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The idea

A function f € L (R9) belongs to A%(xp) iff there exists a

loc

polynomial of degree at most s s.t.

sup |f(xo + h) — P(h)| < C27%,
|h|<2]

for j sufficiently large.
A function f € L%°(RY) belongs to AS(R9) iff the previous
inequality is satisfied for every xp with a uniform constant C.

One can try to be sharper by replacing the sequence (2_j5)j with a
more general sequence o = (0;);:
f € L (RY) belongs to AM(x) if there exists a polynomial of

degree at most M s.t.

sup |f(xo + h) — P(h)| < Coj,
|| <2

for j sufficiently large.
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Admissible sequence

A sequence of real positive numbers is called admissible if
gj+1
0j
is bounded.
For such a sequence, we set

. Otk
0B (nf e %24)

s(o) = lim
s(o) = lim
and -
B  logy(supken 24)
5(o) = lim , .

J J
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Notations

@ the open unit ball centered at the origin is denoted B,

e the set of polynomials of degree at most n is denoted P[n],
o [s]=sup{ne€Z:n<s}

e if f is defined on RY,

AFF(x) = f(x 4+ h) — f(x)

and
AR (x) = AARF(x),

for any x, h € RY
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Definition of the generalized global Hdlder spaces

Definiton

Let s > 0 and o be an admissible sequence; a function
f € L°(RY) belongs to A%M(R?) iff there exists C > 0 s.t.

sup AMTF) . < Co;
|h|<2-i

Proposition

Let s > 0 and o be an admissible sequence; a function
f € L°(R?) belongs to A%M(R?) iff there exists C > 0 s.t.

inf ||[f — P||joo(o—i < Co;
Pg'l[M] [ [ (2=iB+xp) > L 0js

for any xp € R? and any j € N.
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The pointwise version

Definition
A function f € L (R9) belongs to A%M(xg) iff there exists C > 0
and J € Ns.t.

. B o < Eo
PE'QFM] If =Pl (2-iB+x) < Coj,

for any j > J.

Definition
A function f € L2 (R?) belongs to A%M(xo) iff there exists C > 0
and J € N s.t. for any j > J, there exists P; € P[M] for which

sup ’f-(X() + h) — Pj(X() -+ h)’ < C(Tj.
|h|<2—J
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Independance of the polynomial from the scale
°

What about the classical case

A function f € L (R9) belongs to A°(xo) (s € R) iff there exists
C > 0, a polynomial P of degree less than s and J € N s.t. for any
ji=J
sup |f(xo+ h) — P(xo + h)| < C275.
|h|<2—J

There is one polynomial, independant from the scale.
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Two lemmata

Lemma

If M < s(o~1), the sequence of polynomials occuring in the
definition of A%M(xg) satisfies

IDP Py — DP Pyl oo sy 428y < C2Fla,

for any multi-index # s.t. |5| < M and k> j > J.

In particular, (D?Pj(xo)); is a Cauchy sequence.



Independance of the polynomial from the scale
oce

Two lemmata

Lemma

If M < s(c71), and (P;); is a sequence of polynomials in the
definition of A%M(xg), for any multi-index 3 s.t. |3 < M, the limit

fs(x0) = |iJm DPP;(x0)

is independant of the chosen sequence (P;});.




Independance of the polynomial from the scale
oce

Two lemmata

Lemma

If M < s(c71), and (P;); is a sequence of polynomials in the
definition of A%M(xg), for any multi-index 3 s.t. |3 < M, the limit

fs(x0) = |iJm DPP;(x0)

is independant of the chosen sequence (P;});.

f3(xo) is the B-th Peano derivative of f at xp.
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There can be only one

Theorem

If M < s(c71), then f € A®M(xp) iff there exist C > 0 and a
polynomial P € P[M] s.t.

If = Pll oo (xo4+2-i8) < Caj,

for j sufficiently large. The polynomial is unique.

One has 5
P = X o) el

e
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The classical case

For s € (0,00), let
° 0= 2~
o M=[s(cH]=1[s]ifs¢gN
o M=s—-1lifseN
We have
/\S(Xo) = /\U’M(Xo).

If M < s(c71), one has

ANM(x0) € AM(xp).
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Alternative definitions
.

Finite differences

Let
Bflww(XOJ) ={x:[x,x+(M+1)h] C xo + 2—]5}.

