G2A    71.4 0.01 10 66.78 0.26 32 

HMGCS2    53.3 0.02 8 58.21 0.18 10 

AIM2    61.5 0.06 8 
104.8

8 
0.12 24 

PIGR    75.8 <0.01 21 75.48 0.12 21 

TNNT3   44.9 0.09 26 36.19 0.82 59 

SCNN1A   58.8 0.03 29 58.76 0.18 31 

KRT5   58.2 0.02 25 58.14 0.18 31 
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FREM2   46.0 0.08 2 48.24 0.45 2 

OLFM4   60.0 0.06 10 61.90 0.16 11 

C15orf48   49.9 0.02 7 48.80 0.41 6 

KRT20   48.4 0.05 3 39.50 0.74 1 

KRT13   53.6 0.02 8 54.01 0.25 8 

CEACAM7   76.0 <0.01 19 77.40 0.16 32 

CLIC6   45.1 0.09 4 47.35 0.50 6 

CP    51.1 0.02 3 47.98 0.47 3 

IGJ    58.4 0.03 2 94.72 0.17 16 

CRABP2    9.78 0.99 2 65.2 0.09 26 

REN    0 - 0 84.3 0.03 22 

IGF2   
89.0

1 
0.17 11 92.1 0.04 15 

CEACAM5   
90.8

5 
0.19 22 92.1 0.06 26 

NLRP2   
14.2

6 
0.93 2 84.2 0.04 34 
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Table S3.2.5: Comparison of genes selected by each model (SNP, CpG and Global model) using LASSO 

 Global model SNP model CPG model 

GENE Dev P SNPs CPGs Dev P 
SNPs 

(common) 
Dev P 

CPGs 
(common) 

GSTM1 79.9 0.03 12 5 0.0 - 0  0.0 - 0 

TMEM45A 57.3 0.01 12 1 53.1 0.23 14 (11)  1.2 1.0 1 (1) 

ANXA10 153.3 0.01 22 0 0.0 - 0 0.0 - 0 

ALDH7A1 41.1 0.05 6 0 41.1 0.36 6 (6) 6.2 1.0 1 (0) 

UBD 53.7 0.04 2 4 3.1 1.0 1 (1) 91.0 0.22 13 (4) 

PTN 81.6 0.04 14 0 79.3 0.04 12 (12) 0.0 - 0 

IGF2 77.95 0.02 8 2 31.3 0.21 4 (3) 92.3 0.23 13 (2) 

SLC38A4 57.8 0.01 18 2 0.0 - 0 13.3 0.94 3 (2) 

SERPINB4 78.0 0.02 6 0 91.7 <0.01 13 (6) 17.0 0.90 1 (0) 

SERPINB3 142.3 0 1 0 171.6 0.80 29 (11) 25.2 0.46 1 (0) 

CEACAM5 88.9 0.02 13 5 0.0 - 0 (0) 77.6 0.05 16 (5) 

AIM2 10.7 0.95 1 (1) 0 107.5 0.02 24    

FCGR3A 54.5 0.55 23 (14) 4 45.1 0.04 24    

AGMO 51.4 0.06 18 (18) 0 45.2 0.04 13    
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PTN 81.6 0.04 14 (11) 0 79.3 0.04 12    

ARHGEF35 48.4 0.10 7 (5) 1 40.5 0.05 5    

SAA2 16.8 0.72 5 (3) 1 69.3 0.04 13    

IGHD 66.9 0.11 9 (9) 2 71.7 0.01 10    

SERPINB4 78.0 0.02 6 (6) 0 91.7 0 13    

CEACAM6 14.7 1.0 0 1 70.4 0.02 9    

CLIC6 75.3 0.09 25 (14) 2 73.0 0.02 21    

PLA2G2A 88.6 0.77 24 6 (6)    72.9 0.04 12 

HMGCS2 0.0 - 0 0    58.7 0.04 10 

S100A8 63.1 0.10 3 4 (3)    55.1 0.04 4 

AIM2 10.7 0.95 1 0    70.3 0.04 10 

PIGR 0.0 - 0 0    65.0 0.04 9 

IGJ 59.0 0.16 3 2 (2)    70.8 0.05 4 

BHMT 0 - 0 0    49.4 0.05 9 

LCN2 70.7 0.08 11 6 (5)    49.7 0.05 6 

MSMB 0.0 - 0 0    77.3 0.02 8 
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TCN1 21.7 0.87 1 1 (1)    55.1 0.04 8 

KRT5 12.3 0.98 0 1 (1)    58.2 0.04 25 

CAPNS2 62.7 0.08 15 1 (1)    50.7 0.04 7 

KRT13 63.3 0.09 8 4 (4)    52.3 0.04 7 

C3 42.1 0.19 10 4 (3)    629 0.04 21 

CEACAM7 44.7 0.28 2 3 (2)    77.5 0.02 25 

CEACAM5 88.9 0.02 13 5 (5)    77.6 0.05 16 

NLRP2 0.0 - 0 0    73.1 0.05 16 
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S3.3.1 Excel: Genes and associated eQTLs from model 1, 2 and 3. 
 
S3.3.1 Excel refer to the accompanying CD  
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on the omics integration analysis, where DNA methylation af-
fects gene expression and genetic variants co-regulate gene 
expression and DNA methylation. We identified several three-
way trans-association ‘hotspots’ that are found at the molecu-
lar level and that deserve further studies.  Conclusions:  The 
proposed integrative framework allowed us to identify rela-
tionships at the whole-genome level providing some new bi-
ological insights and highlighting the importance of integrat-
ing omics data.  © 2015 S. Karger AG, Basel 

 Introduction 

 Many data in the molecular field (‘omics’ data) are be-
ing generated at an unprecedented pace, this including 
genome, methylome, transcriptome, and microbiome, 
among others. There is a growing interest in combining 

 Key Words 

 Bladder cancer · ‘Omics’ · Integration · Genomics · 
Epigenomics · Transcriptomics 

 Abstract 

  Objectives:  Different types of ‘omics’ data are becoming 
available in the post-genome era; still a single omics assess-
ment provides limited insights to understand the biological 
mechanism of complex diseases. Genomics, epigenomics 
and transcriptomics data provide insight into the molecular 
dysregulation of neoplastic diseases, among them urothelial 
bladder cancer (UBC). Here, we propose a detailed analytical 
framework necessary to achieve an adequate integration of 
the three sets of omics data to ultimately identify previously 
hidden genetic mechanisms in UBC.  Methods:  We built a 
multi-staged framework to study possible pair-wise combina-
tions and integrated the data in three-way relationships. SNP 
genotypes, CpG methylation levels and gene expression lev-
els were determined for a total of 70 individuals with UBC and 
with fresh tumour tissue available.  Results:  We suggest two 
main hypothesis-based scenarios for gene regulation based 

 Published online: July 28, 2015 
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the different types of omics data sets that are becoming 
available, since a single omics assessment provides lim-
ited insights into the understanding of the underlying bi-
ological mechanisms of a physiological/pathological con-
dition. For example, even when many genome-wide as-
sociation studies (GWAS) have identified several SNPs 
involved in complex diseases, the functional implications 
of the susceptibility loci are still poorly understood, and 
they only partially account for the phenotype variability. 
Combining different omics data types seems to be a more 
suitable approach, as it will likely reveal previously hid-
den information. 

  The simplest form of data integration involves the 
combination of two different data types, common exam-
ples being genetic variants and gene expression or, more 
recently, genetic variants and DNA methylation  [1] . DNA 
methylation involves the addition of a methyl group to 
the 5 ′  position of the cytosine at a CpG site. Genomic re-
gions with a high density of CpG dinucleotides are de-
nominated CpG islands; they are often located in gene 
promoters and have important roles in gene regulation. 
CpG sites located up to 2 kb from the island’s boundaries 
are called CpG shores, and it has been demonstrated that 
they are also very important for gene regulation and that 
they are implicated in cancer  [2] . Both CpG islands and 
shores, when hypermethylated and located in the pro-
moter region of a gene, negatively regulate gene repres-
sion  [3] . Therefore, it is important to take the relationship 
between DNA methylation and gene regulation into ac-
count in order to better understand complex diseases  [4] . 
For example, it has been shown that hypermethylation of 
CpGs located in the promoter region of some tumour 
suppressor genes ( INK4A ,  Rb ,  VHL ,  hMLH1 , or  BRCA1 , 
etc.) contribute to cancer development  [5] . Therefore, an-
alyzing gene expression data without considering epi-
genetics provides an incomplete genomic explanation of 
the transcriptome. Moreover, as DNA methylation regu-
lates gene expression, genetic variants affecting CpG sites 
might, in turn, affect gene expression, too. It is well known 
that genetic variants can alter gene expression levels and 
hence the importance of connecting the DNA sequence 
to the RNA level. The identification of these expression 
quantitative trait locus (eQTL) relationships may help to 
identify regulators of gene expression  [6] . These eQTLs 
have been extensively studied to find associations be-
tween common genetic variants and gene expression lev-
els  [7–11] . By contrast, the study of potential associations 
between common variants, DNA methylation levels 
(methylation QTLs or methQTLs) and gene expression 
has generated less interest so far  [1, 12–15] . 

  Genome, transcriptome, and methylome data offer 
unique opportunities when combined in the same analy-
ses. This strategy has been applied to HapMap cell lines 
 [14] , whole blood from healthy human subjects  [16]  and 
human monocytes  [17] . Furthermore, some studies have 
combined these types of data to better understand com-
plex diseases such as breast cancer  [18]  or type 2 diabetes 
 [19] . As DNA methylation is tissue-specific, these analy-
ses have also been applied to different types of tissues such 
as the human brain  [12]  or adipose tissue  [15] . It is worth 
noting that the majority of these studies have only as-
sessed  cis- relationships, but  trans- effects deserve further 
study within the omics context, especially as the complex 
organization of chromatin in the nucleus is better under-
stood. 

  In the present study, we built and propose a multi-
staged analytical framework to integrate omics data. We 
tested it on an urothelial bladder cancer (UBC) model us-
ing common genetic variants, DNA methylation and 
gene expression transcripts data from 70 cancer patients. 
We prove the ability of the framework to identify some 
multi-omics relationships that provide further knowl-
edge to better understand the biological mechanisms un-
derlying the disease.

  Material and Methods 

 Study Subjects 
 SNP genotypes, CpG methylation levels and gene expression 

levels were measured for a total of 70 individuals with fresh tumour 
tissue available who were recruited as part of the pilot phase of the 
EPICURO study. All of them were histologically confirmed UBC 
cases recruited at 2 hospitals in Spain during 1997–1998. Tumour 
DNA and RNA were extracted and used for omics assessment. 
SNP data were available for 46 patients, CpG methylation for 46 
patients and gene expression for 43. The overlapping of patients 
between the three omics was 31 for the expression-methylation 
relationship, 27 for the eQTL and 46 for the methQTL studies. 

  SNP Genotype Data 
 Genotyping was performed using Illumina HumanHap 1M ar-

ray in tumour samples. A total of 1,047,101 SNPs were genotyped 
in 46 individuals. For genotype calling, we used the cluster file ob-
tained when the same array was applied to germline DNA from 
2,424 subjects included in the main EPICURO study. We consid-
ered SNPs with <5% of missing values and with a minor allele fre-
quency (MAF) of  ≥ 0.01. Standard quality control (QC) was per-
formed using BeadStudio and R. From BeadStudio, the genotypes 
AA, Aa and aa were obtained in forward strand for those samples 
having a call rate of >90%. 

  DNA Methylation Data 
 After bisulphite modification of 46 tumour DNA samples using 

EZ-96 DNA Methylation-Gold kit (Zymo Research, Irvin, Calif., 
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USA), CpG methylation data were generated using the Infinium 
Human Methylation 27 BeadChip Kit that detected the CpG sites 
with two probes, one designed against the unmethylated site (sig-
nal U) and the other against the methylated site (signal M). The 
level of methylation was determined at each locus by the intensity 
of the two possible fluorescent signals  [20] . At each CpG site, the 
methylation levels were measured with the β value, defined as:

max , 0
.

max , 0 max , 0 100

M

U M
�  

  The maximum between signal intensity and 0 is used for the 
calculation of β to avoid the negative numbers caused by back-
ground subtractions. Consequently, the β values rank between 0 
(unmethylated) and 1 (methylated). The constant 100 was used to 
regularize the β values when they were very small. Although the β 
values are useful under some circumstances, it has been demon-
strated that the M values are statistically more valid than the β val-
ues due to a better approximation of the homocedasticity  [21] . 
This property is important when applying regression models that 
require this assumption. The M value is calculated as follows: 

2

max , 0 1
log .

max , 0 1

M
M

U
 

  It ranges between – ∞  (unmethylated) and + ∞  (methylated). In 
our study, the M values were used when applying linear regression 
models, while the β values were used in the rest of the analyses.  

 The initial number of CpGs in the studied array was 27,578. We 
then applied BeadStudio software and R to pre-process the data. 
Background normalization was performed minimizing the amount 
of variation in the background signals between arrays and, as rec-
ommended by Illumina, CpGs were rejected when their detection 
p value was >0.05. β values <0 or >1 were also excluded. CpGs with 
SNPs (n = 908) or cross-reactive probes (n = 2,985) were deleted 
based on earlier reports for the 27K array  [22] . After QC, a total of 
23,034 CpGs were kept for analysis. These were classified into 3 
categories for subsequent analyses: CpG islands (located in the 
promoter region of a gene), CpG shores (in a sequence up to 2 kb 
from an island) and CpGs outside of an island or a shore.

