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It has been shown by Heller that a nonstationary wave packet resulting from a Franck­
Condon transition evolves on the potential energy surface of the final electronic state and 
propagates through phase space at a rate which can be determined from the autocorrelation 
function 1 C(t) 12 = 1 (0(0) 10(t» 12. Since C(t) can be obtained by Fourier transformation of 
an optical spectrum SeE), i.e., from an observable quantity, it is possible to derive from an 
experimental measurement information concerning the density operator of a so-called 
dynamical statistical ensemble (DSE). This density operator, denotedpaV, represents a 
statistical mixture of the eigenstates of the system with weights determined by the dynamics of 
the system. It becomes diagonal after a so-called break time Y B • Its measure, according to a 
definition due to Stechel, can be interpreted as an effective number of states (denotedo/fj that 
significantly contribute to the dynamics. The break time Y B represents the finite period of 
time allowed to expand in the phase space and after which no further progress can be made. 
Therefore, the number ./Y", of phase space cells which are accessed after a very long interval of 
time (or in practice after the break time) remains limited. Information on the validity of 
statistical theories ofunimolecular reactions is contained in the fraction Y of the available 
phase space which is eventually explored. In order to assess the representativity of the 
sampling, it is necessary to account for the selection rule which requires all the states counted 
inf", to belong to the totally symmetric representation. It is also appropriate to estimate the 
role played by Fermi resonances and similar vibrational interactions which bring about energy 
flow into zero-order antisymmetric modes. A method to carry out the necessary partitionings 
is suggested. The functionso~T and $fT' and the quantitiesYB'o~Y", ,o/Y·, and Yhave been 
determined from experimental data in three cases. In each case, the rate $f T = d/YTI dT 
starts from an initial value of zero, increases up to a maximum which is reached after a time of 
the order of 10 - 14 s, and then exhibits an overall decrease upon which oscillations are 
superimposed. For state X 2 B I of H2 0 + 'YB "'" 2.4 X 10 - 14 sand Y "'" 0.3. The wave packet 
never accesses that part of the phase space that corresponds to the excitation of antisymmetric 
vibrations. For state X 2 B3u of C2 H4+ , Y B "'" 1.6 X 10 - 13 sand y"", 5 X 10 - 4. This fraction 
raises to 6 X 10- 3 if measured with respect to the effectively available phase space. When the 
spectrum consists of a discrete part followed by a dissociation continuum, the method can be 
extended to study the behavior of the bound part of the wave packet only. This has been 
applied to state]j 2,l; + of HCN + which is characterized by a very irregular spectrum. This 
case offers an example of complete occupation of phase space after a break time which is of the 
order of2X 10- 13 s. 

I. INTRODUCTION poses. In spite of the fundamental importance of the 
question, most of the kineticists usually dismiss the problem, 
simply by assuming that vibrational relaxation is due to un­
specified anharmonic couplings among the zero-order nor­
mal modes. Recently, however, techniques of nonlinear me­
chanics applied to classical trajectory calculations have 
significantly contributed to understanding the mechanism of 
the relaxation. 6-10 

The process commonly referred to as intramolecular vi­
brational energy relaxation is of crucial importance in chem­
ical kinetics. Whether or not this relaxation is faster than 
chemical reaction determines the validity of the RRKM the­
ory of unimolecular reactions. I

-
5 In the present paper, we 

concentrate on the purely intramolecular process taking 
place in an isolated molecule initially excited by photon or 
electron impact under collision-free conditions.2 The chemi­
cal activation experiments carried out by Rabinovitch, Kis­
tiakovsky, and othersl

,3 are therefore irrelevant for our pur-

a) To whom correspondence should be addressed. 
b) Permanent address: Chemistry Department, Moscow State University, 

Moscow 119899. USSR. 

Experimentally, valuable information on the unimole­
cular decomposition of ionized molecules has come, first 
from photoion-photoelectron coincidence spectroscopy 
(PIPECO experiments), 11,12 then from multi photon ioniza­
tion.13 This technique has shown that, at least in a vast ma­
jority of cases, there is no correlation between the yield of 
fragmentation and the vibronic structure of the molecular 
ion. In other words, this implies that the rate constants are 
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function of the internal energy alone, i.e., that a statistical 
(microcanonical) approach is applicable. 

Detailed spectroscopic studies have also been very fruit­
ful. Laser excitation of molecular beams l 4-18 is a field of 
active research. Statistical analysis of the distribution oflevel 
spacings, linewidths and intensities is also very promis­
ing,19-24 but requires high-quality experimental data and 
preliminary classification of spectral lines according to the 
symmetry species. 

In the present paper, we wish to carry out an analysis 
based on the autocorrelation function as an input data, i.e., 
an information which is much less sensitive to experimental 
uncertainties resulting, e.g., from finite energy resolution. It 
is based on a contribution of fundamental importance due to 
Heller and co-workers,2s-31 which offers a possibility of ex­
tracting the required information from experimental elec­
tronic spectra. A Franck-Condon transition leads to a non­
stationary wave packet which evolves on the potential 
energy surface of the upper electronic state (Fig. 1). During 
this evolution, the wave packet undergoes flattening and dis­
tortion because of anharmonicity. It may even split up if 
anharmonicity is strong enough, e.g., because of the pres­
ence of a low energy dissociation asymptote. All of this has 
its counterpart in the phase and quantum Hilbert spaces and 
may be described as intramolecular vibrational relaxation. 
The procedure which will be investigated here is carried out 
in two sequential steps, viz., (A) transforming the spectrum 
into a so-called autocorrelation function C(t); and (B) ex­
tracting the desired information from C( t). Let us be more 
specific. 

(A) First, the experimental spectrum Sexp (E) is con­
verted by a Fourier transformation into an experimental cor­
relation function C exp (t) : 

v 

~~~----------------Q 

FIG. 1. A Franck-Condon transition leads to a wave packet Q) which prop­
agates on the potential energy surface of the upper electronic state. Top: 
cross section in a multidimensional surface. Bottom: two-dimensional rep­
resentation in terms of a set of contours. Heavy line: initial position of the 
wave packet. Broken: displaced position at time t. 

C exp (t) = f-+ 0000 Sexp (E)e - iEt/lidE I f-+ 0000 Sexp (E)dE. 

(1.1 ) 

To proceed further, one first assumes the validity ofthe 
Condon approximation, i.e., the transition moment is split 
into two parts: electronic and vibrational. This excludes 
strong vibronic coupling due to Jahn-Teller or Renner-Tell­
er interactions, but does not exclude consideration of an elec­
tronically predissociated state. 32 Secondly, the rotational 
part of the correlation function is factorized away, in order 
to reduce the nuclear motion to a pure vibration. In addition, 
the correlation function has to be corrected for finite energy 
resolution and spin-orbit coupling effects. The appropriate 
procedures have been described in previous papers.33-37 As a 
result, the experimental function C exp (t) is transformed into 
a purely vibrational correlation function C(t) which repre­
sents the time-dependent overlap integral between two vi­
brational wave functions: 

J
+ 00 

C(t) = (0(0) 10(t» = _ 00 S(E)e- iEt/lidE, ( 1.2) 

where 0(0) is the vibrational wave function of the initial 
state from which the Franck-Condon transition takes place, 
i.e., the vibrational ground state of the initial electronic state, 
and 0( t) is the wave packet at time t as it moves away from 
its initial position 0(0) on the potential energy surface of the 
final state. 

There is a complete equivalence between the informa­
tion contained in the corrected correlation function C(t) 
and that contained in a new spectral function S(E). The 
latter is a highly idealized concept since it corresponds to a 
well-resolved rotationless and spin-free spectrum. Unfortu­
nately, the necessary corrections are approximate only, so 
that the quality of the function C(t) which can be obtained 
in practice decreases with time. Usually, it can be deter­
mined only up to a time which is of the order of 100 or 200 fs 
at most. Thus, the method allows us to study the short-time 
dynamics only. 

