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Abstract: Fluid therapy is frequently used to manage acute circulatory failure. This therapy
aims to restore cardiac output by fluid administration, which increases the quantity of fluid in the
circulation. However, it has been shown to be effective only in certain cases, leading to the need
for indices of fluid responsiveness. Total stressed blood volume has recently been shown to be
such an index of fluid responsiveness. However, the current methods to determine this parameter
require specific procedures. In this work, a more straightforward method is developed using
data available in the intensive care unit. A simple three-chamber cardiovascular system model
is used, of which total stressed blood volume is a parameter. All model parameters (including
total stressed blood volume) are adjusted to pig experimental data during fluid administrations.
The resulting value of total stressed blood volume is always negatively associated with the
relative change in cardiac output after fluid administration. This finding confirms that total
stressed blood volume is an index of fluid responsiveness. Another finding of this study is that
the response curves are subject-specific. The method developed in this work can be applied to
humans, since the data required is typically available in an intensive care unit.

Keywords: parameter identification, mathematical models, biomedical systems, medical
applications.

1. INTRODUCTION

Fluid therapy aims to improve cardiac output (CO) by
increasing the quantity of fluid in the circulation and is fre-
quently used to manage acute circulatory failure (Michard
and Teboul (2000)). It has been shown to be effective
only for some patients. Consequently, clinicians have been
searching for various indices of fluid responsiveness.

Maas et al. (2012) showed that total stressed blood volume
(SBV), defined as the total pressure-generating blood
volume in the circulation, was such an index of fluid
responsiveness. However, current methods to determine
SBV involve repeated phases of circulatory arrests followed
by fluid infusions.

Pironet et al. (2014) previously developed a method to
compute a mathematical model-based analogue of SBV.
This method has two drawbacks: it requires data from both
the systemic and pulmonary circulations and this data
has to be obtained during a preload reduction manoeuvre.
In this work, these two limitations are removed using a
simpler mathematical model, requiring only systemic data
in steady conditions. The method is validated against
vascular filling experiments data.
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Fig. 1. Schematic representation of the CVS model.

2. METHODS

2.1 Cardiovascular System Model

The cardiovascular system (CVS) model used in this work
is presented in Fig. 1. It consists of three elastic chambers
representing the left ventricle (lv), the aorta (ao) and one
vena cava (vc). The aorta and the vena cava are described
by the following equations:

Pao(t) = Eao VS,ao(t) (1)

Pvc(t) = Evc VS,vc(t), (2)

where P is pressure, E is elastance and VS is stressed
volume. (Stressed volume is equal to the difference between
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actual volume and a constant volume offset, called the
unstressed volume (Pironet et al. (2014)).)

The left ventricle is represented using the description of
Suga et al. (1973):

Plv(t) = Elv e(t) VS,lv(t) (3)

where Elv is the maximum (end-systolic) elastance and
e(t) is the normalised pressure-volume ratio, which is a
T -periodic function (T being the duration of a heartbeat)
ranging from nearly 0 (during filling) to 1 (at end-systole).

The three chambers are linked by vessel resistances rep-
resenting the systemic circulation (Rc), the aortic valve
(Ro) and the whole right circulation, from the tricuspid
to the mitral valves (Ri). Flow Qc through the systemic
circulation is described by Ohm’s law:

Qc(t) =
Pao(t)− Pvc(t)

Rc
. (4)

The model assumes (i) that there is flow through the valves
only if the pressure gradient is positive and (ii) that the
flow through an open valve can also be described by Ohm’s
law. Hence, one has:

Qi(t) =


Pvc(t)− Plv(t)

Ri
if Pvc(t) > Plv(t)

0 otherwise,

(5)

Qo(t) =


Plv(t)− Pao(t)

Ro
if Plv(t) > Pao(t)

0 otherwise.

(6)

Finally, the continuity equation gives the rate at which the
volume of the chambers change:

V̇S,lv(t) = Qi(t)−Qo(t), (7)

V̇S,ao(t) = Qo(t)−Qc(t), (8)

V̇S,vc(t) = Qc(t)−Qi(t). (9)

Summing the previous equations gives:

V̇S,lv(t) + V̇S,ao(t) + V̇S,vc(t) = 0. (10)

Consequently, the total stressed blood volume contained
in the left ventricle, aorta and vena cava is a constant and
a model parameter:

VS,lv(t) + VS,ao(t) + VS,vc(t) = SBV. (11)

Overall, the model counts eight parameters (three elas-
tances Elv, Eao and Evc, three resistances Ri, Ro and
Rc, the cardiac period T and SBV) and one normalised
pressure-volume ratio e(t). Parameter identification is used
to compute the value of SBV and the other parameters
from experimental data.

