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Introduction Independance of the polynomial from the scale Alternative definitions Wavelets The Hölder exponent

The idea

A function f ∈ L∞loc(Rd) belongs to Λs(x0) iff there exists a
polynomial of degree at most s s.t.

sup
|h|≤2−j

|f (x0 + h)− P(h)| ≤ C2−js ,

for j sufficiently large.

A function f ∈ L∞(Rd) belongs to Λs(Rd) iff the previous
inequality is satisfied for every x0 with a uniform constant C .

One can try to be sharper by replacing the sequence (2−js)j with a
more general sequence σ = (σj)j :
f ∈ L∞loc(Rd) belongs to Λσ,M(x0) if there exists a polynomial of
degree at most M s.t.

sup
|h|≤2−j

|f (x0 + h)− P(h)| ≤ Cσj ,

for j sufficiently large.
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Generalized Besov spaces
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Admissible sequence

A sequence of real positive numbers is called admissible if

σj+1

σj

is bounded.

For such a sequence, we set

s(σ) = lim
j

log2(infk∈N
σj+k

σj
)

j

and

s(σ) = lim
j

log2(supk∈N
σj+k

σj
)

j
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Notations

the open unit ball centered at the origin is denoted B,

the set of polynomials of degree at most n is denoted P[n],

[s] = sup{n ∈ Z : n ≤ s},

if f is defined on Rd ,

∆1
hf (x) = f (x + h)− f (x)

and
∆n+1

h f (x) = ∆1
h∆n

hf (x),

for any x , h ∈ Rd



Introduction Independance of the polynomial from the scale Alternative definitions Wavelets The Hölder exponent
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Definition of the generalized global Hölder spaces

Definition

Let s > 0 and σ be an admissible sequence; a function
f ∈ L∞(Rd) belongs to Λσ,M(Rd) iff there exists C > 0 s.t.

sup
|h|≤2−j

‖∆[M]+1
h f ‖∞ ≤ Cσj

Proposition

Let s > 0 and σ be an admissible sequence; a function
f ∈ L∞(Rd) belongs to Λσ,M(Rd) iff there exists C > 0 s.t.

inf
P∈P[M]

‖f − P‖L∞(2−jB+x0) ≤ Cσj ,

for any x0 ∈ Rd and any j ∈ N.
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The pointwise version

Definition

A function f ∈ L∞loc(Rd) belongs to Λσ,M(x0) iff there exists C > 0
and J ∈ N s.t.

inf
P∈P[M]

‖f − P‖L∞(2−jB+x0) ≤ Cσj ,

for any j ≥ J.

Definition

A function f ∈ L∞loc(Rd) belongs to Λσ,M(x0) iff there exists C > 0
and J ∈ N s.t. for any j ≥ J, there exists Pj ∈ P[M] for which

sup
|h|<2−j

|f (x0 + h)− Pj(x0 + h)| ≤ Cσj .
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What about the classical case

A function f ∈ L∞loc(Rd) belongs to Λs(x0) (s ∈ R) iff there exists
C > 0, a polynomial P of degree less than s and J ∈ N s.t. for any
j ≥ J,

sup
|h|<2−j

|f (x0 + h)− P(x0 + h)| ≤ C2−js .

There is one polynomial, independant from the scale.



Introduction Independance of the polynomial from the scale Alternative definitions Wavelets The Hölder exponent
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Two lemmata

Lemma

If M < s(σ−1), the sequence of polynomials occuring in the
definition of Λσ,M(x0) satisfies

‖DβPk − DβPj‖L∞(x0+2−kB) ≤ C2j |β|σj ,

for any multi-index β s.t. |β| ≤ M and k ≥ j ≥ J.

In particular, (DβPj(x0))j is a Cauchy sequence.
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Two lemmata

Lemma

If M < s(σ−1), and (Pj)j is a sequence of polynomials in the
definition of Λσ,M(x0), for any multi-index β s.t. |β| ≤ M, the limit

fβ(x0) = lim
j
DβPj(x0)

is independant of the chosen sequence (Pj)j .

fβ(x0) is the β-th Peano derivative of f at x0.
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There can be only one

Theorem

If M < s(σ−1), then f ∈ Λσ,M(x0) iff there exist C > 0 and a
polynomial P ∈ P[M] s.t.

‖f − P‖L∞(x0+2−jB) ≤ Cσj ,

for j sufficiently large. The polynomial is unique.

One has

P(x) =
∑
|β|≤M

fβ(x0)
(x − x0)β

|β|!
.
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The classical case

For s ∈ (0,∞), let

σj = 2−js

M = [s(σ−1)] = [s] if s 6∈ N
M = s − 1 if s ∈ N

We have
Λs(x0) = Λσ,M(x0).

Corollary

If M < s(σ−1), one has

Λσ,M(x0) ⊂ ΛM(x0).
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Finite differences

Let
BM
h (x0, j) = {x : [x , x + (M + 1)h] ⊂ x0 + 2−jB}.

Proposition

Let f ∈ L∞loc(Rd); one has f ∈ Λσ,M(x0) iff there exist C , J > 0 s.t.

sup
h∈Bj

‖∆M+1
h f ‖L∞(BM

h (x0,j)) ≤ Cσj ,

for any j ≥ J.
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Convolutions

Let ρ a radial function s.t. ρ ∈ C∞c (B), ρ(B) ⊂ [0, 1] and
‖ρ‖1 = 1.