In general, the modulus of the correlation function 
I C( t) I exhibits peaks that indicate when a substantial frac­
tion of the wave packet revisits the original Franck-Condon 
region. For all practical purposes, the travelling wave packet 
can be imagined as a swarm of classical trajectories on a 
given potential energy surface. Numerous papers have ap­
peared that study this motion on model potential energy sur­
faces,25 or on potentials fitted to real-life molecules.31,38-41 
Methods to derive information on the characteristics of po­
tential energy curves or surfaces,34-37.42 or on molecular pro­
cesses such as Fermi resonance and Duschinsky rotation,43 
or on unimolecular dissociation rate constants44 have been 
given, but this approach is not pursued in the present paper. 

( B) Once the correlation function has been obtained, 
the next step consists in relating the theoretical function 
I C(t) 12 to a distribution in phase space. One has from Eq. 
( 1.2): 

I C(t) 12 = L L (iI0(O» (0(0) li> (j10(t» (0(t) Ii) 
; j 

= Tr[p(O)p(t)], (1.3) 
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where 

p(O) = 10(0» (0(0) 1 

and 

p(t) = 10(t) )(0(t) 1 (1.4) 

are the density operators corresponding to the pure states 
10(0» and 10(t» defined in Eq. (1.2). 

Following the lines recently proposed by the Heller 
group,26-30 one can then use the I C( t) 12 function to obtain 
information on the phase-space distribution, on the rate fit 
at which the wave packet sweeps out the phase space, on the 
effective number J1/ of the phase-space cells occupied by the 
vibrational motion and, finally, on the degree of ergodicity of 
a dynamical process. 

The paper is organized as follows. In Secs. II-V, we try 
to define more accurately the basic concepts and methods 
developed mainly by Heller et al., and introduce among oth­
er things the concept of a dynamical statistical ensemble. 
Application to real systems is presented in Secs. VI-IX. The 
paper concludes with a discussion of the results and some 
general conclusions. 

We have chosen to apply the method to three molecular 
ions for which autocorrelation functions derived from pho­
toelectron spectra are available. 33,35,37,45 From an experi­
mental point of view, reaction dynamics is in some respects 
more easily studied in beams of charged particles than in 
neutral systems. Our goal is to establish a link between the 
ultrashort time scale which can be studied by the present 
technique and the dissociations that take place on the time 
scale of ion extraction for which a wealth of experimental 
information exists 11-13,46 in order to obtain a unified view on 
intramolecular processes. 

II. A MEASURE OF QUANTUM ERGODICITY 

Let us consider a system in a pure but nonstationary 
quantum state: 

0(t) = L ak (t) Ik), 
k 

(2.1) 

where 1 k ) are the eigenfunctions of the Hamiltonian H of the 
system. For simplicity, we restrict ourselves in this section to 
the nonstationary states built from bound state eigenfunc­
tions only. First, we introduce some quantitative measure to 
characterize the dynamical process. A very natural way to 
do this has been proposed by Stechel and Heller. 27

-
3o We 

reformulate their theory in order to clarify the physical 
meaning of the quantities J1/ and fit introduced by these 
authors to describe the phase space flow due to the evolution 
of a nonstationary pure state. 

With every system described by the density operator p, 
Stechel and Heller associate a positive number f-l defined by 

f-l - 1 = Tr(p2). (2.2) 

To clarify the physical meaning of f-l, we note at first that for 
a pure state [Eq. (1.4)] the measure f-l is equal to 1 at any 
time, making it thus irrelevant for dynamical problems. 
Therefore, to characterize the time evolution of a nonsta­
tionary pure state, we consider the following density opera­
tor: 

(2.3) 

It is important to realize that pay is no longer the density 
operator of a pure state, but that of a statistical ensemble. Its 
physical meaning will now be analyzed from two different 
points of view. 

From Eqs. (2.1) and (2.3), one gets the following 
expression for pay : 

pay = Lh Ik )(k 1- (i/n 
k 

XL aka: [(/"'nkT -l)/wnd Ik)(nl, (2.4) 
k #n 

where 

Wnk = (En - Ek )/-li (2.5) 

and 

(2.6) 

In a spectroscopic experiment, the latter quantities are 
the usual Franck-Condon factors. (Obviously, ~kh = 1.) 

The quantum measure of this ensemble is given by 

f-l- I = LPi + (4/T2) 
k 

x L PkPn [(1 - cos Wnk n/W~k]' (2.7) 
k> n 

The operator pay has a clear physical meaning in the 
long-time limit, Le., when 

T>TB = max (8Pnh/w~,k)1/2. (2.8) 
n,k 

When T is large enough (T> TB), pay becomes diag­
onal. It describes a statistical mixture of the eigenstates of H 
with weights given by the Franck-Condon factors. In the 
long-time limit, f-l simplifies to 

-I ~ 2 
f-l =£..h· 

k 

(2.9) 

As explained by Stechel,28 there is a difference between 
the measures defined by Eqs. (2.2) and (2.9) which has been 
disregarded here for simplicity. Thus, the measure f-l in­
creases from an initial value of 1 (pure case) to a final value 
given by Eq. (2.9). It also follows from the same equation 
that in the long-time limit, f-l can be interpreted as an effec­
tive number of states significantly contributing to the dy­
namics.26-30,47 The simplest way to see this is to consider the 
particular case where the system can be found with equal 
probabilities in N different eigenstates of H. Equation (2.9) 
then simply givesf-l = N. In the case of unequal probabilities, 
f-l varies between 1 and N. It adopts a value of 1 when the 
dynamics is dominated by a single state and reaches a maxi­
mum value of N when all the states participate on an equal 
footing in the dynamics. 

To get further insight into the physical meaning of pav, 
let us study the time evolution of the system in the usual 
quantum Hilbert space. At a given time, the dynamical state 
of the system is represented by a state vector in an N-dimen­
sional complex or 2N-dimensional real linear space parame-
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trized by the coefficients ak defined in Eq. (2.1). The nor­
malization condition constrains the vector to sweep a 
(2N - 1) -dimensional sphere in the 2N-dimensional real 
space. Furthermore. the set of points {ei<Pa l .e

i<Pa2 ••••• ei<Pa N} 

with (O<;;lP < 217") is understood to define a single state. In 
this way. one arrives at the so-called complex projective 
sphere. as a manifold whose points are in one-to-one corre­
spondence with quantum states. 

Coming back to the physical meaning of pav, we parti­
tion the obtained manifold into small cells of equal measure 
and rewrite Eq. (2.3) as 

M 

pay = lim L p().~t) (~t In 
AI-O A =0 

(2.10) 

with T= M~t. At every moment ).~t. the representative 
point of the system is located in one of the cells. Gathering 
together all the terms corresponding to the same cell a. one 
can write 

(2.11 ) 
a 

with 

(2.12) 
a 

and 

p(a)=L(aka~>alk)(II. (2.13) 
k,l 

The symbol (aka;> a denotes an average within the cell 
a. In Eqs. (2.11) and (2.12). the summation runs over all 
the cells visited during the evolution. 

Hence. pay is again seen to be a density operator of a 
statistical ensemble in which the weights of the different 
states are determined by the dynamics of the system. The 
weights will be greater for those cells in which the system 
spends more time on the average. One also sees that the cells 
that are not revisited by the system frequently enough can­
not contribute to pay in the long-time limit. 

In the remainder of this paper. we refer to this ensemble 
as the dynamical statistical ensemble (DSE). 

III. PHASE-SPACE FLOW 

In studies on quantum ergodicity it is very instructive to 
use the Wigner formulation of quantum mechanics. accord­
ing to which the time evolution of the quantum system can 
be viewed as a phase-space flow associated with a phase­
space distributionp(p,q,t) given by 

p(p,q,t) = (17"h) -If_+","o e2i
P"'lfi 0·(q + s.t)0(q - s.t)ds. 

(3.1 ) 

where f is the number of degrees of freedom of the system. 
