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Abstract

In this work, an experimental modal analysis is performed on an academic bladed disk using a base excitation

to identify the mistuning of each blade. Optical measurement is used to obtain the exact geometry of the

structure and to be able to associate geometrical mistuning to each blade. Differences are observed between

the experimentally identified mistuning and the geometrical mistuning. Since the bladed disk is a one-

piece structure, there is no welded connections between the blades and the disk and the material properties

can be assumed to be uniform. It can be shown that these differences come from non uniform clamping

conditions, and that this mistuning is of the same order of magnitude than the variations in the geometry

of the structure. It follows that the precise characterisation of mistuning for industrial structures is in

practice illusory because of the numerous factors introducing mistuning, such as the clamping conditions,

aerodynamic damping, wear in service, etc.
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Nomenclature:

γ Damping coefficient

λi,r Eigenvalue deviation of the rth cantilevered blade mode of blade i

Λ0 Generalized stiffness matrix of the tuned system

ΛCB Generalized stiffness matrix of the cantilevered blade

Φ Tuned mode-shapes matrix

Φi Tuned mode-shapes matrix restricted to the degrees of freedom of blade i

ΦM
i Mistuned mode-shapes matrix restricted to the degrees of freedom of blade i

ΦCB Cantilevered blade modes for the nominal blade

Φexp Tuned displacements of the measured degrees of freedom

ω Frequency

∗Corresponding author
Email address: Florence.Nyssen@ulg.ac.be (F. Nyssen)

Preprint submitted to Journal of LATEX Templates September 9, 2015



C Damping matrix

DOF Degrees of freedom

f Force vector

F Modal participation factor of the load f

FRF Frequency Response Function

j Unit imaginary number

K Stiffness matrix

K0 Tuned stiffness matrix

Kδ Perturbation in the stiffness matrix

Kδ
i Perturbation in the stiffness matrix restricted to the degrees of freedom of blade i

KCB Cantilevered blade stiffness matrix

M Mass matrix

M0 Tuned mass matrix

m Number of retained modes

NCB Number of retained cantilevered blade modes

MAC Modal Assurance Criterion

N Blade number

p Modal coordinates

Qi Modal participation factor of ΦCB into ΦM
i

R Set of retained cantilevered blade modes

x Displacement vector

xexp Measured displacements

1. Introduction

In the field of turbomachinery, various assumptions are usually made to model bladed assemblies, such

as cyclic symmetry of rotor stages. This assumption enables, in a linear framework, to reduce drastically

the required computational resources by considering one sector instead of the entire assembly. However,

even if the bladed disks are designed to be cyclically symmetric, small random blade-to-blade variations5

appear in practice due to manufacturing tolerances, irregularities in the material properties, wear during

use, etc. These small variations, known as mistuning, disturb dramatically the dynamic behavior of bladed

disks (energy localization in only few blades, amplification of the forced response) [1].

Different reduced-order modeling techniques have been developed to compute the dynamic behavior of

mistuned bladed disks with reduced computational time [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These10

reduced-order models (ROMs) enable to construct low-order models of bladed disks based on the global
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finite element model of the structures. Using ROMs enables to run a large number of simulations with

random mistuning patterns in order to retrieve the statistical distribution of the amplification of the forced

response amplitudes for given amounts of mistuning.

In parallel, identification methods have been developed, to identify mistuning from the experimental15

frequency response of bladed structure [15, 16, 17, 13]. A usual assumption consists in proportional mistuning

i.e., the variation of each blade is considered to be proportional to the stiffness of the tuned sector. First

studies tested separately each individual blade to determine their deviation from the nominal design [8, 15].

However, additional mistuning is introduced when blades are assembled on the disk. Moreover, many bladed

disks are now manufactured in one-piece, known as integrally bladed disks or blisks. Several methods have20

been developed to identify mistuning from measurements of the response of the entire bladed disk rather

than on individual and isolated blades. Early works were based on lumped parameter models in order to

identify the structural parameters of blades [18, 19]. More recently, identification methods based on ROMs

have been developed [20, 21, 16, 17, 22, 23, 24, 25].