One sets, for any j ∈ N0,

ρj = 2−jdρ(·/2j).

Lemma

Let N ∈ N0; if f ∈ L1
loc(Rd) satisfies

sup
k≥j
‖f ∗ ρk − f ‖L∞(x0+2−jB) ≤ Cσj ,

for j ≥ J, then, for any multi-index β s.t. |β| ≤ N, one has

‖Dβ(f ∗ ρj − f ∗ ρj−1)‖L∞(x0+2−jB) ≤ C2jNσj ,

for any j ≥ J.
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Convolutions

Proposition

If f ∈ Λσ,M(x0), then there exists Φ ∈ C∞c (Rd) s.t.

sup
k≥j
‖f − f ∗ Φk‖L∞(x0+2−jB) ≤ Cσj ,

for j sufficiently large.

Conversely, if σ → 0, f ∈ Λε(Rd) for some ε > 0 and f satisfies the
previous relation for some function Φ ∈ C∞c (Rd), then
f ∈ Λσ,M(x0) for any M s.t. M + 1 > s(σ−1).
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Definitions

Under some general conditions, there exist a function φ and 2d − 1
functions ψ(i) called wavelets s.t.

{φ(· − k) : k ∈ Zd}
⋃
{ψ(i)(2j · −k) : k ∈ Zd , j ∈ N0}

forms an orthogonal basis of L2(Rd).

Any function f ∈ L2(Rd) can be decomposed as follows,

f (x) =
∑
k∈Zd

Ckφ(x − k) +
∑

j≥0,k∈Zd ,1≤i<2d

c
(i)
j ,kψ

(i)(2jx − k),

with

Ck =

∫
f (x)φ(x − k) dx , c

(i)
j ,k = 2dj

∫
f (x)ψ(i)(2jx − k) dx .
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Definitions

We assume

φ, ψ(i) ∈ Cn(Rd) with n > M,

Dβφ, Dβψ(i) (|β| ≤ n) have fast decay,

supp(ψ(i)) ⊂ 2−j0B for some j0.

We set

λ = λ(i , j , k) =
k

2j
+

i

2j+1
+ [0,

1

2j+1
)d

cλ = c
(i)
j ,k

ψλ = ψ(i)(2j · −k).
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Definitions

The wavelet leaders are defined by

dλ = sup
λ′⊂λ
|cλ′ |

If 3λ denotes the 3d dyadic cubes adjacent to λ and λj(x0) the
dyadic cube of length 2−j containing x0, one sets

dj(x0) = sup
λ⊂3λj (x0)

dλ
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The caracterization

Theorem

If f ∈ Λσ,M(x0), then there exists C > 0 s.t.

dj(x0) ≤ Cσj ,

for j sufficiently large.

Conversely, if σ → 0, f ∈ Λε(Rd) for some ε > 0 and f satisfies the
previous relation, then f ∈ Λτ,M(x0), where

τ is the sequence defined by τj = σj | log2 σj |,
M is any number satisfying M + 1 > s(σ−1).
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The usual case

In the usual case, we have

s < t ⇒ Λt(x0) ⊂ Λs(x0).

The Hölder exponent of f at x0 is

hf (x0) = sup{s > 0 : f ∈ Λs(x0)}.
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The usual case

In the usual case, we have

s < t ⇒ Λt(x0) ⊂ Λs(x0).
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Definitions

If, for any s > 0, σ(s) is an admissible sequence, the application

σ(·) : s > 0 7→ σ(s)

is called a family of admissible sequences.

A family of admissible sequences is decreasing for x0 if

s < t ⇒ Λσ
(t),[t](x0) ⊂ Λσ

(s),[s](x0).

Let σ(·) a family of decreasing sequences for x0 and f ∈ L∞loc(Rd);
the Hölder exponent of f at x0 for σ(·) is

hσ
(·)

f (x0) = sup{s > 0 : f ∈ Λσ
(s),[s](x0)}.
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How to check if a family of admissible sequences is decreasing?

Let

Θ
(m)

= sup
k∈N

σ
(m)
k+1

σ
(m)
k

, Θ(m) = inf
k∈N

σ
(m)
k+1

σ
(m)
k

,

Proposition

A family of admissible sequences is decreasing for x0 if it satisfies
the following conditions:

if m ≤ s < t < m + 1 with m ∈ N0, σ
(t)
j ≤ Cσ

(s)
j for j

sufficiently large

for any m ∈ N, at least one of the following conditions is
satisfied: there exists ε0 > 0 s.t. for any ε ∈ (0, ε0),
σ

(m)
j
≤ Cσ

(m−ε)
j

2−jm ≤ Cσ
(m−ε)
j

if 1 < 2mΘ
(m)

: (Θ
(m)

)j ≤ Cσ
(m−ε)
j

if 1 < 2mΘ(m): σ
(m)
j
≤ Cσ

(m−ε)
j

if 1 > 2mΘ
(m)

: 2−jm ≤ Cσ
(m−ε)
j

if 1 > 2mΘ(m): σ
(m)
j

(2mΘ(m))−j ≤ Cσ
(m−ε)
j

if 1 = 2mΘ
(m)

: j2−jm ≤ Cσ
(m−ε)
j

if 1 = 2mΘ(m): jσ
(m)
j
≤ Cσ

(m−ε)
j
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Thank you
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