Following Stechel and Heller.27-3o we can now define a 
phase-space counterpart of the quantum measure /-L by 

JV- 1 = h I Tr[p2(p.q)] 

= hi f f dp dqp2(p.q). (3.2) 

Since for a system with f degrees of freedom the function 

Tr[p2(p.q)] has the dimension of (action) -I, i.e .• the di­
mension of an inverse volume in phase space. JV can be 
interpreted as an effective number of elementary phase­
space cells of volume hi occupied by p(P.q). Taking into 
account the fact that every pure quantum state occupies one 
elementary phase-space cell. we see that /-L and JV have es­
sentially the same physical meaning. i.e .• 

/-L=JV (3.3) 

(a much more elaborate discussion has been given by Ste­
chel28 ). 

In order to study the time evolution of the system ac­
cording to the discussion of the previous section. we intro­
duce the DSE characterized by an averaged distribution 

paY(P.q,n = (lin iT p(p.q.t)dt (3.4) 

and its measure 

(3.5) 

where JV T represents the effective number of phase-space 
cells occupied by paY(P.q.n. 

JV T is related in a simple fashion to the correlation 
function C(t) and can thus be easily obtained from the ex­
perimental spectra. 

Substituting Eqs. (3.4) and (1.3) into Eq. (3.5), one 
arrives aeo 

JVi 1 = (Un iT dt( 1 - tin I C(t) 12. (3.6) 

This equation plays a fundamental role in what follows. 
At very short times, one deals with a pure case: 

limJVT=l. (3.7) 
T-O 

Since we want to use JV T to characterize an intramole­
cular relaxation. consideration of its asymptotic value is of 
prime importance. The quantum measure in the long-time 
limit can be readily obtained from Eqs. (2.9) and (3.3): 

,1/'-1 ~ 2 
Jr '" = 4.. Pk ' 

k 

(3.8) 

It can also be calculated with the help of the correlation 
function 

(JV '" ) -I = lim (Un ( 1 - tin I C(t) 12dt 
T_", Jo (3.9) 

(3.10) 

Equations (3.8)-(3.10) provide three different ways to 
calculate JV '" which. in principle. are equivalent. A fourth 
one will be presented in the next section. For a numerical 
study of experimental data. they provide interesting checks. 
The spectra may be poorly resolved, so that a determination 
of individual Franck-Condon factors may be very difficult. 
This is especially the case at high energies close to the disso­
ciation limit where information concerning the validity of 
statistical theories of unimolecular reactions is seeked. The 
use ofEq. (3.9) enables one to bypass the measurement of 
Franck-Condon factors. However. the quality of experi-
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mentally available correlation functions decreases with time, 
so that the limits may have to be obtained by extrapolation. 
In practice, Eq. (3.10) is found not to be very useful for an 
extrapolation, and a more practical procedure to do this will 
be suggested in the next section. 

Following Heller,30 we now introduce the quantity :!Ii T: 

:!Ii T = dJf/" TI dT 

= (1/2) iT (1 - 2t IT) I CU) 12dt I 

[iT (1-tlT)ICU)1 2dt r (3.11) 

From the discussion given in Sec. II, it follows that :!Ii T 

represents the rate of growth of the phase space volume oc­
cupied by the DSE, i.e., the volume regularly revisited by the 
wave packet during its evolution. The present interpretation 
of :!Ii T is thought to represent more adequately its physical 
meaning than that proposed in Ref. 30 in terms of a rate of 
phase-space exploration. 

At very short times, the rate increases linearly with time 
and 

lim :!Ii T = 0. 
T-O 

In the long-time limit 

lim:!li T = [2 ( I CU) 12dt] - 1 

T- 00 Jo 

(3.12) 

(3.13 ) 

A more detailed discussion of the properties of:!li T has been 
given in Ref. 30. 

IV. THE RELAXATION TIME 

Of prime importance in chemical kinetics is the lapse of 
time which characterizes the relaxation from the initially 
prepared distribution. A very useful concept has been intro­
duced by Heller. 30 After a so-called break time :TB , the 
effective number of cells occupied by the DSE is thought to 
have reached its asymptotic value./V '" . In other words, the 
DSE cannot significantly increase its phase space volume 
after the break time, which is given by 

:TB=.hl{j, (4.1) 

where {j is the smallest energy gap between two optically 
active vibrational levels (i.e., having nonzero Franck-Con­
don factors in the optical spectrum). This concept turns out 
to be extremely useful, but requires some clarification. 

( I) First of all, we have to specify the meaning of a 
relaxation time in a nondissipative system. Strictly speaking, 
an isolated mechanical system cannot relax.49 The answer is 
that this concept really applies to the relaxation of the DSE 
introduced in Sec. II to its equilibrium state described by the 
long-time limit density operator 

(4.2) 

This relaxation leads to an increase of the quantum measure 
./V T from I (at time T = 0) to its maximum value ./V 00 

given by Eqs. (3.S)-(3.1O). 
Equation (2.7) shows that the relaxation is caused by 

the multiplicative factor T - 2 in front of the sum. The de­
phasing of the different cosine terms in this sum is of minor 
importance because all of these terms are positive. At this 
point, it should be stressed once more that the relaxation in 
question should be understood as the relaxation of the corre­
sponding DSE. Therefore, it will occur even in a two-level 
system. 

(2) The break time:T B defined in Eq. (4.1) is a charac­
teristic time scale of the relaxation process. It can be under­
stood as a time at which condition (2.S) is approximately 
fulfilled. To see this, we note that one has PnPk ..;;0.25. The 
equality obtains when only two levels are initially populated 
with equal intensities (i.e.,Pk = Pn = 0.5). Substituting this 
into Eq. (2.8) leads to 

TB < Jilmin (tJkn = h hrJi{j=.0.225:TB. (4.3) 
k.n 

(3) Since./V T tends to ./V 00 as T ..... 00 asymptotically 
only, we have to introduce an arbitrary parameter {3 in our 
definition of the characteristic relaxation time to obtain a 
finite value ({3 < 1 ). The relaxation kinetics is then charac­
terized by the time :T {3 necessary for ./V T to reach the value 
{3./V 00 : 

./VTp = f3./V 00' 

A concrete value of {3 is not of crucial importance, be­
cause it is the order of magnitude of the relaxation time 
which matters. We note, however, that there exist special 
cases where the choice of {3 can make a difference. This will 
be the case, e.g., for a system whose spectrum consists of 
groups of quasi-degenerate levels which are well separated 
from one another. In this case relaxation is characterized by 
two very different time scales, with fast intergroup and slow 
intragroup relaxation. The function ./V T has now two re­
gimes and one has to decide beforehand whether or not the 
slow intragroup relaxation is important for the process in 
question. 

(4) From Eqs. (2.7), (2.9), (3.3), and (3.8), one can 
estimate an upper bound for the difference between ./ViI 
and its asymptotic limit ./V:;; 1. 

I./Vi 1 -./V: 11 ";;(SIT 2
) L PkPnl(tJ~k (4.4) 

k> n 

Although the right-hand side of Eq. (4.4) depends both on 
the energy spectrum (frequencies) and on the initial prep­
aration (Franck-Condon factors), it follows from the dis­
cussion in paragraphs (2) and (3) that, unless there exists a 
gross disparity between the distribution of the frequencies 
and that of the Franck-Condon factors, it reaches a negligi­
ble value at time :T B' It has to be noted that :T B also de­
pends on the initial preparation, but somewhat indirectly, 
i.e., through the not very explicit requirement that {j be the 
minimum energy gap between two adjacent levels both hav­
ing nonzero Franck-Condon factors. Thus, the existence of 
closely packed levels can significantly delay the relaxation 
only if these levels are significantly populated by the excita­
tion process . 