2.2 Experimental Data

To identify the model parameters, experimental animal
data were used. These data came from vascular filling ex-
periments performed on eight anaesthetised pigs, weighing
27.7±6.2 kg. The experiments consisted in 2 to 6 successive
administrations of saline solution. Pigs 1 and 2 received

slow 500 ml fluid infusions and pigs 3 to 8 received rapid
225 ml fluid boluses. The pigs were mechanically ventilated
at a positive end-expiratory pressure of 5 cmH2O. These
experiments were performed with the approval of the
Ethics Committee of the Medical Faculty of the University
of Liège. Catheters (Transonic, NY) provided continuous
recording of:

• left ventricular pressure Plv and volume Vlv,
• aortic pressure Pao,
• vena cava pressure Pvc (only for pigs 1 and 2),
• left atrial pressure Pla (only for pig 1).

A PiCCO monitor (Pulsion AG, Germany) was also used
for pigs 5 to 8, providing beat-to-beat recording of:

• stroke volume (SV),
• mean vena cava pressure P̄vc,
• amplitude of the vena cava pressure PPvc.

The PiCCO was recalibrated with three thermodilutions
after each fluid administration to avoid any drift in the
measured SV. Table 1 summarises the available data for
each animal.

Table 1. Summary of the experimental data.

Catheter data PiCCO data
Plv Vlv Pao Pvc Pla SV P̄vc PPvc

Pig 1 × × × (×) ×
Pig 2 × × × ×
Pig 3 × × ×
Pig 4 × × ×
Pig 5 × (×) × × ×
Pig 6 × × × × × ×
Pig 7 × × × × × ×
Pig 8 × × × × × ×

Since cardio-pulmonary interaction is not accounted for
in the model, only data during temporary disconnections
of the mechanical ventilator were used. More precisely,
the last heartbeat before re-plugging of the ventilator was
used, so that the hemodynamics was stabilised after the
load change caused by unplugging the ventilator.

2.3 Parameter Identification

The parameter identification procedure aims to reproduce
the measured signals with the model. Since the model
only represents the systemic circulation, the parameter
identification only requires measurements coming from the
systemic circulation, which is an improvement with respect
to Pironet et al. (2014). The only exception in this work
is the use of left atrial pressure for pig 1, which will be
justified further.

The parameter identification procedure involved four
steps, described in the following four sections. First, nom-
inal values had to be assigned to all eight model param-
eters. Then, an error vector was defined. From the error
vector computed using the nominal parameter values, an
algorithm selected a sensitive subset of parameters to be
further identified. Finally, this subset of parameters was
identified using an iterative procedure.

I. Nominal Parameter Values To assign nominal values
to the model parameters, approximate formulae derived
from the model equations were used in combination with
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the available data. The derivation of these approximate
formulae is given in Appendix A.

1. The cardiac period T was computed as the distance
between two minima of the aortic pressure signal.

2. The nominal value of the systemic resistance Rc was
computed as:

Rc ≈
P̄ao

CO
, (12)

where P̄ao is the mean aortic pressure over one
heartbeat.

3. Aortic elastance Eao was estimated by fitting the
following equation to aortic pressure during diastole:

Pao(t) ≈ exp

(
−Eao(t− tBD)

Rc

)
Pao(tBD). (13)

where tBD denotes the beginning of diastole.
4. Left ventricular end-systolic elastance Elv has been

computed as:

Elv ≈ max
T

Plv(t)

Vlv(t)
. (14)

The normalised pressure-volume ratio e(t) was then
obtained as:

e(t) ≈ Plv(t)

Elv Vlv(t)
. (15)

5. Aortic valve resistance was initialised using:

Ro =

∫
Plv(t)>Pao(t)

(Plv(t)− Pao(t)) dt

SV
. (16)

6. The resistance of the right circulation was initialised
using:

Ri ≈

∫
P̄vc>Plv(t)

(P̄vc − Plv(t)) dt

SV
. (17)

When Equation 16 or 17 could not be used (missing
or inconsistent data), nominal valve resistances values
were taken from Revie et al. (2013):

Ro = 0.04 mmHg s/ml (18)

Ri = 0.05 mmHg s/ml. (19)

7. Venous elastance Evc was estimated using:

Evc ≈ 2
PPvc

CO T
. (20)

When PPvc was not available, it was estimated to be
equal to 9 mmHg (Barbier et al. (2000)).