  Gene Expression Data 
 Gene expression data were obtained from 43 tumour samples 

using the Affymetrix DNA Microarray Human Gene 1.0 ST Array 
with 32,321 probes. This array was based on the 2006 (UCSC hg18, 
NCBI build 36) human genome sequence with coverage of RefSeq, 
Ensembl and putative complete CDS GenBank transcripts (www.
affymetrix.com). QC was performed using Bioconductor libraries 
in R (www.bioconductor.org/). The arrayQualityMetrics package 
 [23]  was used to implement a background correction and to carry 
out normalization of expression levels across arrays. The applica-
tion of QC steps resulted in 20,899 probes and 37 individuals. The 
affy library in R  [24]  was used to annotate the probes.

  Statistical Analysis 
 First, tumoural DNA methylation levels in CpG sites and gene 

expression levels were compared using Spearman’s rank correla-
tion for non-normally distributed variables. Second, we assessed 
the eQTLs and methQTLs, via linear regression modelling for 
those expression-methylation pair probes that were strongly asso-

ciated in the previous step. To perform these analyses, we obtained 
a linear regression model for each SNP as:

   Gene expression  i  =  α  +  β  ×  SNP  i 
   Methylation CpG  i  =  α  +  γ  ×  SNP  i .

  Prior to analysis, we excluded those SNPs that had <2 individuals 
per genotype due to the imbalance that may produce a highly dif-
ferential gene expression values, i.e. an individual with rare homo-
zygous genotype and with an extreme gene expression value could 
produce an artificially highly significant p value.  

 Expression-methylation probe pairs and eQTLs and methQTLs 
were classified into three categories according to possible genom-
ic distance effects:  cis- acting,   if the probes were located within 1 
Mb;  trans- acting, if the probes were on the same chromosome but 
located more than 1 Mb apart, and  trans- acting - outside,   if they 
were on different chromosomes. To control the analyses for mul-
tiple testing, we applied Benjamini and Yekutieli’s  [25]  FDR meth-
od that allows for panel dependencies between tests. We applied 
this correction, taking the number of tests performed in the eQTL 
and the methQTL study independently into account. Finally, we 
checked the regions of the trait-associated SNPs already published 
for UBC.

  Third, in line with the study, we integrated the results obtained 
from pair-wise analyses on genome, epigenome and trascriptome 
data. We checked the SNPs that were common in the eQTL and 
methQTL analysis based on those probes-CpGs that were previ-
ously correlated in order to have a complete view of the genome in 
individuals with UBC. We obtained the distribution of the triplets 
(SNP-CpG-gene expression) that were significantly associated in 
the same relationship. 

  Statistical analyses were performed with R, and the results were 
visualized with Circos software  [26] . 

  Results 

 The majority of the individuals included in our study 
were male (93%) and current (50%) or former (36%) 
smokers. According to established criteria based on tu-
mour stage and grade for UBC, the individuals were clas-
sified as having low-risk non-muscle-invasive tumours 
(45%), high-risk non-muscle-invasive tumours (22%) or 
muscle-invasive tumours (29%) ( table 1 ).

  The description of the study results is organized in 
four sections following the framework steps proposed 
( fig. 1 ): (1) description of the patterns of individual omics 
data, globally and according to epidemiological data; (2) 
correlation analysis between methylation and expression 
probes; (3) identification of  cis-  and  trans- eQTLs and 
methQTLs, and (4) integration of results derived from the 
previous pair-wise analysis.

  Patterns of Individual Omics Data 
  Table 2  shows the distribution of the genotypes accord-

ing to their MAF; 14% had a MAF of 0 and were excluded 
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from the analysis, 11% had a MAF of (0.01–0.05], 30% had 
a MAF of (0.05–0.2], and 31% had a MAF of (0.2–0.4]. 
Missing values of <5% were observed in 84% of the SNPs. 

  The patterns for DNA methylation according to the β 
and M values were different for autosomal chromosomes 
and X-chromosomes in females due to the X-chromo-

some inactivation in females. The majority (71%) of CpGs 
in autosomal chromosomes were unmethylated (β < 0.3), 
while, as expected, the majority of the CpGs (66%) in the 
X-chromosomes showed β values in the range of 0.3  ≤  
β < 0.7. While the M values for autosomal chromosomes 
displayed a bimodal distribution, the X-chromosomes ap-

  Fig. 1.  Framework for data integration showing the steps to inte-
grate genetic variants, DNA methylation levels and gene expres-
sion levels. Step 1 corresponds to the pre-processed data, QC and 
global patterns individually per data set. Steps 2, 3 and 4 include 

square boxes corresponding to the analyses performed and the in-
put data and oval boxes corresponding to the results and the input 
for the next step. 
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proximated a normal distribution (online suppl. fig. 1; see 
www.karger.com/doi/10.1159/000381184 for all online 
suppl. material). No significant different methylation pat-
terns were found according to the clinical/epidemiologi-
cal data considered, i.e. smoking status, tumour stage, age, 
and sex (Pearson’s χ 2  test, data not shown). 

  The expression of the gene probes after background 
correction and normalization followed a normal distribu-
tion (online suppl. fig. 2). We did not find any significant 
difference according to the clinical/epidemiological data 
by applying Student’s t test (data not shown).

  Correlation between Gene Expression and DNA 
Methylation 
 While it is well established that DNA methylation may 

affect the expression of a gene, mainly in a  cis -relation-
ship, little is known about  trans -relationships .  We inves-
tigated a total of 481,387,566 possible correlations be-
tween gene expression and methylation both in  cis-  and 
in  trans -relationships. The number of comparisons per-
formed was based on data derived from 31 individuals 
( table 3 ). We obtained 19,335 strong negative (ρ < –0.7) 
and 88,503   strong positive (ρ > 0.7) associations between 
gene expression and methylation, corresponding to 7,359 
expression traits and 9,537 CpG sites. The distribution of 
the stronger relationships according to the CpG location 
and direction is shown in  table 4 : 5,414 (28%) were lo-
cated in CpG islands, 1,690 (59%) in CpG shores and 
2,433 (57%) outside of CpG islands or shores. There were 

 Table 2.  Summary of SNPs genotyped

Total number 1,047,101
MAF

[0.0] 150,548 (14%)
(0.0 – 0.01] 0 (0)
(0.01 – 0.05] 108,496 (11%)
(0.05 – 0.2] 312,220 (30%)
(0.2 – 0.4] 327,762 (31%)
(0.4 – 1.0] 148,075 (14%)

Missing values
No values missing 488,288 (47%)
5% missing values 400,918 (38%)
20% missing values 147,732 (14%)
>20% missing values 10,163 (1%)

 MAF = [0.0] means that the individual is common homozy-
gous for the measured SNP.

 Table 3.  Strength of correlations between gene expression and 
DNA methylation

Spearman’s rho Strength of correlation Combinations, n

(–0.9 to –1.0] very strong negative 0
(–0.7 to –0.9] strong negative 19,335
(–0.4 to –0.7] moderate negative 9,266,544
(–0.0 to –0.4] weak negative 238,601,864
[0.0] no correlation 380,834
(0.0 to 0.4] weak positive 223,165,638
(0.4 to 0.7] moderate positive 9,864,848
(0.7 to 0.9] strong positive 88,503
(0.9 to 1.0] very strong positive 0

 Table 4.  Strong correlation for cis-acting and trans-relationships 
between CpG methylation and gene expression

Correlation, n (%)
negative positive

Cis-acting 
(same gene)

CpG island/shore 37 (80) 9 (20)
CpG outside 3 (37) 5 (63)

Cis-acting 
(different gene)

CpG island/shore 41 (26) 116 (74)
CpG outside 11 (21) 41 (79)

Trans-acting CpG island/shoe 757 (17) 3,736 (83)
CpG outside 412 (24) 1,272 (76)

Trans-acting-out-
side chromosome

CpG island/shore 11,860 (16) 63,054 (84)
CpG outside 6,214 (23) 20,270 (76)

 Table 1.  Characteristics of the studied patients

Total 72
Gender

Male 67 (93%)
Female 5 (7%)

Age, years
Mean ± SD 65.6 ± 9.5
Min.–max. 41 – 80

Region
Barcelona 31 (43%)
Elche 41 (57%)

Smoking status
Non-smokers 8 (11%)
Current smokers 36 (50%)
Former smokers 26 (36%)
Unknown 2 (3%)

Tumor stage
Low-grade non-muscle-invasive UBC 32 (45%)
High-grade non-muscle-invasive UBC 16 (22%)
Muscle-invasive UBC 21 (29%)
Unknown 3 (4%)
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263 (0.03%)  cis- acting correlations, 6,177 (0.02%)  trans -
acting correlations within the same chromosome and 
101,398 (0.02%)  trans- acting outside the chromosome 
( trans-out  correlations). A whole list of CpGs with sig-
nificant  cis-  association with a gene can be found in online 
supplementary table 1. 

  Identification of cis- and trans-eQTLs and methQTLs 
 In order to detect genetic variants affecting gene ex-

pression or DNA methylation, we investigated a total of 
7,359 expression traits and 9,537 CpG sites that were 
strongly correlated in the previous step. The number 
of SNPs considered here after QC was 429,892 for the 
eQTL and 492,189 for the methQTL analyses, resulting in 
a total of 3,163,575,228 eQTLs in 27 individuals and 
4,694,006,493 methQTLs explored in 46 individuals. Af-
ter correction for multiple testing (FDR <0.05), we ob-
tained 471,818 significant eQTLs involving 154,203 SNPs, 

and 643,095 methQTLs involving 148,528 SNPs. These 
results point to the fact that multiple expression probes 
and CpGs were significantly associated with more than 
one SNP. We refer to this phenomenon as ‘hotspots’ (on-
line suppl. fig. 3). 

  We show the distribution of QTLs classified by genom-
ic distance and MAF of the relationship for eQTLs in  ta-
ble 5  and for methQTLs in  table 6 . When classifying the 
QTLs by genomic distance, we observed 441  cis- eQTLs 
(0.02%), 23,685  trans- eQTLs (0.01%) and 447,692  trans-
out -eQTLs (0.01%); 538  cis- methQTLs (0.01%), 29,938 
 trans- methQTLs (0.01%), and 612,619  trans-out -
methQTLs (0.01%). When classifying the QTLs in terms 
of MAF, the majority had a MAF of  ≤ 0.2 (0.006%), while 
0.003 and 0.002% had MAFs of (0.2–0.4] and  ≥ 0.4, respec-
tively. Detailed information regarding the  cis- relationship 
is provided in online supplementary tables 2 and 3. 

 Table 6.  Significant (FDR <0.05) cis-methQTLs and trans-methQTLs by MAF and sign of the association

MAF Sign cis-methQTL,
n (%)

trans-methQTL,
n (%)

trans-out-methQTL,
n (%)

(0.01 – 0.2] Positive 137 (0.004) 8,576 (0.004) 190,221 (0.004)
Negative 61 (0.002) 3,554 (0.002) 72,611 (0.002)

(0.2 – 0.4] Positive 118 (0.003) 6,864 (0.003) 139,830 (0.003)
Negative 139 (0.004) 5,230 (0.002) 98,068 (0.002)

>0.4 Positive 39 (0.001) 3,090 (0.001) 57,476 (0.001)
Negative 44 (0.001) 2,624 (0.001) 54,413 (0.001)

 Values in parentheses are percentages of significant methQTLs after multiple testing correction over the total 
number of cis- (3,499,636), trans- (224,328,090) and trans-out- (4,466,178,767) methQTLs.

 Table 5.  Significant (FDR <0.05) cis-eQTLs and trans-eQTLs by MAF and sign of the association

MAF Sign cis-eQTL,
n (%)

trans-eQTL,
n (%)

trans-out-eQTL,
n (%)

(0.01 – 0.2] Positive 106 (0.005) 7,026 (0.005) 127,177 (0.004)
Negative 56 (0.002) 2,857 (0.002) 61,134 (0.002)

(0.2 – 0.4] Positive 95 (0.003) 4,759 (0.003) 88,213 (0.003)
Negative 66 (0.002) 3,220 (0.002) 65,457 (0.002)

>0.4 Positive 57 (0.003) 2,930 (0.002) 54,087 (0.002)
Negative 61 (0.003) 2,893 (0.002) 51,624 (0.002)

  Values in parentheses are percentages of significant eQTLs after multiple testing correction over the total 
number of cis- (2,331,808), trans- (151,738,928) and trans-out- (3,009,504,492) eQTLs.
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  When we checked how the significant findings are dis-
tributed in terms of the direction of the relationship, there 
were more QTLs positively than negatively associated (60 
vs. 40% eQTL, 63 vs. 37% methQTLs), implying that hav-
ing more copies of the rare allele increases the levels of the 
gene expression or the levels of methylation. 

  Lastly, for the QTL associations in our study, we inves-
tigated how many of the SNPs involved have been previ-
ously reported as a trait-associated SNPs for UBC. We 
found that SNP rs401681- TERT/CLPTM1L  on chromo-
some 5 has been associated with the expression of  FRMD6  
located on chromosome 14 (p value = 3.7 × 10 –5 ), and 
with cg18368125- TMED6  on chromosome 16 (p value = 

4.8 × 10 –5 ). Also, SNP rs1495741- NAT2  on chromosome 
8 has been associated with the expression of  C19orf73  lo-
cated on chromosome 19 ( fig. 2 ).