(5) The previous ideas can be used to derive an extrapo­
lation formula for ./V T' This is very useful, since in practice 
the quality of the experimental data may not be sufficient to 
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calculate the function ff T up to the break time. Consider a 
bound state with a spectrum represented by the function 

SeE) = LP;D(E - E;). (4.5) 
; 

Substituting into Eq. (1.2), one gets 

1 C(t) 12 = LD;pj cos [ (E; - Ej)t Iii]. (4.6) 
; j 

Elementary algebra shows that the following approximate 
relationship exists between the function ffi 1 and its first 
derivative evaluated at half of the break time: 

ff;;;1 = Lp~=(ffo.s:/-B)-I 
; 

+O.25YB(~ffil) (4.7) 
dt 0.5.:T B 

The validity of this approximate formula will later on be 
checked on actual systems. 

In summary, the simple formula (4.1) can be used in 
many cases instead of the more accurate condition (2.8). 
Moreover, it gives rise to the useful extrapolation formula 
(4.7). 

v. THE FRACTION OF THE PHASE SPACE OCCUPIED 
BYTHEDSE 

In order to get some deeper insight into the dynamics of 
the DSE introduced in Sec. II, it is instructive to consider the 
fraction Y of the phase space occupied by the DSE in the 
long-time limit: 

Y=ff",lff·, (5.1) 

where ff· denotes the number of the phase-space cells that 
are a priori available for a given dynamical process. Its value 
depends on our 0 priori knowledge about the system in ques­
tion. This quantity, introduced by Stechel and Heller,27-30.47 
is very useful in studies concerning the validity of the usual 
statistical theories, such as RRKM, for which the only re­
striction taken into account concerns the internal energy of 
the system. In this case, ff· is equal to the number of all 
energetically available phase-space cells. However, we im­
prove our understanding of the dynamics of the DSE when 
we incorporate additional 0 priori information and investi­
gate its effects onff * and Y. For example, if the additional 
o priori information results in Y = 1, then it seems reasona­
ble to conclude that the dynamics is ergodic within the exist­
ing constraints. This also implies that our knowledge about 
the system is virtually complete and cannot be essentially 
improved. As shown by Levine et 01.,47.48 Y measures the 
completeness of our 0 priori information. 

Information concerning the excitation process can be 
incorporated in the form of a spectral envelope.26-3Q,47 This 
is done in Sec. V A. The quantum nature of the dynamics 
also imposes some additional restrictions on the value of 
ff •. It turns out that the number of the phase-space cells 
occupied by the DSE in the long-time limit under fully chao­
tic conditions never exceeds 1/3 of the total number of ener­
getically available phase-space cells.27-3Q,47 It is natural to 
accept this as an 0 priori information, as shown in Sec. V B. 

In studies of intramolecular processes initiated by a coherent 
excitation, it is also natural to take into account an a priori 
information about the symmetry properties which lead to 
selection rules.29.30.47 This is done in Sec. V C. Finally, we 
introduce in Sec. V D several measures appropriate for an 
investigation of the dynamics within different homogeneous 
subspaces of the quantum Hilbert space characterized, e.g., 
by different types of symmetry or excitation. We now exam­
ine all this in more detail. 

A. Excitation constraint 

As shown by Heller,26-30 a natural way to take into ac­
count the constraint imposed on ff· by the excitation pro­
cess is to introduce the envelope S T (E) of the spectral distri­
bution SeE). The latter describes the fully resolved 
spectrum and contains as much of the information as the 
correlation function determined up to an infinite time. On 
the other hand, ST(E) represents the fictitious spectrum ob­
tained as the Fourier transform of a correlation function 
truncated after some time T. Physically, this amounts to 
studying the dynamics during a short time only. The func­
tion ST(E) is called the envelope of the genuine spectrum 
SeE). (More exactly, it is a smoothed version of it.) The 
envelope ST(E) can be easily calculated30 

ST(E) = LPkflT(E - Ek ), (5.2) 
k 

where 

flT(E - Ek ) = sin [ (E - Ek)T Ih ]/[ 1T(E - Ek)]. 
(5.3 ) 

Note that the profile of this envelope depends on the 
choice of the truncation time T. Heller has proposed to con­
sider the function S~(E) determined for a particular time 
T* corresponding to the first minimum of the correlation 
function, at the end of the initial decay and before any recur­
rence. To calculate ff·, we now have to choose a reference 
spectrum reflecting our 0 priori information about the fully 
ergodic situation under the constraint imposed by S ~ (E). A 
natural choice is a spectrum with Franck-Condon factors 
given by 

p~ = S~(E" )/L S~(Ek)' (5.4) 
k 

where indices n and k run over all states within the envelope, 
both optically active and inactive. The information about 
selection rules and dynamical details (i.e., those reflected in 
the numerous peaks of the correlation function I C(t) I) is 
totally absent from the reference spectrum. Thus, the phys­
ical meaning of the constraint imposed by S~(E) can be 
roughly understood as a way to take into account an 0 priori 
information about the energy spread of the initially prepared 
wave packet. 

Several methods can be used to calculate ff·: 
( 1) The first method is based on the use of Franck­

Condon factors corresponding to the envelope S~(E) [Eq. 
(5.4) ]. Substituting into Eq. (3.8), one has 

(ff·) - 1 = L (P: )2. (5.5) 
n 
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This method implies the calculation of the smoothed spec­
tral envelope S ~ (E) and a knowledge of the energies of all 
the levels within this envelope. 

(2) Heller also proposes30 another formula to estimate 
JV": 

(5.6) 

where &t' is the rate at time Y" (i.e., the time at which 
lC(t) I admits its first minimum), but we disagree with this 
equation for several reasons. Heller's derivation is 

./Y·= [~(p:)2]-I=lf_+",'" [[S~(E)pI 

D~(E) ]dE I-I 

=h (D")lh f-+",'" [S~(E)]2dE 
=YB&t". (5.7) 

First, one should note that the quantity (D *) defined in 
the second step of the derivation has the meaning of the den­
sity of states at some unspecified point within the energy 
envelope and, strictly speaking, cannot be interpreted as an 
average value of the function D(E). Moreover, even when 
(D *) is approximately equal to the average value of D(E), 
the product h (D" ) is not Y B as defined in Eq. (4.1). The 
break time is equal to h 18, where 8 is the smallest energy gap 
between two optically active levels and not the average quan­
tity (D") - I. Finally, although it can be demonstrated3o 

that, at any time T, 

h I-+ ",'" [ST (E)] 2 dE = 21T I C(t) 12dt, (5.8) 

Eq. (3.13) cannot be invoked to equate the left-hand side of 
Eq. (5.8) with (&t") -I. This would be possible only in the 
long-time limit, after many recurrences, and certainly not at 
a time as short as T". 

However, it is possible to retain the general philosophy 
of the argument and to calculate the denominator of Eq. 
(5.7) in another way. Since time T" is very short (usually a 
few femtoseconds), the dynamics need be followed during a 
very short lapse of time. It is then possible to set up crude 
models which give a useful description of the correlation 
function up to a short time only. These models will later on 
be found to be useful in other connections as well. A natural 
choice for an empirical function to describe the short-time 
behavior of the correlation function of a bound system is 

IC(t)1 2 =O.5(l +r) +O.5(l-r)coswt, (5.9) 

where r is the value reached by 1 C( t) 12 at its first minimum, 
i.e., at a time T* = rrlw. Then, 

T' 21 IC(t)1 2dt=(l+r)T". (5.10) 

Substituting into Eq. (5.7), one finally obtains the following 
estimate for JV" 

(5.11 ) 

(3) A third estimate of JV" can be derived as follows. 
The time T" at which 1 C(t) 12 reaches its first minimum is 
approximately equal to twice the time needed for the wave 

packet to move a distance equal to its width (called "dephas­
ing time" by Bixon and Jortner50 ): 

(5.12) 

where r is the energy spread of the wave packet. Then, from 
Eq. (5.11), 

(5.13 ) 

since O<r< 1. If the value (D ") is approximately equalto the 
average value of D(E), then the factor (D") r represents the 
number of states (optically active and inactive) within the 
energy width of the wave packet. 

