D. Kreit & S. Nicolay

Fractals and Related Fields III

Porquerolles, September 19-25 2015

The idea

Introduction

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ iff there exists a polynomial of degree at most s s.t.

$$\sup_{|h| \le 2^{-j}} |f(x_0 + h) - P(h)| \le C2^{-js},$$

for *j* sufficiently large.

The idea

Introduction

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ iff there exists a polynomial of degree at most s s.t.

$$\sup_{|h| \le 2^{-j}} |f(x_0 + h) - P(h)| \le C2^{-js},$$

for j sufficiently large.

A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^s(\mathbb{R}^d)$ iff the previous inequality is satisfied for every x_0 with a uniform constant C.

$$\sup_{|h| \le 2^{-j}} |f(x_0 + h) - P(h)| \le C2^{-js},$$

for *i* sufficiently large.

A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^s(\mathbb{R}^d)$ iff the previous inequality is satisfied for every x_0 with a uniform constant C.

One can try to be sharper by replacing the sequence $(2^{-js})_i$ with a more general sequence $\sigma = (\sigma_i)_i$: $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ if there exists a polynomial of degree at most M s.t.

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P(h)|\leq C\sigma_j,$$

for *i* sufficiently large.

Generalized Besov spaces

00000

$$B^s_{p,q}(\mathbb{R}^d)$$
 generalization $B^{1/\sigma}_{p,q}(\mathbb{R}^d)$, where σ is some sequence

000000

$$B^s_{p,q}(\mathbb{R}^d)$$
 \longrightarrow $B^{1/\sigma}_{p,q}(\mathbb{R}^d)$, where σ is some sequence $G^s_{p,q}(\mathbb{R}^d)$ \longrightarrow $G^s_{p,q}(\mathbb{R}^d)$ \longrightarrow $G^s_{p,q}(\mathbb{R}^d)$ \longrightarrow $G^s_{p,q}(\mathbb{R}^d)$ \longrightarrow $G^s_{p,q}(\mathbb{R}^d)$

000000

$$\Lambda^{\sigma}(\mathbb{R}^d) \xrightarrow{\text{pointwise version}} \Lambda^{\sigma}(x_0)$$

Admissible sequence

Introduction

000000

A sequence of real positive numbers is called admissible if

$$\frac{\sigma_{j+1}}{\sigma_j}$$

is bounded.

A sequence of real positive numbers is called admissible if

$$\frac{\sigma_{j+1}}{\sigma_i}$$

is bounded.

For such a sequence, we set

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\inf_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{j}$$

and

$$\overline{s}(\sigma) = \lim_{i} \frac{\log_2(\sup_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{i}.$$

- the open unit ball centered at the origin is denoted B,
- ullet the set of polynomials of degree at most n is denoted ${f P}[n]$,
- $[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted P[n],
- $[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$
- if f is defined on \mathbb{R}^d ,

$$\Delta_h^1 f(x) = f(x+h) - f(x)$$

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted P[n],
- $[s] = \sup\{n \in \mathbb{Z} : n \leq s\}$,
- if f is defined on \mathbb{R}^d ,

$$\Delta_h^1 f(x) = f(x+h) - f(x)$$

and

$$\Delta_h^{n+1}f(x) = \Delta_h^1 \Delta_h^n f(x),$$

for any $x, h \in \mathbb{R}^d$

Definition of the generalized global Hölder spaces

Definition

Introduction

Let s>0 and σ be an admissible sequence; a function $f\in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C>0 s.t.

$$\sup_{|h| \le 2^{-j}} \|\Delta_h^{[M]+1} f\|_{\infty} \le C \sigma_j$$

Definition

Introduction

Let s > 0 and σ be an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\sup_{|h| \le 2^{-j}} \|\Delta_h^{[M]+1} f\|_{\infty} \le C\sigma_j$$

Proposition

Let s>0 and σ be an admissible sequence; a function $f\in L^\infty(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C>0 s.t.

$$\inf_{P\in\mathbf{P}_{[M]}}\|f-P\|_{L^{\infty}(2^{-j}B+x_0)}\leq C\sigma_j,$$

for any $x_0 \in \mathbb{R}^d$ and any $j \in \mathbb{N}$.