The component mode mistuning (CMM) method developed by Lim [13] is used in this work, in which25

the mistuning identified for each blade is represented as the variation of the cantilevered blade frequency.

An experimental modal analysis is performed here on a mono-stage academic blisk in order to apply Lim’s

mistuning identification method. The frequency response function (FRF) is measured in terms of sensitivity

using a base excitation with an electrodynamic shaker and one measurement point per blade is acquired at

the tip of each blade with a laser vibrometer.30

The exact geometry of the academic structure is then measured by means of an optical geometry mea-

surement system, enabling to quantify the level of geometric mistuning [26]. Based on these optical data,

a finite element model of the structure is constructed and the FRFs of this model are compared to the

experimental FRFs.

This enables to quantify the relative importance of geometric mistuning compared to other sources of35

mistuning [27]. In this case, since the studied bladed disk is a one-piece structures, there is no welded

connections between the blades and the disk and the material properties can be assumed to be uniform.

Thus, the main source of additional mistuning for this structure is the clamping condition which can not be

perfect in practice.

2. Component mode mistuning (CMM) method40

Lim [13] developed in his thesis two distinct approaches: a general method involving large models and

potentially long computation times, and a simplified version of this method based on the work of Yang and

Griffin [28] and Bladh [7]. The second approach, which is known as Component Mode Mistuning (CMM)

method, is used in this work.
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This simplified approach may be considered assuming that the blade mistuning is small compared to45

nominal properties in the modal domain, and that the bladed disk has normal modes closely spaced in a

frequency range. The second assumption means that the tuned modes outside of the frequency range of

interest can be ignored in modelling the mistuned system.

The theoretical developments of CMM method are reminded for consistency. The equations of motion

in the physical space are given by50

Mẍ + Cẋ + Kx = f , (1)

where M, C and K are respectively the mass, damping and stiffness matrices, x is the displacement vector,

and f is the force vector. Equation (1) can be projected in the modal space using

x = Φ p , (2)

where Φ is the tuned mode-shapes matrix of the system (the number of retained modes in the Φ matrix is

noted m), and p is the modal coordinates vector:

ΦTMΦ p̈ + ΦTCΦ ṗ + ΦTKΦ p = ΦT f , (3)

or in the frequency domain, and considering a modal damping (γ is the damping coefficient),55

−ω2ΦTMΦ p + (1 + jγ) ΦTKΦ p = ΦT f . (4)

The mistuning is then introduced in the equations of motion. A small mistuning is considered here i.e.

the perturbation of the nominal modal properties of the system is small. This implies that the mistuned

mode-shapes can be expressed as a combination of tuned mode-shapes in the frequency range of interest.

Assuming that the mistuning is represented by a stiffness modification, the mistuned equations of motion

can be written as60

−ω2ΦTM0Φ p + (1 + jγ) ΦT
(
K0 + Kδ

)
Φ p = ΦT f , (5)

in which M0 and K0 represent respectively the tuned mass and stiffness matrix, and Kδ represents the

perturbation in the stiffness matrix due to mistuning. Then, considering that the mode-shapes are mass-

normalized, equation (5) becomes

−ω2 I p + (1 + jγ)
[
Λ0 + ΦTKδΦ

]
p = F . (6)

where I is the identity matrix, Λ0 is the generalized stiffness matrix, and posing F = ΦT f .
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Then, three assumptions are performed in CMM. First, the mistuning is considered to be located on the65

blades only and not on the disk, since a mistuning located on the blades is known to have a larger impact

than disk mistuning. This implies that matrix Kδ is non-zero only in the blade portion i.e.,

ΦTKδΦ =

N∑
i=1

Φi
TKδ

i Φi . (7)

where N is the number of blades, Kδ
i is the stiffness matrix restricted to the degrees of freedom of blade i

(i = 1, ..., N), and Φi is the matrix of tuned mode-shapes restricted to the degrees of freedom of blade i.

