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Abstract

In this paper we develop a novel valuation model and methodology to value a pharmaceutical

R&D project based on real options approach. The real options approach enables the possibility

of optimally abandon the project before completion whenever the investment cost turns out to be

larger than the expected net cash flow stream. On the other hand, the proposed model accounts

for two different sources of uncertainty, those are technical and economic risk. This model incor-

porates a novel economic state vector where each economic state captures the interaction among

different market and economic forces using Fourier series as the particular basis for the economic

function space. In this sense, Fourier series are considered as an aggregate of forces playing a

relevant role in the process evolution determining the cash flow structure and also allowing us to

properly define an economic scenario where the project will be developed.
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1 Introduction

The pharmaceutical industry is one of the most dynamic and research-intensive industries in the

world. One distinctive characteristic of this sector is the high level of investment in research and

development, in fact the pharmaceutical industry has one of the highest R&D budget to sales revenue

ratio across industries. The aim of this paper is to provide a comprehensive tool and methodology to

value an R&D project considering that it is subjected to technical and economic uncertainty. Here

we focus the attention on pharmaceutical R&D projects, however the model and methodology used

can be easily extrapolated to any industry, say for instance mining projects.

Developing a new medicine is a challenging endeavour and the chances of success are extremely

low, there are several complex forces, both economic and technical, governing the drug development

process that are not entirely understood. The first obstacle arises during the early discovery stage

when the company has to wisely assign the appropriate amount of both financial and scientific

resources. Although the total cost to develop a new medicine varies from one to another it heavily

depends on the kind of compound used, the drug under development, and the likelihood of failure. In

terms of time to completion, a pharmaceutical R&D process can take, roughly speaking, between ten

to fifteen years since the early-stage discovery of a new compound up to the marketing approval and

market launch of the product, again it heavily depends on the drug or treatment. For some innovative

drugs or treatments both cost and time to completion are a significant source of uncertainty and

constitute the cost of innovation. On the other hand, many “new” medicines or treatments are just

improvements on existing drugs, in this case the cost and time to completion are quite standardized

and, although there is some uncertainty, the R&D financial and technological cost is considerable

lower.

The pharmaceutical market is extremely complex and has divided the public opinion in several

controversial topics such as animal testing, drug prices, lack of research interest for certain diseases,

public funding, and so on. As any other private company, pharmaceutical companies are ultimately

focused on increasing shareholder value. The public perception that privately research funding

is solely motivated by profit has increased the friction between shareholders’ return expectations

and the public notion of fairness. On this regard, it is important to point out that no matter

how big a pharmaceutical company is, it can only cover a small portion of breakthrough R&D

projects. Therefore, most pharmaceutical companies have to choose with financial wisdom each

project because simply they cannot afford to invest when the affected population is too poor to buy

the drug or the market niche is just too small to achieve a reasonable return on the investment.

Recently, the 2014 Ebola outbreak has revealed the lack of resources and effort assigned to fight

this virus while it was limited or contained within the African border, and the increased interest

when the virus crossed the European and American border and “opened a new market”. In this
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paper we are not going to discuss such controversial ethical issues, however our proposed model

incorporates a novel economic state vector where each economic state captures the interaction among

different market and economic forces using Fourier series as the particular basis for the economic

function space. Hence, our model can be used to depict any extreme economic situation and properly

value an R&D project targeting such market. Furthermore, since most drugs introduced by the

pharmaceutical industry are developed with some contribution from the public sector, see for instance

Cockburn and Henderson (2000), our model can be used to determine the appropriate amount of

taxpayer’s money to allocate in a specific project. On this regard, it is worth to mention that public

opinion is a strong force which can heavily affect the project value, its effects can also be modelled

with the appropriate terms in the Fourier expansion.

The objective of this paper is to provide a powerful and flexible valuation model and technol-

ogy accounting for technical and economic risk and considering all those relevant forces playing a

significant role in the project valuation and decision making process. The remainder of this paper

is structured as follows: Section 2 is devoted to literature review. In Section 3 we identify those

economic risk factors affecting the Pharmaceutical return process, and we also disentangle the in-

teraction across factors via spectral analysis. Section 4 presents the valuation model, technicalities,

and implications. In Section 5 we illustrate the numerical implementation of the posited model

and methodology, we perform a sensitivity and stress test analysis to determine the response of the

model to different scenarios. Finally, in Section 6 we make some concluding comments.

