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ABSTRACT

A nonlinear energy sink (NES) is characterized by its ability to passively realize targeted energy transfer as well
as multimodal damping. This latter feature seems to make this device very well suited for reducing the vibration
level of MDOF linear structures. The perspective of dealing with MDOF linear primary structures requires the
development of an efficient NES design procedure. This paper poses the basis of such a procedure based upon the
bifurcation analysis of a system composed of a linear oscillator coupled to a NES, using the software MatCont.

1 INTRODUCTION

Passive vibration mitigation of mechanical structures is often associated to the famous Tuned Mass Damper (TMD) developed by
Frahm [1] and Den Hartog [2]. Due to its linear character, the design of this absorber relies on a solid theoretical basis, possesses
very-well known properties such as its capability to mitigate one mode of the primary structure, the trade-off existing between
its performance and robustness levels or the introduction of a second resonant frequency. Even though the TMD design is
very simple, these properties pose serious questions when several modes of the structures have to be damped out or when the
system is submitted to mistuning. A recent body of literature has addressed these limitations using a nonlinear energy sink (NES)
[3−14]. The concept of essential nonlinearity is central, because it means that an NES has no preferential resonant frequency,
which makes it a frequency-independent absorber. Another salient feature of an NES is its capability to realize targeted energy
transfer (TET) during which energy initially induced in the primary system gets passively and irreversibly transferred to the
NES. Therefore, this nonlinear device seems to be very well suited for vibration isolation of MDOF linear structures or nonlinear
structures.

Because of the strongly nonlinear character of the NES, the seek of an optimal design procedure is a challenging problem. A
couple of researches tried to face this issue by considering numerically performed parametric studies with different objective
functions such as the suppression of the self-sustained oscillations [15, 16], the amount of energy dissipated in the nonlinear
absorber [17] or the time required for a complete energy dissipation [18]. Even though these parametric studies generally give
good results, their related computational burden may be prohibitive. Therefore, more recent studies aimed to alleviate this cost
either by properly extrapolating some concepts of the TMD tuning procedure to the NES ([19]) either by developing a NES design
procedure based on the occurrence of quasiperiodic or beating motion ([20−22]). In both cases, excitation conditions differ as free
and forced response motion is considered in the first and latter case, respectively.

In this paper, an new design procedure of the NES, based on the analysis of bifurcation points, is investigated. This procedure
is devoted to any kind of structure composed of a primary system (SDOF and MDOF linear or nonlinear) coupled to a NES.



The first section describes the concept as well as the system considered to illustrate the procedure. The analysis of the related
results is performed in section 2 and a particular application to the drill-string system is tackled in section 3. Finally, the last
section deals with the concluding remarks and future work.

2 NONLINEAR TWO DEGREE-OF-FREEDOM SYSTEM

In this section, the context of the design procedure is explained. To this end, a 2DOF nonlinear system (figure 1) composed of a
linear oscillator coupled to a NES is considered with a harmonic excitation applied to the linear oscillator. The dynamics of this
system has already been widely discussed in [20−22] where the authors considered asymptotical methods to study the evolution
of the slow flow and thereby assess a proper tuning procedure of the parameters leading to periodic motion of the envelope also
known as quasiperiodic motion of the fast flow. It has been evidenced the occurrence of two types of such motions, namely,
weakly quasiperiodic and strongly modulated (SMR) regimes. The first mentioned emanates from a loss of stability of the
periodic motion characterized by a secondary Hopf bifurcation (also know as Neimarck-Sacker bifurcation) whereas the last one
is accompanied by a relaxation type of oscillation. The realization of any of these motions has been proved to be preferable
than periodic motion as they offer a larger reduction of the total system energy (kinetic + potential). Therefore, the seek of such
regimes of a beating response consists in the objective function for the tuning procedure of the NES. For additional details on
this subject, the interested reader may refer to the aforementioned references.
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Figure 1: Linear oscillator coupled to a NES

In order to ease the comparison process with the studies performed in [20−22], the same notations are considered and the
equations of motion of the system depicted in figure 1 are given by :

ẍ1 + ǫλ(ẋ1 − ẋ2) + x1 + ǫk(x1 − x2)
3 = ǫA cos ωt (1)

ǫẍ2 + ǫλ(ẋ2 − ẋ1) + ǫk(x2 − x1)
3 = 0

In those studies, asymptotical methods are considered and to simplify the tuning procedure, some assumptions are made on the
system definition such as :

• the excitation frequency that is imposed to be equal to the linear natural frequency of the linear oscillator (ω = 1).

