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Chapter 1

Introduction
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1.1 Motivation

• To understand the limits of computer science.

• To distinguish problems that are solvable by algorithms from those

that are not.

• To obtain results that are independent of the technology used to build

computers.
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1.2 Problems and Languages

• Which problems can be solved by a program executed by a computer?

We need to be more precise about:

– the concept of problem,

– the concept of program executed by a computer.
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The concept of problem

Problem: generic question.

Examples :

• to sort an array of numbers;

• to decide if a program written in C stops for all possible input values;

(halting problem) ;

• to decide if an equation with integer coefficients has integer solutions

(Hilbert’s 10th problem).
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The concept of program

Effective procedure: program that can be executed by a computer.

Examples :

• Effective procedure : program written in JAVA ;

• Not an effective procedure: “to solve the halting problem, one must

just check that the program has no infinite loops or recursive call

sequences.”
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The halting problem

recursive function threen (n: integer):integer ;

begin

if (n = 1) then 1

else if even(n) then threen(n÷ 2)

else threen(3× n+ 1);

end;
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1.3 Formalizing problems

How could one represent problem instances?
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Alphabets and words

Alphabet : finite set of symbols.

Examples

• {a,b, c}

• {α, β, γ}

• {1,2,3}

• {♣,♦,♥}
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Word on an alphabet : finite sequence of elements of the alphabet.

Examples

• a, abs, zt, bbbssnbnzzyyyyddtrra, grosseguindaille are words on the

alphabet {a, . . . , z}.

• 4♣3♦5♥2♠,12765,♣♥ are words on the alphabet {0, . . . ,8,♣,♦,♥,♠}.

Empty word: represented by e, ε, or λ.

Length of a word w : |w|

w = aaabbaaaabb

w(1) = a, w(2) = a,. . . , w(11) = b
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Representing problems

Encoding a problem

Let us consider a binary problem whose instances are encoded by words

defined over an alphabet Σ. The set of all words defined on Σ can be

partitioned in 3 subsets:

• positive instances: the answer is yes ;

• negative instances: the answer is no;

• words that do not represent an instance of the problem.
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Alternatively:

• the words encoding instances of the problem for which the answer is

yes, the positive instances ;

• the words that do not encode and instance of the problem, or that

encode an instance for which the answer is no , the negative instances.
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Languages

Language: set of words defined over the same alphabet.

Examples

• {aab, aaaa, ε, a, b, abababababbbbbbbbbbbb}, {ε, aaaaaaa, a, bbbbbb} and ∅ (the

empty set) are languages over the alphabet {a, b}.

• for the alphabet {0,1},

{0,1,00,01,10,11,000,001,010,011,100,

101,110,111, . . .} is the language containing all words.

• language ∅ 6= language {ε}.

• the set of words encoding C programs that always stop.
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1.4 Describing languages

Operations on languages

Let L1 and L2 be languages.

• L1 ∪ L2 = {w|w ∈ L1 or w ∈ L2} ;

• L1 · L2 = {w|w = xy, x ∈ L1 and y ∈ L2} ;

• L∗1 = {w|∃k ≥ 0 and w1, . . . , wk ∈ L1 such that w = w1w2 . . . wk} ;

• L1 = {w|w 6∈ L1}.
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Regular Languages

The set R of regular languages over an alphabet Σ is the smallest set of

languages such that:

1. ∅ ∈ Rand {ε} ∈ R,

2. {a} ∈ R for all a ∈ Σ, and

3. if A,B ∈ R, then A ∪B, A ·B and A∗ ∈ R.
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Regular expressions

A notation for representing regular languages.

1. ∅, ε and the elements of Σ are regular expressions;

2. If α and β are regular expressions, then (αβ), (α ∪ β), (α)∗ are regular

expressions.

The set of regular expressions is a language over the alphabet

Σ′ = Σ ∪ {), (, ∅,∪, ∗, ε}.
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The language represented by a
regular expression

1. L(∅) = ∅, L(ε) = {ε},

2. L(a) = {a} pour tout a ∈ Σ,

3. L((α ∪ β)) = L(α) ∪ L(β),

4. L((αβ)) = L(α) · L(β),

5. L((α)∗) = L(α)∗.
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Theorem

A language is regular

if and only if

it can be represented by a regular expression.
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Regulars languages : examples

• The set of all words over Σ = {a1, . . . , an} is represented by

(a1 ∪ . . . ∪ an)∗ (or Σ∗).

• The set of all nonempty words over Σ = {a1, . . . , an} is represented by

(a1 ∪ . . . ∪ an)(a1 ∪ . . . ∪ an)∗ (or ΣΣ∗, or Σ+).

• the expression (a ∪ b)∗a(a ∪ b)∗ represents the language containing all

words over the alphabet {a, b} that contain at least one “a”.
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Regulars languages : more examples

(a∗b)∗ ∪ (b∗a)∗ = (a ∪ b)∗

Proof

• (a∗b)∗ ∪ (b∗a)∗ ⊂ (a ∪ b)∗ since (a ∪ b)∗ represents the set of all words

built from the characters “a” and “b”.

• Let us consider an arbitrary word

w = w1w2 . . . wn ∈ (a ∪ b)∗.

One can distinguish 4 cases . . .
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1. w = an and thus w ⊂ (εa)∗ ⊂ (b∗a)∗ ;

2. w = bn and thus w ⊂ (εb)∗ ⊂ (a∗b)∗ ;

3. w contains both a’s and b’s and ends with a b

w = a . . . ab︸ ︷︷ ︸
a∗b

. . . b︸ ︷︷ ︸
(a∗b)∗

a . . . ab︸ ︷︷ ︸
a∗b

. . . b︸ ︷︷ ︸
(a∗b)∗

⇒ w ∈ (a∗b)∗ ∪ (b∗a)∗ ;

4. w contains both a’s and b’s and ends with an a ⇒ similar

decomposition.
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1.5 Languages that are not regular

Fact

There are not enough regular expressions to represent all languages!

Definition

Cardinality of a set. . .

Example

The sets {0,1,2,3}, {a, b, c, d}, {♣,♦,♥,♠} all have the same size. There

exists a one-one correspondence (bijection) between them, for example

{(0,♣), (1,♦), (2,♥), (3,♠)}.
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Denumerable (countably infinite) sets

Definition

An infinite set is denumerable if there exists a bijection between this set

and the set natural numbers.

Remark

Finite sets are all countable in the usual sense, but in mathematics

countable is sometimes used to mean precisely countably infinite.
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Denumerable sets: examples

1. The set of even numbers is denumerable:

{(0,0), (2,1), (4,2), (6,3), . . .}.

2. The set of words over the alphabet {a, b} is denumerable :

{(ε,0), (a,1), (b,2), (aa,3), (ab,4), (ba,5),

(bb,6), (aaa,7) . . .}.

3. The set of rational numbers is denumerable:

{(0/1,0), (1/1,1), (1/2,2), (2/1,3), (1/3,4),

(3/1,5), . . .}.

4. The set of regular expressions is denumerable.
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The diagonal argument

Theorem

The set of subsets of a denumerable set is not denumerable.

Proof

a0 a1 a2 a3 a4 · · ·
s0 × × ×
s1 × 2 ×
s2 × × ×
s3 × × 2

s4 × × 2
...

D = {ai | ai 6∈ si}
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Conclusion

• The set of languages is not denumerable.

• The set of regular languages is denumerable.

• Thus there are (many) more languages than regular languages
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1.6 To follow . . .

• The notion of effective procedure (automata).

• Problems that cannot be solved by algorithms.

• Problems that cannot be solved efficiently.
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Chapter 2
Finite Automata
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2.1 Introduction

• Finite automata: a first model of the notion of effective procedure.

(They also have many other applications).

• The concept of finite automaton can be derived by examining what

happens when a program is executed on a computer: state, initial

state, transition function.

• The finite state hypothesis and its consequences: finite or cyclic

sequences of states.

• The problem of representing the data: only a finite number of

different data sets can be represented since there exists only a finite

number of initial states.
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Representing data.

• Problem: to recognize a language.

• Data: a word.

• We will assume that the word is fed to the machine character by

character, one character being handled at each cycle and the machine

stopping once the last character has been read.
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2.2 Description

• Input tape.

• Set of states:

– initial state,

– accepting states.

• Execution step:

tape :

head :

b a a a b
�
�
�

A
A
A
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2.3 Formalization

A deterministic finite automaton is defined by a five-tuple

M = (Q,Σ, δ, s, F ), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q×Σ→ Q is the transition function,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.
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Defining the language accepted by a finite automaton

• Configuration : (q, w) ∈ Q×Σ∗.

• Configuration derivable in one step: (q, w) `M (q′, w′).

• Derivable configuration (multiple steps) : (q, w) `∗M (q′, w′).

• Execution:

(s, w) ` (q1, w1) ` (q2, w2) ` · · · ` (qn, ε)

• Accepted word:

(s, w) `∗M (q, ε)

and q ∈ F .

• Accepted language L(M) :

{w ∈ Σ∗ | (s, w) `∗M (q, ε) avec q ∈ F}.
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2.4 Examples

Words ending with b :

δ : q σ δ(q, σ) Q = {q0, q1}
q0 a q0 Σ = {a, b}
q0 b q1 s = q0
q1 a q0 F = {q1}
q1 b q1

q0&%
'$
>



a

q1&%
'$
"!
# 

b

q

b

i

a
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q0��
��
��
��

>


b

q1��
��
��
��

q2��
��
a

M

b

q

a

i

b

-a

{w | w does not contain 2 consecutive a’s}.
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2.5 Nondeterministic finite automata

Automata that can choose among several transitions.

Motivation :

• To examine the consequences of generalizing a given definition.

• To make describing languages by finite automata easier.

• The concept of non determinism is generally useful.
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Description

Nondeterministic finite automata are finite automata that allow:

• several transitions for the same letter in each state,

• transitions on the empty word (i.e., transitions for which nothing is

read),

• transitions on words of length greater than 1 (combining transitions).

Nondeterministic finite automata accept if a least one execution accepts.
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Formalization

A nondeterministic finite automaton is a five-tuple M = (Q,Σ,∆, s, F ),

where

• Q is a finite set of states,

• Σ is an alphabet,

• ∆ ⊂ (Q×Σ∗ ×Q) is the transition relation,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states.
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Defining the accepted language

A configuration (q′, w′) is derivable in one step from the configuration

(q, w) by the machine M ((q, w) `M (q′, w′)) if

• w = uw′ (word w begins with a prefix u ∈ Σ∗),

• (q, u, q′) ∈∆ (the three-tuple (q, u, q′) is in the transition relation ∆).