B. Quantum constraint 

In spectroscopic problems, when the number of final 
states is large, one deals with the so-called external case de­
scribed by Brody et al. 51 This means that one studies the 
statistics of transition strengths between one (external) state 
Ic) which is treated nonstatistically and a large group of d 
states I i) which are supposed to be statistical in nature. This 
assumption is very natural when the external state signifi­
cantly differs from the statistical state I i). In this case, the 
whole transition probability is fragmented into many small 
parts and it is then reasonable to expect that the latter can be 
treated statistically.47 In the statistical theory of spectra 
based on the properties of the matrix Gaussian orthogonal 
ensemble (GOE), or in the maximum entropy formalism, it 
is shown2o,22-24,27-29,47,51 that the distribution function for 
the transition probabilities (Franck-Condon factors in our 
case) for the external case with one external vector (c) is 
given by the Porter-Thomas formula 

pp(x) = (2rr(p)x) -1/2exp ( -x/2(p» (5.14) 

with 
d 

(P) = (lId) L Pn (5.15 ) 
n=1 

thus, corresponding to the usual xi distribution. It should be 
noted that formula (5.14) does not take into account the 
smooth overall variation of the intensities with energy given 
by the spectral envelope. When appJying Eq. (5.14) to the 
experimental data, one usually supposes that it is possible to 
take into account the smooth overall variation of the intensi­
ties with energy by using, instead of the globally averaged 
value (P) in Eq. (5.14), the locally averaged value which 
depends on E. 27- 29,47 

Thus, we shall define a reference spectrum describing 
the fully ergodic dynamics under constraints imposed by the 
excitation process as a spectrum whose Franck-Condon fac­
tors are characterized by the envelope S ~ (E) and by the 
xi -type fluctuations of transition probabilities with respect 
to this envelope. These fluctuations are of quantum origin. It 
has been shown27-30,47 that they reduce the number ofthe a 

priori accessible phase-space cells by a factor of 3. Thus, for 
the case in question, the number JV~E of phase-space cells 
which are a priori avai1able for a given excitation process is 
given by 

JV~E =JV"/3, (5.16) 
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where the subscript QE stands for "quantum ergodic" and 
the asterisk denotes an a priori estimate. 

It is important to note that, when the number of states 
participating in the dynamics is not large enough, the pres­
ent argument cannot be applied. Consider, e.g., the limiting 
case where the spectrum consists of a single line (i.e., a tran­
sition between two identical potential energy surfaces). One 
then has 

ff '" =ff· =ff~E = 1. (S.17) 

C. Symmetry constraint 

When the dynamical process in question is initiated by a 
coherent excitation, it is natural to incorporate into our a 
priori knowledge the information about the symmetry prop­
erties of the transition operator and of the system. In the 
examples studied below, this information takes the form of 
the usual selection rules resulting from the Condon approxi­
mation.52 This implies that all the states that are counted in 
ff '" and which appear in Eqs. (2.1), (2.6), and (3.8) all 
belong to the totally symmetric representation of the molec­
ular point group. 

In contradistinction, all the states, active or inactive, 
whatever the representation they belong to, are counted in 
ff .. Since the wave packet can only visit those portions of 
Hilbert space where the eigenfunctions it is made of are 10-
calized,30 it is appropriate to compare ff '" not with ff·, 
but with a smaller number ff; obtained when one takes into 
account states that belong to the totally symmetric represen­
tation only. 

It has been proved53 that, as the energy increases, the 
occurrence of the various symmetry species in the spectrum 
rapidly equilibrates so that, at internal energies of the order 
of about twice the zero-point energy, the number of states 
that belong to a particular nondegenerate representation is 
the same for each representation. 

D. Measures S{K) and partitioning 

The measures J.l and ff previously defined are very con­
venient when one studies the dynamics in the whole Hilbert 
space or in one of its subspaces determined by some of the 
constraints discussed above. However, they become incon­
venient when one wants to compare the relative dynamical 
importance of different subspaces characterized, e.g., by dif­
ferent types of symmetry or excitation. To see this, consider 
two nonoverlapping subs paces of the Hilbert space, L I and 
L 2 • The measures J.l{L j ) corresponding to L j are given by 

(S.18) 

where the quantities p" are renormalized Franck-Condon 
factors: 

p" =Pk/2: Pk· ( S.19) 
kEL j 

It can be shown that J.l{L I + L 2 ) <J.l(L I ) + J.l{L2 ), i.e., in 
general, J.l is not additive with respect to partitioning the 
Hilbert space into nonoverlapping subspaces and thus can­
not serve as a measure. In order to partition J.l of ff into 

contributions corresponding to different types of states, one 
has to introduce some other measures, additive with respect 
to the partitioning of the Hilbert space into nonoverlapping 
subspaces. This can easily be done by associating with each 
quantum state In) some positive number tn' a natural choice 
being 

(S.20) 

The choice of the appropriate value of the power K is 
dictated by the problem at hand. For example, K = 0 defines 
a measure which is entirely independent of the dynamics. It 
gives the total number of states participating in the dynamics 
regardless of their relative importance. To take into account 
the relative dynamical importance of different states, one has 
to introduce Franck-Condon factors, i.e., to use measures 
with K> O. The measure with K = 1 (i.e., the use of Franck­
Condon factors normalized to unity) allows one to compare 
the overall probability of finding the system in different sub­
spaces but says nothing about the type of dynamics within 
each subspace. The simplest measure which gives this infor­
mation is t(2) 

1.-(2) _ ~p2 
~L - ~ ". 

kEL 

(S.21 ) 

The more irregular the distribution of Franck-Condon 
factors, the more regular the corresponding dynamics and 
the larger the value of t(2) • [For the most irregular distribu­
tion (Pi = 0ik)' one has t(2) = 1; for the most regular case, 
(PI = P2 = ... = P N ), one has t(2) = 1/ N.] Therefore, t(2) 
can be partitioned into contributions corresponding to dif­
ferent types of states; it can be used to measure and compare 
the degree of regularity of dynamics within different sub­
spaces. Comparing a priori and experimental values of t(2) 
within different subspaces allows us to decide whether or not 
all a priori available different types of states are represented 
in the wave packet on equal footing, i.e., whether or not our 
sampling is representative enough to guarantee the success 
of a statistical approximation. 

In summary, the crux of the matter results from the fact 
that what one has to partition is not simply a number of cells 
(or of quantum states) but an effective number of states that 
significantly contribute to the dynamics, i.e., an average 
weighted by occupation probabilities. Compare Eqs. (2.2), 
(2.9), and (S.21) with the well-known relationship 
(A) = Tr(pA). One sees that t (2) = Tr(p2) represents an 
average density, whereas its inverse J.l = [Tr(p2)] - I =./y 
is proportional to an average volume in phase space. Obvi­
ously, the same partitioning cannot be simultaneously addi­
tive for a quantity and its inverse. In the present paper, mea­
sure (S.21) has been chosen because of its close connection 
with the experimentally derivable quantities J.l and ff dis­
cussed in the previous sections, but it should be noted that 
other choices of measures are also possible. One of the best 
known is 

(S.22) 

which arises in the information theoretic approach to intra­
molecular dynamics.48 We leave it for further work. 
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VI. THEX28 1 STATE OF H2 0+ 

The photoelectron spectrum of the ground state of 
H 2 0 + has been determined many times,37,45,54-56 the best 
one to data being that recorded by Reutt et al. 37 Since the 
initial (X I A I ) and final (X 2 B I ) states are characterized by 
very similar geometries, the spectrum is very simple and con­
sists of an intense (000-+000) transition followed by two 
progressions involving excitation of the two totally symmet­
ric modes VI and V 2 • Autocorrelation functions have been 
determined in two different laboratories.37,45 They are given 
in Fig. 2. From these, the functions ff T and g; T have been 
determined by numerical integration [Eqs. (3.6) and 
(3.11) ]. 