The second assumption in CMM is that the mode-shape matrix Φi of blade i is written as a superposition70

of cantilevered blade modes i.e.,

Φi = ΦCBQi , (8)

in which ΦCB is the cantilevered blade modes for the nominal blade and Qi is the modal participation factor

of ΦCB into the mistuned mode-shape of the blade’s degrees of freedom ΦM
i . Introducing equation (8) in

equation (7) leads to

ΦTKδΦ =

N∑
i=1

Qi
TΦCBTKδ

i ΦCBQi . (9)

The expression ΦCBTKδ
i ΦCB in equation (9) has off-diagonal terms. However, one tuned cantilevered75

blade mode is usually dominant if mistuning is small. Therefore, the expression ΦCBTKδ
i ΦCB is diagonally

dominant and the off-diagonal terms, which represent the coupling between cantilevered blade modes, can

be neglected. This third assumption enables to simplify equation (9) as

ΦTKδΦ =

N∑
i=1

Qi
T diagr∈R (λi,r) Qi . (10)

where R is the set of retained cantilevered blade modes and λi,r = ΦCB
r

T
Kδ
i ΦCB

r is the eigenvalue deviation

of the rth cantilevered blade mode of blade i. Introducing equation (10) in the equation (6), we have80

−ω2Ip + (1 + jγ)

[
Λ0 +

N∑
i=1

Qi
T diagr∈R (λi,r) Qi

]
p = F (11)

The computation of the participation factors Qi in equation (11) is performed by rewriting equation (8).

First, equation (8) is pre-multiplied by ΦCBTKCB , such as

ΦCBTKCBΦi = ΦCBTKCBΦCBQi . (12)
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or

ΦCBTKCBΦi = ΛCBQi , (13)

where ΛCB is a diagonal matrix containing the squared eigenfrequencies of the cantilevered blade modes.

Finally, the expression of the participation factor Qi can be written as85

Qi = ΛCB−1ΦCBTKCBΦi (14)

Using the two equations (11) and (14), the mistuned properties of the system can be computed for a

given mistuning pattern. All the needed input data can be retrieved from two finite element models:

• the finite element model of the tuned structure, which enables to retrieve the tuned mode-shapes

restricted to the blades degrees of freedom, Φi, and the eigenvalues of the tuned system in order to

obtain Λ0.90

• and the finite element model of the blade clamped at its basis, which enables to compute the can-

tilevered blade eigenvalues of in order to construct ΛCB , the cantilevered blade modes ΦCB , and the

cantilevered blade stiffness matrix KCB .

Reorganizing the terms of equation (11), we obtain

N∑
i=1

Qi
T diagr∈R (λi,r) Qi p =

1

(1 + jγ)

[
F + ω2Ip − (1 + jγ) Λ0 p

]
. (15)

Equation (15) is linear in λi,r. The number of unknowns is equal to the number of blades N multi-95

plied by the number of retained cantilevered blade modes NCB . Considering that m modes are measured,

equation (15) can be written as


Q1,1

TQ1,1 p1 Q1,2
TQ1,2 p1 . . . QN,NCB

TQN,NCB p1

Q1,1
TQ1,1 p2 Q1,2

TQ1,2 p2 . . . QN,NCB
TQN,NCB p2

... . . .
...

Q1,1
TQ1,1 pm Q1,2

TQ1,2 pm . . . QN,NCB
TQN,NCB pm




λ1,1

λ1,2
...

λN,NCB

 =

1

(1 + jγ)


F1 + ω2

1p1 − (1 + jγ) Λ0 p1

F2 + ω2
2 p2 − (1 + jγ) Λ0 p2

...

Fm + ω2
m pm − (1 + jγ) Λ0 pm

 (16)
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where pk, Fk and ωk, with k = 1, ...,m, are the data related to the kth measured mode, and Qi,r refers to

the rth lines of Qi. Moreover, if the frequencies ωk (k = 1, ...,m) are chosen to be the eigenfrequencies of

the system, the force vector Fk can be neglected. This group of equations can be divided in a set of real100

equations and a set of imaginary equations. Since the mistuning parameters are real, they can be obtained

by solving both set of equations.