A word is accepted if there exists an execution (sequence of derivable

configurations) that leads to an accepting state.
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Examples

q0��
��

>


a

q1��
��

q2��
��
aa

+

ε

-ab -b

?

b

?

a

q3��
��

-

bbb
q4��
��
��
��
�

a

)

b

L(M) = ((a ∪ ab)∗bbbbΣ∗) ∪ ((a ∪ ab)∗abb(aa)∗aΣ∗)
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q0��
��

>


a

M

b

q1��
��
a

q2��
��
��
��
ab

-a -b

L(M) = Σ∗ab(ab)∗

Words ending with at least one repetition of ab.
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2.6 Eliminating non determinism

Definition

Two automata M1 et M2 are equivalent if they accept the same language,

i.e. if L(M1) = L(M2).

Theorem

Given any nondeterministic finite automaton, it is possible to build an

equivalent deterministic finite automaton.

42



2.6 Idea of the construction

1. Eliminate transitions of length greater than 1.

2. Eliminate compatible transitions

Transitions of length greater than 1

��
��

��
��

-aba

⇓

��
��

��
��

��
��

��
��

-a -b -a
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Compatible transitions

q0&%
'$

>



a

��
��

��
��

��
��1a

PPPPPPPPPPPPqb

q1&%
'$

q2&%
'$
&%
'$

⇒ {q0}&%
'$

> ��
��

��
��
��

��1a

PPPPPPPPPPPPqb

{q0, q1}

{q2}&%
'$
&%
'$
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Formalization

Non deterministic automaton M = (Q,Σ,∆, s, F ). Build an equivalent

deterministic automaton M ′ = (Q′,Σ,∆′, s, F ) such that

∀(q, u, q′) ∈∆′, |u| ≤ 1.

• Initially Q′ = Q et ∆′ = ∆.

• For each transition (q, u, q′) ∈∆ with u = σ1σ2 . . . σk, (k > 1) :

– remove this transition from ∆′,

– add new states p1, . . . , pk−1 à Q′,

– add new transitions (q, σ1, p1), (p1, σ2, p2), . . . , (pk−1, σk, q
′) à ∆′
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Formalization

Non deterministic automaton M = (Q,Σ,∆, s, F ) such that

∀(q, u, q′) ∈∆′, |u| ≤ 1. Build an equivalent deterministic automaton

M ′ = (Q′,Σ, δ′, s, F ).

E(q) = {p ∈ Q | (q, w) `∗M (p, w)}.

• Q′ = 2Q.

• s′ = E(s).

• δ′(q, a) =
⋃
{E(p) | ∃q ∈ q : (q, a, p) ∈∆}.

• F ′ = {q ∈ Q′ | q ∩ F 6= ∅}.
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Example

q0&%
'$

> ��
��

��
��

��
��

��
��

��1

ε

PPPPPPPPPPPPPPPPPPq
ε

q1&%
'$

q3&%
'$

a

�

a

]

a

^

-

�

a

ε

q2&%
'$

q4&%
'$
"!
# HH

H
HH

H
HH

H
HH

H
HH

HH
HH

HY

a 6

a

b

�

b
^

b

]
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{q0, q1, q3}> ��
��

��
��

��
��

��
��

��1

PPPPPPPPPPPPPPPPPPPq

a

b

{q1, q2, q3}

a



{q3, q4}

6

a

b

M

{q1, q3, q4}
-

b

�

a
�

���
����

���
���

���
����

b
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Alternative construction:

Only accessible states

1. Initially Q′ contains the initial state s′.

2. The following operations are then repeated until the set of states Q′ is

no longer modified.

(a) Choose a state q ∈ Q′ to which the operation has not yet been

applied.

(b) For each letter a ∈ Σ compute the state p such that p = δ′(q, a).

The state p is added to Q′.
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2.7 Finite automata and regular expressions

Theorem

A language is regular if and only if it is accepted by a finite automaton.

We will prove:

1. If a language can be represented by a regular expression, it is accepted

by a non deterministic finite automaton.

2. If a language is accepted by a non deterministic finite automaton, it is

regular.
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From expressions to automata

• ∅

��
��

>

• ε

��
��
��
��

>

• σ ∈ Σ

��
��

> -σ
��
��
��
��
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α1 : A1 = (Q1,Σ,∆1, s1, F1)

α2 : A2 = (Q2,Σ,∆2, s2, F2)

��
��

>

��
��
��
��
��
��
��
��
��
��
��
��

A1

��
��

>

��
��
��
��
��
��
��
��

A2
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• α1 · α2

��
��

>

��
��
��
��
��
��

A1

��
��

��
��
��
��
��
��
��
��

A2

��
��

��
��

��
��

��
�1
-

PPPPPPPPPPPPPPPq

ε

ε

ε

Formally, A = (Q,Σ,∆, s, F ) où

• Q = Q1 ∪Q2,

• ∆ = ∆1 ∪∆2 ∪ {(q, ε, s2) | q ∈ F1},
• s = s1,

• F = F2.
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• α = α∗1

��
��
��
��

> -ε
��
��

��
��
��
��
��
��
��
��
��
��
��
��

A1

Z
Z
Z

Z
ZZ}

�

�
�
�

�
��=

ε

ε

ε
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• α = α1 ∪ α2

A2

��
��

��
��
����
��
��
����

A1

��
��

��
��
����
��
��
����
��
��
����

��
��
> �

��
�
��

�
��

�
��*

HHH
HHH

HHH
HHHj

ε

ε
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From automata to regular languages

Intuitive idea:

• Build a regular expression for each path from the initial state to an

accepting state.

• Use the ∗ operator to handle loops.

Definition

Let M by an automaton and Q = {q1, q2, . . . , qn} its set of states. We will

denote by R(i, j, k) the set of words that can lead from the state qi to the

state qj, going only through states in {q1, . . . , qk−1}.
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R(i, j,1) =

{
{w | (qi, w, qj) ∈∆} si i 6= j
{ε} ∪ {w | (qi, w, qj) ∈∆} si i = j

R(i, j, k + 1) = R(i, j, k) ∪
R(i, k, k)R(k, k, k)∗R(k, j, k)

qk��
��

qi��
��

qj��
��

�
�
�
�
�
�
�
�>

-

Z
Z
Z
Z
Z
Z
ZZ~

L(M) =
⋃
qj∈F

R(1, j, n+ 1).
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Example

q1��
��

>


a

q2��
��
��
��
b

q

b

i

a

k = 1 k = 2
R(1,1, k) ε ∪ a (ε ∪ a) ∪ (ε ∪ a)(ε ∪ a)∗(ε ∪ a)
R(1,2, k) b b ∪ (ε ∪ a)(ε ∪ a)∗b
R(2,1, k) a a ∪ a(ε ∪ a)∗(ε ∪ a)
R(2,2, k) ε ∪ b (ε ∪ b) ∪ a(ε ∪ a)∗b

The language accepted by the automaton is R(1,2,3), which is

[b ∪ (ε ∪ a)(ε ∪ a)∗b] ∪ [b ∪ (ε ∪ a)(ε ∪ a)∗b]
[(ε ∪ b) ∪ a(ε ∪ a)∗b]∗

[(ε ∪ b) ∪ a(ε ∪ a)∗b]
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Chapter 3

Regular grammars
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3.1 Introduction

Other view of the concept of language:

• not the formalization of the notion of effective procedure,

• but set of words satisfying a given set of rules

• Origin : formalization of natural language.
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Example

• a phrase is of the form subject verb

• a subject is a pronoun

• a pronoun is he or she

• a verb is sleeps or listens

Possible phrases:

1. he listens

2. he sleeps

3. she sleeps

4. she listens
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Grammars

• Grammar: generative description of a language

• Automaton: analytical description

• Example: programming languages are defined by a grammar (BNF),

but recognized with an analytical description (the parser of a

compiler),

• Language theory establishes links between analytical and generative

language descriptions.
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3.2 Grammars

A grammar is a 4-tuple G = (V,Σ, R, S), where

• V is an alphabet,

• Σ ⊆ V is the set terminal symbols (V −Σ is the set of nonterminal

symbols),

• R ⊆ (V + × V ∗) is a finite set of production rules (also called simply

rules or productions),

• S ∈ V −Σ is the start symbol.
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Notation:

• Elements of V −Σ : A,B, . . .

• Elements of Σ : a, b, . . ..

• Rules (α, β) ∈ R : α→ β or α→
G
β.

• The start symbol is usually written as S.

• Empty word: ε.
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Example :

• V = {S,A,B, a, b},

• Σ = {a, b},

• R = {S → A,S → B,B → bB,A→ aA,A→ ε,B → ε},

• S is the start symbol.
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Words generated by a grammar: example

aaaa is in the language generated by the grammar we have just described:

S
A rule S → A
aA A→ aA
aaA A→ aA
aaaA A→ aA
aaaaA A→ aA
aaaa A→ ε

66



Generated words: definition

Let G = (V,Σ, R, S) be a grammar and u ∈ V +, v ∈ V ∗ be words. The

word v can be derived in one step from u by G (notation u⇒
G
v) if and

only if:

• u = xu′y (u can be decomposed in three parts x, u′ et y ; the parts x

and y being allowed to be empty),

• v = xv′y (v can be decomposed in three parts x, v′ et y),

• u′ →
G
v′ (the rule (u′, v′) is in R).
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Let G = (V,Σ, R, S) et u ∈ V +, v ∈ V ∗ be a grammar. The word v can be

derived in several steps from u (notation u
∗⇒
G
v) if and only if

∃k ≥ 0 et v0 . . . vk ∈ V + such that

• u = v0,

• v = vk,

• vi ⇒
G
vi+1 for 0 ≤ i < k.
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• Words generated by a grammar G: words v ∈ Σ∗ (containing only

terminal symbols) such that

S
∗⇒
G
v.

• The language generated by a grammar G (written L(G)) is the set

L(G) = {v ∈ Σ∗ | S ∗⇒
G
v}.

Example :

The language generated by the grammar shown in the example above is

the set of all words containing either only a’s or only b’s.
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Types of grammars

Type 0: no restrictions on the rules.

Type 1: Context sensitive grammars.

The rules

α→ β

satisfy the condition

|α| ≤ |β|.

Exception: the rule

S → ε

is allowed as long as the start symbol S does not appear in the right

hand side of a rule.
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Type 2: context-free grammars.

Productions of the form

A→ β

where A ∈ V −Σ and there is no restriction on β.

Type 3: regular grammars.

Productions rules of the form

A→ wB
A→ w

where A,B ∈ V −Σ et w ∈ Σ∗.
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3.3 Regular grammars

Theorem:

A language is regular if and only if it can be generated by a regular

grammar.

A. If a language is regular, it can be generated by a regular grammar.

If L is regular, there exists

M = (Q,Σ,∆, s, F )

such that L = L(M). From M , one can easily construct a regular grammar

G = (VG,ΣG, SG, RG)

generating L.
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G is defined by:

• ΣG = Σ,

• VG = Q ∪Σ,

• SG = s,

• RG =

{
A→ wB, for all(A,w,B) ∈∆
A→ ε for allA ∈ F

}
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B. If a language is generated by a regular grammar, it is regular.