The pointwise version

Introduction

000000

Definition

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ iff there exists C > 0 and $J \in \mathbb{N}$ s.t.

$$\inf_{P\in \mathbf{P}[M]} \|f-P\|_{L^{\infty}(2^{-j}B+x_0)} \le C\sigma_j,$$

for any $j \geq J$.

Definition

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ iff there exists C > 0 and $J \in \mathbb{N}$ s.t.

$$\inf_{P\in\mathbf{P}[M]}\|f-P\|_{L^{\infty}(2^{-j}B+x_0)}\leq C\sigma_j,$$

for any $j \geq J$.

Definition

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ iff there exists C > 0 and $J \in \mathbb{N}$ s.t. for any $j \geq J$, there exists $P_j \in \mathbf{P}[M]$ for which

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P_j(x_0+h)|\leq C\sigma_j.$$

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ $(s \in \mathbb{R})$ iff there exists C > 0, a polynomial P of degree less than s and $J \in \mathbb{N}$ s.t. for any $j \geq J$,

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P(x_0+h)|\leq C2^{-js}.$$

A function $f \in L^{\infty}_{\mathrm{loc}}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ $(s \in \mathbb{R})$ iff there exists C > 0, a polynomial P of degree less than s and $J \in \mathbb{N}$ s.t. for any $j \geq J$,

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P(x_0+h)|\leq C2^{-js}.$$

There is one polynomial, independant from the scale.

If $M < \underline{s}(\sigma^{-1})$, the sequence of polynomials occurring in the definition of $\Lambda^{\sigma,M}(x_0)$ satisfies

$$\|D^{\beta}P_k-D^{\beta}P_j\|_{L^{\infty}(x_0+2^{-k}B)}\leq C2^{j|\beta|}\sigma_j,$$

for any multi-index β s.t. $|\beta| \leq M$ and $k \geq j \geq J$.

If $M < \underline{s}(\sigma^{-1})$, the sequence of polynomials occurring in the definition of $\Lambda^{\sigma,M}(x_0)$ satisfies

$$\|D^{\beta}P_k - D^{\beta}P_j\|_{L^{\infty}(x_0 + 2^{-k}B)} \leq C2^{j|\beta|}\sigma_j,$$

for any multi-index β s.t. $|\beta| \leq M$ and $k \geq j \geq J$.

In particular, $(D^{\beta}P_i(x_0))_i$ is a Cauchy sequence.

If $M < \underline{s}(\sigma^{-1})$, and $(P_j)_j$ is a sequence of polynomials in the definition of $\Lambda^{\sigma,M}(x_0)$, for any multi-index β s.t. $|\beta| \leq M$, the limit

$$f_{\beta}(x_0) = \lim_{j} D^{\beta} P_j(x_0)$$

is independent of the chosen sequence $(P_j)_j$.

If $M < \underline{s}(\sigma^{-1})$, and $(P_j)_j$ is a sequence of polynomials in the definition of $\Lambda^{\sigma,M}(x_0)$, for any multi-index β s.t. $|\beta| \leq M$, the limit

$$f_{\beta}(x_0) = \lim_{i} D^{\beta} P_j(x_0)$$

is independent of the chosen sequence $(P_j)_j$.

 $f_{\beta}(x_0)$ is the β -th Peano derivative of f at x_0 .

Theorem

If $M < \underline{s}(\sigma^{-1})$, then $f \in \Lambda^{\sigma,M}(x_0)$ iff there exist C > 0 and a polynomial $P \in \mathbf{P}[M]$ s.t.

$$||f-P||_{L^{\infty}(x_0+2^{-j}B)}\leq C\sigma_j,$$

for j sufficiently large. The polynomial is unique.