3. Experimental test procedure

A simple test procedure is established, based on equation (16) of the CMM method.

1. A base excitation is used to excite the structure in the frequency range of interest. The response of105

the structure is measured on each blade with a laser vibrometer.

2. A stabilization diagram is constructed based on the FRF measured on each blade in terms of trans-

missibility.

3. The eigenfrequencies and mode-shapes can be retrieved using the stabilization diagram.

4. The modal coordinates p are computed based on the measured physical displacements xexp as

xexp = Φexp p (17)

where Φexp is a matrix that contains the tuned displacements of the measured degrees of freedom. If110

the matrix Φexp is not a square matrix (i.e. if the number of measured degrees of freedom per blade

is larger than m ∗NCB), the modal coordinates p are obtained by solving the least squares problem.

5. Since ω and p are known from the experimental tests, the unknowns in equation (16) are the λi,r and

the mistuning can be computed.

4. Presentation of the academic structure115

The structure considered here is an academic blisk of 24 sectors made of aluminum (Fig. 1(a)). It is

clamped at its basis as shown in Fig. 1(b), such that the boundary conditions respect the cyclic symmetry

property. The characteristics are given in Table 1, where the Young’s modulus was determined experimen-

tally.

In this example, the mistuning can be assumed to be small. Actually, the structure has a simplified120

geometry and the manufacturing tolerances are indeed of the order of 0.1 mm for blade length of 90 mm,

which results in a few percents of blade mistuning. This enables to satisfy the assumption of CMM.

A finite element model of the tuned structure has been constructed using the FE software LMS SAMTECH

SAMCEF [29]. The cyclic symmetry property has been applied in order to reduce the computational time

and resources. The finite element model, with its reference sector in dark gray, is shown in Fig. 1(a). The125

mesh totalizes 8 496 degrees of freedom per sector.
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Number of sectors (N) [-] 24

Young’s modulus [MPa] 72 340

Density [kg/m3] 2700

External diameter [mm] 420

Internal diameter [mm] 186

Thickness [mm] 5

Heigh [mm] 53

Table 1: Material and geometric properties of the academic structure.

X

Y
Z

(a) (b)

Figure 1: Full (360 degrees) finite element model of the academic structure with the reference sector in dark gray (a) and

clamping conditions (b).

Based on the finite element model, the SAFE diagram (Singh’s Advanced Frequency Evaluation diagram

i.e., the eigenfrequencies as a function of the number of nodal diameters), sometimes referred to as veering

diagram, is constructed. The maximum number of nodal diameters is N
2 = 12. Fig. 2 shows the SAFE

diagram restricted to the first family of mode i.e., the first bending modes of the blades (1B modes). The130

first family of modes is chosen in this work to apply Lim’s identification method because they respond at

low frequencies, so that they are more easily experimentally excited with a global excitation (base excitation

with a shaker), and this family is well separated from the other ones.

The range of frequency is 240 Hz (0 nodal diameter mode) to 320 Hz (12 nodal diameters mode). Despite

the fact that the modal density seems to be low in comparison to what may be observed on industrial blisks,135

the CMM method still can be applied because only perturbation in the stiffness matrix is considered and

the considered family is well isolated.

Then the clamped blade eigenfrequencies are computed. These are obtained by clamping the degrees of

freedom of the disk, as shown in Fig. 3. Only the first mode i.e., the 1B mode, is needed here. It has a

frequency of 407 Hz.140
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Figure 2: SAFE diagram of the academic structure restricted to the 1B mode family.
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Figure 3: Clamped sector.

5. Experimental vibration measurements

Experimental vibration tests on the academic structure are performed in order to retrieve mistuning of

each blade. The CMM method is applied to this purpose.