8. To determine the nominal value of SBV, the following
equation was used:

SBV ≈ V̄lv +
P̄ao

Eao
+
P̄vc

Evc
. (21)

When part of the data necessary to compute this
nominal value of SBV was missing, results published
by Pironet et al. (2014) were used. From these results,
SBV was estimated to be equal to 593 ml.

In the previous computations, parameters T and Elv were
computed by directly fitting the model to the data. Conse-
quently, it was assumed that the parameter identification
process would not largely alter these parameter values.
They were thus excluded from the following sensitivity
analysis procedure, and the remaining parameter vector
was:

p = (SBV Eao Evc Rc Ri Ro). (22)

II. Error Vector When available, the following experi-
mental data were used for parameter identification:

• mean left ventricular volume (V̄lv),
• left ventricular SV (SVlv),
• mean aortic (P̄ao) and vena cava pressures (P̄vc),
• aortic (PPao) and vena cava (PPvc) pulse pressures.

The error vector e was built as the relative error between
simulated and measured values (superscripts mes) of the
previous signals:

e =

(
1− V̄lv

V̄ mes
lv

1− SVlv
SV mes

lv

1− P̄ao

P̄mes
ao

...

)
. (23)

Ventricular pressures were not included in the error vector
since they had already been used to compute Elv and e(t).
However, for pig 5, measured left ventricular volume was
unreliable, which prevented correct estimation of Elv and
e(t) as explained in the previous section. Consequently, for
this animal, Elv was inserted in the parameter vector p,
while P̄lv and PPlv were inserted in the error vector e.

Additionally, measured mean vena cava pressure was neg-
ative for pig 1, which cannot be reproduced by the model.
Since it was available, mean left atrial pressure was used
instead, even if this substitution does not agree with the
hypotheses underlying the model.

III. Subset Selection Algorithm A subset of the pa-
rameter vector p was selected for optimization using a
dedicated algorithm, introduced by Burth et al. (1999).
This algorithm performs a sensitivity analysis on the error
vector e and selects the ρ parameters to which e is the
most sensitive. In this work ρ was selected as the i (> 1)
that maximised the ratio of two successive eigenvalues of
the Hessian matrix hi/hi+1, when they were sorted in
decreasing order, i.e. hi ≥ hi+1.

IV. Iterative Adjustment of the Selected Parameters The
ρ selected parameters were computed by an iterative
procedure. The objective of this procedure was to minimise
the mean absolute error (MAE), defined as

MAE =
1

N

N∑
i=1

|ei|, (24)

where N is the number of components in e, equal to 4,
5, 6 or 7 in function of the available data. This task
was performed using the simplex method for nonlinear
optimisation combined with a custom implementation of
the proportional method of Hann et al. (2010). The initial
values needed by this algorithm were the ones computed
in step I. All computations were performed using Matlab
(2010a, MathWorks, Natick, MA).

3. RESULTS AND DISCUSSION

3.1 Subset Selection Algorithm

Figure 2 shows the frequency of parameter selection by
the algorithm. As can be seen from this figure, SBV
and Rc have been selected by the algorithm for all 37
datasets, allowing the estimation of these parameters in
all cases. This result emphasises the importance of the
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Fig. 2. Frequency of parameter selection by the subset
selection algorithm.

SBV parameter for CVS model simulations, as previously
pointed out by Pironet et al. (2014).

As mentioned in the previous section, Elv was only sub-
mitted to the subset selection algorithm for pig 5. For this
animal, Elv has also been selected for all datasets.

The valve resistances Ri and Ro were the least frequently
selected parameters. They are indeed difficult to identify
(from the data used), as already noted by Revie et al.
(2013) and Pironet et al. (2014).

3.2 Quality of the Parameter Adjustment

After parameter adjustment on the 37 datasets, the MAE
amounts to 8.58 % on average and ranges from 0.89 to
33.23 %. The quality of the parameter adjustment is thus
very good, which also implies that the very simple 3-
chamber CVS model used can capture the diversity of the
experimental measurements obtained. For instance, pig 6
presented a pulsus paradoxus (alternance of strong and
weak beats), which caused the highest MAE of 33.23 %,
but this condition was still correctly reproduced by the
model. Additionally, Pig 8 was diagnosed in shock, but
this did not prevent the model to correctly represent this
animal’s condition (average MAE for this pig is 3.31 %).