  Integration of Results Derived from the Pair-Wise 
Analysis 
 From the final subset of eQTLs and methQTLs, we ob-

tained 49,708 common SNPs (50% from the total SNPs for 
eQTLs and methQTLs), affecting a total of 227,572 eQTLs 
(207  cis- acting) and 298,869 methQTLs (247  cis- acting). 
Multiple expression probes and CpGs were significantly as-
sociated with more than one SNP and vice versa. We found 
that 1,469 QTLs belonged to a triple relationship (SNP-
CpG-gene expression; see online suppl. table 4). Regarding 
the association patterns, the majority (29%) of these 1,469 
triplets showed a positive association pattern, i.e. the higher 
the methylation, the higher the expression, where the rare 
allele is classified with higher expression and methylation 
levels. A second pattern (19%) was ‘the higher the methyla-
tion, the lower the expression’, where the rare allele is asso-
ciated with high expression levels and low methylation lev-
els. When restricted to  cis -relationship, no triplets were 
found, but there were 19 pairs (1 eQTL, 1 methQTL and 17 
CpG-gene expression pairs) that were in  cis . The distribu-
tion of these pairs was completely different from that of the 
rest of the triplets. The most frequent pattern (32%) ob-
served was a positive association between SNPs and meth-
ylation and a negative association of both SNPs and CpGs 
with the expression. All of the possible patterns with their 
percentages are shown in  table 7 . Lastly, we checked for the 
hotspots in these triplets and found some of them for SNPs, 
CpGs and gene expression probes ( fig. 3 ). 

 Table 7.  Distribution of the 1,469 triple relationship directions per 
pair-wise analysis

eQTL methQTL Expression-
methylation

All triplets, 
n (%)a

Pairs in 
cis-effect, 
n (%)b

+ + + 419 (29) 1 (5)
– – – 58 (4) 3 (16)
+ – – 276 (19) 4 (21)
– + + 78 (5) 1 (5)
– + – 262 (18) 6 (32)
+ – + 62 (4) 3 (16)
– – + 250 (17) 1 (5)
+ + – 64 (4) 0 (0)

 a The total distribution for the 1,469 triplets. b The distribution 
only for the ones that had one pair in cis-effect.
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  Fig. 2.  GWAS-reported SNPs significantly associated with gene expression levels and/or DNA methylation levels in UBC. Values in pa-
rentheses are number of individuals with each genotype. 
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a

c

b

  Fig. 3.  Circular representation of the hotspots found for SNPs ( a ), 
CpGs ( b ) and gene expression probes ( c ) extracted from the rela-
tionships in the triplets. Each chromosome is represented with a 
different colour, and the colours of the lines correspond to the 

SNPs, CpGs or gene expression probes that are located on the 
chromosome they share the colour with. The names of the genes 
are located on the gene with the hotspot.       
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  Discussion 

 The post-genome era delivers a wealth of omics data 
allowing to explore the relationships between genetics, 
epigenetics and gene expression, being of great impor-
tance to better understand the biological mechanism(s) 
underlying a disease. In the field of cancer, this integrative 
approach becomes particularly crucial on the basis of the 
knowledge indicating that SNPs, CpGs and gene expres-
sion play an important role in the development of these 
complex diseases  [27, 28] .

  In this work, we propose an omics integrative analyti-
cal framework based on a multi-staged strategy, and we 
apply it to explore the relationships between three sets of 
data measured at a genome-wide level in UBC tumour 
samples. We provide further evidence on how common 
genetic variation and DNA methylation are statistically 
associated with the regulation of gene expression. Based 
on the knowledge that DNA is looped, allowing the inter-
action between two DNA regions located far away from 
each other, we did not only study  cis-  but also  trans- rela-
tionships  [29] . Here, we showed that some SNPs are as-
sociated with DNA methylation, that the latter is associ-
ated with gene expression and that some SNPs associate 
with both DNA methylation and gene expression. 

  Individual and Pair-Wise Analyses 
 The global pattern for methylation observed in our 

study (online suppl. fig. 1) parallels that reported previ-
ously for germline (blood)  [14] . Consistently with previ-
ous studies performed on blood  [14, 16]  and human brain 
samples  [13] , we found that – when located in an island/
shore – the correlations between DNA methylation and 
gene expression from the same gene are predominantly 
negative, supporting the known biological mechanisms 
of gene regulation (80%). DNA methylation occurs near 
the transcription start site of a gene, blocking the initia-
tion of gene expression (for a review, see Jones  [3] ). To 
highlight the relevant results, four different CpGs 
(cg01354473, cg07778029, cg25047280, and cg26521404) 
located in a CpG island of the  HOXA9  gene on chromo-
some 8 were negatively correlated with the expression of 
the gene. It was reported that  HOXA9  acts as a tumour 
suppressor gene in oral cancer  [30] , while methylation of 
this gene has been associated with the regulation of its 
expression in UBC  [31]  and with a risk of different can-
cers such as breast  [32] , oral cavity  [33]  and ovarian can-
cer  [34]  as well as with a risk of recurrence in UBC  [35] . 
The observed negative association between four CpGs 
and  HOXA9  expression in our study suggests that the in-

hibition of  HOXA9  expression may affect the develop-
ment of UBC and supports the approach applied in this 
study. 

  On the other hand, the ENCODE Project provided 
some clues to the understanding of the biological behav-
iour of  trans -relationships and of CpGs belonging to  cis -
relationships when located in a different gene  [36] . In our 
study, we mainly observed positive correlations (79%) in 
all of these scenarios, meaning that increasing levels of 
methylation correlated with increasing levels of gene ex-
pression or the other way around, suggesting either a di-
rect mechanism or an indirect mechanism, where meth-
ylation affects expression of a gene repressor, thus leading 
to an apparent association with increased gene levels. 
These results warrant further mechanistic studies ex-
plaining the complex association between DNA methyla-
tion and gene expression.

  Little is known about the relationship between genetic 
variants and DNA methylation. Heyn et al.  [1]  has re-
cently published a methQTL analysis using the cancer ge-
nome atlas data but only with SNPs detected in GWAS 
and  cis -acting methQTLs. They detected one methQTL 
in UBC, where SNP rs401681 in  TERT_CLPTM1L  was 
associated with cg06550200 located in  CLPTM1L ; unfor-
tunately, we have not been able to replicate this associa-
tion as this CpG is not present in the 27K methylation 
array. Nonetheless, for the first time, we have performed 
 cis-  and  trans -acting methQTL analyses in UBC tumour 
tissue samples using CpGs that have previously been cor-
related with gene expression. From this assessment, we 
found 538  cis- relationships (listed in the online suppl. ta-
ble 3 with all necessary information for further studies 
and validation). More frequently,  cis -relationships be-
tween genetic variants and gene expression levels have 
been assessed. We also performed eQTL association stud-
ies in  cis - and  trans -relationships under the same condi-
tions as for methQTLs and found 441  cis -eQTLs (online 
suppl. table 2). We performed these analyses on signifi-
cant expression-methylation-correlated probes identi-
fied in the first step upon the assumption that epigenetics 
interferes with the gene expression levels. 

  The proportion of eQTLs (0.01%, 471,818) and 
methQTLs (0.01%, 643,477) was similar, although more 
SNPs were involved in eQTLs (32.6%, 154,203) than in 
methQTLs (22.7%, 148,528), possibly because of the 
smaller sample size of the former. Similarly, we found no 
major differences in the percentages of QTL associations 
classified as  cis-, trans-  and  trans-out  according to the ge-
nomic distances defined before. Nevertheless, when con-
sidering the MAF distribution, a higher number of QTLs 
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were observed for SNPs with a MAF of  ≤ 0.2. While these 
results should be interpreted cautiously, due to the pos-
sibility of false positives, it is worth highlighting that we 
found a greater number of positive than negative QTL 
relationships, meaning that having the rare allele is as-
sociated with increased gene expression or methylation 
levels. 

  Some studies have related SNPs associated with com-
plex diseases at genome-wide significance level to gene 
expression or methylation levels  [1, 10, 37] . Out of the 14 
GWAS UBC SNPs  [38] , 2 were shown to be associated 
with gene expression and methylation in  trans -relation-
ships (fig. 2). Interestingly, rs401681 -TERT/CPTL1M , a 
variant strongly associated with low-grade and low-risk 
UBC  [38] , was found to be associated with a lower expres-
sion of  FRMD6  in our study, a gene that was reported to 
be involved in the inhibition of proliferation in human 
cells  [39] .

  Integrative Analysis 
 We observed an enrichment of significant associations 

of genetic variants with methylation and gene expression 
with 49,708 SNPs related to 227,572 eQTLs and 298,869 
methQTLs (207 eQTLs and 247 methQTLs in  cis -rela-
tionship) suggesting a co-regulated expression and meth-
ylation. The percentage of enrichment associated with 
eQTLs (11.5%) and methQTLs (10.0%) was similar to 
that found by Wagner et al.  [40]  who detected an enrich-
ment of 9.5% in fibroblasts. Bell et al.  [14]  also found an 
enrichment in lymphoblastoid cell lines. In contrast, 
Gibbs et al.  [12]  found only a modest overlap between 
both data in brain tissues, while Drong et al.  [15]  found 
no enrichment in adipose tissue. This highlights the fact 
that specific genetic variants may show tissue-specific ef-
fects and that little is known about them at a genome-
wide level. 

  We also found a total of 1,469 QTLs, where the same 
SNP was significantly associated with both eQTL and 
methQTL in previously identified significant gene ex-
pression-CpG pairs. This three-way type relationship be-
tween SNP-CpG-gene expression supports the notion 
that the three data sets implemented in this study are 
closely related in regulating part of the genome, an obser-
vation that may provide new insight into the genetics of 
this complex disease. Furthermore, we observed that the 
most frequent pattern (29%) in these three-way relation-
ships is a positive association pattern, suggesting that hy-
permethylation may act through a direct mechanisms or 
affect a repressor gene associated with an over-expression 
of gene levels. In addition, having the rare allele is associ-

ated with hypermethylation and over-expression pattern. 
This finding together with the fact that, in our study, 82% 
of the CpGs that are related with gene expression in  trans -
effect are positively correlated suggest that if one SNP is 
co-regulating both, this relation should be positive. Thus, 
we could hypothesize that the rare allele of the SNP asso-
ciates with hypermethylation and, at the same time, as-
sociates with over-expression, as a possible regulation 
scenario in  trans -effect. 

  When inspecting the  cis -relationships, no triplets were 
found, but there were 19 pairs (1 eQTL, 1 methQTL and 
17 CpG-gene expression pairs). In this scenario, the most 
frequent pattern (32%) suggests that having the rare allele 
is associated with hypermethylation and under-expres-
sion, where expression and methylation are associated in-
versely. This fact suggests another possible regulation 
scenario based on previous findings. We demonstrated 
that 79% of the CpGs located in the promoter region of 
the gene are negatively correlated in  cis -relationships 
with the gene expression levels; meaning that higher 
methylation levels may effect a decrease in the gene ex-
pression levels. An example of this scenario is shown in 
 figure 4 , where SNP rs289516 located in gene  DLC1  is 
negatively associated in  trans -relationship with the ex-
pression of  HOXA9  (β = –1.1; p value = 3.7 × 10 –5 ) and 
positively with cg01354473 located in the island of the 
 HOXA9  gene (β = 1.8; p value = 9.9 × 10 –5 ). The relation-
ship between the expression and the methylation levels in 
the  HOXA9  gene has already been reported as negatively 
correlated (r 2  = –0.7; p value = 1.4 × 10 –5 ). It has been al-
ready published that the methylation of  HOXA9  is nega-
tively correlated with the gene expression in UBC  [31] , as 
we observed in our study. We added a new step to this 
complex scenario, since SNP rs289516 is also involved in 
this triple relationship. This SNP belongs to the  DLC1  
gene considered as a tumoor suppressor gene, and this 
particular SNP has been picked up in two GWAS, one for 
asthma  [41]  and one for breast cancer  [42] , but any of 
them passed the GWAS significant threshold. Other ex-
amples with biological support are the triplet composed 
by SNP rs29658399 located on gene  DNAH11 , the gene 
expression of  HSPA1A  and cg00929855 located on gene 
 HSPA1A . It has previously been published that the 
 HSPA1A  promoter methylation underlies the defect in 
gene expression reduction observed in UBC cell lines 
 [43] . In addition we found some hotspots in these triplets 
regarding SNPs, CpGs and gene expressions probes. 

  In the Circos plot ( fig. 3 a), we observed a predominant 
relation for one SNP (rs10569 located on gene  PGM2 ) on 
chromosome 4.  PGM2  is a protein-coding gene and is as-
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sociated with diseases such as pneumonia and hypoxia. 
While alterations in this gene have not yet been directly 
associated with cancer, hypoxia is a known relevant pro-
cess for tumour survival. This SNP has been positively 
associated with the expression of  SETBP1,  coding for an 
important cancer gene located on chromosome 18 that is 
observed also as a predominant hotspot in  figure 3 c. So-
matic mutations in  SETBP1   [44] , as well as its expression 
patterns  [45] , are related with myeloid leukaemia disease. 
Moreover in  figure 3 b, we observed a very predominant 
hotspot regarding three CpGs belonging to three differ-
ent genes but all closely located on chromosome 6; Two 
of them (cg02622316 located on gene  ZNF96  and 
cg02599464 located on gene  HIST1H41 ) have already 
been published as hypermethylated in individuals with 
muscle-invasive bladder cancer  [46] . The first one is pos-
itively associated with many SNPs and gene expression 
probes, and the second is positively and negatively associ-
ated with some SNPs and only positively with some gene 
expression probes. 

  A more detailed discussion of the potential biological 
findings than involved in triple relationships is beyond 
this particularly study and detailed results about all of the 
combinations are provided in online supplementary ta-
ble 4. 

  The Integrative Framework 
 We built and propose a multi-staged omics integration 

framework whose application does not require a strong 
methodological knowledge, being easy and effective to 
use. The multi-staged framework we applied has the ad-
vantage of analyzing data of all subjects that overlap 

among pairs of data and is not restricted to only those few 
individuals with a complete overlap among all data types. 
Thus, we take advantage of more samples using this 
framework than integrating the data in a multi-dimen-
sional model. 