5.1. Test set-up

The academic structure and the test set-up are presented in Fig. 4. The structure is clamped at its basis145

with 24 fixation points (as shown in Fig. 5) in order to keep the cyclic symmetry: the academic structure

has 24 sectors and one fixation point per sector has been considered. A base excitation is applied using an

electrodynamic shaker in the axial direction (Z-axis). A laser vibrometer is used to measure the response of

the structure. An accelerometer measures the acceleration of the shaker in order to have the force injected

by the shaker. A periodic chirp is used to excite the structure, with a resolution of 0.02 Hz. The frequency150

range is 200 to 400 Hz i.e., the 1B modes. One measurement point is considered on each blade tip.
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Figure 4: Academic structure and test set-up.

Figure 5: Clamping of the structure with 24 fixation points.

5.2. Mistuning identification

Figure 6 presents the stabilization diagram obtained using the PolyMax method [30] available in the LMS

Test.Lab software [31]. The frequency band is [240-340] Hz, i.e. including all the peaks corresponding to 1B

modes. The obtained FRF for all measurement points are superimposed. For each peak, a corresponding155

frequency and mode-shape is computed with the PolyMax method. The frequencies of the all 1B modes are

given in Table 2.
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Figure 6: Stabilization diagram: 1B modes.

Frequency [Hz] Main harmonic [-]

245.5 0

249.1 - 249.7 1

254.7 2

264.9 3

276.2 4

288.6 5

300.1 6

310.0 7

317.8 8

323.7 9

327.5 - 328.0 10

330.0 11

331.6 12

Table 2: Eigenfrequencies of the 1B modes.
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The three 1B modes used for the identification process are the three first modes, at a frequency of 245.5,

249.1 and 249.7 Hz respectively, which are the most excited using the base excitation. Their mode-shapes

are respectively presented in Fig. 7(a), 7(b) and 7(c). The harmonic contents of both modes are presented160

in Fig. 8. In theory, if the structure was perfectly tuned, the first mode would be a 0 nodal diameter mode

(all the blades vibrating in phase), and the second and third modes are both 1 nodal diameter modes, with

the same frequency and orthogonal mode-shapes. However, due to mistuning, the mode-shapes differ from

perfect nodal diameter modes and the frequency of the two 1 nodal diameter modes separates. The first

experimental mode mainly looks like an umbrella mode since its main component is a 0 nodal diameter.165

The 1 nodal diameter’s harmonic also participates for this mode. The second retained mode has the 1

nodal diameter’s harmonic as main component. The 0 and 2 harmonics slightly participate too (a mistuned

mode-shape can be seen as a linear combination of tuned mode-shapes). The third retained mode also has

the 1 nodal diameter’s harmonic as main component. The 0 and 2 harmonics participate too. The second

and third modes are orthogonal.170
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Figure 7: Mode-shapes corresponding to the peaks at a frequency of 245.5 Hz (a), 249.1 Hz (b) and 249.7 Hz (c).
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Figure 8: Harmonic content of the mode-shapes corresponding to the peaks at a frequency of 245.5 Hz (a), 249.1 Hz (b) and

249.7 Hz (c).
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The CMM identification method is applied using the three first experimental modes as input data. The

obtained mistuning for each blade of the academic structure is presented in Fig. 9. A mistuning up to 7% is

found for blade number 12. These identified values are used in the following sections to correlate a numerical

model with the experimental results on the academic structure.
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Figure 9: Identified mistuning.

6. Optical measurement of the geometry175

The geometry of the structure is measured with a 3D camera [32]. The aim of these measurements is

to compare the mistuning due to changes in geometry induced by the manufacturing tolerances, with the

mistuning identified using vibration tests.

6.1. Test set-up

An optical geometry measurement system is used to obtain the geometry of each blade. The test set-up180

is shown in Fig. 10(a). The optical system is composed of a central Light Emitting Diode (LED) source

to illuminate the structure with a regular grid pattern projection. The distorted profile of the structure is

captured by two cameras on either side of the LED source and the projected shape is used to triangulate

surface coordinates. A series of picture are captured and merged together using common reference points.

