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ABSTRACT
For more than 25 years now, traceroute has demon-
strated its supremacy for network-path measurement,
becoming the most widely used Internet path diagno-
sis tool today. A major limitation of traceroute when
the destination is not controllable by the user is its in-
ability to measure reverse paths, i.e., the path from a
destination back to the source. Proposed techniques to
address this issue rely on IP address spoofing, which
might lead to security concerns. In this paper we intro-
duce and evaluate DisNETPerf, a new tool for locating
probes that are the closest to a distant server. Those
probes are then used to collect data from the server
point-of-view to the service user for path performance
monitoring and troubleshooting purposes. We propose
two techniques for probe location, and demonstrate that
the reverse path can be measured with very high accu-
racy in certain scenarios.

1. WHY DISNETPERF?
Internet-scale services such as YouTube and Face-

book are provisioned from geo-distributed servers, using
large Content Delivery Networks (CDNs). While user-
requests are normally redirected to the closet servers (in
terms of latency), internal CDN load-balancing policies
may select servers which lie at hundreds of milliseconds
from customers, potentially impacting their Quality of
Experience (QoE). For instance, previous work [1] re-
ports a real case study in which a Google load balancing
policy results in a drop in the throughput of YouTube
flows, impacting the QoE of a large number of cus-
tomers watching videos at peak-load times in an opera-
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tional ISP. In this event, the minimum RTT to YouTube
servers increases by more than 300%, corresponding to a
different load balancing policy selecting servers at much
farther locations [2]. The anomaly could be due to ei-
ther wrongly dimensioned/faulty YouTube servers, or
to the presence of heavy network congestion at peak
time in the servers-to-customers paths.

Having a tool that can measure the performance of
these paths becomes paramount for the ISP to diag-
nose and troubleshoot the detected performance degra-
dation [3]. Performing traceroute measurements from
the servers towards the monitoring vantage point can-
not be done in practice, as YouTube servers are not
under the control of the ISP. A solution to this prob-
lem has been proposed in the past, known as reverse
traceroute [4]; however, the proposed approach heav-
ily relies on IP spoofing and IP Record Route Option,
both being not necessarily allowed everywhere [5, 6] and
causing potential security concerns.

In this paper we introduce DisNETPerf, a Distributed
Internet Paths Performance Analyzer, that can monitor
any Internet path using the RIPE Atlas framework [7]
and standard traceroute measurements.

2. DISNETPERF
Given a certain content server with IP address IPs,

and a destination customer with IP address IPd, Dis-
NETPerf locates the closest RIPE Atlas probe [7] to
IPs, namely IPc, and periodically runs traceroute
measurements from IPc to IPd, collecting different path
performance metrics such as RTT per hop, end-to-end
RTT, etc. This data might then be used to troubleshoot
paths from the content server (mimicked by IPc) to the
target customer. Fig. 1 depicts the overall idea. It
uses a combined topology- and delay-based distance, as
probes are located first by AS (BGP routing proxim-
ity allowing to select probes in the same AS as IPs)
and then by propagation delay (for selecting the closest
probe to IPs). Note that DisNETPerf is not strictly
tied to RIPE Atlas, but can be used with any other
distributed measurement framework such as CAIDA’s
Ark [8] or PlanetLab [9].

We evaluate two probe selection approaches for Dis-
NETPerf, partially proposed in the literature [10, 11,



Figure 1: DisNETPerf overview.
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Figure 2: Probe selection evaluation, based on RSIM.

12]: the smallest latency (SL) approach and the land-
mark (LM) approach. In both cases, we start by de-
termining whether RIPE Atlas probes are located and
available in the same AS as the content server IPs. If
this is not the case, we look for probes in the neigh-
bor ASes of IPs. Neighborhood information is obtained
through AS relationships [13]. Once RIPE Atlas probes
have been identified, the selection of IPc can start.