2 Literature review

There is a vast amount of literature based on real options and its application to R&D. Most of

the academic literature based on real option valuation consider as exogenous variable the value of

the project conditional to the successful completion of the research and development phase. For

instance, Madj and Pinduck (1987) use a Geometric Brownian motion process to model the time

evolution of the project’s market value. The authors show that the arrival of new information might

lead the firm to depart from the spending scenario originally planned, and conclude that traditional

discounted cash flow criteria do not capture the managerial decision flexibility and for that reason

are inadequate to properly value projects where the spending decisions and cash outlays occur

sequentially over time, there is a maximum rate at which outlays and construction can proceed, and

the project yields no cash return until it is actually completed. Furthermore, assuming that the

gross project value follows a Geometric Brownian motion, Trigeorgis (1993) analyses the valuation

of flexible capital budgeting projects with a collections of real options and examines the interactions

among these options identifying situations where option interactions can be small or large, negative
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or positive. Pennings and Sereno (2011) value a compound R&D option assuming a geometric

Brownian motion process for the underlying value of the project and considering a Poisson random

variable to depict the technical failure probability.

On this regard, our approach is closer to the work of Berk et al. (2003) and Schwartz (2004)

where the cash flows from the R&D project are modelled. In more detail, Berk et al. (2003)

develops and analyses a single R&D investment project modelling the cash flows from the project

with two stochastic processes, one of them tracking any possible catastrophic event and the other

process modelling the conditional cash flows the project would have produced if it were completed.

The authors assume that the cash flows last forever allowing them to value the completed project

using a continuously compounded version of the growing perpetuity formula. On the other hand,

Schwartz (2004) implements a simulation approach to value patents and patent-protected R&D

projects assuming two stochastic differential processes, one of them for the cost-of-completion and the

other for the cash flows generated from the project, and introduces the probability of any catastrophic

event with a Poisson probability. In this paper we consider the net cash flow as the underlying

variable, however since this variable takes into consideration the production and marketing cost it

could yield a negative cash flow stream. Therefore, we assume that the net cash flow of a successful

project is given by an Arithmetic Brownian motion process plus a time dependent component depicts

by the Fourier series. On this regard, Copeland and Antikarov (2001, Chapter 5) claim that cash

flow streams, and thus present values, can be negative. Accordingly, Alexander et al. (2012) assume

that the project’s value does not necessarily remain positive during the whole project’s life and

model the intrinsic value of the project with an Arithmetic Brownian motion process which allows

the underlying to become negative. Under this assumption, the authors find analytical formulas for

European calls and puts on dividend-paying assets and provide a numerical algorithm for American-

style options based on an Arithmetic Brownian motion process. It is worth point out that in this

paper we model the stochastic process with an Arithmetic Brownian motion because we intentionally

decided to model the net cash flow as the underlying variable, however the methodology applied here

can be easily extrapolate to any other underlying variable following a Geometric Brownian motion

or a mean reverting process.

An important feature of R&D projects is the uncertainty related with the cost to completion,

for an in-depth look of this topic see, for instance, Hansen (1979), DiMasi et al. (1991), and

particularly DiMasi et al. (2003) where the authors perform a thoroughly study of the research

and development cost of 68 randomly selected new drugs of 10 different pharmaceutical companies

and provide an estimate of the costs of pharmaceutical innovation. Also, Pindyck (1993) studies

investment decisions when the project is subjected to two different sources of uncertainty, technical

uncertainty and cost uncertainty. In this case, the author concludes that, although the sources and
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amounts of cost uncertainty greatly varies across projects, cost uncertainty has a deeper impact than

technical uncertainty in terms of its effect on the investment rule and the value of the investment

opportunity.

Further relevant literature about real option valuation includes, Childs and Triantis (1999) who

examine dynamic R&D investment policies and the valuation of R&D programs in a contingent

claims framework. The authors study the interaction between multiple R&D projects cash flows

and analyse how the firm may alter its funding policy over time. Smith and Nau (1995) compare

the risk-adjusted discount-rate analysis, option pricing analysis, and decision analysis approaches

for valuing risky projects. Posner and Zuckerman (1990) determine the optimal stopping time of an

R&D project and characterize the expenditure strategy assuming a random R&D decision model

without rivalry. McDonald and Siegel (1986) compare the optimal timing of investment for certain

alternative combinations when the future net cash flow follows a Geometric Brownian motion pro-

cess with and without jumps, and the cost of installation is fixed or stochastically modelled with

also a GBM process. Gamba and Trigeorgis (2007) implement a multi-dimensional binomial algo-

rithm for valuing options whose payoff depends on N-dimensional state variables following correlated

Geometric Brownian processes.