  Therefore, we show here, for the first time, the applica-
tion of a multi-staged framework that allows us to (1) in-
tegrate more than two omics data for the same set of in-
dividuals; (2) dissect the biological relationships that may 
point to new mechanisms involved in the development/
progression of UBC through a hypothesis-based model 
built step by step, and (3) envision the complexities of the 
general scenario of genomic regulation. 

  Conclusions 

 While these results are exciting, we acknowledge the 
following limitations. First, in this study, we use the 27K 
methylation array that only covers a selection of CpG sites 
making it infeasible to replicate previous reported find-
ings using the 450K array. Second, statistical power is a 
commonplace in any QTL analysis, given the extensive 
amount of data analyzed and the small sample size. While 
this limitation needs to be considered in the interpreta-
tion of the results, it is worth mentioning that even a large 
enough size will unlikely be able to meet the standard cri-
teria of statistical power; therefore, our study represents 
a proof of concept in the integrative omics field. In addi-
tion, while we might not be able to address unmeasured 
confounding factors, no differences were found between 
the demographic factors and methylation and gene ex-
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  Fig. 4.  Example of one triple relationship where integrated common genetic variants with DNA methylation and 
gene expression is one of the main possible scenarios for regulation.             
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pression in our series. A validation of these results, to dis-
card false positive findings, is not trivial due to the mul-
tiple genomic factors, the models considered and the 
characteristics of the series. 

  Despite these limitations, this study has several 
strengths. We have performed an analysis of tumour 
samples what gave us the opportunity to study in detail 
the regulation of three types of omics data in UBC, pro-
viding some evidences on the genomics regulation of the 
tumour. We have applied an easy, reproducible and de-
tailed framework to perform an integrative study of the 
relationships between genetic variations, DNA methyla-
tion and gene expression, showing a whole spectrum of 
associations between them. We have shown that omics 
data integration helps unravelling biological mechanisms 
involved in UBC. All of these relations may help in the 
identification of new molecular targets to be further ex-
plored in detail, mainly regarding  trans- relationships. 

  In conclusion, this study provides the scientific com-
munity with a pipeline to integrate more than two sets of 
omics data that can be applied in future analyses seeking 
to better understand the biology behind complex diseas-
es. In addition, we highlight the importance of integrating 

omics data to identify new genetic mechanisms in UBC. 
While several pieces of evidences support our findings, 
they still require experimental validation to be considered 
conclusive.
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1 Spanish National Cancer Research Center (CNIO), Madrid, Spain, 2 Systems Biology Department, University of Vic, Vic, Spain, 3 Division of Cancer Epidemiology and

Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America, 4 Centre for Research in Environmental
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Abstract

Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer,
indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes,
including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of
associations between common germline variants in the TP53 pathway and bladder cancer risk.

Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish
Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls
were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan
assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess
individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression
analysis to assess multiple SNPs simultaneously.

Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1)
showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with
specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP
rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a
corrected p-value = 0.5 when controlling for over-estimation.

Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer
susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans.
SERPINB5 and TP63 variation deserve further exploration in extended studies.
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Introduction

In more developed countries, urothelial carcinoma of the

bladder (UCB) is the fourth most common cancer in men and the

seventeenth in women, the overall male:female ratio being 3:1.

This ratio is greater (6:1) in Spain, where the disease presents one

of the highest incidence rates among men (51 per 100,000 man-

year) [1]. Tobacco smoking and occupational exposure to

aromatic amines have been established as the strongest risk

factors, among others [2]. While no high-penetrance allele/gene

has been identified to date as associated with UCB, there is well-

established evidence that UCB risk is influenced by common

genetic variants [3,4].
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Previous studies characterizing UCB are consistent with the

existence of, at least, two disease subtypes based on their

morphological and genetic features. The first subtype includes

low-risk, papillary, non-muscle invasive tumors (NMIT, 60–65%

of all UCB) and the second type includes both high-risk NMIT

(15–20% of all UCB) and muscle invasive tumors (MIT, 20%–

30% of all UCB). Supporting these morphological subtypes,

differential genetic pathways were described and were associated

with distinct UCB evolution. Somatic mutations in FGFR3 are

more frequent in low-risk NMIT, while mutations in TP53 and RB

are mainly involved in high-risk NMIT and MIT [5,6]; mutations

in PIK3CA and HRAS occur similarly in the two tumor subtypes.

Interestingly, an exploratory analysis has shown that some

germline genetic variants might be differentially associated with

the risk of developing distinct UCB subphenotypes defined

according to tumor stage (T) and grade (G) [7].

TP53 is the most important human tumor suppressor gene and

its implications in UCB have been extensively studied [8]. TP53 is

located in17p13, a region that is frequently deleted in human

cancers, and it encodes the p53 protein. p53 is a transcription

factor controlling cell proliferation, cell cycle, cell survival, and

genomic integrity and - therefore - it regulates a large number of

genes. Under normal cellular conditions, p53 is rapidly degraded

due to the activity of MDM2, a negative p53 regulator that is also a

p53 target gene. Upon DNA damage or other stresses, p53 is

stabilized and regulates the expression of many genes involved in

cell cycle arrest, apoptosis, and DNA repair among others.

Somatic alterations in TP53/p53 are one of the most frequent

alterations associated with UCB, especially with the more

aggressive tumors [9].

Germline TP53 mutations predispose to a wide spectrum of

early-onset cancers and cause Li-Fraumeni and related syndromes

[10,11]. These mutations are usually single-base substitutions.

Over 200 germline single nucleotide polymorphisms (SNPs) in

TP53 have been identified at present [12]. SNP rs1042522

(Arg72Pro) has been assessed in association with several cancers,

among them UCB. However, the results of these studies are

inconsistent [13,14,15,16,17,18]. In contrast, an association

between SNP rs710521 in TP63, a TP53 family member, and

risk of UCB has been convincingly replicated, pointing to the

involvement of TP53 pathway members in UCB susceptibility [4].

The aim of this study was to comprehensively investigate

whether germline SNPs in genes involved in the TP53 pathway are

associated with risk of UCB. To this end, a total of 184 tagSNPs in

18 key genes were assessed using data from the Spanish Bladder

Cancer/EPICURO study.

Materials and Methods

Study Subjects
The Spanish Bladder Cancer/EPICURO Study is a case-

control study carried out in 18 hospitals from five areas in Spain

and described elsewhere [2,4,7]. Briefly, cases were patients

diagnosed with primary UCB at age 21–80 years between 1998

and 2001. All participants were of self-reported white European

ancestry. Diagnostic slides from each patient were reviewed by a

panel of expert pathologists to confirm the diagnosis and to ensure

that uniform classification criteria were applied based on the 1999

World Health Organization and International Society of Urolog-

ical Pathology systems [19].

Controls were patients admitted to participating hospitals for

conditions thought to be unrelated to the UCB risk factors. The

main reasons for hospital admission were: hernia (37%), other

abdominal surgery (11%), fracture (23%), other orthopaedic

problem (7%), hydrocoele (12%), circulatory disorder (4%),

dermatological disorder (2%), ophthalmological disorder (1%),

and other diseases (3%). Controls were individually matched to the

cases on age within 5-year categories, gender, ethnic origin and

region of residence.

Information on sociodemographics, smoking habits, occupa-

tional and environmental exposures, and past medical and familial

history of cancer was collected by trained study monitors who

conducted a comprehensive computer- assisted personal interview

with the study participants during their hospital stay. Of 1,457

eligible cases and 1,465 controls, 1,219 (84%) and 1,271 (87%),

were interviewed, respectively.

All subjects gave written informed consent to participate in the

study, which was approved by the ethics committees of the

participating centers.

Genotyping
A total of 184 tagSNPs from 18 genes participating in the TP53

pathway were selected using the Select Your SNPs (SYSNPs)

program [20]. SYSNP used information from dbSNP b25, hg17

and HapMap Release #21. Haploview’s Tagger algorithm (v3.32)

was applied with default parameter values. The tool considers all

available information for each SNP and implements algorithms

that provide the status of each SNP as a tagSNP, a captured SNP

or a non-captured SNP. According to this information tagSNPs

were selected. The following groups of genes were considered: 1)

TP53 family members (TP53, TP63 and TP73) and 2) genes

known to be targets of p53 or regulators of p53 function [BAK1,

BAX, BBC3, BIRC5, CDKN1A, FAS, GADD45A, IGF1R, MDM2,

PCNA, PMAIP1, SERPINB5, SFN (Stratifin, 14-3-3sigma),

TP53AIP1), and 3) c-MYC, a major oncogene involved in a broad

range of human cancers that regulates p53 pro-apoptotic activity

(See Table S1 in File S1). SNPs were genotyped using Illumina

Golden Gate and TaqMan (Applied Biosystems) assays at the

Spanish Core Genotyping Facility at the CNIO (CEGEN- CNIO).

Genotyping was successful for 1,058 cases and 1,138 controls. We

calculated the coverage for each gene using Haploview 4.2 by

selecting the SNPs within a gene with a MAF$0.05 from the 1000

genomes project, as reference, and obtained the number of SNPs

captured with the SNPs genotyped at r2$0.8 within each gene.

Statistical Analysis
Departure from Hardy-Weinberg equilibrium was assessed in

controls using Pearson’s chi-squared test. Missing genotypes were

imputed for the multi-SNP model using the BEAGLE 3.0 method

[21]. Associations between UCB and the SNPs considered were

assessed using two approaches: classical logistic and polytomous

regression analyses applied to each SNP individually, and the

Least Absolute Shrinkage and Selection Operator (LASSO)-

penalized logistic regression to assess all SNPs simultaneously.

All models were adjusted for age at diagnosis (cases) or interview

(controls), gender, region, and smoking status. Smoking status was

coded in four categories (never: ,100 cigarettes in their lifetime;

occasional: at least one per day for $6 months; former: if they had

smoked regularly, but stopped at least 1 year before the study

inclusion date; and current: if they had smoked regularly within a

year of the inclusion date [2].

With the ‘‘classical’’ statistical approaches we assessed SNP

main effects for the whole disease and for different subtypes of

UCB, as well as SNP*SNP and SNP*smoking interactions. Disease

subtypes were defined in two ways. First, according to established

criteria based on tumor stage (T) and grade (G) as low-risk NMIT

(TaG1 and TaG2), high-risk NMIT (TaG3, T1G2, T1G3, and

Tis), and MIT (T2, T3, and T4); and second, according to the

TP53 Pathway and Bladder Cancer Susceptibility
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tumor expression of p53 determined using DO7 antibody. We

applied the histoscore as z~
P3

i~1

i � pos%cellsi, where pos%cellsi

was the percentage of cells with intensity i(i~1,2,3). We then

classified cases as having low or high p53 expression relative to the

median histoscore.

To assess overall main effects, the four modes of inheritance

were considered: co- dominant, dominant, recessive, and additive.

The statistical significance of associations was determined using

the Likelihood Ratio Test (LRT). We evaluated associations

between individual SNPs and subtypes of UCB using polytomous

logistic regression. Heterogeneity by disease subtype was tested by

a LRT comparing this model to that with the ln(OR) restricted to

be equal across subtypes. We also evaluated all two-way

interactions between SNPs by a LRT comparing logistic regression

models with the two SNPs (additive model) and covariates

described above, with and without a single interaction term for

multiplicative, per-allele effects. Interactions between each SNP

and cigarette use (never vs. ever) were assessed using a similar

method. Multiple testing was accounted for by applying a

permutation test with 1,000 replicates. We applied Quanto

(http://hydra.usc.edu/gxe/) to assess statistical power considering

the available sample size.

We also assessed combined SNP effects using LASSO. The

method has been described in detail by [22]. Briefly, the log-

likelihood function applied in classical logistic regression

Ln bð Þ
Xn

i~1

yi logp X ’ibð Þz 1{yið Þlog 1{p X ’ibð Þð Þ½ �, ð1Þ

where n is the number of observations, is reconstructed incorpo-

rating a penalty so that

g(b; l)~Ln(b)zl
Xp

j~1

bj

�� ��, ð2Þ

where p is the number of SNPs and l is the lasso penalty. The

Newton-Raphson algorithm is applied to equation (2) to estimate

b’s in an iterative way.

The LASSO method is based on the idea of removing irrelevant

predictor variables (b= 0) via the penalty parameter, thereby

selecting only the most relevant SNPs as the subset of markers

most associated with the disease. The application of the penalty

parameter also avoids overfitting due to both high-dimensionality

and collinearity between covariates. We only considered additive

genetic mode of inheritance.

This technique gives biased estimators to reduce their variance.

Because of this, the implemented package in R does not provide

estimates p-values for the regression beta coefficients, since

standard errors are not meaningful under a biased estimator.

We therefore evaluated the results by first applying the LASSO

using a 5-fold cross-validation (CV) method [23] to choose the

optimal l as that giving the minimum Akaike information

criterion (AIC); we then selected the subset of SNPs that were

most informative with that l. We assessed the robustness of each

SNP selected in the optimal model by calculating the reproduc-

ibility as the proportion of times each SNP was selected to be in

the multivariate model from 1,000 bootstrap subsamples [24].

To evaluate the association with UCB risk of that subset of

SNPs, we tested them by the LRT in a multivariate regression

Table 1. Demographics and smoking status of patients included in the study.

Cases (n = 1058) Controls (n = 1138) 1p-value

Gender

Male 920 (87%) 991 (87%)

Female 138 (13%) 147 (13%) 0.9

Age

,55 149 (14%) 181 (16%)

55–64 222 (21%) 278 (24%)

65–69 241 (23%) 263 (23%)

70–74 225 (21%) 222 (20%)

75+ 221 (21%) 194 (17%) 0.06

Region

1-Barcelona 214 (20%) 233 (21%)

2-Valles 173 (16%) 181 (16%)

3-Elche 83 (8%) 80 (7%)

4-Tenerife 195 (19%) 207 (18%)

5-Asturias 393 (37%) 437 (38%) 0.9

Smoking

Never 147 (14%) 334 (29%)

Occasional 43 (4%) 81 (7%)

Former 409 (38%) 429 (38%)

Current 454 (43%) 283 (25%) ,0.001

Missing 5 (1%) 11 (1%)

1p-value from Pearson’s x2 test for association.
doi:10.1371/journal.pone.0089952.t001
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model with all the SNPs in comparison to the null model. To

correct for the over-estimation due the pre-selection of the best

SNPs, we performed a permutation test with 10,000 replicates.