• the forcing amplitude that is supposed to be low to ensure both motions of the linear oscillator and the NES to be compa-
rable.

• the optimization that is performed in the vicinity of the resonance 1 : 1 which restricts the number of possible solutions to
one stable periodic and one quasiperiodic attractor.

Moreover in this case, even though the use of asymptotical methods allows to analytically assess an ’optimal’ value for the



nonlinear stiffness, their use is restricted to limited size systems. In this context the development of a complementary tuning
procedure is of interest to overcome these limitations.

3 CONCEPT OF BIFURCATION ANALYSIS

The characterization of the dynamics related to a nonlinear system is usually performed by computing a bifurcation diagram with
respect to one or two system parameters. These continuation procedures are said to be of codimension one or two, respectively.
Considering a system submitted to a harmonically forced excitation, its nonlinear frequency response function (NL-FRF) can be
seen as a particular type of bifurcation diagram with the frequency of excitation playing the part of the bifurcation parameter.
The computation of the system NL-FRF is usually numerically performed using shooting techniques associated to continuation
procedures. Algorithms for the numerical continuation of periodic solutions are really quite sophisticated and advanced (see,e.g.,
[23−26], and the AUTO and MATCONT softwares). These algorithms have been extensively used for computing the forced
response and limit cycles of nonlinear dynamical systems [27−32]. Doedel and co-workers used them for the computation of
periodic orbits during the free response of conservative systems [33−35].

In this study the software used for the continuation procedure is MATCONT [36]. Several version of MATCONT exist, a GUI
version, a command line version and a command line version for MAPS. In the present analysis as the system is harmonically
forced, the command line version for MAPS is considered. To this end, the following change of variable :

ωt = τ (2)

has to be applied to system of equations 2 so that the forcing frequency be can be considered by the software as a bifurcation
parameter and it comes :

ω2x
′′

1 + ωǫλ(x
′

1 − x
′

2) + x1 + ǫk(x1 − x2)
3 = ǫA cos τ (3)

ω2ǫx
′′

2 + ωǫλ(x
′

2 − x
′

1) + ǫk(x2 − x1)
3 = 0

where the symbol " ’ " represents the differentiation with respect to the new variable τ . As the frequency becomes a system
parameter, the time span in the integration procedure (that should be one period time T ) always keeps the same [0 2π].

After these practical considerations, let us consider the following initial set of system parameters :

Parameter Value Unit
A 0.3 [N ]
k 15 [N/m3]
λ 0.4 [Ns/m]
ǫ 0.1

TABLE 1: Initial set of parameters

Performing the continuation with respect to the forcing frequency, the corresponding NL-FRF, for the primary system, is computed
and depicted in Figure 2. This picture exhibits a high complexity level in terms of bifurcation points (red dots) and consequently
coexisting solutions (among which, the red dashed lines corresponding to branches of periodic solutions computed with a branch
point bifurcation as initial guess). As a detailed analysis of this NL-FRF is beyond the scope of the present study, for the seek of
clarity, all possible coexisting solutions or stability information have not been represented herein. However, it can be mentioned
the occurrence of 4 bifurcations types :

1. branch point : where two branches of periodic solutions converge or diverge.



2. limit point : periodic motion that possesses one Floquet multipliers leaving the unit circle through 1. This corresponds to
the coexistence of 3 different solutions.

3. period doubling : periodic motion that possesses one Floquet multipliers leaving the unit circle through −1. This corre-
sponds to the apperance of a doubled period solution.

4. Neimark-Sacker : periodic motion that possesses a pair of conjugated Floquet multipliers leaving the unit circle. This is
also known as a secondary Hopf bifurcation (of the slow flow) and corresponds to the appearance of quasiperiodic motion.
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Figure 2: (a) NL-FRF of the 2DOF nonlinear system (figure 1) with parameters of table 3, evaluated at the primary
system. / (b) Close-up of this NL-FRF. The red dots correspond to bifurcation points whereas the red dashed line

correspond to additional periodic solutions emanating from branch points.
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Figure 3: NL-FRF of the 2DOF nonlinear system (figure 1) with parameters of table 3 and k = 5 [N/m3], evaluated at the
primary system. The red dots correspond to bifurcation points whereas the red dashed line correspond to additional

periodic solutions emanating from branch points.



Now, considering the set of parameter tabulated in Table 3 but with a nonlinear stiffness being k = 5 [N/m3], the related NL-FRF
is depicted in Figure 3. Comparing this result with the previous one leads to some major comments :

1. the computational time is lower due to the much simpler response of the system (reduction of the singularities).