Theorem

If $M < \underline{s}(\sigma^{-1})$, then $f \in \Lambda^{\sigma,M}(x_0)$ iff there exist C > 0 and a polynomial $P \in \mathbf{P}[M]$ s.t.

$$||f-P||_{L^{\infty}(x_0+2^{-j}B)} \leq C\sigma_j,$$

for j sufficiently large. The polynomial is unique.

One has

$$P(x) = \sum_{|\beta| < M} f_{\beta}(x_0) \frac{(x - x_0)^{\beta}}{|\beta|!}.$$

The classical case

For $s \in (0, \infty)$, let

•
$$\sigma_i = 2^{-js}$$

•
$$M = [\underline{s}(\sigma^{-1})] = [s]$$
 if $s \notin \mathbb{N}$

•
$$M = s - 1$$
 if $s \in \mathbb{N}$

The classical case

Introduction

For $s \in (0, \infty)$, let

•
$$\sigma_i = 2^{-js}$$

•
$$M = [\underline{s}(\sigma^{-1})] = [s]$$
 if $s \notin \mathbb{N}$

•
$$M = s - 1$$
 if $s \in \mathbb{N}$

We have

$$\Lambda^{s}(x_0)=\Lambda^{\sigma,M}(x_0).$$

The classical case

Introduction

For $s \in (0, \infty)$, let

- $\sigma_i = 2^{-js}$
- $M = [\underline{s}(\sigma^{-1})] = [s]$ if $s \notin \mathbb{N}$
- M = s 1 if $s \in \mathbb{N}$

We have

$$\Lambda^{s}(x_0) = \Lambda^{\sigma,M}(x_0).$$

Corollary

If $M < \underline{s}(\sigma^{-1})$, one has

$$\Lambda^{\sigma,M}(x_0)\subset\Lambda^M(x_0).$$

Finite differences

Let

$$B_h^M(x_0,j) = \{x : [x,x+(M+1)h] \subset x_0 + 2^{-j}B\}.$$

Let

$$B_h^M(x_0,j) = \{x : [x,x+(M+1)h] \subset x_0 + 2^{-j}B\}.$$

Proposition

Let $f \in L^{\infty}_{loc}(\mathbb{R}^d)$; one has $f \in \Lambda^{\sigma,M}(x_0)$ iff there exist C, J > 0 s.t.

$$\sup_{h\in B_j} \|\Delta_h^{M+1} f\|_{L^{\infty}(B_h^M(x_0,j))} \le C\sigma_j,$$

for any $j \geq J$.

Convolutions

Let ρ a radial function s.t. $\rho \in C_c^{\infty}(B)$, $\rho(B) \subset [0,1]$ and $\|\rho\|_1 = 1$.

Let ρ a radial function s.t. $\rho \in C_c^{\infty}(B)$, $\rho(B) \subset [0,1]$ and $\|\rho\|_1 = 1$.

One sets, for any $j \in \mathbb{N}_0$,

$$\rho_j = 2^{-jd} \rho(\cdot/2^j).$$

Let ρ a radial function s.t. $\rho \in C_c^{\infty}(B)$, $\rho(B) \subset [0,1]$ and $\|\rho\|_1 = 1$.

One sets, for any $j \in \mathbb{N}_0$,

$$\rho_j = 2^{-jd} \rho(\cdot/2^j).$$

Lemma

Let $N \in \mathbb{N}_0$; if $f \in L^1_{loc}(\mathbb{R}^d)$ satisfies

$$\sup_{k\geq i}\|f*\rho_k-f\|_{L^\infty(x_0+2^{-j}B)}\leq C\sigma_j,$$

for $j \geq J$, then, for any multi-index β s.t. $|\beta| \leq N$, one has

$$||D^{\beta}(f * \rho_j - f * \rho_{j-1})||_{L^{\infty}(x_0 + 2^{-j}B)} \le C2^{jN}\sigma_j,$$

for any i > J.

Proposition

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists $\Phi \in C_c^{\infty}(\mathbb{R}^d)$ s.t.

$$\sup_{k\geq j} \|f-f*\Phi_k\|_{L^{\infty}(x_0+2^{-j}B)} \leq C\sigma_j,$$

for j sufficiently large.