Results are given in Fig. 2. The value of the break time is 
easily determined from the spectra. One finds 
Y B = v2- I = (2.4 ± 0.1) 10 - 14 s. This value agrees with 
that derived from the more detailed criterion (2.8). The rate 
g; T starts from a value of zero and increases up to a maxi­
mum of about 8,6x 1013 cellss -I. The maximum is reached 
at time T·( =5.5 fs), when the correlation function goes 
through a minimum, This is easily understandable. The ini­
tial motion of the center of the wave packet is a stretch away 
from the Franck-Condon region, during which it explores 
portions of phase space which are new to it. However, the 
first recurrence in the correlation function is associated with 
a return to the original region, which implies that the packet 
revisits portions of phase space that have already been pre-

H 0+ 2 

OL-__ ~ __ -L~~~~~==~ 

~Lc=t--,------: @ ,L 

o 1 2 3 t.IOf4s lroo 

FIG. 2. (a) Autocorrelation function of state X 2 B I of H2 0 + . Solid line: 
results taken from Ref. 37. Dashed: results taken from Ref. 45. (b) Rate of 
propagation in phase space (in s - I ). (c) Number of phase-space cells visit­
ed as a function of time. Y B = break time determined from Eq. (4.1). Ex­
treme right: asymptotic valueff 00 determined from experimental Franck­
Condon factors. 

viously occupied. The rate decreases gradually and is seen to 
drop to a very low value at the break time Y B' That no 
further progress in phase space exploration is possible after 
time Y B is confirmed by a study of ff T' This function levels 
off at a· maximum value ff 00 = 1.83 ± 0.05 which is 
reached at time Y B' This asymptotic value can be checked 
with that derived from Franck-Condon factors [Eq. (3,8) ]. 
The latter have been determined by three different 
groups37,55,56 and lead to values of 1.72, 1.76, and 1.97, in 
satisfactory agreement with those obtained from the correla­
tion function. The extrapolation formula (4.7) is found to 
work. well since it leads to a value of 1.76 ± 0.06 for ff 00 • 

All the states that contribute to ff 00 necessarily belong 
to the totally symmetric representation A I of the C2v point 
group. However, in order to get some idea about the repre­
sentativity of the sampling, it is appropriate to partition 
them into two different species: those that involve excitation 
of symmetric a l modes (VI and v2 ) only, and those that 
involve excitation of two quanta of the optically inactive 
antisymmetric b2 vibration (V3 ). States of the latter kind are 
not observed as such in the spectrum, but there is in principle 
a possibility that some of the peaks be split by Fermi reso­
nance, although the splittings remain undetectable because 
of insufficient energy resolution. However, this kind of exci­
tation by Fermi resonance is very weak in the present case. 
Only states (200), (210), and (300) could be perturbed [by 
states (002), (012), and (022), respectively] and their 
Franck-Condon factors are very small. We estimate the rel­
ative amount of these (b2 ) 2 states to be at most 3 X 10 - 4 
only with respect to the zero-order optically active states. 
Thus, the wave packet visits exclusively that part of the 
phase space which corresponds to the excitation of the total­
ly symm~tric modes VI and V 2 • 

On the other hand, the number ff ° of a priori accessible 
phase-space cells has been estimated from Eq. (5.4) with 
TO = 5.4 fs, and with the Franck-Condon factors deter­
mined by the three different laboratories. 37,55,56 One arrives 
atff

o
=6±1. 

This number ff ° can also be partitioned according to 
measure $(2) . It can be estimated that about 3% of the total 
number of states belong to the B2 representation, whereas 
only about 0.7% results from the excitation of two quanta of 
the antisymmetric vibration. No further division by a factor 
of 3 is necessary in this case since the number ff ° is too 
small for statistical considerations to apply. 

In summary, what has been studied here is a weakly 
excited triatomic molecule. Relaxation is over after 
2.4 X 10 - 14 s. The wave packet has then visited a fraction 
y = (1.8 ± 0,1)/(6 ± 1) = 0.3 ± 0,03 of the total phase 
space compatible with the energy constraints. This ratio 
raises slightly to about 31 % if the available phase space is 
restricted to totally symmetric states, The wave packet never 
accesses that part of the phase space that corresponds to the 
excitation ofthe antisymmetric vibration V3 • 

VII. THE X28 3 STATE OF C2 Ht 

Several photoelectron spectra of the ground state of 
C2 H/ are available. 35,45,54,57,58 That measured by Pollard et 
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al.35 is to be singled out for its excellent energy resolution. 
The smallest energy gap between two adjacent energy levels 
is of the order of 210 cm - 1 which leads to a break time 
Y B = ( 1.6 ± 0.1) 10 - 13 s. The corresponding autocorrela­
tion function has also been determined up to time Y B' Inde­
pendent measurements have been carried out in the present 
laboratory45 at a somewhat lower energy resolution. Results 
are given in Fig. 3. 

The rate of propagation in phase space increases at first 
extremely rapidly. Starting from a value ofzero, it reaches a 
maximum value of the order of 1.3 X 1014 cells s -I at a time 
T· = 1.35 X 10 - 14 s (which corresponds to the first mini­
mum of leU)1 for reasons explained in Sec. VI). The rate 
then decreases and is found to be reduced by a factor of25 or 
more at the break time Y B' At that same time, the effective 
number of cells which have been visited is indeed seen to 
reach its asymptotic value. A value of Jf/' 00 = 10.7 ± 1 is 
determined in this way. The extrapolation formula (4.7) 
gives practically the same result (i.e., 10.6 ± 1). 

From measurement of intensities [Eq. (3.8)], one de­
duces an estimate of Jf/' 00 = 8.2 if each peak of the spectrum 
is treated as a particular Franck-Condon factor, i.e., ifunde-
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FIG. 3. (a) Autocorrelation function of state X 2 B., of C2 H/ . Solid line: 
results taken from Ref. 35. Dashed and dot-dashed lines: results taken from 
Ref. 45. (b) Rate of propagation in phase space (in S-I). (c) Number of 
phase-space cells visited as a function of time. Y B = break time determined 
from Eq. (4.1). Extreme right: asymptotic value •. V oc determined from ex­
perimental Franck-Condon factors. 

tectable splittings are simply ignored. However, this value is 
a lower limit toJf/' 00 because optically active states can inter­
act with neighboring inactive ones that belong to the totally 
symmetric representation. This brings about splittings 
which, although experimentally undetectable, should be ac­
counted for in the calculation ofJf/' 00 by Eq. (3.8). We have 
tried to estimate the occurrence of these interactions by gen­
erating the position of optically inactive states from a set of 
reasonable frequencies. Various assumptions have been con­
sidered. As expected, they all lead to an increase of the value 
of Jf/' 00 , but the results remain fortunately in the same range. 
The obtained value (9.5 ± 0.5) is in satisfactory agreement 
with that derived from the correlation function. 

The measure 5(2) of states involving an even number of 
quanta of antisymmetric vibrations [i.e., (b l )2,(b2 )2, and 
(b3 ) 2 states in the D2 point group] 59 is estimated to be weak: 
about one percent of the optically active states. Here again, 
phase space is not uniformly visited because the energy of the 
wave packet is too low to bring about excitation of antisym­
metric vibrations. 

How large is the available phase space? The envelope 
S~(E) has been calculated from Eqs. (5.2) and (5.3) with 
T· = 1.35 X 10 - 14 S and is reproduced in Fig. 4. The sum­
mation (5.5) has been carried out exactly for the first 80 
terms (up to an energy of2170 cm - I ). At higher energies, it 
has been replaced by a numerical integration in which the 
density of states has been evaluated by the Beyer-Swine­
hardt60 algorithm. The estimate of Jf/'. obtained in this way 
is equal to (2.0 ± 0.7) 104 cells. This value depends very 
sensitively on the exact shape of the high-energy wing of 
S ~ (E) because the density of states increases very rapidly 
with the internal energy. 

