Contribution to the monitoring of the common hippopotamus (*Hippopotamus amphibius* L.) with the use of drone technology (Garamba National Park, DRC)

Gembloux Agro-Bio Tech Université de Liège SIMON LHOEST, JULIE LINCHANT, PHILIPPE LEJEUNE, CÉDRIC VERMEULEN Forest Resources Management Axis, Biosystems engineering (BIOSE) University of Liège – Gembloux Agro-Bio Tech

« Rational management and conservation of wildlife » workshop

Gembloux, 13th October 2015

SIMON LHOEST

Objectives

Study site & material

Multiple anthropogenic pressures

Decline of wildlife!

Regular monitoring is essential!

Source : www.interet-general.info

Introduction Objectives	Study site & Methodology material	Results Conclusion		
-				
© Julie Linchant	ZS-			
Pedestrian inventories	Aerial inventories	Drones		
Low cost	Rapidity	Security		
Logistics	Vast areas	Not easily accessible sectors		
Improvisions	Not easily accessible sectors	Rapidity & logistics		
operator effect	High costs	Reliable and repeatable methods, animals disturbance		
Limited areas	Logistics	Possible automation		
	Dangers	Technical constraints		
Potential risks	Imprecisions, animals disturbance	Large datasets (time consuming!)		

Introduction

Study site & material

Methodology

Results

Conclusion

Garamba National Park

Two study sites

Two contrasted seasons : dry & rainy

High poaching pressure!

© Basile Luse Belanganayi

Study site & material

8

- Manual countings: WiMUAS software
- 8 operators
 - **3** experienced
 - **5** inexperienced
- Random order of images
- Defined counting zone
- Observations certain / uncertain
- 252 photos x 8 operators = 2016 experimental units

40 meters

140 meters

250 meters

Introduction

Study site & material

Methodology

Results

Conclusion

9

Estimation of the total number of hippos present during a flight

- Georeferencing of 15 successive images
- Points layer: positions of animals
- Addition + moving of points between images
- Estimated number of hippos = final number of points

- Factors:
 - Fixed: Flight height
 - Random: Flight, photo, operator

Result:
$$\ln\left(\frac{Rate}{1-Rate}\right) = a + b * Height + \alpha_{flight} + \beta_{image} + \gamma_{operator}$$

Models	а	b	Standard- deviation α	Standard- deviation β	Standard- deviation γ
Detection rate	1.991	-0.002	0.556	0.335	0.335
Certainty rate	2.304	-0.003	0.313	0.268	0.722

CF 1 = Correction of **detection**, compared to the estimated number of animals during the current flight

CF 2 = Correction of **population** estimation, compared to the maximal estimated number of animals between all flights

Global CF = Mean of CF 1 and 2

Correction factors types	All operators	Experienced operators	Inexperienced operators
1 (during the flight)	1.218 [1.211; 1.226]	1.156 [1.146; 1.166]	1.256 [1.245; 1.266]
2 (maximum between flights)	1.286 [1.276; 1.295]	1.220 [1.207; 1.232]	1.325 [1.312; 1.338]
Global (mean)	1.252 [).243; 1.260]	1.188 [1.177; 1.199]	1.290 [1.279; 1.302]

Study site & Objectives Methodology Results Introduction material **Practical recommendations Perspectives** Flight height: 140 meters Promising tool for wildlife inventories Between 6:30 and 8:45 am \checkmark Use of a multicopter platform? (3-4°N, 29-30°E) Dry season **Technical improvements** (autonomy, sensors) Limited cloud cover > Combination of RGB images & thermal infrared? Avoid strong winds & fog

- Same experienced operators for the counts
- **Development of large scale survey** protocols

Conclusion

Thanks for your sustained attention!

Simon Lhoest simlho@hotmail.com

Gembloux Agro-Bio Tech Université de Liège

© Photos : Simon Lhoest, except other mentions