STATA 10 was used to run the classical logistic and

multinomial regression analyses. All other statistical analyses were

run in R (http://www.R-project.org), using the penalized library

[25] for LASSO penalized logistic regression.

Results

Table 1 shows the distribution of the study subjects included in

the analysis: 1,058 cases and 1,138 controls. Most individuals

(87%) were male and cases were more likely to be current smokers

than controls (43% vs. 25%, respectively, p-value,0.001).

No evidence of departure from Hardy-Weinberg equilibrium

was observed for any SNPs after consideration of multiple testing

(unadjusted p-value.1024). Polymorphisms in TP53 were not

individually associated with UCB risk, even at a nominal,

uncorrected 5% significance level (uncorrected p-value.0.4).

The percentage of reproducibility from the LASSO model using

1,000 bootstrap subsamples was ,50%, indicating a poor

robustness of the models. Results for the additive and co-dominant

models are summarized in Table 2.

Using classical logistic regression, SNPs in BAK1 (1), IGF1R (5),

P53AIP1 (1), PMAIP1 (2), SERPINB5 (3), TP63 (3), and TP73 (1)

showed significant results, at a non-corrected p-value#0.05, with

overall UCB risk (Table 3). However, no evidence of association

with risk was observed for any individual SNPs after correcting for

multiple testing (permutation test p-value.0.8). This was also the

case for the associations with the established disease subtypes

defined according to stage/grade or by p53 expression (Figure 1).

Of note, SNPs rs3758483 and rs983751 in FAS were differentially

and inversely associated with MIT and high p53 expressing

tumors in uncorrected analyses (Tables S2 and S3 in File S1). We

also observed no evidence of SNP*SNP interactions or interactions

between SNPs and smoking status (data not shown).

When all 184 SNPs were simultaneously assessed using LASSO,

the method selected rs6567355 in SERPINB5 with a reproducibil-

ity = 83%. This SNP provided an OR = 1.21, 95%CI 1.05–1.38,

p-value = 0.006 in the main effect logistic regression model and a

corrected p-value = 0.5 when controlling for over-estimation

(Table 3). While not selected by LASSO in the last model under

the stringent criteria applied, IGF1R-rs1058696 (OR = 0.63,

95%CI 0.44–0.90, p-value = 0.010) and TP63-rs13321831

(OR = 1.36, 95%CI 1.06–1.73, p-value = 0.014) showed a per-

centage of reproducibility .80%.

Discussion

We genotyped common variants in genes in the TP53 pathway

in 1,058 cases and 1,138 controls of white European ancestry and

found no strong evidence of association with risk of UCB overall,

or with subtypes of the disease defined by stage and grade or by

p53 expression.

A key gene in the pathway is TP53, and the most commonly

studied variant in this particular gene is Arg72Pro (rs1042522). Its

implication in susceptibility to various cancers has been reported

in Asian populations, but not in white Europeans. A meta- analysis

of 49 cervical cancer studies contributing a total of 7,946 cases and

7,888 controls found that the Arg allele was associated with an

increased risk of cervix cancer [14]. However, another meta-

analysis of 39 studies (26,041 cases and 29,679 controls) found

weak evidence for an association of the same variant with reduced

breast cancer risk [18]. Regarding gastric cancer, a combined

analysis of 6,859 cases and 9,277 controls from 28 studies found a
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stronger inverse association only among Asians [26]. For lung

cancer, a marginally significant increased risk was in a combined

analysis of data with 15,647 cases and 14,391 controls from 36

studies, though the association seemed to be also confined to the

Asian population [27].

The association between TP53 Arg72Pro and UCB risk has

been assessed by two meta-analyses. Overall, no association was

observed by Jiang et al. when comparing 1,601 cases and 1,948

controls from 10 studies, although a marginally significant

association was seen among Asians (OR = 0.77, 95%CI 0.59–

1.00, for ArgArg/ArgPro vs. ProPro) [13]. Discordant results have

been recently reported combining data from 14 studies contrib-

uting with 2,176 cases and 2,798 controls (OR = 1.268, 95%CI

1.003–1.602, for ArgArg/ArgPro vs. ProPro among the Asian

population) [17]. A large number of studies overlap between the

two meta-analyses. The lack of information on gene-gene and

gene-environment interactions, as well as on the concomitant

effect of TP53 somatic mutations may explain the discordant

results [28].

The findings from our study confirm the lack of association of

Arg72Pro in TP53 with risk of UCB in white Europeans

(OR = 0.98, 95%CI 0.77–1.26, for ArgPro vs. ArgArg and

OR = 0.91, 95%CI 0.75–1.09, for ProPro vs. ArgArg, p-

value = 0.5 for overall effects) [13,17]. However, we cannot rule

out that lack of statistical power may hamper identification of a

small effect association: even with its large sample size, the present

study sample size could detect an OR$1.3 per-allele for this SNP

with 90% statistical power and at a significance level of 5%.

Regarding other SNPs in TP53, Lin et al reported an

association with rs9895829 and rs1788227 (p-value = 0.003 and

0.027, respectively) in a smaller study with 201 cases and 311

controls in an Asian population [29]. We did not genotype these

SNPs, though they are in high LD with two SNPs considered here:

rs8079544 (LD = 1.0) and rs12951053 (LD = 0.7), respectively.

Nonetheless, none of the assessed additional SNPs in TP53

appeared to be associated with UCB risk. The partial coverage of

the gene with the assessed SNPs (38%) does not allow us to dismiss

the role of TP53 in UCB susceptibility.

TP63 is another key member of the studied pathway. One SNP

(rs710521) located in this gene has been reported to be associated

with risk of UCB by a GWAS (per-allele OR = 1.19, 95%CI 1.12–

1.27, p-value = 1.1561027) [30]. This association was convinc-

ingly replicated in a combined analysis of data from different

studies (allele-specific OR = 1.18, 95%CI 1.12–1.24, p-val-

ue = 1.8610210), including ours, for which it was genotyped as

part of a separate initiative [4]. Of note, this particular SNP did

not show significant results in our study (OR = 0.95, 95%CI 0.83–

1.10, p-value = 0.5), a fact that can be explained by the different

geographical location related exposures of the participating

studies, being UCB an environmental driven disease [31]. The

present study assessed 32 SNPs in TP63, providing 24% of the

gene coverage. Three of them showed uncorrected significant

results in the overall UCB association analysis with a percentage of

reproducibility .70% from LASSO. These results warrant an

extended UCB study on this region.

Regarding other SNPs in the selected genes, we did not find any

strong evidence of association after correcting for multiple testing

(permutation test p-value$0.8 for overall main effects and p-

value$0.3 for subtype effects). The top (uncorrected) significant

SNPs were located in BAK1, IGF1R, P53AIP1, PMAIP1,

SERPINB5, and TP73. Common variants in these genes have

not previously been reported as associated with UCB risk, though

an altered expression of BAK1 and IGF1R has been described in

bladder tumors.

Many complex diseases, such as UCB, are likely due to the

combined effects of multiple loci [32] and most traditional

association studies assessing main effects for one SNP at a time

are underpowered to detect small effects [33]. Therefore, the

implication of common genetic variants may be better assessed by

a method that both selects a far-reduced set of potentially

associated SNPs and tests for association globally. This has been

a challenge due to the high-dimensionality and collinearity

Figure 1. Main effect p-values for bladder cancer risk (overall and for each subphenotype) for each tag-SNP under the additive
mode of inheritance. A SNP p-value above the red line is considered as associated with the phenotype after multiple testing correction by
Bonferroni (4.2 for main effects and 3.6 for subtypes). All models are adjusted for age, gender, region and cigarette smoking status.
doi:10.1371/journal.pone.0089952.g001
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between SNPs. Nevertheless, penalized techniques can deal with

these problems and they are starting to emerge in genetic

association studies. Wu et al used penalized logistic regression in

a genome-wide association study applied to coeliac disease data

and Zhou et al extended this work to the assessment of association

for common and rare variants applied to family cancer registry

data [34] [35]. In the present study, we applied the LASSO

algorithm to account for the combination effects of the SNPs in the

TP53 pathway and UCB risk. Under the criteria applied, this

method selected one SNP (rs6567355) that showed a non-

corrected p-value = 0.006 for the additive mode of inheritance

with a percentage of reproducibility = 83%. This is a frequent G.

A SNP (MAF = 0.29) located in the intron region of SERPINB5. As

mentioned before, no evidences of previous association between

this SNP and any disease have been reported at present.

SERPINB5 is a tumor suppressor (Table S1 in File S1). The

expression levels of this gene has been correlated with those of

DBC1 (Deleted in bladder cancer 1) in UCB specimens, suggesting

its involvement in the urokinase-plasminogen pathway [36].

SERPINB5 would deserve of further exploration in extended

studies, as well.

A limitation of our study is the incomplete tagging of the

selected genes due to the use of an earlier HapMap release to

select tag SNPs, prior to the availability of data from the 1000

genomes project. The median coverage of the 18 genes considered

in the pathway is, according to the updated HapMap releases,

44%, ranging from 21% to 86%. Therefore, we cannot rule out

completely the implication of common variation in these genes in

UCB susceptibility.

For common SNPs (MAF.0.05), our study is powered (90%) to

detect ORs$1.4 at a significance level of 0.05, assuming an

additive mode of inheritance. Therefore, the study is not

conclusive with OR,1.4. While this study represents one of the

largest assessments conducted till present, much larger studies will

be required to rule out smaller main effects associated with

common variants in the genes of this pathway. This is even more

important when subphenotype analyses are considered. We also

found no evidence of SNP-SNP interactions (permutation test p-

value$0.3) and SNP-smoking interactions (permutation test p-

value$0.07), although the power was even more limited to detect

these. According to the candidate pathway, the studied SNPs were

selected as tags; therefore, they were not correlated showing a low

LD. This fact, let us overcome a potential limitation affecting the

percentage of reproducibility when SNPs are high correlated.

Credit should also be given to this study, not only regarding its

large sample size, but also for its prospective nature and disease

representativeness, for the homogeneous methods applied to

collect information and biosamples by the participating centers,

for the integration of different type of information (sociodemo-

graphics, epidemiological, genetic, clinical and pathological, and

molecular), and for the comprehensive and innovative statistical

approaches applied to assess UCB susceptibility associated with a

highly candidate pathway.

In conclusion, using a comprehensive analysis accounting

different models and different approaches, we found no strong

evidence that common variants in the TP53 pathway are

associated with UCB risk. However, specific members of the

pathway, TP63 and SERPINB5 deserve of further exploration in

extended studies. On the other hand, our study suggests that it is

unlikely that TP53 Arg72Pro is implicated in the UCB in white

Europeans.

While biological sound, candidate pathway analysis have throw

limited acknowledge in the genetic susceptibility field of many

diseases. The reasons of this relative poor efficiency may be,

among others, the still lack of knowledge of all key components of

a given pathway, the introduction of noise by considering many

genes/variants without showing association, and the lack of

coverage of rare variants not tagged through this approach, in

addition to methodological explanations such as an impaired

statistical power. Scientists should review whether it is time to

dismiss this approach towards a more comprehensive strategy such

whole genome/exome sequencing in dissecting the genetic

architecture of complex diseases.

Supporting Information

File S1 Combined Supporting Information file containing:

Table S1, Location and function of the selected genes. Table

S2, Heterogeneity in single nucleotide polymorphism (SNP) risk

estimates among bladder cancer subphenotypes defined according

to stage and grade in the Spanish Bladder Cancer Study. Table

S3, Heterogeneity in single nucleotide polymorphism (SNP) risk

estimates among bladder cancer subphenotypes defined by p53

expression in the Spanish Bladder Cancer Study.

(DOCX)
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F Labrèche106, R Winqvist107, K Pylkäs107, A Jukkola-Vuorinen108, M Grip109, P Devilee110, R A E M Tollenaar111, C Seynaeve112,
M Garcı́a-Closas13,113,114, S J Chanock113, J Lissowska115, J D Figueroa113, K Czene116, M Eriksson116, K Humphreys116, H Darabi116,
M J Hooning112, M Kriege112, J M Collée117, M Tilanus-Linthorst118, J Li119, A Jakubowska120, J Lubinski120, K Jaworska-Bieniek120,
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Background: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a
breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this
hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast
Cancer Association Consortium.

Methods: Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of
European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of
breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.

Results: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in
European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval¼ 1.02–1.09, P¼ 0.0020), which is
substantially lower than that observed for SNPs in FGFR2.