3 Pharmaceutical industry and economic risk factors

Economic forces not only affect the number of investment opportunities available in the Pharmaceu-

tical industry but also play a key role in the cash-flow determination of a successful R&D project.

Consequently, economic uncertainty represents an essential risk factor affecting Pharmaceutical stock

returns. This section is devoted to identify those economic risk factors driving the stock return pro-

cess and the risk premium associated with each individual factor.

There is a vast number of economic risk factors with a potential impact in a Pharmaceutical

company. For the sake of simplicity, in this paper we analyse two major forces. Firstly, as discussed

in Fama and French (1989) the term yield spread (TYS) tracks the business cycle, therefore it

constitutes a relevant force to be considered in the analysis. The TYS is computed as the yield

difference between 10-year and 3-month Treasury constant maturity provided by the Federal Reserve

database. As for the second force proxy we employ the VIX index, provided by the Chicago Board

Options Exchange CBOE, which is considered as the barometer of investor sentiment and market

volatility. As will be the case, each of these time series might arise as the interaction of factors with

different characteristics, in particular, the interaction of factors with different periods. In order to

disentangle this interaction, we perform an spectral analysis of each time series and we search for

those factors with higher spectral density.
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Figures 1 and 2 present the demeaned TYS and VIX series, respectively, and the corresponding

spectra.a As for the TYS series, the spectrum reveals four dominant frequencies driving the process,

those frequencies are 0.0302, 0.1209, 0.1813, and 0.4231, indicating a period of 33, 8, 5.5, and 2.4

years, respectively. The business cycle is normally associated to a period of 8 years, not surprisingly

the highest power spectral density corresponds to this frequency. Moreover, there is a second spectral

peak at the frequency corresponding to the 5.5 years period. This period may be associated to the

Kitchin cycle which accounts for time lags in information movements, for further information about

the Kitchin cycle we refer to the original paper Kitchin (1923). As for the other two frequencies, the

power spectral density still stands out from the noise but the relevance decreases, in any case the

underlying frequencies reveal a long run and a short period of 33 and 2.4 years, respectively.

On the other hand, the spectrum associated with the VIX series presents a not well defined peak

at a rather short frequency. In fact, the full width at half maximum (FWHM) goes from 0.06 to

0.185 frequency, that is a period ranging from 5.4 to 16.5 years.

[FIGURES 1 and 2 AROUND HERE]

In order to replicate the TYS and VIX series we consider a Fourier series with four and one term

in the expansion, respectively, that is

FSTY S(t) = A1 · cos (2πf1 · t+ φ1) +A2 · cos (2πf2 · t+ φ2) +A3 · cos (2πf3 · t+ φ3)

+A4 · cos (2πf4 · t+ φ4) (1)

f1 = 0.0302; f2 = 0.1209; f3 = 0.1813; f4 = 0.4231

FSV IX(t) = B1 · cos (2πg1 · t+ ϕ1) (2)

and we search the estimates for the parameters by solving the following non-linear optimization

problem

min
(

SR θ̂TY S

)

=
∑

t

(

Term Yield Spreadt − FSTY S(t)

)2

(3)

min
(

SR θ̂V IX

)

=
∑

t

(

VIXt − FSV IX(t)

)2

(4)

Since the VIX’s spectra does not provide a well define peak, we estimate the frequency imposing

a boundary condition to the FWHM space, that is g1 ∈ [0.06, 0.185]. Tables 1 and 2 provide the

parameters estimates.

aWe analyse the demeaned series in order to avoid a spectral peak at the zero frequency
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[TABLES 1 and 2 AROUND HERE]

Figures 3 and 4 show the time evolution of the demeaned TYS against the Fourier series with

two and four terms in the expansion, respectively. Figure 5, on the other hand, presents the time

evolution of the demeaned VIX against the Fourier series with only one term in the expansion.

