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Abstract

Linear systems obey the principle of superposition, i.e., they are characterized by a proportion-
ality between their response and the applied force. Because of the scaling that exists between
different forcing levels, engineering design is therefore greatly facilitated. However, nonlinearity
is a frequent occurrence in engineering structures and is such that the superposition principle can
generally no longer be applied.

The objective of the present study is to introduce nonlinearity into an already nonlinear system to
retrieve certain dynamical properties exhibited by linear systems, hence creating a sort of com-
pensation effect. For instance, reference [1] enforced isochronicity, i.e., amplitude-independent
resonant frequency, in nonlinear systems. The focus herein is to investigate how the proportion-
ality between the response of the system and the applied force can be retrieved for a specific
vibration mode in a large range of forcing levels.

Considering a general mechanical system, described by the system of differential equations

Mẍ+Cẋ+Kx+bnl = f0 cos(ωt)f, (1)

where M, C and K are the mass, damping and stiffness matrices, respectively, bnl includes the
nonlinear terms, f0 is the forcing amplitude, ω is the excitation frequency, t is time and f is a
constant vector that locates the applied force. For simplicity, we consider that the system has a
single nonlinear element described by a third-order term, bnl = α̃3b̃nl , where α̃3 is a real parameter.

Normalizing the system using y = x/ f0, the forcing amplitude and the nonlinearity are expressed
by the unique parameter α3 = α̃3 f 2

0 . Applying the harmonic balance method, Eq. (1) can be
expressed as a system of nonlinear algebraic equations, A(ω)q+α3d(q) = c(ω), where q collects
the amplitude of the different harmonics of the solution, d contains the nonlinear terms and c is
related to the external forcing.

We introduce in the system another third-order nonlinearity, β3 = b3α3. Thus, the system of
algebraic equations becomes Aq+α3

(
d+b3dβ

)
= c. Expanding q with respect to α3 as q =

q0+α3q1+O(α2
3 ), the approximated frequency response of the system can be obtained explicitly,

i.e., h = h0 +α3 (h10 +b3h13)+O(α2
3 ), where h0, h10 and h13 depend on ω . Focusing on the

frequency response of the first coordinate, we call h = h(1) and analogously h0, h10 and h13 for
h0, h10 and h13.

We call ω̄0 the resonant frequency of the considered mode of the underlying linear system, and ω0
the corresponding resonant frequency when the two nonlinearities are considered. Approximating
the difference between ω0 and ω̄0 with a linear function proportional to α3, the value of b3 that sat-
isfies, in first approximation, the proportionality relation expressed through the objective function



H =−h0(ω̄0)+h(ω0) = 0 is

b3 =−h0ωh10ω −h10h0ωω

h0ωh13ω −h13h0ωω

∣∣∣
ω=ω̄0

, (2)

where the subscript ω indicates derivation with respect to ω .

The developments were validated using a two-degree-of-freedom (2DOF) system possessing a
cubic spring:

m1ẍ1 + k1x1 + c2 (ẋ1 − ẋ2)+ k2 (x1 − x2)+ α̃3x3
1 = f0 cosωt,

m2ẍ2 + c2 (ẋ2 − ẋ1)+ k2 (x2 − x1) = 0. (3)

Fig. 1(a) illustrates that the original nonlinear system is characterized by a strong dependence of
the resonance peak amplitude to forcing level. An additional cubic spring with coefficient given by
(2) was then introduced in the system between masses m1 and m2. Fig. 1(b) shows that the force-
displacement proportionality can be (almost) maintained in a certain range of forcing amplitudes.

In order to extend the range of displacement-force proportionality, the procedure was generalized
to nonlinearities possessing additional higher-order terms. For instance, Fig. 1(c) depicts the
improvement that can be obtained when a quintic spring is added in parallel to the cubic spring. A
resonance peak that exhibits no visible dependence on forcing amplitude is obtained for variations
of the resonant frequency up to 20 %; this linear-like regime is then followed by a sudden detuning.
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Figure 1: Normalized frequency response of a 2DOF system for different values of the forcing
amplitude. (a) Original nonlinear system; (b) system with an added cubic nonlinearity; (c) system
with added cubic and quintic nonlinearities. Dashed line: underlying linear system.

Devices that work properly for linear systems, but fail if the system is nonlinear, represent a pos-
sible application of this procedure. This is for instance the case of the nonlinear tuned vibration
absorber proposed in [2] that can mitigate a nonlinear resonance in a large range of forcing ampli-
tudes.
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