Let

G = (VG,ΣG, SG, RG)

be the grammar generating L. A nondeterministic finite automaton
accepting L can be defined as follows:

• Q = VG −ΣG ∪ {f} (the states of M are the nonterminal symbols of G
to which a new state f is added),

• Σ = ΣG,

• s = SG,

• F = {f},

• ∆ =

{
(A,w,B), for allA→ wB ∈ RG
(A,w, f), for allA→ w ∈ RG

}
.
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3.4 The regular languages

We have seen four characterizations of the regular languages:

1. regular expressions,

2. deterministic finite automata,

3. nondeterministic finite automata,

4. regular grammars.
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Properties of regular languages

Let L1 and L2 be two regular languages.

• L1 ∪ L2 is regular.

• L1 · L2 is regular.

• L∗1 is regular.

• LR1 is regular.

• L1 = Σ∗ − L1 is regular.

• L1 ∩ L2 is regular.
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L1 ∩ L2 regular ?

L1 ∩ L2 = L1 ∪ L2

Alternatively, if M1 = (Q1,Σ, δ1, s1, F1) accepts L1 and M2 = (Q2,Σ, δ2, s2,

F2) accepts L2, the following automaton, accepts L1 ∩ L2 :

• Q = Q1 ×Q2,

• δ((q1, q2), σ) = (p1, p2) if and only is δ1(q1, σ) = p1 et δ2(q2, σ) = p2,

• s = (s1, s2),

• F = F1 × F2.
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• Let Σ be the alphabet on which L1 is defined, and let π : Σ→ Σ′ be a

function from Σ to another alphabet Σ′.

This fonction, called a projection function can be extended to words

by applying it to every symbol in the word, i.e. for w = w1 . . . wk ∈ Σ∗,
π(w) = π(w1) . . . π(wk).

If L1 is regular, the language π(L1) is also regular.
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Algorithms

Les following problems can be solved by algorithms for regular languages:

• w ∈ L ?

• L = ∅ ?

• L = Σ∗ ? (L = ∅)

• L1 ⊆ L2 ? (L2 ∩ L1 = ∅)

• L1 = L2 ? (L1 ⊆ L2 et L2 ⊆ L1)
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3.5 Beyond regular languages

• Many languages are regular,

• But, all languages cannot be regular for cardinality reasons.

• We will now prove, using another techniques that some specific

languages are not regular.
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Basic Observations

1. All finite languages (including only a finite number of words) are

regular.

2. A non regular language must thus include an infinite number of words.

3. If a language includes an infinite number of words, there is no bound

on the size of the words in the language.

4. Any regular language is accepted by a finite automaton that has a

given number number m of states.
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5. Consider and infinite regular language and an automaton with m

states accepting this language. For any word whose length is greater

than m, the execution of the automaton on this word must go through

an identical state sk at least twice, a nonempty part of the word being

read between these two visits to sk.

ss s
sk

s
sk
s sfx u y

6. Consequently, all words of the form xu∗y are also accepted by the

automaton and thus are in the language.
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The ”pumping” lemmas (theorems)

First version

Let L be an infinite regular language. Then there exists words x, u, y ∈ Σ∗,
with u 6= ε such that xuny ∈ L ∀n ≥ 0.

Second version :

Let L be a regular language and let w ∈ L be such that |w| ≥ |Q| where Q

is the set of states of a determnistic automaton accepting L. Then

∃x, u, y, with u 6= ε et |xu| ≤ |Q| such that xuy = w and, ∀n, xuny ∈ L.
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Applications of the pumping lemmas

The langage

anbn

is not regular. Indeed, it is not possible to find words x, u, y such that

xuky ∈ anbn ∀k and thus the pumping lemma cannot be true for this

language.

u ∈ a∗ : impossible.

u ∈ b∗ : impossible.

u ∈ (a ∪ b)∗ − (a∗ ∪ b∗) : impossible.
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The language

L = an
2

is not regular. Indeed, the pumping lemma (second version) is

contradicted.

Let m = |Q| be the number of states of an automaton accepting L.

Consider am
2
. Since m2 ≥ m, there must exist x, u et y such that |xu| ≤ m

and xuny ∈ L ∀n. Explicitly, we have

x = ap 0 ≤ p ≤ m− 1,
u = aq 0 < q ≤ m,
y = ar r ≥ 0.

Consequently xu2y 6∈ L since p+ 2q + r is not a perfect square. Indeed,

m2 < p+ 2q + r ≤ m2 +m < (m+ 1)2 = m2 + 2m+ 1.
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The language

L = {an | n is prime}

is not regular. The first pumping lemma implies that there exists

constants p, q et r such that ∀k

xuky = ap+kq+r ∈ L,

in other words, such that p+ kq + r is prime for all k. This is impossible

since for k = p+ 2q + r + 2, we have

p+ kq + r = (q + 1)︸ ︷︷ ︸
>1

(p+ 2q + r)︸ ︷︷ ︸
>1

,
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Applications of regular languages

Problem : To find in a (long) character string w, all ocurrences of words

in the language defined by a regular expression α.

1. Consider the regular expression β = Σ∗α.

2. Build a nondeterministic automaton accepting the language defined by

β

3. From this automaton, build a deterministic automaton Aβ.

4. Simulate the execution of the automaton Aβ on the word w.

Whenever this automaton is in an accepting state, one is at the end of

an occurrence in w of a word in the language defined by α.
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Applications of regular languages II:
handling arithmetic

• A number written in base r is a word over the alphabet {0, . . . , r − 1}
({0, . . . ,9} in decimal, {0,1} en binary).

• The number represented by a word w = w0 . . . wl is

nb(w) =
∑l
i=0 r

l−inb(wi)

• Adding leading 0’s to the representation of a number does not modify

the represented value. A number thus has a infinite number of

possible representations. Number encodings are read most significant

digit first, and all possible encodings will be taken into account.

• Exemple: The set of binary representations of 5 is the language

0∗101.
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Which sets of numbers can be represented by regular
languages?

• Finite sets.

• The set of multiples of 2 is represented by the language (0 ∪ 1)∗0.

• The set of powers of 2 is represented by the language 0∗10∗, but is

not representable in base 3.

• The set of multiples of 3 is represented by the following automaton.

0

>

1

1

0

1

0
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Set of numbers represented by regular languages
(continued)

• The set of numbers x ≥ 5 is represented by the automatoné

0

>
0 11

1

0
0,1

0,1
0,1

• More generally, one can represent sets of the form {ax | x ∈ N} or

{x ≥ a | x ∈ N} pour any given value of a.
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Set of numbers represented by regular languages
(continued II)

• Combining the two types of sets: sets of the form {ax+ b | x ∈ N}, for

any given a and b.

• Union of such sets: the ultimately periodic sets.

• Intersection and complementation add nothing more.

• The only sets that can be represented in all bases are the ultimately

periodic sets.
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Representing vectors of numbers

• Each number is represented by a word, and bits in identical positions

are read together.

• Example:

– the vector (5,9) is encoded by the word (0,1)(1,0)(0,0)(1,1)

defined over the alphabet {0,1} × {0,1}.

– The set of binary encodings of the vector (5,9) is (0,0)∗(0,1)(1,0)

(0,0)(1,1).
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Which sets of number vectors can be represented by
regular languages?

• The set of binary encodings of the vectors (x, y) such that x = y is

accepted by the automaton

>

(0,0)

(1,1)
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• Vectors (x, y) such that x < y

>

(0,0) (0,0), (0,1), (1,0), (1,1)

(0,1)

(1,1)

• Three-dimentional vectors (x, y, z) such that z = x+ y

>

(0,0,1)

(1,1,0)

(0,0,0), (0,1,1), (1,0,1) (1,0,0), (0,1,0), (1,1,1)
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Definable sets of number vectors (continued)

• Intersection, union, complement of representable sets (closure
properties of regular languages).

• Modifying the number of dimensions: projection and the inverse
operation.

• Remark: projection does not always preserve the determinism of the
automaton.

• Example: {(x, z) | ∃y x+ y = z} (x ≤ z).

>>

(0,0), (0,1), (1,1) (1,0), (0,0), (1,1)

(0,1)

(1,0)
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• Adding a dimension to the previous automaton yields

>>

(1,0,0)
(1,1,0)

(0,1,1)
(0,0,1)

(1,1,0), (0,1,0), (1,1,1)
(1,0,0), (0,0,0), (1,0,1)

(0,1,0), (0,1,1), (1,1,1)
(0,0,0), (0,0,1), (1,0,1)

• which is not equivalent to the automaton to which projection was

applied.
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Representable sets of vectors: conclusions

• Linear equality and inequality constraints

• Example: an automaton for x+ 2y = 5 can be obtained by combing

the automata for the following constraints:

z1 = y
z2 = y + z1
z3 = x+ z2
z3 = 5.

• There exists also a more direct construction.
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Representable vector sets: conclusions (continued)

• Boolean combinations of linear constraints

• Existential quantification can be handled with projection (∃x).

• For universal quantification, one uses ∀xf ≡ ¬∃¬f

• Example: It is possible to build an automaton accepting the

representations of the vectors (x, y) satisfying the arithmetic constraint

∀u∃t[(2x+ 3y + t− 4u = 5) ∨ (x+ 5y − 3t+ 2u = 8)]

• This is Presburger arithmetic, which corresponds exactly to the sets

representable by automata in all bases.
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Chapter 4

Pushdown automata

and context-free languages
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Introduction

• The language anbn cannot be accepted by a finite automaton

• On the other hand, Lk = {anbn | n ≤ k} is accepted for any given n.

• Finite memory, infinite memory, extendable memory.

• Pushdown (stack) automata: LIFO memory.
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4.1 Pushdown automata

• Input tape and read head,

• finite set of states, among which an initial state and a set of accepting

states,

• a transition relation,

• an unbounded pushdown stack.

101



Formalization

7-tuple M = (Q,Σ,Γ,∆, Z, s, F ), where

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the stack alphabet,

• Z ∈ Γ is the initial stack symbol,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states,

• ∆ ⊂ ((Q×Σ∗ × Γ∗)× (Q× Γ∗)) is the transition relation.
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Transitions

((p, u, β), (q, γ)) ∈∆

tape:

stack:

u︷ ︸︸ ︷

A
A
�
�

�
�
A
A

⇒

u︷ ︸︸ ︷

A
A
�
�

�
�
A
A

︸ ︷︷ ︸
β

︸ ︷︷ ︸
γ
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Executions

The configuration (q′, w′, α′) is derivable in one step from the configuration

(q, w, α) by the machine M (notation (q, w, α) `M (q′, w′, α′)) if

• w = uw′ (the word w starts with the prefix u ∈ Σ∗),

• α = βδ (before the transition, the top of the stack read from left to

right contains β ∈ Γ∗),

• α′ = γδ (after the transition, the part β of the stack has been replaced

by γ, the first symbol of γ is now the top of the stack),

• ((q, u, β), (q′, γ)) ∈∆.
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A configuration C′ is derivable in several steps from the configuration C
by the machine M (notation C `∗M C′) if there exist k ≥ 0 and
intermediate configurations C0, C1, C2, . . . , Ck such that

• C = C0,

• C′ = Ck,

• Ci `M Ci+1 pour 0 ≤ i < k.