Proposition

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists $\Phi \in C_c^{\infty}(\mathbb{R}^d)$ s.t.

$$\sup_{k\geq j} \|f-f*\Phi_k\|_{L^{\infty}(x_0+2^{-j}B)} \leq C\sigma_j,$$

for j sufficiently large.

Conversely, if $\sigma \to 0$, $f \in \Lambda^{\epsilon}(\mathbb{R}^d)$ for some $\epsilon > 0$ and f satisfies the previous relation for some function $\Phi \in C_c^{\infty}(\mathbb{R}^d)$, then $f \in \Lambda^{\sigma,M}(x_0)$ for any M s.t. $M+1 > \overline{s}(\sigma^{-1})$.

Definitions

Introduction

Under some general conditions, there exist a function ϕ and 2^d-1 functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$.

Introduction

Under some general conditions, there exist a function ϕ and 2^d-1 functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$.

Any function $f \in L^2(\mathbb{R}^d)$ can be decomposed as follows,

$$f(x) = \sum_{k \in \mathbb{Z}^d} C_k \phi(x-k) + \sum_{j \ge 0, k \in \mathbb{Z}^d, 1 \le i < 2^d} c_{j,k}^{(i)} \psi^{(i)}(2^j x - k),$$

with

$$C_k = \int f(x)\phi(x-k) dx, \quad c_{j,k}^{(i)} = 2^{dj} \int f(x)\psi^{(i)}(2^jx-k) dx.$$

Definitions

We assume

- $\phi, \psi^{(i)} \in C^n(\mathbb{R}^d)$ with n > M,
- $D^{\beta}\phi$, $D^{\beta}\psi^{(i)}$ $(|\beta| \leq n)$ have fast decay,
- $\operatorname{supp}(\psi^{(i)}) \subset 2^{-j_0}B$ for some j_0 .

Introduction

We assume

- $\phi, \psi^{(i)} \in C^n(\mathbb{R}^d)$ with n > M,
- $D^{\beta}\phi$, $D^{\beta}\psi^{(i)}$ $(|\beta| \leq n)$ have fast decay,
- $\operatorname{supp}(\psi^{(i)}) \subset 2^{-j_0}B$ for some j_0 .

We set

•
$$\lambda = \lambda(i,j,k) = \frac{k}{2^j} + \frac{i}{2^{j+1}} + [0,\frac{1}{2^{j+1}})^d$$

•
$$c_{\lambda} = c_{j,k}^{(i)}$$

$$\bullet \ \psi_{\lambda} = \psi^{(i)}(2^{j} \cdot -k).$$

The wavelet leaders are defined by

Definitions

$$d_{\lambda} = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$$

Definitions

$$d_{\lambda} = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$$

If 3λ denotes the 3^d dyadic cubes adjacent to λ and $\lambda_i(x_0)$ the dyadic cube of length 2^{-j} containing x_0 , one sets

$$d_j(x_0) = \sup_{\lambda \subset 3\lambda_j(x_0)} d_\lambda$$

j

Definitions

Theorem

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists C > 0 s.t.

$$d_j(x_0) \leq C\sigma_j,$$

for j sufficiently large.

Introduction

Theorem

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists C > 0 s.t.

$$d_j(x_0) \leq C\sigma_j$$
,

for j sufficiently large.

Conversely, if $\sigma \to 0$, $f \in \Lambda^{\epsilon}(\mathbb{R}^d)$ for some $\epsilon > 0$ and f satisfies the previous relation, then $f \in \Lambda^{\tau,M}(x_0)$, where

- τ is the sequence defined by $\tau_j = \sigma_j |\log_2 \sigma_j|$,
- M is any number satisfying $M+1>\overline{s}(\sigma^{-1})$.

The usual case

In the usual case, we have

$$s < t \Rightarrow \Lambda^t(x_0) \subset \Lambda^s(x_0).$$

In the usual case, we have

$$s < t \Rightarrow \Lambda^t(x_0) \subset \Lambda^s(x_0)$$
.