[FIGURES 3 to 5 AROUND HERE]

Hence, we identify each term in the Fourier expansion as a possible factor in the determination

of the excess of return. In order to test the relevance and the premium associated with an individual

factor we will use the Fama-MacBeth test proposed by Fama and MacBeth (1973). The two stage

Fama-Macbeth regression estimates the premium rewarded to a particular risk factor exposure, that

is, how much return you would expect to receive for a particular beta exposure to that factor. The

first stage regressions are a set of time series regression of each asset or portfolio’s return on the

factors, that is

rei,t = αi +
∑

j

βi,j · Fjt + ǫit (5)

where rei represents a t×1 vector of excess of returns, Fjt is a t×j matrix of factors, βj,i represents

a j × 1 vector of factor loadings, αi is the intercept, j and i represent the number of factors and the

number of assets or portfolios, respectively. This regression reveals to what extent each asset’s or

portfolio’s return is affected by each factor.

The second stage regressions calculate the premium rewarded to each factor exposure following

a set of cross-sectional regressions

reit = λ0t +
∑

j

λjt · βij + ηit (6)

where the independent variables, βij , are always the same for every regression, each λtj is a t× 1

vector of factor premium, and λ0t is the intercept. Note that for each factor we have a time series

of factor premium where the t-statistic is calculated as follows

λ̄j

σ̄j/
√
T

(7)

where λ̄j and σ̄j represent the mean and standard deviation of each factor premium and T is the

length of the time series.

First, we analyse the premium associated to each individual factor by itself. Table 3 presents

the estimated premium and significance of each factor individually. Results reveal that, in this

analysis, the risk factor of 33 years period is the only factor where the null hypothesis cannot be
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rejected (H0 : λ = 0). Furthermore, in Table 4 we analyse the four factors associated with the

TYS and the factor associated with the VIX series all together, and also different combinations of

factors. We can see that, systematically, the null hypothesis cannot be rejected for the 33 years

period factor, which indeed cannot be consider as a relevant factor. In contrast, factors with period

5.5 and 2.4 years consistently deliver significant premiums for most factor combinations. On the

other hand, an interesting analysis arises regarding those factors with 8 and 10 years period. We

can see that both factors provide significant premiums when they are analysed individually, however

when we incorporate further factors in the analysis the significance level decreases. Indeed, this may

be indicating some sort of cointegration between factors. To sum up, in terms of asset valuation,

we can see that the three factors basket composed of λ2, λ3, and λ4, that is the factors with the

underlying period of 2.4, 5.5, and 8 years, provides a combination where all three premiums rewarded

are statistically significant at least at 10%.

[TABLES 3 and 4 AROUND HERE]

4 R&D valuation model

Consider, for instance, a pharmaceutical R&D project for the development of a new drug. The very

nature of such project and the potential impact on human health make the pharmaceutical industry

quite unique and risky. There are several strict and well regulated stages since the early-stage drug

discovery up to the marketing approval and market launch of the product. Figure 6 presents an

illustrative schedule of a generic pharmaceutical R&D project.

[FIGURE 6 AROUND HERE]

The overall project’s life can be divided into two mayor phases, firstly the research and develop-

ment phase and secondly the market phase. During the early-stage of the research and development

phase, a new compound which may potentially derive into a marketable drug is either discovered

or designed. Once the compound is successfully identified as a potential drug and synthesized the

project moves to the next stage. During the preclinical and clinical development the drug must

successfully complete a number of well regulated stages. Firstly, the preclinical stage covers the

laboratory and animal testing, and it is normally during this stage when the company applies for a

patent. If and only if the drug successfully completes the preclinical stage, it accesses the clinical

stage which can be divided into clinical phase I, II, and III. During the clinical phase I, the drug

or treatment is tested in a small group of healthy volunteers in order to determine the safe dosage,

evaluate its safety, and to identify possible side effects and toxicity. During the clinical phase II, the

drug or treatment is tested on a relative large group of subjects (100-300) with the condition that
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the drug is intended to treat in order to further evaluate its safety and efficacy. Finally, the clinical

testing phase III consists of large scale trials, usually a few thousands, to confirm the safety and

efficacy of the drug or treatment and to further monitor possible side effects. The final stage in the

research and development phase is the marketing approval, once again if and only if the drug has

successfully completed each and every preceding stage, the regulatory authority decides whether the

drug is approved for patient use or not. If the marketing approval is granted the project moves to

the market phase where the appropriate marketing strategy should be established and the product

is market launched.

During the patent’s life, the company is entitled to a set of exclusive rights protecting the project

from market competitors for a limited period of time. However, market competition is not the only

force that jeopardises the successful completion of the project. It is well established in the literature,

see for instance Brealey and Myers (2000), that an R&D project faces two different sources of risk,

those are the economic and technical risk. Technical or technological risk takes into account the

inherent uncertainty about the successful completion of each stage during the drug development

phase, for instance, an extreme side effect during the clinical testing would lead to a failure event.