An execution of a pushdown automaton on a word w is a sequence of
configurations

(s, w, Z) ` (q1, w1, α1) ` · · · ` (qn, ε, γ)

where s is the initial state, Z is the initial stack symbol, and ε represents
the empty word.

A word w is accepted by a pushdown automaton M = (Q,Σ,Γ,∆, Z, s, F ) if

(s, w, Z) `∗M (p, ε, γ),with p ∈ F.
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Examples

{anbn | n ≥ 0}

• Q = {s, p, q},

• Σ = {a, b},

• Γ = {A},

• F = {q} and ∆ contains the transitions

(s, a, ε)→ (s,A)

(s, ε, Z)→ (q, ε)

(s, b, A)→ (p, ε)

(p, b, A)→ (p, ε)

(p, ε, Z)→ (q, ε)
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The automaton M = (Q,Σ,Γ,∆, Z, s, F ) described below accepts the

language

{wwR}

• Q = {s, p, q},

• Σ = {a, b},

• Γ = {A,B},

• F = {q} and ∆ contains the transitions

(s, a, ε)→ (s,A)

(s, b, ε)→ (s,B)

(s, ε, ε)→ (p, ε)

(p, a,A)→ (p, ε)

(p, b, B)→ (p, ε)

(p, ε, Z)→ (q, ε)
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Context-free languages

Definition:

A language is context-free if there exists a context-free grammar that can

generate it.

Examples

The language anbn, n ≥ 0, is generated by the grammar whose rules are

1. S → aSb

2. S → ε.
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The language containing all words of the form wwR is generated by the

grammar whose productions are

1. S → aSa

2. S → bSb

3. S → ε.
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The language generated by the grammar whose productions are

1. S → ε

2. S → aB

3. S → bA

4. A→ aS

5. A→ bAA

6. B → bS

7. B → aBB

is the language of the words that contain the same number of a’s and b’s

in any order

110



Relation with pushdown automata

Theorem

A language is context-free if and only if it is accepted by a pushdown

automaton.
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Properties of context-free languages

Let L1 and L2 be two context-free languages.

• The language L1 ∪ L2 is context-free.

• Le language L1 · L2 is context-free.

• L∗1 is context-free.

• L1 ∩ L2 and L1 are not necessarily context-free!

• If LR is a regular language and if the language L2 is context-free, then

LR ∩ L2 is context-free.
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Let MR = (QR,ΣR, δR, sR, FR) be a deterministic finite automaton

accepting LR and let M2 = (Q2,Σ2,Γ2,∆2, Z2, s2, F2) be a pushdown

automaton accepting the language L2. The language LR ∩ L2 is accepted

by the pushdown automaton M = (Q,Σ,Γ,∆, Z, s, F ) for which

• Q = QR ×Q2,

• Σ = ΣR ∪Σ2,

• Γ = Γ2,

• Z = Z2,

• s = (sR, s2),

• F = (FR × F2),
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• (((qR, q2), u, β), ((pR, p2), γ)) ∈∆ if and only if

(qR, u) `∗MR
(pR, ε) (the automaton MR can move from the state qR

to the state pR, while reading the word u, this move being done in

one or several steps) and

((q2, u, β), (p2, γ)) ∈∆2 (The pushdown automaton can move from

the state q2 to the state p2 reading the word u and replacing β by γ

on the stack).
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4.3 Beyond context-free languages

• There exist languages that are not context-free (for cardinality

reasons).

• We would like to show that some specific languages are not

context-free.

• For this, we are going to prove a from of pumping lemma.

• This requires a more abstract notion of derivation.
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Example

1. S → SS

2. S → aSa

3. S → bSb

4. S → ε

Generation of aabaab:

S ⇒ SS ⇒ aSaS ⇒ aaS
⇒ aabSb⇒ aabaSab⇒ aabaab

S ⇒ SS ⇒ SbSb⇒ SbaSab
⇒ Sbaab⇒ aSabaab⇒ aabaab

and 8 other ways.

We need a representation of derivations that abstract from the order in

which production rules are applied.
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The notion of parse tree

Parse tree for aabaab s

s
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Definition

A parse tree for a context-free grammar G = (V,Σ, R, S) is a tree whose

nodes are labeled by elements of V ∪ ε and that satisfies the following

conditions.

• The root is labeled by the start symbol S.

• Each interior node is labeled by a non-terminal.

• Each leaf is labeled by a terminal symbol or by ε.
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• For each interior node, if its label is the non-terminal A and if its

direct successors are the nodes n1, n2, . . . , nk whose labels are

respectively X1, X2, . . . , Xk, then

A→ X1X2 . . . Xk

must be a production of G.

• If a node is labeled by ε, then this node must be the only successor of

its immediate predecessor (this last constraints aims only at preventing

the introduction of unnecessary copied of ε in the parse tree).
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Generated word

The word generated by a parse tree is the one obtained by concatenating

its leaves from left to right

Theorem

Given a context-free grammar G, a word w is generated by G (S
∗⇒
G
w) if

and only if there exists a parse tree for the grammar G that generates w.
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Le pumping lemma

lemma

Let L be a context-free language. Then there exists, a constant K such

that for any word w ∈ L satisfying |w| ≥ K can be written w = uvxyz with

v or y 6= ε, |vxy| ≤ K and uvnxynz ∈ L for all n > 0.

Proof

A parse tree for G generating a sufficiently long word must contain a path

on which the same non-terminal appears at least twice.
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Choice of K

• p = max{|α|, A→ α ∈ R}

• The maximal length of a word generated by a tree of depth i is pi.

• We choose K = pm+1 where m = |{V −Σ}|.

• Thus |w| > pm and the parse tree contains paths of length ≥ m+ 1

that must include the same non terminal at least twice.

• Going back up one of these paths, a given non terminal will be seen

for the second time after having followed at m+ 1 arcs. Thus one can

choose vxy of length at most pm+1 = K.

• Note: v and y cannot both be the empty word for all paths of length

greater than m+ 1. Indeed, if this was the case, the generated word

would be of length less than pm+1.
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Applications of the pumping lemma

L = {anbncn} is not context-free.

Proof

There is no decomposition of anbncn in 5 parts u, v, x, y and z ( v or y

nonempty) such that, for all j > 0, uvjxyjz ∈ L. Thus the pumping lemma

is not satisfied and the language cannot be context-free.

• v and y consist of the repetition of a unique letter. Impossible

• v and y include different letters. Impossible.
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1. There exist two context-free languages L1 St L2 such that L1 ∩ L2 is

not context-free :

• L1 = {anbncm} is context-free,

• L2 = {ambncn} is context-free, but

• L1 ∩ L2 = {anbncn} is not context-free !

2. The complement of a context-free language is not necessarily

context-free. Indeed, the union of context-free languages is always a

context-free language. Thus, if the complement was context-free, so

would be intersection:

L1 ∩ L2 = L1 ∪ L2.
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Algorithms for context-free languages

Let L be a context-free language (defined by a grammar or a pushdown

automaton).

1. Given a word w, there exists an algorithm for checking whether w ∈ L.

2. There exists an algorithm for checking if L = ∅.

3. There is no algorithm for checking if L = Σ∗.

4. If L′ is also a context-free language, there is no algorithm that can

check if L ∩ L′ = ∅.
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Theorem

Given context-free grammar G, there exists an algorithm that decides if a

word w belongs to L(G).

Proof

• Pushdown automaton? No, since these are nondeterministic and

contain transitions on the empty word.

• Idea: bound the length of the executions. This will be done in the

context of grammars (bound on the length of derivations).
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Hypothesis: bounded derivations

To check if w ∈ L(G):

1. One computes a bound k on the number of steps that are necessary

to derive a word of length |w|.

2. One then explores systematically all derivations of length less than or

equal to k. There is a finite number of such derivations.

3. If one of these derivations produces the word w, the word is in L(G). If

not, the word cannot be produced by the grammar and is not in L(G).
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Grammars with bounded derivations

Problem:

A→ B
B → A

Solution: Grammar satisfying the following constraints

1. A→ σ with σ terminal, or

2. A→ v with |v| ≥ 2.

3. Exception: S → ε

Bound: 2× |w| − 1
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Obtaining a grammar with

bounded derivations

1. Eliminate rules of the form A→ ε.

If A→ ε and B → vAu one adds the rule B → vu. The rule A→ ε can then

be eliminated.

If one eliminates the rule S → ε, one introduces a new start symbol S′ and

the rules S′ → ε, as well as S′ → α for each production of the form S → α.
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2. Eliminating rules of the form A→ B.

For each pair of non-terminals A and B one determines if A
∗⇒ B.

If the answer is positive, for each production of the form B → u

(u 6∈ V −Σ), one adds the production A→ u.

All productions of the form A→ B can then be eliminated.
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Theorem

Given a context-free grammar G, there exists an algorithm for checking if

L(G) = ∅.

• Idea: search for a parse tree for G.

• One builds parse trees in order of increasing depth.

• The depth of the parse trees can be limited to |V −Σ|.
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Deterministic pushdown automata

Two transitions ((p1, u1, β1), (q1, γ1)) and ((p2, u2, β2), (q2, γ2)) are

compatible if

1. p1 = p2,

2. u1 and u2 are compatible (which means that u1 is a prefix of u2 or

that u2 is a prefix of u1),

3. β1 and β2 are compatible.

A pushdown automaton is deterministic if for every pair of compatible

transitions, theses transitions are identical.
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Deterministic context-free languages

Let L be a language defined over the alphabet Σ, the language L is

deterministic context-free if and only if it is accepted by a deterministic

pushdown automaton.

• All context-free languages are not deterministic context-free.

• L1 = {wcwR | w ∈ {a, b}∗} is deterministic context-free.

• L2 = {wwR | w ∈ {a, b}∗} is context-free, but not deterministic

context-free.
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Properties of deterministic

context-free languages

If L1 and L2 are deterministic context-free languages,

• Σ∗ − L1 is also deterministic context-free.

• There exists context-free languages that are not deterministic

context-free.

• The languages L1 ∪ L2 and L1 ∩ L2 are not necessarily deterministic

context-free.
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Applications of context-free languages

• Description and syntactic analysis of programming languages.

• Restriction to deterministic context-free languages.

• Restricted families of grammars:LR.
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Chapter 5

Turing Machines
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5.1 Introduction

• The language anbncn cannot be accepted by a pushdown automaton.

• Machines with an infinite memory, which is not restricted to LIFO

access.

• Model of the concept of effective procedure.

• Justification : extensions are not more powerful; other formalizations

are equivalent.
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5.2 Definition

• Infinite memory viewed as a tape divided into cells that can hold one

character of a tape alphabet.

• Read head.

• Finite set of states, accepting states.

• transition function that, for each state and tape symbol pair gives

– the next state,

– a character to be written on the tape,

– the direction (left or right) in which the read head moves by one

cell.
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Execution

• Initially, the input word is on the tape, the rest of the tape is filled with

“blank” symbols, the read head is on the leftmost cell of the tape.