The Hölder exponent of f at x_0 is

$$h_f(x_0)=\sup\{s>0: f\in\Lambda^s(x_0)\}.$$

Definitions

If, for any s > 0, $\sigma^{(s)}$ is an admissible sequence, the application

$$\sigma^{(\cdot)}: s > 0 \mapsto \sigma^{(s)}$$

is called a family of admissible sequences.

If, for any s>0, $\sigma^{(s)}$ is an admissible sequence, the application

$$\sigma^{(\cdot)}: s > 0 \mapsto \sigma^{(s)}$$

is called a family of admissible sequences.

A family of admissible sequences is decreasing for x_0 if

$$s < t \Rightarrow \Lambda^{\sigma^{(t)},[t]}(x_0) \subset \Lambda^{\sigma^{(s)},[s]}(x_0).$$

If, for any s>0, $\sigma^{(s)}$ is an admissible sequence, the application

$$\sigma^{(\cdot)}: s > 0 \mapsto \sigma^{(s)}$$

is called a family of admissible sequences.

A family of admissible sequences is decreasing for x_0 if

$$s < t \Rightarrow \Lambda^{\sigma^{(t)},[t]}(x_0) \subset \Lambda^{\sigma^{(s)},[s]}(x_0).$$

Let $\sigma^{(\cdot)}$ a family of decreasing sequences for x_0 and $f \in L^{\infty}_{loc}(\mathbb{R}^d)$; the Hölder exponent of f at x_0 for $\sigma^{(\cdot)}$ is

$$h_f^{\sigma^{(\cdot)}}(x_0) = \sup\{s > 0 : f \in \Lambda^{\sigma^{(s)},[s]}(x_0)\}.$$

How to check if a family of admissible sequences is decreasing?

Let

$$\overline{\Theta}^{(m)} = \sup_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}}, \quad \underline{\Theta}^{(m)} = \inf_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}},$$

How to check if a family of admissible sequences is decreasing?

Let

Introduction

$$\overline{\Theta}^{(m)} = \sup_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}}, \quad \underline{\Theta}^{(m)} = \inf_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}},$$

Proposition

A family of admissible sequences is decreasing for x_0 if it satisfies the following conditions:

• if $m \le s < t < m+1$ with $m \in \mathbb{N}_0$, $\sigma_j^{(t)} \le C \sigma_j^{(s)}$ for j sufficiently large

How to check if a family of admissible sequences is decreasing?

Let

Introduction

$$\overline{\Theta}^{(m)} = \sup_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}}, \quad \underline{\Theta}^{(m)} = \inf_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}},$$

Proposition

A family of admissible sequences is decreasing for x_0 if it satisfies the following conditions:

- if $m \le s < t < m+1$ with $m \in \mathbb{N}_0$, $\sigma_i^{(t)} \le C \sigma_i^{(s)}$ for jsufficiently large
- for any $m \in \mathbb{N}$, at least one of the following conditions is satisfied: there exists $\epsilon_0 > 0$ s.t. for any $\epsilon \in (0, \epsilon_0)$,

$$\begin{split} \sigma_j^{(m)} &\leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 < 2^m \overline{\Theta}^{(m)} \colon (\overline{\Theta}^{(m)})^j \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 > 2^m \overline{\Theta}^{(m)} \colon 2^{-jm} \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 > 2^m \overline{\Theta}^{(m)} \colon 2^{-jm} \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 = 2^m \overline{\Theta}^{(m)} \colon j^{2-jm} \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 = 2^m \underline{\Theta}^{(m)} \colon j^{(m)} \in C\sigma_j^{(m)} \\ \end{split} \qquad \begin{aligned} &2^{-jm} \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 < 2^m \underline{\Theta}^{(m)} \colon \sigma_j^{(m)} (2^m \underline{\Theta}^{(m)})^{-j} \leq C\sigma_j^{(m-\epsilon)} \\ &\text{if } 1 = 2^m \underline{\Theta}^{(m)} \colon j\sigma_j^{(m)} \leq C\sigma_j^{(m-\epsilon)} \end{aligned}$$

Thank you