A representative example of parameter adjustment is dis-
played in Figure 3. The MAE for the corresponding dataset
is 8.86 %. Simulated and measured pressures and volumes
are thus in good agreement.

A frequent source of errors can be evidenced using Fig-
ure 3: during a whole cardiac cycle, measured aortic pres-
sure (top, dashed light grey line) is nearly always higher
than measured left ventricular pressure (top, dashed black
line). The simple valve model used in this work cannot
reproduce such a situation, since the model requires aortic
pressure to be lower than left ventricular pressure for the
valve to open (Equation 6).

The parameter identification method presented in this
work is robust, since it was able to fit the model to various
experimental data, as shown in Table 1:

• PiCCO data available or not,
• left atrial/vena cava pressure data available or not,
• vena cava pulse pressure data available or not,
• unreliable left ventricular volume data.
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Fig. 3. Identification result for pig 8, after 225 ml fluid
administration. Top: simulated (full lines) and mea-
sured (dashed lines) left ventricular (black), aortic
(light grey) and vena cava (dark grey) pressures. The
arrow represents vena cava pulse pressure measured
by the PiCCO. Bottom: simulated (full line) and
measured (dashed line) left ventricular volumes. The
arrow represents SV measured by the PiCCO.

This robustness and adaptability to the available data
makes the method a serious candidate for application to
intensive care unit patient data.

Indeed, even if experimental measurements include left
ventricular pressure and volume, which are not routinely
measured in the intensive care unit, these measurements
are only used to obtain the nominal parameter values. The
parameter adjustment is performed using only the vector
e, which contains data available in the intensive care unit.

3.3 Relation between Total Stressed Blood Volume before
Fluid Administration and Change in Cardiac Output after
Fluid Administration

Figure 4 shows the relation between relative change in
CO after each fluid administration and the identified SBV
value before the fluid administration, for all 8 animals.
The figure shows that, the higher the SBV, the lower the
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relative change in CO. This relation was to be expected,
since SBV represents the volume status of a subject. For
instance, a high SBV value means that the subject has
a large intra-vascular blood volume. In this case, a fluid
administration is not required and will probably not be
beneficial. Note that the worst correlation (R = −0.38)
is observed for pig 6, which presented a pulsus paradoxus.
As explained in the previous section, this condition was
associated with a larger MAE, which might have impacted
the quality of the estimated SBV and could explain the
poor relation between SBV and relative change in CO after
fluid administration.

Such a negative correlation between SBV and relative
change in CO after fluid administrations was previously
observed by Maas et al. (2012) in intensive care unit
patients. In the study of Maas et al. (2012), SBV was
determined using a succession of 10 sequential 50 ml
fluid administrations and local circulatory arrests, a time-
consuming procedure, which may also be harmful if these
a priori fluid administrations are actually not required. In
contrast, the procedure presented in this work does not
require a priori fluid administration or circulatory arrests
to compute the SBV value. Furthermore, it is based on
data available in an intensive care unit.

3.4 Predictive Value of Total Stressed Blood Volume

Figure 4 also emphasises that neither SBV nor CO changed
monotonously during the filling experiments, which can be
attributed to the numerous regulatory mechanisms acting
on the CVS. This observation underlies the complexity of
predicting the effects of fluid administration.

Various definitions of a positive response to vascular filling
exist in the literature. Maas et al. (2012) define a positive
response as a relative change in CO larger than 12 %.
According to this definition, 10/37 (27 %) of the fluid
administrations performed in the present study were as-
sociated to a positive response.

The receiver operating characteristic (ROC) curve was
plotted to investigate if a SBV lower than a given threshold
could predict a relative change in CO larger than 12 %.
The best threshold for SBV was found to be 145 ml and
is represented in Figure 4. The threshold was associated
with a sensitivity of 0.75 and a specificity of 0.70. The
area under the ROC curve was 0.70. This analysis was
conducted only using data from pigs 3 to 8 since pigs 1
and 2 received different volumes of fluid, administered in
a different fashion.

The moderately high values of sensitivity and specificity
can be understood by noticing that the relation between
SBV and relative change in CO seems to be subject-
specific. (The slope of the relation between SBV and rela-
tive change in CO ranges from −0.0013 to −0.0088 ml−1.)
Maas et al. determined only one SBV value for each sub-
ject, and thus, could not make such an observation.