On the other hand, economic risk deals with both market uncertainty such as sales volume, pricing

levels, market competitors, and other economic factors such as interest rates, inflation, growth rate.

Indeed, in order to effectively value these sort of projects we have to be able to properly capture

both sources of risk at the appropriate time.

4.1 Technical uncertainty

Technical or technological risk is the primary source of uncertainty during the drug development

process, in fact, most drugs undergoing the preclinical and clinical stage do not obtain the regulatory

authority’s approval. Since each stage must be preceded by the successful completion of the previous

one, the failure of one stage produces the overall project termination. On the other hand, we

assume that once the drug successfully passes the preclinical and clinical test and finally achieves the

regulatory authority’s approval technical risk virtually vanishes. On this regard, it is widely spread

the use of a Poisson process to model technical or technological risk (see for instance Pennings and

Sereno (2011), Schwartz (2004), among others). The Poisson probability mass function (pmf) is

given by

f(k;λ) =
λke−λ

k!
(8)

where λ > 0 is the Poisson parameter, and k = 0, 1, 2, ...,∞ defines the number of events.

Generalizing k = 1, 2, ...,∞ as any possible technical event and k = 0 as no technical event, we have

that
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Probability of success = e−λ (9)

Probability of technical failure =

∞
∑

k=1

λke−λ

k!
= 1− e−λ (10)

Hence, the expected project value conditional to technical risk is given as

E [Vt|Technical Risk] = Vt(k = 0) · e−λ + Vt(k = 1, 2, ...,∞) ·
(

1− e−λ
)

(11)

where

• Vt(k = 0) is the value of a successful project

• Vt(k = 1, 2, ...,∞) is the residual value of a failing project

Note that a failed project might increase the stock of knowledge of the company. However, it is

common use to assume that the outcome of a failure is a worthless project. Under this assumption,

technical risk can be consider as a premium over the risk free rate and during the development

process the discount factor is given by e−rdt = e−(r+λ)t, where λ represents the annual rate of failure

and r the risk-free rate. Note that, as stated above, technical risk vanishes after the regulatory

authority’s approval, hence this premium is only valid during the drug development phase.

4.2 Economic and market uncertainty

So far things are fairly easy but we have only dealt with technical risk. Economic risk takes into

account those factors affecting market conditions, not determining the successful completion in

technological terms but defining the cash flow structure of a successful project which gives rise

to the project’s abandon option. In this fashion, economic risk not only comprehends macro and

microeconomic figures but also certain project specific forces and circumstances driving the cash

in and out flow, for instance an outbreak of influenza would drive an increase in market sales for

those specific medicines or the 2014 Ebola outbreak that pushed the use of the experimental drug

“ZMapp” in humans. Note that we have intentionally used the sentence “successful project”, that

is because we have divided the project into two mayor phases, the research and development and

the market phase. As stated above, during the research and development phase technical risk is the

dominant source of uncertainty and it vanishes as the drug successfully overcomes every single stage

in the development process and finally achieves the corresponding approval, those projects reaching

the market phase are the “successful projects”. Once the drug reaches the market phase, there are

several forces playing a significant role and we have called this source of uncertainty economic risk,

however it is important to remember that only a “successful project” will face economic risk.
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We can easily realise that measuring economic risk is not a trivial endeavour, in fact, creating

a framework where every force affecting the project is considered is literally impossible. On this

regard, it is common use to model the evolution of the project or the evolution of the cash flow as

a stochastic differential equation

dCt = µ(C, t)dt + σ(C, t)dW (12)

where the process can take the form of a Geometric Brownian motion, Arithmetic Brownian

motion, or an Ornstein-Uhlenbeck process. We can also find a more realistic and sophisticated

framework, as the one proposed by Schwartz (2004), where the author models both the cash flow

and the cost of completion with a stochastic differential equation.

As long as we stick with one stochastic factor, all these models share that the only source of

uncertainty comes from a random walk weighted by σ(C, t), that is the diffusion term.b It seems

fairly obvious that a simple diffusion model cannot account for a realistic variety of forces playing

a key role during the project’s market phase. In particular, neither of these models can properly

account for any seasonal component which, for instance, plays a primary role in the outbreaks of the

flu, plus neither consider the effect of the business cycle nor any other relevant force. At this point

it is worth to wonder whether such models are an oversimplification and which forces do really make

an impact in terms of project valuation. Of course there is not one right answer, each project must

be analysed in excruciating detail to determine the appropriate set of relevant forces, but it seems

fair to conclude that a simple diffusion model is just a naive simplification of the market structure.