Let f € L° (RY); one has f € A%M(xg) iff there exist C,J > 0 s.t.

loc

M+1 _
:ggj [AR Tl oo (BM(x.jy) < Cj

for any j > J.
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Alternative definitions
[1e)

Convolutions
Let p a radial function s.t. p € C°(B), p(B) C [0, 1] and

ol = 1.
One sets, for any j € Np,

=279 p(-/2)

Lemma
Let N € Ny; if f € LL (RY) satisfies

loc

sup I pk — f||L°°(xo+2*fB) < Coj,
k>j

for j > J, then, for any multi-index § s.t. |8| < N, one has

IDP( * pj — £ % pj1)ll 1o xor2-igy < C2Va,

for any j > J.
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Convolutions

If f € A%M(xp), then there exists ® € C°(RY) s.t.

sup_ ”f —f=* q)kHLoo(XO_;’_27jB) < CUJ',
k2]

for j sufficiently large.
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Convolutions

Proposition

If f € A%M(xp), then there exists ® € C°(RY) s.t.

sup_ ”f — f % q)kHLoo(XO_;’_27jB) < CUJ',
k>j
for j sufficiently large.
Conversely, if o — 0, f € A(R?) for some € > 0 and f satisfies the
previous relation for some function ® € C2°(RY), then
f € A%M(xg) for any M s.t. M+ 1 >35(c71).
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Definitions

Under some general conditions, there exist a function ¢ and 29 — 1
functions ¥() called wavelets s.t.

{o(- — k) - ke Z} | J{w (2 - —k) : ke 29, j € No}

forms an orthogonal basis of L%(R9).
Any function f € L?(R9) can be decomposed as follows,

=Y Golx—K+ > u@x— k),

kezd j>0,keZd,1<i<2d
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Definitions

We assume
o ¢, ) € C"(RY) with n > M,
o D%¢, DBy (|| < n) have fast decay,
o supp(y()) C 270 B for some jg.

We set
.. k i 1
e A= \(ij, k)= EJFWHO’F)C’
@ C)\ = Cj(,ik

o Yy =y —k).
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Wavelets
coeo

Definitions

The wavelet leaders are defined by

dy = sup [cy|
NCA

If 3\ denotes the 37 dyadic cubes adjacent to A and \j(xo) the
dyadic cube of length 27/ containing xp, one sets

Glo)= sup
)\C3)\j(xo)
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The caracterization

Theorem

If f € A%M(xp), then there exists C > 0 s.t.

di(x) < Coy,

for j sufficiently large.
Conversely, if 0 — 0, f € /\E(Rd) for some € > 0 and f satisfies the
previous relation, then f € A™M(xg), where

e 7 is the sequence defined by 7; = o} log, 0|,

e M is any number satisfying M + 1 > 5(c71).
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The usual case

In the usual case, we have

s<t= /\t(Xo) - /\S(Xo).

The Holder exponent of f at xp is

hf(XO) = SUp{S >0:f¢€ /\S(Xo)}.
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The Holder exponent
°

Definitions

If, for any s > 0, o) is an admissible sequence, the application
o) s> 000

is called a family of admissible sequences.
A family of admissible sequences is decreasing for xp if

s < t = A1 (xg) € A7 ().
Let o() a family of decreasing sequences for xp and f € LfOOC(Rd);
the Halder exponent of f at xg for o() is

W2 (x0) = sup{s > 0: f € A7l (xg) 1.
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The Holder exponent
°

How to check if a family of admissible sequences is decreasing?

Let
—m) o(m oM
0" =sup Iﬁ;, olm — inf lEJr)l,
keN Ukm keN O'km

A family of admissible sequences is decreasing for xp if it satisfies
the following conditions:
o ifm<s<t< m+1with mée Ny, a}t)g Ca}s) for j
sufficiently large
e for any m € N, at least one of the following conditions is
satisfied: there exists g > 0 s.t. for any € € (0, ¢),

oi™ < cofme) 27im < colm=e)
if1 < 2m8™: @MY < ol | if1 < 2mem: o™ < colmm
if1 > 2me(m. o—im < caj(’"*e) if1 > 2me(m. a}’”)(z'"@('") - < caj(’”*e)

if1=2me(m, jp—im < ca](.’”*e) if1=2me(m. jof.’”) < colm=9




Thank you
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