• At each step, the machine

– reads the symbol from the cell that is under the read head,

– replaces this symbol as specified by the transition function,

– moves the read head one cell to the left or to the right, as specified

by the transition function.

– changes state as described by the transition function,

• the input word is accepted as soon as an accepting state is reached.
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q

a b a b b
�
��

A
AA

⇒

q′

a b b b b
�
��

A
AA
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Formalization

7-tuple M = (Q,Γ,Σ, δ, s, B, F ), where:

• Q is a finite set of states,

• Γ is the tape alphabet,

• Σ ⊆ Γ is the input alphabet,

• s ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states,

• B ∈ Γ−Σ is the “blank symbol”(#),

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function.
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Configuration

The required information is:

1. The state,

2. the tape content,

3. the position of the read head.

Representation : 3-tuple containing

1. the state of the machine,

2. the word found on the tape up to the read head,

3. the word found on the tape from the read head on.

Formally, a configuration is an element of Q× Γ∗ × (ε ∪ Γ∗(Γ− {B})).
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Configurations (q, α1, α2) and (q, α1, ε).

q

�
��

A
AA

# # # #

α1︷ ︸︸ ︷ α2︷ ︸︸ ︷

q

�
��

A
AA

# # # # # # #

α1︷ ︸︸ ︷
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Derivation

Configuration (q, α1, α2) written as (q, α1, bα
′
2) with b = # if α2 = ε.

• If δ(q, b) = (q′, b′, R) we have

(q, α1, bα
′
2) `M (q′, α1b

′, α′2).

• If δ(q, b) = (q′, b′, L) and if α1 6= ε and is thus of the form α′1a we have

(q, α′1a, bα
′
2) `M (q′, α′1, ab

′α′2).
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Derivation

A configuration C′ is derivable in several steps from the configuration C

by the machine M (C `∗M C′) if there exists k ≥ 0 and intermediate

configurations C0, C1, C2, . . . , Ck such that

• C = C0,

• C′ = Ck,

• Ci `M Ci+1 for 0 ≤ i < k.

The language L(M) accepted by the Turing machine is the set of words w

such that

(s, ε, w) `∗M (p, α1, α2), with p ∈ F.
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Example

Turing machine M = (Q,Γ,Σ, δ, s, B, F ) with

• Q = {q0, q1, q2, q3, q4},

• Γ = {a, b,X, Y,#},

• Σ = {a, b},

• s = q0,

• B = #,

• δ given by

a b X Y #
q0 (q1, X,R) − − (q3, Y, R) −
q1 (q1, a, R) (q2, Y, L) − (q1, Y, R) −
q2 (q2, a, L) − (q0, X,R) (q2, Y, L) −
q3 − − − (q3, Y, R) (q4,#, R)
q4 − − − − −
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M accepts anbn. For example, its execution on aaabbb is

...
(q0, ε, aaabbb) (q1, XXXY Y, b)
(q1, X, aabbb) (q2, XXXY, Y Y )
(q1, Xa, abbb) (q2, XXX, Y Y Y )
(q1, Xaa, bbb) (q2, XX,XY Y Y )
(q2, Xa, aY bb) (q0, XXX, Y Y Y )
(q2, X, aaY bb) (q3, XXXY, Y Y )
(q2, ε,XaaY bb) (q3, XXXY Y, Y )
(q0, X, aaY bb) (q3, XXXY Y Y, ε)
(q1, XX, aY bb) (q4, XXXY Y Y#, ε)
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Accepted language

Decided language

Turing machine = effective procedure ? Not always. The following

situation are possible.

1. The sequence of configurations contains an accepting state.

2. The sequence of configurations ends because either

• the transition function is not defined, or

• it requires a left move from the first cell on the tape.

3. The sequence of configurations never goes through an accepting state

and is infinite.

In the first two cases, we have an effective procedure, in the third not.
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The execution of a Turing machine on a word w is the maximal sequence

of configurations

(s, ε, w) `M C1 `M C2 `M · · · `M Ck `M . . .

i.e., the sequence of configuration that either

• is infinite,

• ends in a configuration in which the state is accepting, or

• ends in a configuration from which no other configuration is derivable.

Decided language: A language L is decided by a Turing machine M if

• M accepts L,

• M has no infinite executions.
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Decided Language

Deterministic Automata!

• Deterministic finite automata: the accepted and decided languages are

the same.

• Nondeterministic finite automata: meaningless.

• Nondeterministic pushdown automata: meaningless, but the

context-free languages can be decided by a Turing machine.

• Deterministic pushdown automata : the accepted language is decided,

except if infinite executions exist (loops with only ε transitions).
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Other definitions

of Turing machines

1. Single stop state and a transition function that is defined everywhere.

In the stop state; the result is placed on the tape: tape : “accepts”

(1) or “does not accept” (0).

2. Two stop states: qY and qN , and a transition function that is defined

everywhere.
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Recursive and recursively enumerable languages

A language is recursive if it is decided by a Turing machine.

A language is recursively enumerable if it is accepted by a Turing machine.
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The Turing-Church thesis

The languages that can be recognized by an effective procedure

are those that are decided by a Turing machine.

Justification.

1. If a language is decided by a Turing machine, it is computable: clear.

2. If a language is computable, it is decided by a Turing machine:

• Extensions of Turing machines and other machines.

• Other models.
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Extensions of Turing machines

Tape that is infinite in both directions

. . . a−3a−2a−1 a0 a1 a2 a3 . . .

$ a−1a−2a−3 . . .

a0 a1 a2 a3 . . .
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Multiple tapes

Several tapes and read heads:

�
��

A
AA

�
��

A
AA

Simulation (2 tapes) : alphabet = 4-tuple

• Two elements represent the content of the tapes,

• Two elements represent the position of the read heads.
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Machines with RAM

One tape for the memory, one for each register.

�
�
A
A

PC

�
�
A
A

Ri

...

�
�
A
A

R1

�
�
A
A

RAM

Simulation :
# 0 ∗ v0 # 1 ∗ v1 # . . . # a d d i ∗ vi #
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Nondeterministic Turing machines

Transition relation :

∆ : (Q× Γ)× (Q× Γ× {L,R})

The execution is no longer unique.
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Eliminating non-determinism

Theorem

Any language that is accepted by a nondeterministic Turing machine is

also accepted by a deterministic Turing machine.

Proof

Simulate the executions in increasing-length order.

r = max
q∈Q,a∈Γ

|{((q, a), (q′, x,X)) ∈∆}|.
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Three tape machine:

1. The first tape holds the input word and is not modified.

2. The second tape will hold sequences of numbers less than r.

3. The third tape is used by the deterministic machine to simulate the

nondeterministic one.
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The deterministic machine proceeds as follows.

1. On the second tape it generates all finite sequences of numbers less

than r. These sequences are generated in increasing length order.

2. For each of these sequences, it simulates the nondeterministic

machine, the choice being made according to the sequence of

numbers.

3. It stops as soon as the simulation of an execution reaches an

accepting state.
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Universal Turing machines

A Turing machine that can simulate any Turing machine.

• Turing machine M .

• Data for M : M ′ and a word w.

• M simulates the execution of M ′ on w.
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Turing machine computable functions

A Turing machine computes a function f : Σ∗ → Σ∗ if, for any input word

w, it always stops in a configuration where f(w) is on the tape.

The functions that are computable by an effective procedure are

those that are computable by a Turing machine
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Chapter 6

Recursive functions
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6.1 Introduction

• Other formalization of the concept of effective procedure: computable

functions over the natural numbers.

• Computable functions?

– Basic functions.

– Function composition.

– Recursion mechanism.
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6.2 Primitive recursive functions

Functions in the set {Nk → N | k ≥ 0}.

1. Basic primitive recursive functions.

1. 0()

2. πki (n1, . . . , nk)

3. σ(n)
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2. Function composition.

• Let g be a function with ` arguments,

• h1, . . . , h` functions with k arguments.

• f(n) = g(h1(n), . . . , h`(n)) is the composition of g and of the functions

hi.
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3. Primitive recursion.

• Let g be a function with k arguments and h a function with k + 2

arguments.

•

f(n,0) = g(n)
f(n,m+ 1) = h(n,m, f(n,m))

is the function defined from g and h by primitive recursion.

• Remark: f is computable if g and h are computable.
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Definition

The Primitive recursive functions are :

• the basic primitive recursive functions ;

• all functions that can be obtained from the basic primitive recursive

functions by using composition and primitive recursion any number of

times.
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Examples

Constant functions :

j() =

j︷ ︸︸ ︷
σ(σ(. . . σ( 0())))

Addition function:

plus(n1,0) = π1
1(n1)

plus(n1, n2 + 1) = σ(π3
3(n1, n2, plus(n1, n2)))

Simplified notation :

plus(n1,0) = n1
plus(n1, n2 + 1) = σ(plus(n1, n2))
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Evaluation of plus(4,7) :

plus(7,4) = plus(7,3 + 1)
= σ(plus(7,3))
= σ(σ(plus(7,2)))
= σ(σ(σ(plus(7,1))))
= σ(σ(σ(σ(plus(7,0)))))
= σ(σ(σ(σ(7))))
= 11

Product function :

n× 0 = 0
n× (m+ 1) = n+ (n×m)
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Power function:

n0 = 1
nm+1 = n× nm

Double power :

n ↑↑ 0 = 1
n ↑↑ m+ 1 = nn↑↑m

n ↑↑ m = nn
n·
··
·n

}m
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Triple power:

n ↑↑↑ 0 = 1
n ↑↑↑ m+ 1 = n ↑↑ (n ↑↑↑ m)

k-power :

n ↑k 0 = 1
n ↑k m+ 1 = n ↑k−1 (n ↑k m).

If k is an argument:

f(k + 1, n,m+ 1) = f(k, n, f(k + 1, n,m)).

Ackermann’s function:

Ack(0,m) = m+ 1
Ack(k + 1,0) = Ack(k,1)
Ack(k + 1,m+ 1) = Ack(k,Ack(k + 1,m))
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Factorial function:

0! = 1
(n+ 1)! = (n+ 1).n!

Predecessor function:

pred(0) = 0
pred(m+ 1) = m

Difference function:

n · 0 = n
n · (m+ 1) = pred(n ·m)
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Sign function:

sg(0) = 0
sg(m+ 1) = 1

Bounded product:

f(n,m) =
m∏
i=0

g(n, i)

f(n,0) = g(n,0)
f(n,m+ 1) = f(n,m)× g(n,m+ 1)

176



6.3 Primitive recursive predicates

A predicate P with k arguments is a subset of Nk (the elements of Nk for

which P is true).