4. CONCLUSION

This work presented a mathematical model-based method
to compute SBV. This index was estimated using a simple
CVS model, whose parameters were adjusted to data from

vascular filling experiments in pigs. The identified SBV
value presented a consistent association with the relative
change in cardiac output after fluid administration, as
expected theoretically and from the results of a previous
study.

The method can be applied to humans, since it does not
require a priori fluid infusions and the data required for
parameter identification can be obtained in an intensive
care unit. A human trial is planned in the near future.
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Appendix A. DERIVATION OF THE NOMINAL
PARAMETER VALUES

A.1 Systemic Vascular Resistance Rc

The systemic vascular resistance Rc was computed using
the definition of Klabunde and Dalley (2004):

Rc =
P̄ao − P̄vc

CO
. (A.1)

For simplicity, P̄vc was neglected with respect to P̄ao and
thus set to zero in Equation A.1, yielding Equation 12.
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Fig. 4. Relative change in CO after each fluid administration plotted versus the identified SBV value before
administration. The numbers in the squares indicate the sequence of fluid administrations. The grey areas divide
the plane along the lines SBV = 145 ml and relative change in CO = 12 %.

A.2 Aortic Elastance Eao

During diastole (Qo = 0), volume change of the arterial
compartment is described by Equations 4 and 8:

V̇S,ao(t) = −Pao(t)− Pvc(t)

Rc
. (A.2)

If, once again, venous pressure is neglected with respect to
aortic pressure, using Equation 1, one gets:

V̇S,ao(t) ≈ −Eao VS,ao(t)

Rc
. (A.3)

Solving this differential equation yields:

VS,ao(t) ≈ exp

(
−Eao (t− tBD)

Rc

)
VS,ao(tBD) (A.4)

where tBD denotes the beginning of diastole. Multiplying
both sides of Equation A.4 by Eao yields Equation 13.

A.3 Left Ventricular End-Systolic Elastance Elv and Nor-
malised Pressure-Volume Ratio e(t)

Equations 14 and 15 are obtained from Equation 3, assum-
ing that measured left ventricular volume Vlv(t) is equal
to the model left ventricular stressed volume VS,lv(t). This
assumption is equivalent to stating that left ventricular
unstressed volume is zero. Since preload, afterload and
cardiac frequency are not changing in the present sim-
ulations, the left ventricular pressure-volume loops are
not changing, which makes it unnecessary to precisely
determine the left ventricular unstressed volume.

A.4 Aortic Valve Resistance Ro

Equation 6, integrated on one heartbeat, gives:∫
T

Qo(t) dt =

∫
Plv(t)>Pao(t)

(Plv(t)− Pao(t)) dt

Ro
(A.5)

By definition, the integral of the flow going out of the
heart during one heartbeat is equal to the SV, hence giving
Equation 16.

A.5 Resistance of the Pulmonary Circulation Ri

Equation 5, integrated on one heartbeat, gives:∫
T

Qi(t) dt =

∫
Pvc(t)>Plv(t)

(Pvc(t)− Plv(t)) dt

Ri
. (A.6)

Here also, the integral of the flow going into the heart
during one heartbeat is equal to the SV. For simplicity,
Pvc(t) was assumed constant and replaced by its mean
value P̄vc, which gives Equation 17.

A.6 Venous Elastance Evc

During systole (Qi = 0), Equation 9 reads:

V̇S,vc(t) = Qc(t). (A.7)

Flow through the capillaries is assumed to be constant and
equal to its mean value i.e. CO:

V̇S,vc(t) ≈ CO. (A.8)

Integrating this equation from beginning (tBS) to end
(tES) of systole gives:

VS,vc(tES)− VS,vc(tBS) ≈ CO (tES − tBS). (A.9)

Multiplying both sides by Evc and using Equation 2 gives:

Pvc(tES)− Pv(tBS) ≈ Evc CO (tES − tBS). (A.10)

Finally, assuming Pvc(tES)− Pvc(tBS) = PPvc and tES −
tBS = T/2, one obtains Equation 20.

A.7 Stressed Blood Volume SBV

Equation 11 is averaged on one heartbeat, giving:

V̄S,lv + V̄S,ao + V̄S,vc = SBV. (A.11)

Then, Equations 1 and 2 are also averaged, yielding
Equation 21.
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