Conclusion: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree
observed for FGFR2.
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Breast cancer is a complex disease, with multiple genetic and
environmental factors involved in its etiology. Rare mutations in
the DNA repair genes BRCA1 and BRCA2 confer a high lifetime
risk of breast cancer (Antoniou et al, 2003) and are routinely
screened for in women with a strong family history of the disease.
Studies focused on other DNA repair genes have led to the
discovery that rare coding variants in CHEK2, ATM, BRIP1 and
PALB2 (Swift et al, 1987; Meijers-Heijboer et al, 2002; Seal et al,
2006; Rahman et al, 2007) are associated with moderately increased
breast cancer risk. However, few, if any, candidate-gene- or
pathway-based association studies have identified convincing
associations with breast cancer risk for common genetic variants
(The Breast Cancer Association Consortium, 2006). In contrast,
empirical genome-wide association studies (GWAS) have proven
to be a successful approach to identify common variants associated
with small increases in risk, with more than 70 identified in
this way to date (Easton et al, 2007; Hunter et al, 2007; Stacey
et al, 2007, 2008; Ahmed et al, 2009; Thomas et al, 2009; Zheng
et al, 2009; Antoniou et al, 2010; Turnbull et al, 2010; Cai et al,
2011; Fletcher et al, 2011; Haiman et al, 2011; Ghoussaini
et al, 2012; Siddiq et al, 2012; Bojesen et al, 2013; Garcia-Closas
et al, 2013; Michailidou et al, 2013). For the great majority
of these associations, the causal variant(s), and even the causal
gene, are unknown; thus, the identification of novel candidate
genetic susceptibility pathways through this approach is not
straightforward.

An intronic variant in the FGFR2 gene was one of the first
single-nucleotide polymorphisms (SNPs) identified by GWAS as
tagging a breast cancer susceptibility locus (Easton et al, 2007;
Hunter et al, 2007). It is now well-established that the minor allele
of this SNP is associated with increased risk of breast cancer,
particularly estrogen receptor (ER)-positive disease (Garcia-Closas
et al, 2008). Fine-mapping of the region has suggested that at least
one causal variant is located in intron 2 of FGFR2 (Easton et al,
2007; Udler et al, 2009), and functional studies have proposed that
rs2981578 affects FGFR2 expression (Meyer et al, 2008; Udler et al,
2009; Huijts et al, 2011). These findings strongly suggest that
FGFR2 is a breast cancer susceptibility gene.

FGFR2 is a fibroblast growth factor (FGF) receptor gene; the
amino-acid sequence of the protein it encodes is highly conserved
across all FGF receptors. The other FGF receptor genes and other
genes acting downstream of them in the FGF pathway may also be
implicated in the development of breast cancer, although
associations with disease risk have not been assessed comprehen-
sively by a study with adequate sample size to detect odds ratios
(ORs) of the magnitude observed for SNPs in FGFR2.

We hypothesised that common variants in other genes in the
FGF pathway, and in the other FGF receptor genes in particular,
might also confer increased breast cancer risk. The primary aim
of our investigation was to comprehensively assess associations
between breast cancer risk and common variation in the FGF
receptor genes FGFR1, FGFR3, FGFR4 and FGFRL1 by genotyping
selected tag-SNPs in the Breast Cancer Association Consortium
(BCAC). A secondary objective was to assess common variants in
other genes in the FGF pathway based on a two-stage design.

MATERIALS AND METHODS

Participants. Study participants were women from 49 studies
participating in BCAC: 38 from populations of predominantly
European ancestry, 9 of Asian women and 2 of African–American
women (Table 1 and Supplementary Table 1). The majority were
population-based or hospital-based case–control studies, but some
studies selected subjects based on age or oversampled for cases
with a family history or bilateral disease. Cases and controls from

the CNIO-BCS were also studied in a previous assessment of
selected genes in the FGF pathway. All study participants gave
informed consent and each study was approved by the corresponding
local ethics committee.

Gene and SNP selection. Ingenuity Pathways Analysis and
selected publications (Eswarakumar et al, 2005; Presta et al,
2005; Chen & Forough, 2006; Schwertfeger, 2009) were used to
identify genes reported to be involved downstream of the FGF
genes in the FGF pathway, particularly those related to angiogenesis.
A total of 39 genes, including the FGF receptors FGFR1 (located at
8p11.22), FGFR2 (10q26.13), FGFR3 (4p16.3), FGFR4 (5q35.2)
and FGFRL1 (4p16.3), was selected for tagging. Single-
nucleotide polymorphisms with minor allele frequency (MAF)
45% in the coding and non-coding regions, and within 5 kb
upstream and 5 kb downstream of each gene, were identified using
HapMap CEU genotype data and dbSNP 128 as reference. The
minimum number of tag-SNPs were then selected among all
identified SNP using Haploview (Barrett et al, 2005) based on the
following criteria: r240.8 and Illumina assay score 40.60. A total
of 384 SNPs tagging 39 genes was genotyped in the CNIO-BCS,
324 of which were successfully genotyped (Supplementary
Table 2). The 31 SNPs tagging genes FGFR1, FGFR3, FGFR4 and
FGFRL1 were all genotyped in BCAC, along with a further 26
of the 324 tag-SNPs. The latter group comprised SNPs selected
based on evidence of association with breast cancer under a
log-additive model in the Stage 1 CNIO-BCS. Single-nucleotide
polymorphisms in FGFR2 were not considered, as all were
included as part of a separate fine-mapping study (Meyer et al,
submitted). Results from Stage 1 are summarised in Supplementary
Table 2.

Genotyping. Genotyping of the 57 SNPs in the BCAC samples
was conducted using a custom Illumina Infinium array (iCOGS) in
four centers, as part of a multi-consortia collaboration (the
Collaborative Oncological Gene–Environment Study, COGS) as
described previously (Michailidou et al, 2013). Genotypes were
called using Illumina’s proprietary GenCall algorithm.

For the genotyping of the 384 SNPs in the Stage 1 CNIO-BCS,
genomic DNA was isolated from peripheral blood lymphocytes using
automatic DNA extraction (MagNA Pure, Roche Diagnostics,
Indianapolis, IN, USA) according to the manufacturer’s recom-
mended protocols. This DNA was quantified using Picogreen
(Invitrogen, Life Technologies, Grand Island, NY, USA) and for
each sample a final quantity of 250 ng was extracted and used for
GoldenGate genotyping with VeraCode Technology (Illumina Inc.,
San Diego, CA, USA). Samples were arranged on 25 96-well plates
containing one negative control and at least one study sample in
duplicate. Three Centre d’Etude du Polymorphisme Humain (CEPH)
trios were used as internal intra- and inter-plate duplicates and to
check for Mendelian segregation errors. DNA was extracted,
quantified, plated and genotyped at the Spanish National Genotyping
Centre (CeGen), Madrid, Spain. All genotypes were determined for
each SNP and each plate using manual clustering. Single-nucleotide
polymorphisms with call rate o90% were excluded, as were samples
with no-calls for more than 20% of included SNPs.

Statistical methods. For each SNP, we estimated ORs and 95%
confidence intervals (CIs) using unconditional logistic regression.
For the analysis of BCAC data, we considered per-allele and co-
dominant models using common-allele homozygotes as reference
and including study and ethnicity-specific principal components as
covariates, as previously described (Michailidou et al, 2013).
Departure from the Hardy–Weinberg equilibrium (HWE) was
tested for in controls from individual studies using the genhwi
module in STATA 11.2 (College Station, TX, USA). A study-
stratified w2 test (1df) was applied across studies (Haldane, 1954;
Robertson & Hill, 1984). Between-study heterogeneity in ORs was
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assessed for each of the three broad racial groups using the metan
command in STATA to meta-analyse study-specific per-allele log-OR
estimates and generate I2 statistics; values greater than 50% were
considered notable (Higgins & Thompson, 2002). Odds ratios specific
to disease subtypes defined by ER, PR and HER2 status (positive and
negative) were estimated separately for each ethnic subgroup using
polytomous logistic regression with control status as the reference
outcome. Differences in ORs by disease subtypes were assessed using a
likelihood ratio test (LRT). All statistical tests were two-sided.

The effective number of independent SNPs (VeffLi) was
estimated using the method described by Li & Ji (2005). This
method was applied via the web-interface matSpDlite (http://
gump.qimr.edu.au/general/daleN/matSpDlite/), based on the
observed correlations between SNPs (Nyholt, 2004). VeffLi was
then used to calculate a Bonferroni-corrected significance thresh-
old (a*). Power calculations were carried out using Quanto v1.2.4
(http://hydra.usc.edu/gxe/).

Single-nucleotide polymorphism imputation. The genotypes of
untyped SNPs were imputed based on data from the March 2012
release of the 1000 genomes project using IMPUTE v2.2. These
were converted to allele doses using the impute2mach function in
the GenABEL library in R (Aulchenko et al, 2007) and analysed
under a per-allele model. Imputed SNPs with an estimated MAF
o5% were excluded, as were SNPs with an imputation r2o80%.

RESULTS

All SNPs in the present analysis had overall call rates 495%. Very
strong evidence of departure from HWE was observed for
rs34869253 for one study (pKarma, P¼ 3.3� 10� 21), which was
excluded from the subsequent analyses of that SNP. After quality
control, there were data available for 53 835 cases and 50 156
controls from BCAC, including 89 050 European women (46 450
cases and 42 600 controls), 12 893 Asian (6269 cases and 6624
controls) and 2048 African–American women (1116 cases and 932
controls) (Table 1).

Results from the analysis of the 31 tag-SNPs in FGFR genes
for white Europeans are summarised in Table 2. No strong
evidence of association was observed, although one SNP
(rs743682) in FGFR3 (MAF¼ 9%) was marginally significant
after correction for multiple testing based on a VeffLi of 23
(per-allele OR¼ 1.05, 95%CI¼ 1.02–1.09, P¼ 0.0020, a*¼ 0.0022).
All SNPs with an associated P-value o0.05 were intronic, with
the exception of rs1966265, which is a missense variant in
FGFR4. However, PolyPhen (http://genetics.bwh.harvard.edu/
pph2/) predicts this amino acid change to be benign, with a
score of 0.000. On the basis of ENCODE data, no SNP with an
associated P-value o0.05 was located in a region involved or
predicted to be involved in epigenetic regulation, nor at, or
within 2 kb of, a CpG island. For European women, we did not
observe any evidence of between-study heterogeneity for any
SNPs (I2p19%; PX0.15) and little evidence of differential
associations by disease subtypes defined by ER (PX0.036),
PR (PX0.084) or HER2 status (PX0.019).

We similarly observed little evidence of association with overall
breast cancer risk in Asian and African–American women
(Supplementary Tables 3 and 4, respectively). Nevertheless, a
consistent result was observed for Europeans and Asians for
rs1966265 in FGFR4. The estimated OR per risk (G) allele was 1.03
(95%CI¼ 1.01–1.05; P¼ 0.0060) for European women and 1.08
(95%CI¼ 1.03–1.14; P¼ 0.0036) for Asian women. There was no
evidence of heterogeneity by race for any of the 31 SNPs in FGF
receptors (I2¼ 18%; P¼ 0.14).

The SNPs genotyped were estimated to capture a variable
proportion of the common variation in the four genes considered,

as described in the 1000 genomes project; at r2
X0.80, this coverage

was 75% for FGFR1, 77% for FGFR3, 66% for FGFR4 and 17% for
FGFRL1. This coverage was dramatically improved with the
inclusion of imputed common SNPs (with imputation r240.80)
to 95%, 93%, 97% and 84% for FGFR1, FGFR3, FGFR4 and
FGFRL1, respectively. No stronger evidence of association was
observed for any imputed SNPs (Supplementary Tables 5–8).

Finally, we observed little evidence of association for any of the
26 SNPs in other genes in the FGF pathway, selected based on
results from Stage 1 (Supplementary Table 9). The results were
consistent across the three ethnic groups considered and for
disease subtypes defined by ER, PR and HER2 expression.

It is noteworthy that strong association signals were observed in
the Stage 1 Spanish study for selected tag-SNPs rs10736303
(MAF¼ 0.49; per-allele OR¼ 1.37, 95% CI¼ 1.21–1.55, P¼ 2.8
� 10� 7), and rs2981582 (MAF¼ 0.40; per-allele OR¼ 1.35, 95%
CI¼ 1.19–1.53, P¼ 8.3� 10� 7), both in FGFR2.

DISCUSSION

In this multicentre case–control study, we comprehensively
assessed common variation in the FGF receptor genes FGFR1,
FGFR3, FGFR4 and FGFRL1 in 53 835 cases and 50 156 controls
and found little evidence of association with risk of breast cancer.
This is the largest study we know of assessing a family of genes via
a candidate approach based on the findings from GWAS.

A non-trivial issue in analyses of this kind is the establishment
of a statistical significance threshold that adequately controls the
proportion of false-positive findings. As permutation-testing was
not feasible due to the sample size and number of dummy variables
required to adjust for study, we dealt with the issue of non-
independence of multiple tests by estimating that the 31 tag-SNPs
represented an effective number of 23 independent variables, and
applying a Bonferroni correction accordingly. The association of
one SNP (rs743682) in FGFR3 for European women was found to
be statistically significant on this basis. However, the P-value
threshold applied is somewhat questionable in the context of the
total of more than 70 000 SNPs nominated for genotyping by
BCAC and the total 210 000 genotyped on the iCOGS array. Thus,
the current result is far from genome-wide statistical significance
and certainly requires independent replication. In any case, the
per-allele ORs for FGFR3_rs743682 (1.05, 95% CI¼ 1.02–1.09) and
FGFR4_rs1966265 (1.03, 95% CI¼ 1.01–1.05) appear to be
substantially lower than that for rs2981582 in FGFR2 (1.26, 95%
CI¼ 1.23–1.30) (Easton et al, 2007).

We estimated that for common SNPs (MAF 40.05) associated
with overall breast cancer risk in European women, we had greater
than 99% power to detect at genome-wide statistical significance
(Po5� 10� 8) a per-allele OR as low as 1.23 (the lower 95%
confidence limit for the OR for FGFR2_rs2981582). For a per-allele
OR as low as 1.05 and for SNPs with MAF of 0.10, 0.20 and 0.30,
the estimated power was 1%, 10% and 24%, respectively. That is,
our study provides strong evidence that common variation in
FGFR1, FGFR3, FGFR4 and FGFRL1 are not associated with breast
cancer risk to the degree observed for SNPs in FGFR2, although
associations of smaller magnitude may exist.