In the SL-approach, we run 10 standard ping mea-
surements from the probes towards IPs. The probe
with the smallest minimum RTT to IPs is then elected
as the representative probe of the content server, i.e.,
IPc. In the LM-approach, we first start by grouping
the identified RIPE Atlas probes in two groups: the
landmarks and the probes that can be elected as IPc.
Landmarks represent a base location reference for all
the probes, as inter-probe distances are measured using
them as origin. Landmarks are chosen randomly among
all the candidate-probes. We then run 10 ping measure-
ments from those landmarks towards IPs and all the
other identified probes belonging to the other group.
For each pinged IP address, we build a feature vector
d containing the minimum RTT from each landmark to
this IP address. We select IPc as the probe which fea-
ture vector is the most similar to the one of IPs, accord-

ing to the normalized distance Dij =
1

K

∑K
l=1 |dil−djl|,

where K is the number of landmarks providing a RTT
for both IPi and IPj , and dil is the minimum RTT
between IPi and landmark l. When Dij is small, we
assume that IPi and IPj are close to each other. In the
evaluations next, we select 20 landmarks for each IPs.

We say that IPc is a good probe w.r.t. IPs and IPd

if the path from IPc to IPd is highly similar to the path
from IPs to IPd. Similarly to Hu and Steenkiste [14],
we define path similarity as the fraction of common
links among both paths, using the Route Similarity in-
dex (RSIM), a value in the interval [0, 1], defined as

RSIM(IPc, IPs, IPd) = 2 × Clinks(IPc, IPs, IPd)
Tlinks(IPc, IPs, IPd)

, where

Clinks refers to the number of links shared in common
by both paths, and Tlinks to the total number of links.
A high RSIM indicates a high similarity between the
considered paths. We consider links at the AS level
(IP2AS mapping based on Maxmind [15]), PoP level
(IP2PoP mapping based on iPlane [16]), and IP level.

Fig. 2 reports evaluation results in terms of path sim-
ilarity. We use RIPE Atlas probes as source and desti-
nation (i.e., IPs and IPd) so as to compute the real path
(i.e., the ground-truth) between servers and customers.
We randomly select 300 RIPE Atlas source probes IPsi ,
and consider a single fixed destination probe IPd. For
each source IPsi we run DisNETPerf to locate the clos-
est probe IPci , obtain both the ground truth path IPsi

→ IPd and the DisNETPerf path IPci → IPd, and com-
pute the RSIM index RSIM(IPci , IPsi , IPd).

We compute RSIM at the AS level, PoP level, and IP
level, and plot the resulting CDFs. Results are reported
for the two approaches and for two different groups, the
first one in which IPci and IPsi are located in the same
AS, and the second one in which IPci is located in a
neighbor AS. At the AS-level, the case of same AS co-
location results in near optimal results. Nevertheless,
we observe that about 40% of the tests carried out for
the SL-approach and 45% of the tests performed for
the LM-approach in the non-collocated scenario yield a
RSIM index ≥ 0.5. Note that the most relevant segment
of the path to monitor for troubleshooting purposes is
the one closer to the customer (where problems gener-
ally occur), thus a RSIM of 0.5 is actually very good.

At the PoP-level, the RSIM index computed using
both approaches is ≥ 0.5 for about 50% of the tests
when IPci and IPsi are in different ASes, and for more
than 80% of the tests when they are in the same AS.
At the IP-level, only about 20% of the tests yield an
RSIM index ≥ 0.5 when IPci and IPsi are not co-
located in the same AS. However, IP-level paths are
generally less relevant, and we plan to evolve to router-
based paths [17]. In general, we note that the results
for both SL- and LM-approaches are comparable and
highly similar. Finally, we observed that probes se-
lected by DisNETPerf using the SL-approach generally
correspond to paths with the highest similarity to the
ground-truth ones: in more than 80% of the performed
tests, RSIM(IPci , IPsi , IPd) results in the highest RSIM
index among all the selected candidates when consider-
ing the AS-level, which is the most relevant level for
our purposes. Indeed, we want to detect which AS on
the Internet path from servers to customers might be
responsible for the performance degradation, and thus
do not take into account the intra-AS routing.
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