In what follows we consider that the net cash flow stream, Ct, of a successful project is given

by a latent variable, Yt, depicted by an Arithmetic Brownian motion process plus a time dependent

component described by the Fourier series, that is

Ct = f(t) + Yt (13)

dYt = µdt+ σdWt (14)

f(t) = Fourier Series (15)

where {(µ, σ) ∈ R}. Note that, applying Ito’s lemma to equation [13] the net cash flow dynamic

is depicted by

dCt =

(

µ+
df

dt
(t)

)

dt+ σdWt (16)

bThe option pricing literature is very fructiferous in terms of models with two, or even three stochastic factors, see

for instance Chen 1996
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The net cash flow stream takes into consideration the production and marketing cost, in con-

sequence it could yield a negative rate, thus an Arithmetic Brownian motion process is a suitable

representation of the underlying process. Under this framework, the solution of the underlying pro-

cess and the net cash flow at any given time t, under the risk neutral probability P
Q, is represented

by

Yt = Y0e
rt + σ

∫ t

0
er(t−s)dWQ

s (17)

Ct =

(

C0 − f(0)

)

ert + f(t) + σ

∫ t

0
er(t−s)dWQ

s (18)

where WQ
t is a standard Wiener process under the risk-neutral measure P

Q.

In the same fashion as in Schwartz (2004), the cash flow stream starts when the R&D project

is market launched, before this stage the process describes the net cash flow that the project would

have produced if it were successfully completed. Once the medicine or treatment is market launched

the value of the project depends exclusively on the net cash flow generated. Hence, using the

Merton (1973) no-arbitrage technique the project value, V (Ct, t), must satisfy the following partial

differential equation

∂V

∂t
+ rC

∂V

∂C
+

σ2

2

∂2V

∂C2
− rV = 0 (19)

subject to the appropriate terminal condition V (C, T ), where T represents the patent expiration.

The novel component in this model is the ad hoc incorporation of the Fourier series, f(t), ac-

counting for any economic, market, and specific force affecting the project and not captured by the

underlying stochastic differential equation. In this sense Fourier series should be considered as an

aggregate of forces playing a relevant role in the process evolution and determining the cash flow

structure. Note that Fourier series provides a great deal of flexibility as, by Carleson’s theorem, it

converges almost everywhere for a L2 function. Therefore, f(t) allows us to properly define a sce-

nario where the project will be developed, such scenario is tailor made based on the characteristics

of each project, the influence and exposure to certain forces, and so on. On this regard, we might

not have a precise ex-ante projection of such scenario, for instance, we might know that the business

cycle represents a risk factor but we might not know how deeply it affects the cash flow stream.

Hence, let us represent the economic uncertainty by the state vector

Φ(j) with j ∈ N (20)

where each state defines a case scenario depicted by a concrete selection of terms in the Fourier

expansion and represents the aggregate of forces. It is important to stress out that a state scenario
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does not attempt to replicate a precise future outcome but rather establishes an alternative future

development. Each state determines the cash flow structure of a successful project and consequently

the managerial decision of ceasing or continuing the project. Thus, the expected patent value

conditional to a certain economic state is given as

V
(

t, Ct, It; Φ
(j)

)

= E
[

V |Φ(j)
]

with j ∈ N (21)

where Ct and It represent the net cash flow structure once the drug obtains the marketing

approval and the investment structure during the research and development phase, respectively.

Note that the conditional patent value is constrained to the future development of certain state,

which of course is uncertain. Therefore, since Φ is defined as a discrete state vector, an essential

piece of the puzzle is the appropriate definition of its mass probability function. On this regard,

Huchzermeier and Loch (2001) define a one-dimensional parameter i to model the product perfor-

mance. The authors claim that this performance may unexpectedly improve with probability p, or

it may deteriorate with probability (1 − p) and they generalize the binomial distribution by allow-

ing the performance “improvement” and “deterioration” over N performance states. We can easily

accommodate a similar probability mass function defining two states in the economic state vector,

that is, j = 1, 2. However, as stated above, each state represents the aggregate of forces acting over

the project, and therefore is very project specific, so we will implement a rather Bayesian approach

and assign a prior probability to each scenario. Note that each state can be defined in several ways,

we can tailor made it based on our own expectations, we can define it based on analyst expectations,

and so on. Hence, let us define the state vector probability mass function in general terms as

g
(

Φ(j)
)