The hypothesis underlying our study was based on the
identification of a functional SNP in intron 2 of FGFR2
associated with breast cancer susceptibility (Easton et al, 2007;
Meyer et al, 2008; Udler et al, 2009; Huijts et al, 2011). A recent
study has subsequently identified three independent risk signals
within FGFR2, and uncovered likely causal variants and
functional mechanisms behind them (Meyer et al, 2013).
Although an association between these SNPs and expression of
FGFR2 has not been established, these results provide strong
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evidence that FGFR2 is the target gene, and it therefore seems
plausible that other FGF receptors or genes acting in the FGF
pathway might also be implicated in breast cancer risk. However,

we find little evidence that this is the case for the receptors, at least
not to the extent observed for common variants in FGFR2.
Admittedly, the degree to which common variation in the FGF

Table 1. Number of cases and controls included, by study

Study Country Controls Cases ERþ ER�

White European women

Australian Breast Cancer Family Studya (ABCFS) Australia 551 790 456 261
Amsterdam Breast Cancer Study (ABCS) Netherlands 1429 1325 420 153
Bavarian Breast Cancer Cases and Controls (BBCC) Germany 458 564 460 83
British Breast Cancer Study (BBCS) UK 1397 1554 507 114
Breast Cancer In Galway Genetic Study (BIGGS) Ireland 719 836 495 154
Breast Cancer Study of the University Clinic Heidelberg (BSUCH) Germany 954 852 499 154
CECILE Breast Cancer Study (CECILE) France 999 1019 797 144
Copenhagen General Population Study (CGPS) Denmark 4086 2901 1919 357
Spanish National Cancer Centre Breast Cancer Study (CNIO-BCS) Spain 876 902 242 88
California Teachers Study (CTS) USA 71 68 0 17
ESTHER Breast Cancer Study (ESTHER) Germany 502 478 304 98
Gene–Environment Interaction and Breast Cancer in Germany (GENICA) Germany 427 465 328 119
Helsinki Breast Cancer Study (HEBCS) Finland 1234 1664 1295 237
Hannover-Minsk Breast Cancer Study (HMBCS) Belarus 130 690 37 0
Karolinska Breast Cancer Study (KARBAC) Sweden 662 722 338 63
Kuopio Breast Cancer Project (KBCP) Finland 251 445 304 97
kConFab/Australian Ovarian Cancer Study (kConFab/AOCS) Australia 897 613 162 59
Leuven Multidisciplinary Breast Centre (LMBC) Belgium 1388 2671 2071 379
Mammary Carcinoma Risk Factor Investigation (MARIE) Germany 1778 1818 1349 399
Milan Breast Cancer Study Group (MBCSG) Italy 400 488 149 42
Mayo Clinic Breast Cancer Study (MCBCS) USA 1931 1862 1486 295
Melbourne Collaborative Cohort Study (MCCS) Australia 511 614 352 119
Multi-ethnic Cohort (MEC) USA 741 731 415 87
Montreal Gene–Environment Breast Cancer Study (MTLGEBCS) Canada 436 489 421 64
Norwegian Breast Cancer Study (NBCS) Norway 70 22 0 22
Oulu Breast Cancer Study (OBCS) Finland 414 507 407 100
Ontario Familial Breast Cancer Registryb (OFBCR) Canada 511 1175 630 268
Leiden University Medical Centre Breast Cancer Study (ORIGO) Netherlands 327 357 211 70
NCI Polish Breast Cancer Study (PBCS) Poland 424 519 519 0
Karolinska Mammography Project for Risk Prediction of Breast Cancer (pKARMA) Sweden 5537 5434 3672 702
Rotterdam Breast Cancer Study (RBCS) Netherlands 699 664 368 131
Singapore and Sweden Breast Cancer Study (SASBAC) Sweden 1378 1163 663 144
Sheffield Breast Cancer Study (SBCS) UK 848 843 377 105
Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH) UK 8069 9347 5160 1181
Städtisches Klinikum Karlsruhe Deutsches Krebsforschungszentrum Study (SKKDKFZS) Germany 29 136 0 136
IHCC-Szczecin Breast Cancer Study (SZBCS) Poland 315 365 165 60
Triple Negative Breast Cancer Consortium Study (TNBCC) Various 542 881 0 881
UK Breakthrough Generations Study (UKBGS) UK 470 476 96 22

Asian women

Asian Cancer Project (ACP) Thailand 636 423 92 53
Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC) Japan 1376 694 395 139
Los Angeles County Asian-American Breast Cancer Case–Control (LAABC) USA 990 812 528 138
Malaysian Breast Cancer Genetic Study (MYBRCA) Malaysia 610 770 422 291
Shanghai Breast Cancer Genetic Study (SBCGS) China 892 848 510 276
Seoul Breast Cancer Study (SEBCS) South Korea 1129 1162 657 375
Singapore Breast Cancer Cohort (SGBCC) Singapore 502 533 272 108
IARC-Thai Breast Cancer (TBCS) Thailand 253 138 26 26
Taiwanese Breast Cancer Study (TWBCS) Taiwan 236 889 460 204

African

Southern Community Cohort Study (SCCS) USA 680 679 0 0
Nashville Breast Health Study (NBHS) USA 252 437 199 222

Total 50156 53835 30635 9120

Abbreviations: ER� ¼ estrogen receptor-negative cases; ERþ ¼ estrogen receptor-positive cases.
aAustralian site of the Breast Cancer Family Registry.
bOntario site of the Breast Cancer Family Registry.
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receptor genes was tagged by the genotyped SNPs was good for
FGFR1, FGFR3 and FGFR4 and poor for FGFRL1, but substantial
improvement was afforded by imputation. Nevertheless, it is possible
that common variation not captured by the genotyped or imputed
SNPs may be associated with breast cancer risk. It is also possible that
these genes may be implicated in disease susceptibility via regulatory
mechanisms involving variants outside the chromosomal boundaries
defined for each gene considered. That said, few studies have assessed
common variation in candidate genes to this extent, in terms of both
gene coverage and sample size.

The power of our study was much lower for Asian and
African–American women; however, our primary focus on
European women is consistent with our hypothesis, based on
the previous finding in FGFR2 in this population. Our study was
also limited by the power and gene coverage of the stage 1
component which assessed tag-SNPs in the selected genes of the
FGF pathway. Therefore, no conclusions can be drawn about
the potential implication of common variation in these genes

in breast cancer susceptibility. Nevertheless, we checked
the chromosomal locations of the 76 established risk-associated
loci (http://www.nature.com/icogs/primer/shared-susceptibility-
loci-for-breast-prostate-and-ovarian-cancers/) and found that
none were located within 10 kb of any of the 39 genes considered,
with the exception of the FGFR2 locus.

In conclusion, in this, possibly the largest candidate-gene
association study carried out to date, we have observed little evidence
of association between common variation in the FGFR1, FGFR3,
FGFR4 and FGFRL1 genes and risk of breast cancer. Our results
suggest that common variants in these FGF receptors are not
associated with risk of breast cancer to the degree observed for FGFR2.
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Table 2. Summary results for SNPs in FGF receptor genes for white European women

OR (95%CI) OR (95%CI)

SNP Alleles MAF Aa aa per-a-allele P ER� ERþ P-het

FGFR1

rs10958704 AG 0.40 0.98 (0.95–1.01) 0.98 (0.94–1.02) 0.99 (0.97–1.01) 0.18 0.99 (0.96–1.03) 0.99 (0.97–1.02) 0.91
rs17182141 AG 0.06 1.05 (1.00–1.09) 0.95 (0.75–1.22) 1.04 (1.00–1.08) 0.057 1.08 (1.00–1.17) 1.04 (0.99–1.09) 0.30
rs2288696 GA 0.21 1.02 (0.99–1.05) 1.07 (1.00–1.14) 1.03 (1.00–1.05) 0.023 1.05 (1.01–1.10) 1.03 (1.00–1.06) 0.35
rs2411256 GA 0.24 1.02 (0.99–1.05) 1.01 (0.95–1.07) 1.01 (0.99–1.03) 0.36 1.00 (0.95–1.04) 1.01 (0.99–1.04) 0.44
rs2978076 GA 0.08 0.99 (0.96–1.03) 1.22 (1.04–1.44) 1.01 (0.98–1.05) 0.53 0.99 (0.92–1.06) 1.02 (0.98–1.06) 0.37
rs2978083 GA 0.05 0.99 (0.96–1.03) 1.22 (1.04–1.44) 1.01 (0.98–1.05) 0.53 0.97 (0.89–1.06) 1.03 (0.97–1.08) 0.27
rs3758102 GA 0.26 1.01 (0.98–1.04) 1.02 (0.96–1.07) 1.01 (0.99–1.03) 0.35 1.01 (0.97–1.05) 1.01 (0.98–1.04) 0.95
rs3925 GA 0.23 1.01 (0.98–1.04) 1.00 (0.95–1.07) 1.01 (0.99–1.03) 0.51 0.99 (0.95–1.04) 1.01 (0.99–1.04) 0.39
rs4733930 GA 0.42 1.00 (0.97–1.03) 1.04 (1.00–1.08) 1.02 (1.00–1.04) 0.11 1.03 (0.99–1.07) 1.02 (1.00–1.04) 0.67
rs4733946 CA 0.08 1.00 (0.97–1.03) 1.04 (1.00–1.08) 1.02 (1.00–1.04) 0.11 1.01 (0.95–1.08) 1.04 (1.00–1.09) 0.39
rs6474354 GA 0.21 0.98 (0.95–1.01) 0.99 (0.92–1.05) 0.98 (0.96–1.01) 0.18 0.96 (0.92–1.01) 0.98 (0.96–1.01) 0.37
rs6996321 GA 0.39 1.01 (0.98–1.04) 1.00 (0.96–1.04) 1.00 (0.98–1.02) 0.95 1.00 (0.97–1.04) 0.99 (0.97–1.02) 0.54
rs6983315 GA 0.44 1.01 (0.97–1.04) 0.98 (0.94–1.02) 0.99 (0.97–1.01) 0.39 0.97 (0.93–1.00) 0.99 (0.97–1.02) 0.13
rs7012413 GA 0.30 1.00 (0.97–1.02) 0.99 (0.95–1.04) 1.00 (0.98–1.02) 0.69 1.00 (0.97–1.04) 1.00 (0.98–1.02) 0.82

FGFR3

rs12502543 GA 0.10 1.04 (1.01–1.08) 1.10 (0.96–1.25) 1.04 (1.01–1.08) 0.0076 0.99 (0.93–1.05) 1.06 (1.02–1.10) 0.036
rs2234909 AG 0.14 0.99 (0.95–1.02) 0.97 (0.88–1.07) 0.99 (0.96–1.01) 0.29 0.99 (0.94–1.04) 0.98 (0.95–1.02) 0.77
rs3135848 AG 0.28 1.02 (0.99–1.04) 1.02 (0.96–1.07) 1.01 (0.99–1.03) 0.31 1.00 (0.96–1.04) 1.01 (0.99–1.04) 0.55
rs743682 GA 0.09 1.05 (1.01–1.09) 1.16 (1.00–1.34) 1.05 (1.02–1.09) 0.0020 1.01 (0.95–1.08) 1.06 (1.02–1.10) 0.24
rs746779 GA 0.18 0.99 (0.96–1.02) 0.98 (0.90–1.06) 0.99 (0.96–1.01) 0.29 1.00 (0.95–1.05) 0.98 (0.95–1.01) 0.48

FGFR4

rs1076891 GA 0.06 1.03 (0.99–1.08) 0.99 (0.81–1.22) 1.03 (0.99–1.07) 0.14 1.06 (0.98–1.14) 1.01 (0.97–1.06) 0.25
rs1966265 GA 0.23 0.97 (0.94–1.00) 0.93 (0.88–0.99) 0.97 (0.95–0.99) 0.0060 0.98 (0.94–1.03) 0.97 (0.95–1.00) 0.54
rs2456173 GA 0.21 1.00 (0.97–1.03) 0.99 (0.92–1.05) 0.99 (0.97–1.02) 0.66 0.98 (0.94–1.02) 1.00 (0.98–1.03) 0.34
rs376618 AG 0.24 1.00 (0.97–1.03) 0.96 (0.91–1.02) 0.99 (0.97–1.01) 0.33 0.97 (0.93–1.01) 0.99 (0.97–1.02) 0.29
rs641101 GA 0.31 1.01 (0.98–1.04) 0.99 (0.94–1.03) 1.00 (0.98–1.02) 0.98 0.99 (0.95–1.03) 1.00 (0.98–1.02) 0.56
rs6556301 CA 0.36 0.99 (0.97–1.02) 0.96 (0.92–1.00) 0.98 (0.97–1.00) 0.13 0.99 (0.95–1.02) 0.98 (0.96–1.01) 0.84

FGFRL1

rs34869253 AG 0.43 1.00 (0.97–1.04) 1.00 (0.96–1.04) 1.00 (0.98–1.02) 0.96 0.98 (0.94–1.01) 0.99 (0.97–1.01) 0.52
rs3755955 GA 0.16 1.00 (0.97–1.03) 1.02 (0.94–1.11) 1.00 (0.98–1.03) 0.82 1.00 (0.95–1.05) 1.00 (0.97–1.03) 0.83
rs4505759 GA 0.30 0.99 (0.96–1.02) 0.98 (0.93–1.03) 0.99 (0.97–1.00) 0.38 1.00 (0.96–1.04) 0.99 (0.97–1.02) 0.78
rs4647932 GA 0.06 1.04 (0.99–1.08) 0.98 (0.80–1.20) 1.03 (0.99–1.07) 0.14 1.06 (0.98–1.14) 1.02 (0.97–1.06) 0.31
rs6855233 AG 0.29 0.99 (0.97–1.02) 1.03 (0.98–1.08) 1.01 (0.98–1.03) 0.62 0.98 (0.94–1.02) 1.00 (0.98–1.03) 0.31
rs748651 AG 0.48 1.00 (0.97–1.03) 1.02 (0.98–1.06) 1.01 (0.99–1.03) 0.31 1.03 (0.99–1.07) 1.01 (0.98–1.03) 0.22

Abbreviations: SNP¼ single-nucleotide polymorphism; FGF¼ fibroblast growth factor; OR¼odds ratio where A is the common allele, a is the rare allele and both Aa and aa are compared with
AA genotypes; CI¼ confidence interval; MAF¼minor allele frequency; P¼P-value for the per-a-allele model; ER� ¼ results (per a-allele) for risk of estrogen receptor-negative disease;
ERþ ¼ results (per a-allele) for risk of estrogen receptor-positive disease; P-het¼P-value for heterogeneity by disease sub-type defined by estrogen receptor status.
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Buhari SA, Hamann U, Försti A, Rüdiger T, Ulmer HU, Jakubowska A,
Lubinski J, Jaworska K, Durda K, Sangrajrang S, Gaborieau V, Brennan P,
McKay J, Vachon C, Slager S, Fostira F, Pilarski R, Shen CY, Hsiung CN,
Wu PE, Hou MF, Swerdlow A, Ashworth A, Orr N, Schoemaker MJ,
Ponder BA, Dunning AM, Easton DF (2013) Fine-scale mapping of the
FGFR2 breast cancer risk locus: putative functional variants differentially
bind FOXA1 and E2F1. Am J Hum Genet 93(6): 1046–1060.

Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL,
Schmidt MK, Chang-Claude J, Bojesen SE, Bolla MK, Wang Q,
Dicks E, Lee A, Turnbull C, Rahman N, Fletcher O, Peto J, Gibson L,
Dos Santos Silva I, Nevanlinna H, Muranen TA, Aittomaki K, Blomqvist C,
Czene K, Irwanto A, Liu J, Waisfisz Q, Meijers-Heijboer H, Adank M,
van der Luijt RB, Hein R, Dahmen N, Beckman L, Meindl A,
Schmutzler RK, Muller-Myhsok B, Lichtner P, Hopper JL, Southey MC,
Makalic E, Schmidt DF, Uitterlinden AG, Hofman A, Hunter DJ,
Chanock SJ, Vincent D, Bacot F, Tessier DC, Canisius S, Wessels LF,
Haiman CA, Shah M, Luben R, Brown J, Luccarini C, Schoof N,
Humphreys K, Li J, Nordestgaard BG, Nielsen SF, Flyger H, Couch FJ,
Wang X, Vachon C, Stevens KN, Lambrechts D, Moisse M, Paridaens R,
Christiaens MR, Rudolph A, Nickels S, Flesch-Janys D, Johnson N,
Aitken Z, Aaltonen K, Heikkinen T, Broeks A, Veer LJ, van der Schoot CE,
Guenel P, Truong T, Laurent-Puig P, Menegaux F, Marme F,
Schneeweiss A, Sohn C, Burwinkel B, Zamora MP, Perez JI, Pita G,
Alonso MR, Cox A, Brock IW, Cross SS, Reed MW, Sawyer EJ,
Tomlinson I, Kerin MJ, Miller N, Henderson BE, Schumacher F,
Le Marchand L, Andrulis IL, Knight JA, Glendon G, Mulligan AM,
Lindblom A, Margolin S, Hooning MJ, Hollestelle A, van den Ouweland AM,
Jager A, Bui QM, Stone J, Dite GS, Apicella C, Tsimiklis H, Giles GG,
Severi G, Baglietto L, Fasching PA, Haeberle L, Ekici AB, Beckmann MW,
Brenner H, Muller H, Arndt V, Stegmaier C, Swerdlow A, Ashworth A,
Orr N, Jones M, Figueroa J, Lissowska J, Brinton L, Goldberg MS,
Labreche F, Dumont M, Winqvist R, Pylkas K, Jukkola-Vuorinen A,
Grip M, Brauch H, Hamann U, Bruning T, Radice P, Peterlongo P,
Manoukian S, Bonanni B, Devilee P, Tollenaar RA, Seynaeve C,
van Asperen CJ, Jakubowska A, Lubinski J, Jaworska K, Durda K,
Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Bogdanova NV,
Antonenkova NN, Dork T, Kristensen VN, Anton-Culver H, Slager S,
Toland AE, Edge S, Fostira F, Kang D, Yoo KY, Noh DY, Matsuo K, Ito H,
Iwata H, Sueta A, Wu AH, Tseng CC, Van Den Berg D, Stram DO,
Shu XO, Lu W, Gao YT, Cai H, Teo SH, Yip CH, Phuah SY, Cornes BK,
Hartman M, Miao H, Lim WY, Sng JH, Muir K, Lophatananon A,
Stewart-Brown S, Siriwanarangsan P, Shen CY, Hsiung CN, Wu PE,
Ding SL, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Blot WJ,
Signorello LB, Cai Q, Zheng W, Deming-Halverson S, Shrubsole M,
Long J, Simard J, Garcia-Closas M, Pharoah PD, Chenevix-Trench G,
Dunning AM, Benitez J, Easton DF (2013) Large-scale genotyping

FGF receptor genes and breast cancer susceptibility BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.769 1099

http://www.bjcancer.com


identifies 41 new loci associated with breast cancer risk. Nat Genet
45: 353–361, 361. e1–e2.

Nyholt DR (2004) A simple correction for multiple testing for single-
nucleotide polymorphisms in linkage disequilibrium with each other.
Am J Hum Genet 74: 765–769.

Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005)
Fibroblast growth factor/fibroblast growth factor receptor system in
angiogenesis. Cytokine Growth Factor Rev 16: 159–178.

Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S,
Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S,
Evans DG, Eccles D, Easton DF, Stratton MR (2007) PALB2, which
encodes a BRCA2-interacting protein, is a breast cancer susceptibility
gene. Nat Genet 39: 165–167.

Robertson A, Hill WG (1984) Deviations from Hardy-Weinberg proportions:
sampling variances and use in estimation of inbreeding coefficients.
Genetics 107: 703–718.

Schwertfeger KL (2009) Fibroblast growth factors in development and cancer:
insights from the mammary and prostate glands. Curr Drug Targets 10:
632–644.

Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T,
Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG,
Eccles D, Easton DF, Stratton MR, Rahman N (2006) Truncating
mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast
cancer susceptibility alleles. Nat Genet 38: 1239–1241.

Siddiq A, Couch FJ, Chen GK, Lindstrom S, Eccles D, Millikan RC,
Michailidou K, Stram DO, Beckmann L, Rhie SK, Ambrosone CB,
Aittomaki K, Amiano P, Apicella C, Baglietto L, Bandera EV,
Beckmann MW, Berg CD, Bernstein L, Blomqvist C, Brauch H, Brinton L,
Bui QM, Buring JE, Buys SS, Campa D, Carpenter JE, Chasman DI,
Chang-Claude J, Chen C, Clavel-Chapelon F, Cox A, Cross SS, Czene K,
Deming SL, Diasio RB, Diver WR, Dunning AM, Durcan L, Ekici AB,
Fasching PA, Feigelson HS, Fejerman L, Figueroa JD, Fletcher O,
Flesch-Janys D, Gaudet MM, Gerty SM, Rodriguez-Gil JL, Giles GG,
van Gils CH, Godwin AK, Graham N, Greco D, Hall P, Hankinson SE,
Hartmann A, Hein R, Heinz J, Hoover RN, Hopper JL, Hu JJ, Huntsman S,
Ingles SA, Irwanto A, Isaacs C, Jacobs KB, John EM, Justenhoven C,
Kaaks R, Kolonel LN, Coetzee GA, Lathrop M, Le Marchand L, Lee AM,
Lee IM, Lesnick T, Lichtner P, Liu J, Lund E, Makalic E, Martin NG,
McLean CA, Meijers-Heijboer H, Meindl A, Miron P, Monroe KR,
Montgomery GW, Muller-Myhsok B, Nickels S, Nyante SJ, Olswold C,
Overvad K, Palli D, Park DJ, Palmer JR, Pathak H, Peto J, Pharoah P,
Rahman N, Rivadeneira F, Schmidt DF, Schmutzler RK, Slager S, Southey MC,
Stevens KN, Sinn HP, Press MF, Ross E, Riboli E, Ridker PM, Schumacher FR,
Severi G, Dos Santos Silva I, Stone J, Sund M, Tapper WJ, Thun MJ,
Travis RC, Turnbull C, Uitterlinden AG, Waisfisz Q, Wang X, Wang Z,
Weaver J, Schulz-Wendtland R, Wilkens LR, Van Den Berg D, Zheng W,
Ziegler RG, Ziv E, Nevanlinna H, Easton DF, Hunter DJ, Henderson BE,
Chanock SJ, Garcia-Closas M, Kraft P, Haiman CA, Vachon CM (2012)
A meta-analysis of genome-wide association studies of breast cancer
identifies two novel susceptibility loci at 6q14 and 20q11. Hum Mol Genet
21: 5373–5384.

Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA,
Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK,
Strobbe LJ, Albers-Akkers MT, Swinkels DW, Henderson BE, Kolonel LN,
Le Marchand L, Millastre E, Andres R, Godino J, Garcia-Prats MD, Polo E,
Tres A, Mouy M, Saemundsdottir J, Backman VM, Gudmundsson L,
Kristjansson K, Bergthorsson JT, Kostic J, Frigge ML, Geller F,
Gudbjartsson D, Sigurdsson H, Jonsdottir T, Hrafnkelsson J, Johannsson J,
Sveinsson T, Myrdal G, Grimsson HN, Jonsson T, von Holst S, Werelius B,
Margolin S, Lindblom A, Mayordomo JI, Haiman CA, Kiemeney LA,

Johannsson OT, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K
(2007) Common variants on chromosomes 2q35 and 16q12 confer
susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:
865–869.

Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF,
Jakobsdottir M, Bergthorsson JT, Gudmundsson J, Aben KK, Strobbe LJ,
Swinkels DW, van Engelenburg KC, Henderson BE, Kolonel LN,
Le Marchand L, Millastre E, Andres R, Saez B, Lambea J, Godino J, Polo E,
Tres A, Picelli S, Rantala J, Margolin S, Jonsson T, Sigurdsson H,
Jonsdottir T, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G,
Grimsson HN, Sveinsdottir SG, Alexiusdottir K, Saemundsdottir J,
Sigurdsson A, Kostic J, Gudmundsson L, Kristjansson K, Masson G,
Fackenthal JD, Adebamowo C, Ogundiran T, Olopade OI, Haiman CA,
Lindblom A, Mayordomo JI, Kiemeney LA, Gulcher JR, Rafnar T,
Thorsteinsdottir U, Johannsson OT, Kong A, Stefansson K (2008)
Common variants on chromosome 5p12 confer susceptibility to
estrogen receptor-positive breast cancer. Nat Genet 40: 703–706.

Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in
families with ataxia-telangiectasia. N Engl J Med 316: 1289–1294.

The Breast Cancer Association Consortium (2006) Commonly studied
single-nucleotide polymorphisms and breast cancer: results from the
Breast Cancer Association Consortium. J Natl Cancer Inst 98: 1382–1396.

Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG,
Hankinson SE, Hutchinson A, Wang Z, Yu K, Chatterjee N,
Garcia-Closas M, Gonzalez-Bosquet J, Prokunina-Olsson L, Orr N,
Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA,
Feigelson HS, Calle EE, Thun MJ, Diver R, Prentice R, Jackson R,
Kooperberg C, Chlebowski R, Lissowska J, Peplonska B, Brinton LA,
Sigurdson A, Doody M, Bhatti P, Alexander BH, Buring J, Lee IM,
Vatten LJ, Hveem K, Kumle M, Hayes RB, Tucker M, Gerhard DS,
Fraumeni Jr JF, Hoover RN, Chanock SJ, Hunter DJ (2009)
A multistage genome-wide association study in breast cancer
identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1).
Nat Genet 41: 579–584.

Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S,
Ghoussaini M, Hines S, Healey CS, Hughes D, Warren-Perry M, Tapper W,
Eccles D, Evans DG, Hooning M, Schutte M, van den Ouweland A,
Houlston R, Ross G, Langford C, Pharoah PD, Stratton MR, Dunning AM,
Rahman N, Easton DF (2010) Genome-wide association study identifies
five new breast cancer susceptibility loci. Nat Genet 42: 504–507.

Udler MS, Meyer KB, Pooley KA, Karlins E, Struewing JP, Zhang J, Doody DR,
MacArthur S, Tyrer J, Pharoah PD, Luben R, Bernstein L, Kolonel LN,
Henderson BE, Le Marchand L, Ursin G, Press MF, Brennan P,
Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC,
Kang D, Yoo KY, Noh DY, Ahn SH, Ponder BA, Haiman CA, Malone KE,
Dunning AM, Ostrander EA, Easton DF (2009) FGFR2 variants and
breast cancer risk: fine-scale mapping using African American studies
and analysis of chromatin conformation. Hum Mol Genet 18:
1692–1703.

Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S,
Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W, Shu XO (2009)
Genome-wide association study identifies a new breast cancer
susceptibility locus at 6q25.1. Nat Genet 41: 324–328.

This work is published under the standard license to publish agree-
ment. After 12 months the work will become freely available and
the license terms will switch to a Creative Commons Attribution-
NonCommercial-Share Alike 3.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)

BRITISH JOURNAL OF CANCER FGF receptor genes and breast cancer susceptibility

1100 www.bjcancer.com | DOI:10.1038/bjc.2013.769

http://www.nature.com/bjc
http://www.bjcancer.com