These standard reference circles placed on the structure are shown in Fig. 10(b). The geometry of the185

structure can be retrieved with an accuracy of 50 µm [26].
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(a) (b)

Figure 10: Test set-up for the optical measurement of the geometry (a) and standard reference circles placed on the structure

(b).

Figures 11(a) and 11(b) show the precise profile of the upper and lower face of the structure respectively.

The profile is defined as the vertical deviation of the measured geometry compared to a horizontal plane

at an elevation of 0 and −5 mm respectively for the upper and lower face. The upper bound (red color)

represents the maximum vertical elevation of the points of the geometry compared to a theoretical plane190

(the plane of the reference tuned structure), and the lower bound (blue color) is the minimum value of

the elevation. A positive sign represents a point at higher vertical coordinate compared to its theoretical

position, and a negative sign represents a lower vertical coordinate of the point compared to its theoretical

position. The black curve on the left of the color bar shows the repartition of the elevation, between

−0.08 mm and 0.08 mm for the upper surface. The middle bound (green color) represents the theoretical195

value. The majority of the values are between 0.02 mm and −0.08 mm. For the lower surface, the scale

is between −0.08 mm and 0.1 mm. The middle bound (green color) represents the theoretical value. The

majority of the values are between 0.02 mm and −0.08 mm.

6.2. Construction of the finite element model

Based on the optical geometry measurement, a refined finite element model of the structure is constructed.200

In this finite element model, each sector has different shapes, the Young’s modulus remaining uniform for all

the structure. The data given by the optical geometry measurement system is a set of points of the envelope

of the structure. This set of points is presented in Fig. 12. The initial tuned mesh (i.e. the mesh with

exactly identical sectors) is modified by adapting the elevation of each node to follow the profile measured

by the optical system.205
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(a) (b)

Figure 11: Measured profile of the upper (a) and lower (b) face of the structure.

Figure 12: Set of points of the envelope of the structure given by the optical measurement system.

The eigenfrequencies and the corresponding mode-shapes are computed for the refined finite element

model. Figure 13 shows the three first mode-shapes (one point per sector is considered, at the tip of each

blade). The mode-shapes are normalized using the modal scale factor (MSF). Large differences are observed

between both mode-shapes. The MAC number is 0.9 for the first mode, and 0.7 for the second and third

modes but in a different order. Different sources can explain these differences, such as variations in the210

material properties, differences in the boundary conditions (in the finite element model, a perfect clamping

of the structure is assumed, but this assumption is not feasible in practice), ...
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Figure 13: Mode-shapes corresponding to the first (a), to the second (b) and to the third eigenfrequency (c).

7. Comparison of the frequency and geometric mistuning and update of the clamping condi-

tions

In order to update the model and to better match with the experimental data in terms of mode-shapes,215

the clamped blade eigenfrequencies of our model are compared to the mistuning identified experimentally,

as shown in Fig. 14. Differences are observed. Since the studied bladed disk is a one-piece structure, there

are no welded connections between the blades and the disk and the material properties can be assumed to be

uniform. The main remaining source of mistuning is the boundary conditions. Indeed, in the finite element

model, a perfect and uniform clamping of the structure is assumed, but this assumption is not feasible220

in practice. In order to update the finite element model, the perfect clamping condition is replaced by

springs, with a non-uniform stiffness for each sector, as illustrated in Fig 15. More particularly, the stiffness

of each blade is modified such that the square of the clamped blade eigenfrequencies matches with the

mistuning identified experimentally. Table 3 gives the values of the geometric mistuning and the ”clamping

mistuning” for each blade. The geometry mistuning is defined here as the variation in the volume of the225

blade compared to the mean volume. Both mistunings are of the same order of magnitude but the frequency

mistuning remains larger (up to 7 %).
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Figure 14: Mistuning identified experimentally (in gray) and clamped blade eigenfrequencies (in black).

Figure 15: Non uniform clamping conditions.