= Pr
(

Φ = Φ(j)
)

= pj (22)

where pj represents the probability that the state Φ(j) turns out real. Hence, under this frame-

work the patent value is determined by

Patent Value =
∑

j

V
(

t, Ct, It; Φ
(j)

)

· g
(

Φ(j)
)

(23)

4.3 Risk premia and risk factors

We have already stated that during the research and development phase the dominant source of

uncertainty comes from technical or technological risk. Following a similar approach as Pennings

and Sereno (2011) and Schwartz (2004), we have used a Poisson process to account this source of

risk. We have also pointed out that technical risk can be considered as a premium over the risk-free

rate, for that reason during this stage the discount factor yields e−rdt = e−(r+λ)t. However, we have
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assumed that during the market phase the drug has already achieved the marketing approval and

there is no technical uncertainty. Then, technical uncertainty vanishes, economic and market risk

are the dominant sources of uncertainty and the instantaneous expected rate of return of the project

is given as

E[rp] =
∑

j

E

[

dCt

Ct

|Φ(j)

]

· g
(

Φ(j)
)

(24)

Under our model representation the cash flow streams start once the drug is launched and the

net cash flow process of a successful project is given by a latent Arithmetic Brownian motion process

plus a time dependent component depicts by the Fourier series, just as given by equations [13] to

[15].

Let us assume that the excess of return of a pharmaceutical company, that is the premium over

the risk free rate, is a function of the return on every active project. Hence, we can define it as a

function of those economic forces driving each project cash flow process, that is

ret = F
(

f (j,i)(t); Φ(j)
)

(25)

where f(t) is given by equation [15], i represents each active project, and j represents each state

in the economic state vector. Note that equation [25] cannot be considered just an aggregate of

equation [24] for several reasons, for instance, there may be a non-linear interaction or synergy across

projects, there may be a project financed with a government grant, or simply those economic and

market forces may affect with different intensity different projects, in this sense it seems reasonable to

assume that the business cycle has a deeper impact over aesthetic medicines than cancer treatments.

Further information about project interactions can be found in Loch and Kavadias (2002) where

the authors develop a dynamic model of resource allocation taking into account multiple project

iterations.

5 Numerical results

This section is devoted to illustrate the numerical implementation of the posited model and method-

ology. Let’s assume that the research team has already identified a compound which may potentially

be used to engineer a new diabetes medication. At this stage the Board has to face the first abandon

option, that is, they have to decide whether this project constitutes a valid investment opportunity

and apply for a patent protection or drop it before going any farther into the development phase.

For the sake of simplicity, let us assume that there is no uncertainty about the time and cost to

completion if the project successfully overcomes every stage in the development process. Note that

most of the investment cost is spent to develop the drug and it can also be modelled stochastically,

13



see for instance Schwartz (2004). However, we prefer to keep the numerical example as simple as

possible and focus the attention on economic and market uncertainty rather than development is-

sues, although a stochastic process for the cost and time to completion could be easily implemented.

According to the “Tufts Center for the Study of Drug Development” (see DiMasi et al. 2014), the

total out-of-pocket cost per approved new compound is about 1.400 Millions (in 2013 $). Based on

this information, Table 5 summarises the representative out-of-pocket investment cost and schedule

by year.

[TABLE 5 AROUND HERE]

5.1 Technical uncertainty

In the previous section we have established that during the development phase the project can

either fail or be abandoned. Technical risk accounts for the probability of a failure event due to

a technical or technological reason within the development phase, and we have generalized the

Poisson distribution allowing for the probability of success and technical failure. According to the

“2015 biopharmaceutical research industry profile” report, provided by PhRMA, the average time

to develop a drug is about 10 years and the percentage of drugs entering clinical trials resulting in an

approved medicine is less than 12 %. Hence, assuming that only 12 % of such projects successfully

overcome every stage in the development phase and a development period of 10 years, the annual

rate of failure is given as

e−10·λ = 0.12 (26)

λ = 0.2120 (27)

We have also assumed that the outcome of a failure is a worthless project, hence, during the

development process the discount factor is given by e−rdt = e−(r+0.2120)t, where r represents the

risk-free rate.