The fraction of a priori available phase space is thus 
equalto Y = Jf/' 00 IJf/'· = (5 ± 2) 10-4. However, thefrac­
tional occupation of the effectively available phase space is 
higher. Firstly, quantum restrictions discussed in Sec. V C 
reduce the number of accessible cells by a factor of 3. Second­
ly, the progression in phase space of the wave packet is in the 
present case restricted by strong selection rules. Only nor­
mal modes that belong to the totally symmetric representa­
tion can be optically excited. Hence, the quantum states that 
are really available necessarily belong to that representation. 

0.2 

0.1 

o 2000 4000 6000 

FIG. 4. Franck-Condon factors of state X 2 B.l of C2 H.+ . Stick spectrum: 
experimental factors P •. The solid curve is the smoothed spectral function 
(envelope) S ~ (E) magnified by a factor of 400. 
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Since the Cz H/ ion is a hindered rotor,35,59 classification 
can be made according to the Dz point group which admits 
four irreducible representations (A,BI ,B2 , and B3 ). As ex­
plained in Sec. V D, this reduces the number of available 
states by a further factor of 4. Altogether, this leads to a 
value of 12 for the reduction factor. 

In summary, the dynamics involves approximately 
0.05% of the a priori available phase space and 0.6% of the 
effectively available phase space. 

VIII. PARTLY BOUND STATES 

To shed some light on the kinetic problem, one should 
study the behavior of a high-energy wave packet, moving in 
an anharmonic potential close to the dissociation asymptote. 
We thus turn to a situation where the dissociation asymptote 
falls within the Franck-Condon region. 

First of all, notice that the measure p, defined in Eq. 
(2.2) has to be used with care. Consider first a classical mod­
el in which the phase space is partitioned into two homoge­
neous cells: one having a volume VI and a density PI' the 
second a volume V1 and a density Pl' The probability of 
finding a particle in volume Vi is ni = Pi Vi' Then, from Eqs. 
(2.2), (3.2), and (3.3), 

h -fp,- I = Trcl(p1
) = J J p 2dp dq 

Vlut 

=p~ VI +p~ V2 

= n~/VI + (1 - n l )2IV2 • (8.1 ) 

Thus, when the volume of one cell becomes very large 
(say V2 --+ 00 ), the measure p, depends on the characteristics 
of the smaller cell only and is irrelevant to the dynamics in 
the larger cell. This situation naturally occurs in, e.g., predis­
sociation when one part of the initial wave packet can be 
trapped in a bound potential whereas the other part explores 
the infinite phase space associated with a continuum. How­
ever, the ideas and methods described in the previous sec­
tions remain valid if one discards the unbound part and con­
centrates on the trapped component of the wave packet. 

Divide the spectral function into two contributions: 

S(E) = Sb (E) + Su (E) (8.2) 

(index b stands for "bound," u for "unbound"). 

(8.3 ) 
n 

The normalization condition reads 

i
+ 00 

LPn + S(E)dE = 1, 
n Ed 

(8.4 ) 

where Ed is the threshold of the continuum. Each part of the 
wave packet gives rise to its own correlation function, nor­
malized to unity at time t = O. Thus, 

Cb(t) = J~doo Sb(E)e-iEtlfidE/J~doo Sb(E)dE (8.5) 

and a similar definition for Cu (t). Then, substituting Eqs. 
(8.2) and (8.4) into Eq. (8.5), one has 

Cb (t) = [C(t) - (1 - +Pn )Cu (I) ]/(+Pn)' (8.6) 

The desired quantity is the number of phase-space cells 
JV b occupied by the "bound part" of the DSE as a function 
of time: 

JVb--;. 1= (2In iT (1 - tin I Cb (t) 1
2dt 

T· 

= (2In i (1 - t In I Cb (t) 11dt 

+ (2In(+Pn) - 1J:' (1 - 1 In I C(t) 11dl, 

(8.7) 

where T' has the same significance as in Sec. IV and where it 
has been assumed that Cu (I> T') =0. To describe the be­
haviorofthe bound wave packet during the short period of 
time [O,T'], a crude expression is sufficient. We use Eq. 
(5.9) with wT' = 1T. Then, 

JVi:r I =(+Pn) - l[JV T - (2In 

Hence, 

xiT

• (1- tin lC(t) 11dt] 

+ (1 + y)(T'/n(1- T'/2n 

+ 2(1 - y)(wn - 1. 

lim JVi:r1 =JV;;:.,I = (LPn)-lJV;;;I. 
T- 00 n 

(8.8) 

(8.9) 

The quantity JV;;, I can also be determined as follows. 
The initial wave packet is given by 

10(0» = ~ake-iEkt/filk) + fdEaEe-iEtlfiIE), 

(8.10) 

where IE> denotes the wavefunctions of the Hamiltonian H 
of the system corresponding to the continuous spectrum. 
The correlation function now has the form 

(8.11) 

(8.12) 

Using formulas (3.8) and (8.11), one immediately ar­
rives at the following expression for JV 00 : 

JV;;; I = lim (uniT I (010(t)Wdl = LPi (8.13) 
T- oo 0 k 

Thus, in agreement with our intuition, only the Franck­
Condon factors of the discrete part of the spectrum deter­
mine the asymptotic value of the quantum measure. There is 
no contribution from the continuum states. This has a simple 
physical meaning. The unbounded part of the wave packet 
goes away and cannot contribute to the recurrences of the 
correlation function, thus being irrelevant to the asymptotic 
value of the quantum measure defined in Sec. II. This result 
remains valid iftwo or more continua (resulting either from 
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adiabatic dissociation asymptotes or from surface crossings 
with repulsive states) are present. 

Substituting Eq. (8.13) into Eq. (8.9), one finds 

(8.14 ) 

with 

(8.15 ) 
n 

The set{Pk} forms a set of renormalized Franck-Con­
don factors for the discrete part of the spectrum only. On the 
other hand, ff 00 has in the present case no physical signifi­
cance, since it is the quantity ffb~ which represents the 
number of phase-space cells occupied by the DSE in the 
long-time limit. 

IX. THE jj2~+ STATE OF HCN+ 

The third band in the photoelectron spectrum presents a 
very complicated appearance33.61 (Fig. 5). Starting around 
19 eV, it first consists ofa series of about 15 peaks which are 
extremely irregular both with respect to energy spacings and 
intensities. That part of the spectrum is totally incompatible 
with the usual model of a set of loosely coupled harmonic 
oscillators. It is followed by a few diffuse peaks which soon 
merge into a continuum. Clearly, one has to isolate the ex­
tremely anharmonic motion of a bound wave packet within 
energy limits ranging approximately between 19 and 20 eV. 
Some indications concerning the potential energy surface 
have been obtained from ab initio calculations.62,63 The exis­
tence of stable states is accounted for by a hump ofthe poten­
tial. 63 The continuum part of the spectrum starts above this 
hump. In addition, the surface is conically intersected by 
lower states,62 but from the appearance of the spectrum, we 
assume that these crossings take place on the outer part of 
the hump. The correlation function of the entire band has 
been previously determined. 33 We have submitted it to the 
analysis of Sec. VIII. The necessary parameters have been 

0.15 

0.1 

0.05 

o 2000 4000 

FIG. 5. Franck-Condon factors of state lJ 2l; + ofHCN + . Stick spectrum: 
experimental factors Pk (followed in the experimental spectrum by a few 
diffuse peaks and by a continuum which are not represented here). The 
solid curve is the smoothed spectral function (envelope) S~(E). 

chosen in the following ranges: T* = (1.3 ± 0.2) X 10- 14, 
r = [0 - 0.005], 1:nPn = [0.5-0.67]. 

For the break time, we estimate a value of 
(2 ± 0.4) X 10- 13 s. In the present case, the experimental 
determination of CCt) is possible up to about 0.5 Y B only. 