The characteristic function of a predicate P ⊆ Nk is the function

f : Nk → {0,1}such that

f(n) =

{
0 si n 6∈ P
1 si n ∈ P

A predicate is primitive recursive if its characteristic function is primitive

recursive.
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Examples

Zero predicate :

zerop(0) = 1
zerop(n+ 1) = 0

< predicate :

less(n,m) = sg(m · n)

Boolean predicates :

and(g1(n), g2(n)) = g1(n)× g2(n)
or(g1(n), g2(n)) = sg(g1(n) + g2(n))
not(g1(n)) = 1 · g1(n)

= predicate :

equal(n,m) = 1 · (sg(m · n) + sg(n ·m))
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Bounded quantification :

∀i ≤ m p(n, i)

is true if p(n, i) is true for all i ≤ m.

∃i ≤ m p(n, i)

is true if p(n, i) is true for at least one i ≤ m.

∀i ≤ mp(n, i) :
m∏
i=0

p(n, i)

∃i ≤ mp(n, i) :

1 ·
m∏
i=0

(1 · p(n, i)).
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Definition by case :

f(n) =


g1(n) if p1(n)
...
g`(n) if p`(n)

f(n) = g1(n)× p1(n) + . . .+ g`(n)× p`(n).

Bounded minimization :

µi ≤ m q(n, i) ={
the smallest i ≤ m such that q(n, i) = 1,
0 if there is no such i

µi ≤ 0 q(n, i) = 0
µi ≤ m+ 1 q(n, i) =

0 if ¬∃i ≤ m+ 1 q(n, i)
µi ≤ m q(n, i) if ∃i ≤ m q(n, i)
m+ 1 if q(n,m+ 1)

and ¬∃i ≤ m q(n, i)
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6.4 Beyond primitive recursive functions

Theorem

There exist computable functions that are not primitive recursive.

A 0 1 2 . . . j . . .
f0 f0(0) f0(1) f0(2) . . . f0(j) . . .
f1 f1(0) f1(1) f1(2) . . . f1(j) . . .
f2 f2(0) f2(1) f2(2) . . . f2(j) . . .
... ... ... ... . . . ...
fi fi(0) fi(1) fi(2) . . . fi(j) . . .
... ... ... ... ... . . .

g(n) = fn(n) + 1 = A[n, n] + 1.

is not primitive recursive, but is computable.
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6.4 The µ-recursive functions

Unbounded minimization :

µi q(n, i) =

{
the smallest i such that q(n, i) = 1
0 if such an i does not exist

A predicate q(n, i) is said to be safe if

∀n ∃i q(n, i) = 1.

The µ-recursive functions and predicates are those obtained from the

basic primitive recursive functions by :

• composition, primitive recursion, and

• unbounded minimization of safe predicates.
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µ-recursive functions and

computable functions

Numbers and character strings :

Lemma

There exists an effective representation of numbers by character strings.

Lemma

There exists an effective representation of character strings by natural

numbers.

Alphabet Σ of size k. Each symbol of Σ is represented by an integer

between 0 and k − 1. The representation of a string w = w0 . . . wl is thus:

gd(w) =
l∑

i=0

kl−igd(wi)
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Example : Σ = {abcdefghij}.

gd(a) = 0
gd(b) = 1

...
gd(i) = 8
gd(j) = 9

gd(aabaafgj) = 00100569.

This encoding is ambiguous :

gd(aaabaafgj) = 000100569 =
00100569 = gd(aabaafgj)

Solution: use an alphabet of size k + 1 and do not encode any symbol by
0.

gd(w) =
l∑

i=0

(k + 1)l−igd(wi).
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From µ-recursive functions

To Turing machines

Theorem

Every µ-recursive function is computable by a Turing machine..

1. The basic primitive recursive functions are Turing machine

computable;

2. Composition, primitive recursion and bounded minimization applied to

Turing computable functions yield Turing computable functions.
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From Turing machines to

µ-recursive functions

Theorem

Every Turing computable functions is µ-recursive.

Let M be a Turing machine. One proves that there exists a µ-recursive f

such that

fM(w) = gd−1(f(gd(w))).

Useful predicates :

1. init(x) initial configuration of M .

2. next config(x)

186



3.

config(x, n)


config(x,0) = x
config(x, n+ 1) =
next config(config(x, n))

4. stop(x) =

{
1 if x final
0 if not

5. output(x)

We then have :

f(x) = output(config(init(x), nb of steps(x)))

où

nb of steps(x) = µi stop(config(init(x), i)).
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Partial functions

A partial function f : Σ∗ → Σ∗ is computed by a Turing machine M if,

• for every input word w for which f is defined, M stops in a

configuration in which f(w) is on the tape,

• for every input word w for which f is not defined, M does not stop or

stops indicating that the function is not defined by writing a special

value on the tape.
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A partial function f : N → N is µ-recursive is it can be defined from basic

primitive recursive functions by

• composition,

• primitive recursion,

• unbounded minimization.

Unbounded minimization can be applied to unsafe predicates. The

function µi p(n, i) is undefined when there is no i such that p(n, i) = 1.

Theorem

A partial function is µ-recursive if and only if it is Turing computable.
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Chapter 7

Uncomputability
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7.1 Introduction

• Undecidability of concrete problems.

• First undecidable problem obtained by diagonalisation.

• Other undecidable problems obtained by means of the reduction

technique.

• Properties of languages accepted by Turing machines.
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7.2 Proving undecidability

Undecidability classes

Correspondence between a problem and the language of the encodings of

its positive instances.

Definition

The decidability class R is the set of languages that can be decided by a

Turing machine.

The class R is the class of languages (problems) that are

• decided by a Turing machine,

• recursive, decidable, computable,

• algorithmically solvable.
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Definition

The decidability class RE is the set of languages that can be accepted by

a Turing machine.

The class RE is the class of languages (problems) that are

• accepted by a Turing machine,

• partially recursive, partially decidable, partially computable,

• partially algorithmically solvable,

• recursively enumerable.

Lemma

The class R is contained in the class RE (R ⊆ RE)
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A first undecidable language

A w0 w1 w2 . . . wj . . .
M0 Y N N . . . Y . . .
M1 N N Y . . . Y . . .
M2 Y Y N . . . N . . .

... ... ... ... . . . ...
Mi N N Y . . . N . . .
... ... ... ... ... . . .

• A[Mi, wj] = Y (yes) if the Turing machine Mi accepts the word wj ;

• A[Mi, wj] = N (no) if the Turing machine Mi does not accept the word

wj (loops or rejects the word).

L0 = {w|w = wi ∧A[Mi, wi] = N}.

is not in the class RE.
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A second undecidable language

Lemma

The complement of a language in the class R is also in the class R.

Lemma

If a language L and its complement L are both in the class RE, then both

L and L are in R.

Three situations are thus possible:

1. L and L ∈ R,

2. L 6∈ RE and L 6∈ RE,

3. L 6∈ RE and L ∈ RE ∩R.
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Lemma

The language

L0 = {w|w = wi ∧Mi accepts wi}

is in the class RE.

Theorem

The language L0 is undecidable (is not in R), but is in RE.

RE

L0

R

L0
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The reduction technique

1. One proves that, if there exists an algorithm that decides the language

L2, then there exists an algorithm that decides the language L1. This

is done by providing an algorithm (formally a Turing machine that

stops on all inputs) that decides the language L1, using as a

sub-program an algorithm that decides L2. This type of algorithm is

called a reductionfrom L1 to L2. Indeed, it reduces the decidability of

L1 to that of L2.

2. If L1 is undecidable, one can conclude that L2 is also undecidable

(L2 6∈ R. Indeed, the reduction from L1 to L2 establishes that if L2

was decidable, L1 would also be decidable, which contradicts the

hypothesis that L1 is an undecidable language.
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Le universal language UL

UL = {< M,w >|M accepts w}

is undecidable.

Reduction from L0 : to check if a word w is in L0, proceed as follows.

1. Find the value i such that w = wi.

2. Find the Turing machine Mi.

3. Apply the decision procedure for UL to the wprd < Mi, wi >: if the

result is positive, w is accepted, if not it is rejected.

Note : UL 6∈ RE
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More undecidable problems

The halting problem

H = {< M,w >|M stops on w}

is undecidable. Reduction from UL.

1. Apply the algorithm deciding H to < M,w >.

2. If the algorithm deciding H gives the answer “no” (i.e. the machine M

does not stop), answer “no” (in this case, we have indeed that

< M,w >6∈ UL).

3. If the algorithm deciding H gives the answer “yes, simulate the

execution of M on w and give the answer that is obtained (in this

case, the execution of M on w terminates and one always obtains an

answer).
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The problem of determining if a program written in a commonly used

programming language (for example C or, Java) stops for given input

values is undecidable. This is proved by reduction from the halting

problem for Turing machines.

1. Build a C program P that, given a Turing machine M and a word w,

simulates the behaviour of M on w.

2. Decide if the program P stops for the input < M,w > and use the

result as answer.
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The problem of deciding if a Turing machine stops when its input word is

the empty word (the empty-word halting problem) is undecidable. This is

proved by reduction from the halting problem.

1. For an instance < M,w > of the halting problem, one builds a Turing

machine M ′ that has the following behaviour:

• it writes the word w on its input tape;

• it then behaves exactly as M .

2. One solves the empty-word halting problem for M ′ et uses the result

as answer.
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The problem of deciding if a Turing machine stops for at least one input

word (the existential halting problem) is undecidable. One proceeds by

reduction from the empty-word halting problem.

1. For an instance M of the empty-word halting problem, one builds a

Turing machine M ′that behaves as follows:

• it erases the content of its input tape;

• it then behaves as M .

2. One solve the existential halting problem for M ′ and uses the result as

answer.
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The problem of deciding if a Turing machine stops for every input word

(the universal halting problem is undecidable. The reduction proceeds

from the empty-word halting problem and is identical to the one used for

the existential halting problem. The only difference is that one solves the

universal halting problem for M ′, rather than the existential halting

problem.

203



Determining if the language accepted by a Turing machine is empty

(empty accepted language) is undecidable. Reduction from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w ignoring its own input word;

• if M accepts w, it accepts is input word, whatever it is.

• if M does not accept w (rejects or has an infinite execution) it does

not accept any word.

2. One solves the empty accepted language problem for M ′ eand uses the

result as answer.
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This reduction is correct given that

• L(M ′) = ∅ exactly when M does not accept w, i.e., when

< M,w >∈ UL ;

• L(M ′) = Σ∗ 6= ∅ exactly when M accepts w, i.e. when < M,w >6∈ UL.
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Determining if the language accepted by a Turing machine is recursive

(recursive accepted language) is undecidable. Reduction from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w ignoring its own input word;

• if M accepts w, it behaves on its own input word as a universal

turing machine.

• if M does not accept w (rejects or has an infinite execution) it does

not accept any word.

2. One solves the recursive accepted language problem for M ′ and uses

the result as answer.
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This reduction is correct since

• L(M ′) = ∅ and is recursive exactly when M does not accept w, i. e.

when < M,w >∈ UL ;

• L(M ′) = UL and is not recursive exactly when M accepts w, i.e. when

< M,w >6∈ UL.
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Determining if the language accepted by a Turing machine is not recursive

(undecidable) (undecidable accepted language) is undecidable. Reduction

from UL.