2. the appearance of loops in the NL-FRF consists in the main drawback as it is not necessarily clear to suspect their
presence a priori, without any pre-analytical analysis.

An interesting feature is worth being noticed : for an increasing nonlinear character of the system, complementary isolated loops
appear while already existing ones are growing. Furthermore, given some nonlinear levels these loops merge to finally converge
toward the NL-FRF shape depicted in Figure 2.

Because these NL-FRF only represent two possible configurations of the system, other NL-FRF are required to seek optimal
values for the NES. This procedure imposes the discretization of the design parameter space to be small enough to catch all the
relevant information. However, taking into account the complexity of the system dynamical response, the computational cost is
revealed to be too high and therefore, prohibitive.

In this context, a computational time efficient methodology has to be addressed. The initial step lies in defining an objective
(function) by wondering what the desired solutions types for the investigated system are. In the present study and based on
the development carried out in [20−22] it is obvious that quasi-periodic motion is desired. It is also well known that (weak) quasi-
periodic motion appears at a Neimarck-Sacker bifurcation which consists in the relevant information of the NL-FRF. Therefore,
the objective results in the computation of a border that delimits the regions of periodicity and quasi-periodicity. To this end,
based on a NS bifurcation point previously computed with the NL-FRF, a codimension two continuation is performed with respect
to the forcing frequency as well as anyone of the design parameters such as, for example, the nonlinear stiffness k. This
procedure gives rise to a curve in a 3D space (figure 4(a)) whose projection in the 2D plane (ω,k) (figure 4(b)) clearly puts
forward two different motion type regions, A and B, corresponding to quasiperiodic and periodic responses, respectively. Note
that a codimension 2 bifurcation point appears, namely a LPNS (Limit Poin - Neimarck Sacker) where both limit point curve and
neimarck-sacker curve merges. This kind of point can be used to start another NS continuation.
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Figure 4: (a) 3D plot of the codimension 2 continuation of Neimarck-Sacker bifurcation points/ (b) Projection in the
plane (ω,k). The red solid and the black dotted lines correspond to the Neimarck-Sacker bifurcation continuation and

parts of the NL-FRF (figures 2 and 3), respectively. The black dots depict the location of NS and codimension 2 (LPNS)
bifurcation points.

The presence, in the working frequency range, of additional solutions associated to larger amplitude motions has to be avoided
to insure performance and robustness to the absorber. To this end, it is of interest to reproduce a codimension two continuation



of limit point bifurcations with respect to the same continuation parameters. Once again a 3D curve is computed (figure 5(a))
and its projection in the 2D plane (ω,k) (figure 5(b)) defines two distinct regions, C and D, where one or multiple solutions exists.
Finally, considering all those results, the region of interest is restricted to k = [1.931 2.098] [N/m3] and delimited by black lines in
figure 5(b).
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Figure 5: (a) 3D plot of the codimension 2 continuation / (b) Projection in the plane (ω,k). The blue, red solid and the
black dotted lines correspond to the Limit Point, Neimarck-Sacker bifurcation continuation and parts of the NL-FRF

(figure 3), respectively. The black dots depict the location of LP and codimension 2 (LPNS) bifurcation points.
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Figure 6: (a) 3D plot of the codimension 2 continuation / (b) Projection in the plane (ω,k). The blue, red solid and the
black dotted lines correspond to the Limit Point, Neimarck-Sacker bifurcation continuation and parts of the NL-FRF

(figure 3), respectively. The black dots depict the location of LP and codimension 2 (LPNS) bifurcation points.

However pushing further on the analysis to the continuation of an other limit point, it appears that there does not exist a region
with only quasiperiodic attractor anymore (figure 6). Therefore this current continuation is stopped and no other bifurcation point
analysis should be undertaken until the mass or damping coefficient of the absorber are reviewed.



This section aimed to present the concept of a NES design procedure based on bifurcation analysis. To this end, a given 2DOF
nonlinear system has been considered but was not so realistic due to the lack of dissipation in the primary structure. This may
probably be one of the origins of the complex dynamical response of the system observed in the NL-FRFs. In the next section,
the design of a NES coupled to a more realistic structure, namely, a drill-string system, is investigated.

4 DESIGN OF A NES COUPLED TO THE DRILL-STRING SYSTEM

In [16], the use of passive nonlinear targeted energy transfer was considered to stabilize drill-string systems. To this end, a
parametric study was performed to determine a set of absorber parameters leading to a significant improvement of the dynamical
behavior. In this section, the aim lies in checking the quality of the set of absorber parameter and its closeness to the optimum.
Herein, only a brief reminder on the problematic is presented and for more details on the subject, the interested reader may refer
to the aforementioned study.