However, it is possible to determine ffb by extrapolation 
[Eq. (4.7)]. The value obtained (17 ±4) should be com­
pared with that deduced from Franck-Condon factors. The 
latter are not easily measured. The set of values determined 
by Fridh and A.sbrink61 lead to a value of9.3 for ff 00 (more 
properly, ffb~ ). However, for reasons already discussed in 
the previous sections (failure to detect Fermi resonances), 
this value is certainly a lower limit. Reexamination of the 
spectrum determined by Delwiche et al. 33 suggests that a 
value of 10 (or more) would be more appropriate. 

The number of available phase-space cells can be esti­
mated in several ways. From Eq. (5.5), taking into account 
the uncertainty in the Franck-Condon factors, one arrives at 
ff* "'" 13 ± 2. Equation (5.11) leadstoff* "",9 ± 4, while 
a number ff* "'" 14 is compatible with Eq. (5.13). 

Obviously, a better resolved spectrum would be desir­
able, but we infer from the data so far available thatff and 
ff* have comparable magnitudes and therefore th;t the 
fraction.7 of occupied phase space is roughly equal to unity. 
No further division by a factor of 3 comes into play since the 
molecule is too small. Symmetry partitioning is irrelevant in 
such an irregular spectrum. In short, the phase space is com­
pletely visited in this case, in spite of the fact that the system 
has a discrete spectrum and cannot be chaotic.64 

We thus conclude that the 11 21: + state ofHCN + pro­
vides an example of "a system ... (which is) ... strongly but 
nonstochastically coupled, with the effect of a fluctuating set 
of Franck-Condon factors to states which have no simple 
zero-order assignment.,,26 Also,22 "contrary to what one 
might tend to believe, even two degrees of freedom (in the 
present case three) are sufficient to produce ... a complex sys­
tem with a classically chaotic counterpart." 

X. DISCUSSION 

Three cases of intramolecular vibrational energy relaxa­
tion of increasing complexity have been studied. In the 
ground state ofH2 0 + , a low-energy wave packet undergoes 
low-amplitude vibrations in a nearly harmonic potential, so 
that its motion is severely restricted by selection rules. The 
exploration of the phase space ends after a break time 
Y B = 2.4 X 10 - 14 s. At that moment, 30% of the phase 
space only has been visited. The sampling is biased in the 
sense that the density of states is too low and the anharmoni­
city too weak to allow Fermi resonances between zero-order 
states. 

Comparison with the case of the ground state of C2 H/ 
allows us to study the influence of the number of degrees of 
freedom. The time necessary to explore the phase space is 
now larger [Y B "'" ( 16 ± 1) X 10 - 14 s]. The number of a 
priori accessible phase-space cells increases enormously and 
the fraction of occupied phase space is now as low as 
(5 ± 2) X 10 - 4. This fraction raises to a value of about 
6 X 10- 3 if calculated with respect to the volume of phase 
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space effectively available to the initial wave packet. As in 
the case ofH2 0 + , Fermi resonances playa very minor role, 
because the density of states is again too low to allow energy 
transfer to antisymmetric zero-order modes. 

The final example allows us to study the influence of a 
very strong anharmonicity in a small system. The potential 
energy surface oftheB 2l: + state ofHCN + is so complicat­
ed that the vibrational states cannot be classified in terms of a 
set of quantum numbers. The break time 
[Y B "'" (20 ± 4) X 10 - 14 s] is much longer than that ob­
served in the case of the other triatomic. To a good approxi­
mation, the phase space is fully visited. 

The values obtained for Y B are much shorter than the 
pico- and nanosecond time scales commonly alluded to in 
the literature6-IO.15-18 on intramolecular vibrational energy 
relaxation. However, the values which have been obtained 
here refer to small systems at low energies. The break time 
Y B has been found to increase with the complexity of the 
molecules and with its internal energy. 

What remains to be done (and this will be our aim in 
future papers of this series) is to look for spectroscopic data 
out of which information more directly related to chemical 
processes can be extracted. It would be desirable to move as 
much as feasible to higher internal energies for molecular 
systems larger than triatomics. 

XI. CONCLUSIONS 

In the assessment of the impact of the present results on 
the understanding ofunimolecular dissociation, a number of 
points should be kept in mind. 

( 1) It is sometimes said that, since there is a mathemat­
ical equivalence between a spectrum and its autocorrelation 
function, no radically new information can be derived from 
the latter. This is not quite true. First, the original experi­
mental information Sexp (E) is upgraded to quantities with a 
more fundamental significance [i.e., CU) and S(E)] by a 
procedure which involves purification from experimental 
uncertainties and from the irrelevant rotational broadening 
and spin-orbit splitting. It has been seen that the method 
provides the easiest way to extract information from a poorly 
resolved spectrum. Secondly, whereas it is true that the 
quantities Y B' ff 00' (and also .'7 to a certain extent) are 
already contained in the optical spectrum, the analysis de­
veloped by Heller complements them with additional useful 
concepts (e.g., the rate fY( T which cannot be easily extracted 
from the spectrum). Altogether, the use of the correlation 
function offers great advantages in giving a clear and attrac­
tive dynamical picture. The very fact that this information 
has been available all the time but remained unexploited till 
Heller developed a consistent scheme demonstrates the use­
fulness of the approach. 

(2) Except in the case of HCN + , the sampling of the 
phase space has been found to be biased by selection rules. 
The wave packet can only visit that part of Hilbert space 
made up of totally symmetric wave functions. However, in a 
zero-order representation in terms of normal modes, only 
antisymmetric modes are coupled to the continuum. The 
representativity of the sampling of phase space depends on 
the presence of strong vibrational couplings52 (e.g., Fermi 

resonances) which lead to excitation ofzero-order antisym­
metric modes by an even number of quanta and thus allow 
the system to access parts of the phase space which would 
never be visited in a separable system. A high density of 
states in a strongly anharmonic potential (i.e., the situation 
which normally exists close to a dissociation asymptote) 
leads to nonseparability of the quantum vibrational wave 
functions and improves the representativity of the sampling 
of phase space. This is a necessary condition for the validity 
of the RRKM theory. Thus, one has an explanation to the 
rule according to which a low density of states leads to in­
complete or slow intramolecular vibrational relaxation. 14-17 

(3) Statistical theories are based on consideration of a 
microcanonical ensemble (i.e., a well-defined energy), 
whereas the present method implies consideration of a wave 
packet. Therefore, the quantities derived from experiment 
(Y B' .'7, etc.) are really averages over a certain range of 
internal energies. 

( 4) It has been repeatedly stated in the literature on 
intramolecular dynamics7.26.3o,47 (but this point is unfortu­
nately overlooked by many kineticists using RRKM theo­
ry ), that the characteristics of intramolecular vibrational en­
ergy relaxation depend as much on the excitation process as 
on the nature of the molecule. Thus, no distinction should be 
drawn between "RRKM" and "non-RRKM molecules." 
Different excitation processes may lead to different initial 
wave packets, and a particular system may belong to either 
category depending on the way it has been energized. 

An ideal experiment has been studied here: a pure 
Franck-Condon transition from a vibrationally cold ground 
state under collision-free conditions. This situation has to be 
considered as a particular probe implying a maximum num­
ber of restrictions, and the results are not necessarily valid 
for other experimental situations. If the initial preparation 
leads to a statistical mixture (instead of a pure quantum state 
as has been considered so far), a mixed-state density opera­
tor has to be used. This reduces the constraints, both those 
which result from symmetry considerations and those which 
concern the quantum ergodic X2 random fluctuations. This 
will be the case in a number of well-known experimental 
situations, e.g., an electronic transition involving hot bands, 
or taking place from several autoionizing states, or implying 
collisions in the preparation (e.g., charge transfer), or if the 
initial molecule is itself prepared from a preliminary disso­
ciation, etc. Therefore, when less constraints are introduced 
in the preparation, the present results give in fact a lower 
limit to the fraction .'7 of visited phase space. 
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