1. For an instance < M,w > of UL, one builds a Turing machine M ′ that

• simulates the execution of M on w, without looking at its own

input word x;

• simultaneously (i.e. interleaving the executions), the machine M ′

simulates the universal Turing machine on its own input word x;

• As soon as one of the executions accepts, (i.e., if M accepts w or if

the input word is in UL), M ′ accepts.
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2. If neither of the two executions accepts (i.e., if M does not accept w,

or if the input word x 6∈ UL), M ′ does not accept.

3. One solves the undecidable accepted language problem for M ′ and

uses the result as answer.
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This reduction is correct since

• L(M ′) = UL and is undecidable exactly when M does not accept w,

i.e., when < M,w >∈ UL ;

• L(M ′) = Σ∗ and is decidable exactly when M accepts w, i.e. when

< M,w >6∈ UL.
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In the preceding reductions, the language accepted by the machine M ′ is

either UL, or ∅, or Σ∗. These proofs can thus also be used to establish

that the problem of determining if the language accepted by a Turing

machine is regular (or non regular) is undecidable. Indeed, ∅ and Σ∗ are

regular languages, whereas UL is not a regular language.

211



7.4 Properties of

recursively enumerable languages

The recursively enumerable languages are :

• The languages computed by a Turing machine,

• the languages generated by a grammar,

• The languages that can be enumerated by an effective procedure

(which explains why they are called “recursively enumerable”).
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The languages computed by a Turing machine

Definition

Let M be a Turing machine.If M stops on an input word u, let fM(u) be

the word computed by M for u. The languages computed by M is then

the set of words

{w | ∃u such that M stops for u and w = fM(u)}.

Theorem

A language is computed by a Turing machine if and only if it is recursively

enumerable (accepted by a Turing machine).
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Let L be a language accepted by a Turing machine M . The Turing

machine M ′ described below computes this language.

1. The machine M ′ first memorises its input word (one can assume that

it uses a second tape for doing this).

2. Thereafter, it behaves exactly as M .

3. If M accepts, M ′ copies the memorised input word onto its tape.

4. If M does not accept, M ′ keeps running forever.
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Let L be a language computed by a Turing machine M . The

nondeterministic Turing machine described below accepts this language.

1. The machine M ′ first memorises its input word w.

2. Thereafter, it generates nondeterministically a word u.

3. The machine M ′ then simulates the behaviour of M on u.

4. If M stops on u, M ′ compares w to fM(u) and accepts w if w = fM(u).

5. If M does not stop on u, M ′ does not accept w.
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The languages generated by a grammar

Theprem

A language is generated by a grammar if and only if it is recursively

enumerable.

Let G = (V,Σ, R, S), The Turing machine M described below accepts the

language generated by G.

1. The machine M starts by memorising its input word (we can assume it

uses a second tape to do so).

2. Then, it erases its tape and writes on it the start symbol S of the

grammar.
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3. The following cycle is then repeated :

(a) nondeterministically, the machine chooses a rule R and a string

appearing on its tape;

(b) if the selected string is identical to the left-hand side of the rule, it

is replaced by the right-hand side;

(c) the content of the tape is compared to the memorised input word,

and if they are identical the machine accepts; if not it carries on

with its execution.
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Let M = (Q,Γ,Σ, δ, s, B, F ) be a Turing machine. One builds a grammar

G0 = (VG0
,ΣG0

, RG0
, SG0

)

such that SG0

∗⇒ w with w ∈ (Q ∪ Γ)∗ if and only if w describes a

configuration (q, α1, α2) of M written as α1qα2.

The grammar G0 is defined by

• VG0
= Q ∪ Γ ∪ {SG0

, A1, A2},

• ΣG0
= Σ,

• RG0
is the set of rules below.
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1. Initial configuration of M :

SG0
→ sA1

A1 → aA1 ∀a ∈ Σ
A1 → A2
A2 → BA2
A2 → ε.

2. Transitions. For all p, q ∈ Q and X,Y ∈ Γ such that

δ(q,X) = (p, Y,R)

we include the rule

qX → Y p.

Similarly, for all p, q ∈ Q and X,Y, Z ∈ Γ such that

δ(q,X) = (p, Y, L)

we include the rule

ZqX → pZY.
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Problem: the input word is lost.

Solution: simulate a Turing machine with two tapes.

G1 = (VG1
,ΣG1

, RG1
, SG1

) where

• VG1
= Σ ∪Q ∪ ((Σ ∪ {e})× Γ) ∪ {SG1

, A1, A2} (we represent an element

of ((Σ ∪ {e})× Γ) by a pair [a,X]),

• ΣG1
= Σ,

• RG1
is the set of rules described below.

220



1. Initial configuration of M :

SG1
→ sA1

A1 → [a, a]A1 ∀a ∈ Σ
A1 → A2
A2 → [e,B]A2
A2 → ε.

2. Transitions. For all p, q ∈ Q, X,Y ∈ Γ and a ∈ Σ ∪ {e} such that

δ(q,X) = (p, Y,R)

we include the rule

q[a,X]→ [a, Y ]p.

Similarly, for all p, q ∈ Q, X,Y, Z ∈ Γ and a, b ∈ Σ ∪ {e} such that

δ(q,X) = (p, Y, L)

we include the rule

[b, Z]q[a,X]→ p[b, Z][a, Y ].
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3. For all q ∈ F , X ∈ Γ and a ∈ Σ ∪ {e}, we include the rules

q[a,X] → qaq
[a,X]q → qaq

if a 6= e and

q[a,X] → q
[a,X]q → q

if a = e. These rules propagate a copy of q next to each nonterminal

[a,X] and extract its first component. Finally, we add

q → ε

that allows the copies of the state q to be removed.
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The languages enumerated by an effective procedure

Turing machine that enumerates the words accepted by M .

• Generate all words in lexicographical and increasing length order,

• simulate M on each newly generated word and keep this word only if it

is accepted by M .

Incorrect: the Turing machine can have infinite executions.

Solution: other enumeration order.
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w \ n 1 2 3 4
w1 (w1,1) → (w1,2) (w1,3) → (w1,4)

↙ ↗ ↙
w2 (w2,1) (w2,2) (w2,3)

↓ ↗ ↙
w3 (w3,1) (w3,2) (w3,3)

↙
w4 (w4,1)

↓

• One considers the pairs (w, n) in the order of their enumeration.

• For each of these pairs, one simulates the execution of M on w, but

limits the execution to n steps. On produces the word w if this

execution accepts w.

• On then moves to the next pair (w, n).
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7.5 Other undecidable problems

The problem of determining if a word w is in the language generated by a

grammar G is undecidable.

Reduction from the problem UL. Let < M,w > be an instance of the

problem UL. It can be solved as follows:

1. one builds the grammar G generating the language accepted by M

2. one determines if w ∈ L(G) and uses the result as answer.
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The problem of deciding if two grammars G1 and G2 generate the same

language is undecidable.

Reduction from the membership problem for the language generated by a

grammar. An instance < w,G > of this problem can be solved as follows:

1. Let G = (V,Σ, R, S). One builds the grammars G1 = G and

G2 = (V,Σ, R′, S′), with

R′ = R ∪ {S′ → S, S′ → w}.

2. One checks if L(G1) = L(G2) and uses the result as answer.

One has indeed that L(G2) = L(G1) ∪ {w} and thus that L(G2) = L(G1) if

and only if w ∈ L(G).
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The problem of determining validity in the predicate calculus is

undecidable

The problem of determining the universality of a context-free language,

i.e., the problem of determining if for a context-free grammar G one has

L(G) = Σ∗ is undecidable.
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The problem of determining the emptiness of the intersection of

context-free languages is undecidable.

The problem is to determine if, for two context-free grammars G1 and G2,

one has L(G1) ∩ L(G2) = ∅.

Hilbert’s tenth problem is undecidable. This problem is to determine if an

equation

p(x1, . . . , xn) = 0

where p(x1, . . . , xn) is an integer coefficient polynomial, has an integer

solution.
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Noncomputable functions

A total function

f : Σ∗1 → Σ∗2

is computable if and only if the following questions are decidable.

1. Given n ∈ N and w ∈ Σ∗1, do we have that |f(w)| > n ?

2. Given k ∈ N , w ∈ Σ∗1 and a ∈ Σ2, do we have that f(w)k = a ? (is the

kth letter of f(w) a?).
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The situation is similar in the case of a partial function. A function

f : Σ∗1 → Σ∗2

is a partially computable function if and only if the following conditions

are satisfied.

1. Checking if for a given word w, f(w) is defined is partially decidable.

2. For n ∈ N and w ∈ Σ∗1 such that f(w) is defined, checking if |f(w)| > n

is decidable.

3. For k ∈ N , a ∈ Σ2 and w ∈ Σ∗1 such that f(w) is defined, checking if

f(w)k = a is decidable.
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Chapter 8

Complexity
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8.1 Introduction

• Solvable problems versus efficiently solvable problems.

• Measuring complexity: complexity functions.

• Polynomial complexity.

• NP-complete problems.
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8.2 Measuring complexity

• Abstraction with respect to the machine being used.

• Abstraction with respect to the data (data size as only parameter).

• O notation.

• Efficiency criterion: polynomial.
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8.3 Polynomial problems

• Influence of the encoding.

• Graph example.

• Reasonable encodings:

– no padding,

– polynomial decoding,

– unary representation of numbers not allowed.
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Complexity and Turing machines

Time complexity of a Turing machine that always stops:

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and the execution of M on x
is m steps long}.

A Turing machine is polynomial if there exists a polynomial p(n) such that

TM(n) ≤ p(n)

for all n ≥ 0.

The class P is the class of languages that are decided by a polynomial

Turing machine.
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8.4 Polynomial transformations

• Diagonalisation is not adequate to prove that problems are not in P.

• Another approach: comparing problems.
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The Travelling Salesman (TS)

• Set C of n Cities.

• Distances d(ci, cj).

• Constante b.

• Permutation if the towns such that:∑
1≤i<n

d(cpi, cpi+1) + d(cpn, cp1) ≤ b.
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Hamiltonian Circuit (HC)

• Graph G = (V,E)

• Is there a closed circuit in the graph that contains each vertex exactly

once.

s s

s s
@
@
@
@
@
@
@@ s s

s s
s

�
�
�
�
�
�
��@

@
@
@
@
@
@@

238



Definition of polynomial transformations

Goal : to establish a link between problems such as HC and TS (one is in

P if and only if the other is also in P).

Definition :

Consider languages L1 ∈ Σ∗1 and L2 ∈ Σ∗2. A polynomial transformation

from L1 to L2 (notation L1 ∝ L2) is a function f : Σ∗1 → Σ∗2 that satisfies

the following conditions :

1. it is computable in polynomial time,

2. f(x) ∈ L2 if and only if x ∈ L1.

239



HC ∝ TS

• The set of cities is identical to the set of vertices of the graph, i.e.

C = V .

• The distances are the following (ci, cj) =

{
1 si (ci, cj) ∈ E
2 si (ci, cj) 6∈ E

.