The new mode-shapes are given in Fig. 16. A good correspondence is obtained for the first three modes.

The MAC values between experimental and numerical mode-shapes are 1 for the three considered modes.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

Blade number [−]

N
or

m
al

iz
ed

 m
od

e−
sh

ap
e 

[−
]

 

 
Geometry +
clamping variations
Experimental

(a)

0 5 10 15 20 25
−0.5

0

0.5

Blade number [−]

N
or

m
al

iz
ed

 m
od

e−
sh

ap
e 

[−
]

 

 

Geometry +
clamping variations
Experimental

(b)

0 5 10 15 20 25
−0.5

0

0.5

Blade number [−]

N
or

m
al

iz
ed

 m
od

e−
sh

ap
e 

[−
]

 

 

Geometry +
clamping variations
Experimental

(c)

Figure 16: Mode-shapes corresponding to the first (a), second (b) and third (c) eigenfrequencies.
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Blade Geometry Frequency

number [-] mistuning [%] mistuning [%]

1 0.95 -3.40

2 1.02 -3.37

3 0.41 -0.47

4 0.40 0.45

5 0.79 1.72

6 0.77 2.75

7 0.52 3.67

8 0.05 3.63

9 0.37 4.34

10 0.08 5.03

11 -0.74 4.97

12 -0.56 7.26

13 -0.23 6.94

14 -0.49 5.45

15 -0.32 3.60

16 -0.42 4.29

17 -0.74 4.16

18 -1.13 3.14

19 -0.81 2.72

20 -0.44 2.31

21 -0.40 -3.53

22 0.35 -2.71

23 0.23 -4.81

24 0.35 -4.55

Table 3: Geometry and frequency mistuning.

The modification of the clamping conditions enables to improve the correspondence between the mode-230

shapes of the numerical model and the experimental data. The remaining error in blade mistuning using

the updated numerical mode-shapes is 3 %. This work enables to conclude that the mistuning of blade can

be determined experimentally, and this identified mistuning has two main sources: the geometry variations

between the different sectors which are due to the manufacturing tolerances, and the clamping conditions

which differ from the perfect clamping conditions usually used in the finite element models.235

18



8. Conclusion

The mistuning of an academic bladed structure has been identified experimentally by using the com-

ponent mode mistuning method. A base excitation with an electrodynamic shaker was used to excite the

structure in the frequency range of interest and the response was measured on each blade by use of a laser

vibrometer.240

The main source of mistuning for this structure is the geometric variations of each sector due to the

manufacturing tolerances. Indeed, since the bladed disk is a one-piece structure, there is no welded connec-

tions between the blades and the disk and the material properties can be assumed to be uniform. An optical

geometry measurement system was used in order to retrieve the exact profile of each blade. This enables to

determine the mistuning of each blade due to variations in the geometry. Differences have been observed245

between the identified mistuning and the geometric mistuning. These differences may be attributed to non

uniformities in the clamping conditions.

Both sources of mistuning have been quantified. It was found in this example that both geometric

mistuning and clamping non uniformities are of the same order of magnitude (1.2 and 7 % respectively).

Depending of the structure, the relative importance between the different sources of mistuning can change.250

The indirect mistuning induced by clamping conditions can be reduced by modifying the test set-up to

tend to the perfect clamping conditions, for example by adding a steel plate at the center of the structure.

It would allow reducing the effect of the clamping conditions, but would not be representative of actual

boundary conditions. In practice, connections between the blades and the disk, wear during use, or material

non uniformities are additional sources of indirect mistuning.255

Since numerous factors induce mistuning in the structure, the experimentally identified mistuning can

therefore differ from the actual mistuning of the structure in real conditions. Consequently, this work

evidences the importance of characterizing the level of mistuning induced during the manufacturing and

assembly processes and the interest of using probabilistic approaches since the knowledge of the exact

mistuning is illusory. Probabilistic approaches enable to evaluate the sensitivity of the amplification of the260

forced response with respect to small changes in the considered mistuning.
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