4.1 Problem description

Torsional vibration of the drill strings used in drilling oil and gas wells arises from a complex interaction of the dynamics of the
drilling structure with speed-dependent effective rock-cutting forces. These forces are often difficult to model, and contribute
substantially to the problems of controlling the drilling operation so as to produce steady cutting. Due to the nonlinear character
of the friction force induced by the flow, the dynamics of the drill-string system is nonlinear and the frequency of the limit cycle
oscillation (LCO) occurring in the system is varying with the energy injected by the driving motor.

A model of the system is depicted in figure 7(a) and its dynamics characterized by the bifurcation diagram illustrated in figure
7(b). The equations of motions and related parameter values are available in [16]. For a given input voltage at the DC motor,
the velocity at the lower disc presents an equilibrium point or/and a LCO. Therefore both solutions are represented through the
equilibrium or the maximum and minimum value of ωl, respectively. Note the presence of black dots traducing the occurrence of
fold (LP) and hopf (H) bifurcation points.
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Figure 7: (a) Model of the drill-string system / (b) Bifurcation diagram : blue and red colors correspond to periodic and
equilibrium solutions, respectively; solid and dotted line correspond to stable and unstable solutions, respectively.

Obviously, the desired motion during the cutting process consists in a constant rotation speed of the structure.



4.2 Coupling of an NES to the Primary Structure

Because of the nonlinear character of the drill-string system, it is meaningful to consider a NES for vibration mitigation of this
system (figure 8(a)). Based on a parametric study [16], a set of NES parameters (Table 2) has been worked out. The dynamics
related to the controlled system is fully characterized by the bifurcation diagram in figure 8(b).

Parameter Estimated Value Units
Jadd 0.025895 [kg m2 / rad]
ca 0.0210 [N m s /rad]
knl 0.002515 [N m / rad3]

TABLE 2: Initial set of parameters.
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Figure 8: (a) Model of the drill-string system coupled to a NES / (b) Bifurcation diagram : blue and red colors correspond
to periodic and equilibrium solutions, respectively; solid and dotted line correspond to stable and unstable solutions,

respectively.

Clearly, the new dynamics created presents a drastic improvement as the range of input voltages leading to local and global
equilibrium solutions has been increased whereas a significative LCO amplitude reduction is observed on the remaining range.

4.3 Bifurcation Analysis

The analysis of the bifurcation points is performed herein. To this end the command line version of MATCONT is used and
not MATCONT for maps as the forcing parameter is not harmonic anymore. The aim lies in assessing the quality of the NES
parameter values, parametrically chosen. In particular the focus is set upon the damping coefficient value. The results are
depicted in figures 9(a-c). Two different objectives can be followed :

1. an increase of the input voltage range leading of the global equilibrium solutions

2. a decrease of the input voltage range leading to unstable equilibrium solutions



The first case tends to be fullfilled when the LP curves get closer from each other whereas for the second case the same
property has to be verified for the Hopf curves. The location of the black trace (bifurcation diagram figure 8) is very close from
the configurations leading to both the largest range of global equilibrium (cadd = 0.018 Ns/m) and the smallest range of unstable
equilibrium (cadd = 0.03 Ns/m). A LPNS bifurcation exhibits the presence of Neimarck-Sacker bifurcation point in its surrounding
region.
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Figure 9: (a) 3D representation of the bifurcation points continuation / (b) Projection in the plane (cadd,u) / (c) Close-up
on the low voltage range. The blue solid line, the red dashed line and the black line correspond to the LP continuation,

the Hopf continuation and the bifurcation diagram computed depicted in figure 8, respectively.

Finally, these developments confirm the quality of the parameters parametricaly computed. However some complementary
analyses have to be performed for lower damping value where more complex dynamics seem to take place.



5 CONCLUSIONS

This paper presents the development of a new NES design methodology based on bifurcation analysis. In particular, a nonlinear
2DOF composed of a LO coupled to a NES is considered to validate the concept that is applied further on to the design of a
nonlinear absorber introduced onto a drill-string system.

Considering a given objective function, this method highlights great benefits from a computational cost viewpoint. It directly takes
advantage of the relevant information available in the bifurcation diagrams, namely, the bifurcation points.

Moreover, unlike asymptotical methods, it is characterized by the independence with respect to any simplifications or restrictive
assumptions on the system structure or boundary conditions.

This method relies on the use of reliable continuation softwares such as MATCONT which is used herein.

Complementary developments have to be undertaken in subsequent studies to take the codimension 2 bifurcations (LPNS, R1,
...) into account in the design procedure.
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