• The constant b is equal to the number of cities, i.e. b = |V |.
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Properties of ∝

If L1 ∝ L2, then

• if L2 ∈ P then L1 ∈ P,

• if L1 6∈ P then L2 6∈ P.

If L1 ∝ L2 et L2 ∝ L3, then

• L1 ∝ L3.
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Polynomially equivalent problems

Déeinition

Two languages L1 and L2 are polynomially equivalent (notation L1 ≡P L2)

if and only if L1 ∝ L2 and L2 ∝ L1.

• Classes of polynomially equivalent problems: either all problems in the

class are in P, or none is.

• Such an equivalence class can be built incrementally by adding

problems to a known class.

• We need a more abstract definition of the class containing HC and TS.
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The class NP

• The goal is to characterise problems for which it is necessary to

examine a very large number of possibilities, but such that checking

each possibility can be done quickly.

• Thus, the solution is fast, if enumerating the possibilities does not

cost anything.

• Modelisation : nondeterminism.
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The complexity of nondeterministic Turing machines

The execution time of a nondeterministic Turing machine on a word w is

given by

• the length of the shortest execution accepting the word, if it is

accepted,

• the value 1 if the word is not accepted.

The time complexity of M (non deterministic) is the function TM(n)

defined by

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and
the execution time of M on x is m steps long}.
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The definition of NP

Définition

The class NP (from Nondeterministic Polynomial) is the class of languages

that are accepted by a polynomial nondeterministic Turing machine.

Exemple

HC and TS are in NP.
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Theorem

Consider L ∈ NP. There exists a deterministic Turing machine M and a

polynomial p(n) such that M decides L and has a time complexity

bounded by 2p(n).

Let Mnd be a nondeterministic machine of polynomial complexity q(n)

that accepts L. The idea is to simulate all executions of Mnd of length

less than q(n). For a word w, the machine M must thus:

1. Determine the length n of w and compute q(n).

2. Simulate each execution of Mnd of length q(n) (let the time needed be

q′(n)). If r is the largest number of possible choices within an

execution of Mnd, there are at most rq(n) executions of length q(n).
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3. If one of the simulated executions accepts, M accepts. Otherwise, M

stops and rejects the word w.

Complexity : bonded by rq(n) × q′(n) and thus by 2log2(r)(q(n)+q′(n)), which

is of the form 2p(n).
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The structure of NP

Definition A polynomial equivalence class C1 is smaller than a polynomial

equivalence class C2 (notation C1 � C2) if there exists a polynomial

transformation from every language in C1 to every language in C2.

Smallest class in NP : P

• The class NP contains the class P (P ⊆ NP).

• The class P is a polynomial equivalence class.

• For every L1 ∈ P and for every L2 ∈ NP, we have L1 ∝ L2.
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Largest class in NP : NPC

A language L is NP-complete if

1. L ∈ NP,

2. for every language L′ ∈ NP, L′ ∝ L.

Theorem

If there exists an NP-complete language L decided by a polynomial

algorithm, then all languages in NP are polynomially decidable, i.e.

P = NP.

Conclusion : An NP-complete problem does not have a polynomial

solution if and only if P 6= NP
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NPC

P

NP
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Proving NP-completeness

To prove that a language L is NP-complete, one must establish that

1. it is indeed in the class NP (L ∈ NP),

2. for every language L′ ∈ NP, L′ ∝ L,

or, alternatively,

3. There exists L′ ∈ NPC such that L′ ∝ L.

Concept of NP-hard problem.
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A first NP-complete problem

propositional calculus

Boolean calculus :

p ¬p
0 1
1 0

p q p ∧ q
0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

p q p ⊃ q
0 0 1
0 1 1
1 0 0
1 1 1
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• Boolean expression: (1 ∧ (0 ∨ (¬1))) ⊃ 0.

• Propositional variables and propositional calculus :

(p ∧ (q ∨ (¬r))) ⊃ s.

• Interpretation function. Valid formula, satisfiable formula.

• Conjunctive normal form: conjunction of disjunctions of literals.
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Cook’s theorem

SAT Problem : satisfiability of conjunctive normal form propositional

calculus formulas.

Theorem

The SAT problem is NP-complete

Proof

1. SAT is in NP.

2. There exists a polynomial transformation from every language in NP

to LSAT.

• Transformation with two arguments : word and language.

• The languages of NP are characterised by a polynomial-time

nondeterministic Turing machine.
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Word w (|w| = n) and nondeterministic polynomial Turing machine

M = (Q,Γ,Σ,∆, s, B, F ) (bound p(n)).

Description of an execution of M (T : tape; Q : state; P : position; C :

choice.)

Q P C T

p(n) + 1


... ... ...

· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·︸ ︷︷ ︸

p(n)+1
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Representing an execution with propositional variables:

1. A proposition tijα for 0 ≤ i, j ≤ p(n) and α ∈ Γ.

2. A proposition qiκ for 0 ≤ i ≤ p(n) and κ ∈ Q.

3. A proposition pij for 0 ≤ i, j ≤ p(n).

4. A proposition cik for 0 ≤ i ≤ p(n) and 1 ≤ k ≤ r.
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Formula satisfied only by an execution of M that accepts the word w :

conjunction of the following formulas.

∧
0≤i,j≤p(n)

(
∨
α∈Γ

tijα) ∧
∧

α 6=α′∈Γ

(¬tijα ∨ ¬tijα′)



One proposition for each tape cell. Length O(p(n)2).

∧
0≤i≤p(n)

(
∨

0≤j≤p(n)

pij) ∧
∧

0≤j 6=j′≤p(n)

(¬pij ∨ ¬pij′)



One proposition for each position. Length O(p(n)3).
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 ∧
0≤j≤n−1

t0jwj+1
∧

∧
n≤j≤p(n)

t0jB

 ∧ q0s ∧ p00

Initial state. Length O(p(n))

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[(tijα ∧ ¬pij) ⊃ t(i+1)jα]

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[¬tijα ∨ pij ∨ t(i+1)jα]

Transitions, tape not modified. Length O(p(n)2).
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∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r


((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ q(i+1)κ′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ t(i+1)jα′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ p(i+1)(j+d))



∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r


(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ q(i+1)κ′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ t(i+1)jα′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ p(i+1)(j+d))



Transitions, modified part. Length O(p(n)2).
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∨
0≤i≤p(n)

κ∈F

[qiκ]

Final state reached. Length O(p(n)).

• Total length of the formula O(p(n)3).

• The formula can be built in polynomial time.

• Thus, we have a transformation that is polynomial in terms of n = |w|.

• The formula is satisfiable if and only if the Turing machine M accepts.
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Other NP-complete problems

3-SAT : satisfiability for conjunctive normal form formulas with exactly 3

literals per clause.

SAT ∝ 3-SAT.

1. A clause (x1 ∨ x2) with two literals is replaced by

(x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y)

2. A clause (x1) with a single literal is replaced by

(x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ ¬y2) ∧
(x1 ∨ ¬y1 ∨ y2) ∧ (x1 ∨ ¬y1 ∨ ¬y2)
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3. A clause

(x1 ∨ x2 ∨ · · · ∨ xi ∨ · · · ∨ x`−1 ∨ x`)

with ` ≥ 4 literals is replaced by

(x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2)
∧ (¬y2 ∨ x4 ∨ y3) ∧ · · ·
∧ (¬yi−2 ∨ xi ∨ yi−1) ∧ · · ·
∧ (¬y`−4 ∨ x`−2 ∨ y`−3)
∧ (¬y`−3 ∨ x`−1 ∨ x`)
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The vertex cover problem (VC) is NP-complete.

Given a graph G = (V,E) and an integer j ≤ |V |, the problem is to

determine is there exists a subset V ′ ⊆ V such that |V ′| ≤ j and such that,

for each edge (u, v) ∈ E, either u, or v ∈ V ′.
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3-SAT ∝ VC

Instance of 3-SAT :

E1 ∧ · · · ∧ Ei ∧ · · · ∧ Ek
Each Ei is of the form

xi1 ∨ xi2 ∨ xi3
where xij is a literal. The set of propositional variables is

P = {p1, . . . , p`}.

The instance of VC that is built is then the following.
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1. The set of vertices V contains

(a) a pair of vertices labeled pi and ¬pi for each propositional variable

in P,

(b) a 3-tuple of vertices labeled xi1, xi2, xi3 for each clause Ei.

The number of vertices is thus equal to 2`+ 3k.
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2. The set of edges E contains

(a) The edge (pi,¬pi) for each pair of vertices pi,¬pi, 1 ≤ i ≤ `,

(b) The edges (xi1, xi2), (xi2, xi3) et (xi3, xi1) for each 3-tuple of

vertices xi1, xi2, xi3, 1 ≤ i ≤ k,

(c) an edge between each vertex xij and the vertex p or ¬p representing

the corresponding literal.

The number of edges is thus `+ 6k.

3. The constant j is `+ 2k.
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Example

(p2 ∨ ¬p1 ∨ p4) ∧ (¬p3 ∨ ¬p2 ∨ ¬p4)

s s s s s s s sp1 ¬p1 p2 ¬p2 p3 ¬p3 p4 ¬p4
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Other examples

The Hamiltonian circuit (HC) and travelling salesman (TS) problems are

NP-complete.

The chromatic number problem is NP-Complete. Given a graph G and a

constant k this problem is to decide whether it is possible to colour the

vertices of the graph with k colours in such a way that each pair of

adjacent (edge connected) vertices are coloured differently.
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The integer programming problem is NP-compete. An instance of this

problem consists of

1. a set of m pairs (vi, di) in which each vi is a vector of integers of size n

and each di is an integer,

2. a vector d of size n,

3. a constant b.

The problem is to determine if there exists an integer vector x of size n

such that x · vi ≤ di for 1 ≤ i ≤ m and such that x · d ≥ b.

Over the rationals this problem can be solved in polynomial time (linear

programming).
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The problem of checking the equivalence of nondeterministic finite

automata is NP-hard. Notice that there is no known NP algorithm for

solving this problem. It is complete in the class PSPACE.
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8.8 Interpreting NP-completeness

• Worst case analysis. Algorithms that are efficient “on average” are

possible.

• Heuristic methods to limit the exponential number of cases that need

to be examined.

• Approximate solutions for optimisation problems.

• The “usual” instances of problems can satisfy constraints that reduce

to polynomial the complexity of the problem that actually has to be

solved.
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8.9 Other complexity classes

The class co-NP is the class of languages L whose complement (Σ∗ − L)

is in NP.

The class EXPTIME is the class of languages decided by a deterministic

Turing machine whose complexity function is bounded by an exponential

function (2p(n) where p(n) is a polynomial).
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The class PSPACE is the class of language decided by a deterministic

Turing machine whose space complexity (the number of tape cells used) is

bounded by a polynomial.

The class NPSPACE is the class of language accepted by a

nondeterministic Turing machine whose space complexity is bounded by a

polynomial.

P ⊆ NP
co-NP

⊆ PSPACE ⊆ EXPTIME.
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