5.2 Economic and market uncertainty

We have determined that the net cash flow stream from sales revenues, marketing and production

cost starts when the medication gets the marketing approval and it is launched, which is expected to

occur on period 10. Let us assume that the patent will be granted in 4 years for a limited period of

20 years. When the patent expires market competition forces sales to virtually zero, meaning that

based on the schedule the company can only benefit from this project for 14 years starting at market

launch. This assumption generates the boundary condition, V (T ) = 0, on equation [19], where T
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represents the patent expiration. Furthermore, in section 3 we have performed a Fama-MacBeth

test and we have identified the economic risk factors driving the valuation process, those are the

factors with period of 2.4, 5.5, and 8 years, and we have estimated the parameters in the Fourier

expansion as given in Table 1. Note that the parameters defining the behaviour of the economic

force, and hence of each factor, are the frequency (f) and the phase (φ) parameter. On the other

hand, the amplitude parameter defines the intensity of such force or cycle over the net cash flow

stream, indeed a project dependent parameter.

Let us define three states in the economic state vector, each of them will represent an economic

benchmark determined by the top-3 best selling diabetes medicines commercialized by American

Pharmaceuticals, these are

• Φ1 : g
(

Φ1
)

= 1/3 ⇒ Scenario 1: Januvia (Merck & Co., Inc.)

• Φ2 : g
(

Φ3
)

= 1/3 ⇒ Scenario 2: Janumet (Merck & Co., Inc.)

• Φ3 : g
(

Φ2
)

= 1/3 ⇒ Scenario 3: Humalog (Eli Lilly and Company)

Figure 7 presents the quarterly sales revenue from 3Q-2009 to 1Q-2015 of each medicine. For

each state, we consider that the initial cash flow parameter, C0, in equation [18] is given by the sales

revenue at time 3Q-2009, and we proxy the volatility, σ, by the standard deviation of the process,

hence

Φ1 ⇒ C0 = 490 Million$ and σ = 200 Million$ (28)

Φ2 ⇒ C0 = 173 Million$ and σ = 115 Million$ (29)

Φ1 ⇒ C0 = 500 Million$ and σ = 75 Million$ (30)

[FIGURE 7 AROUND HERE]

Moreover, considering the three economic risk factors defined in Section 3, we defined the Fourier

component in equation [15] under each state scenario as follows

f(t | Φ1) = Â1
0 + Â1

2 · cos (2πf2 · t+ φ2) + Â1
3 · cos (2πf3 · t+ φ3) + Â1

4 · cos (2πf4 · t+ φ4) (31)

f(t | Φ2) = Â2
0 + Â2

2 · cos (2πf2 · t+ φ2) + Â2
3 · cos (2πf3 · t+ φ3) + Â2

4 · cos (2πf4 · t+ φ4) (32)

f(t | Φ3) = Â3
0 + Â3

2 · cos (2πf2 · t+ φ2) + Â3
3 · cos (2πf3 · t+ φ3) + Â3

4 · cos (2πf4 · t+ φ4) (33)

and we search the values of the intensity parameters by solving the following non-linear opti-

mization problem
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min
(

SR θ̂1
)

=
∑

t

(

Januvia-Cash-Flowt − C(t | Φ1)

)2

(34)

min
(

SR θ̂2
)

=
∑

t

(

Janumet-Cash-Flowt −C(t | Φ2)

)2

(35)

min
(

SR θ̂3
)

=
∑

t

(

Humalog-Cash-Flowt − C(t | Φ3)

)2

(36)

where the structural parameters are given as θ̂1 =
(

Â1
0, Â

1
2, Â

1
3, Â

1
4

)

, θ̂2 =
(

Â2
0, Â

2
2, Â

2
3, Â

2
4

)

, and

θ̂3 =
(

Â3
0, Â

3
2, Â

3
3, Â

3
4

)

, and the frequency and phase parameters as given in Section 3-Table 1. Table

6 provides the estimates of the intensity parameters under each state scenario.

The three state scenarios share the same risk-free rate. The usual benchmark for the risk-free

rate is the treasury constant maturity provided by the Federal Reserve, however since the beginning

of the financial crisis the US treasury yield is close to zero. Hence, we will use a risk-free rate of

1.5% although the current value is much lower.

5.3 Project value and risk management

Having defined the state vector and calibrated all the input parameters, we are ready to compute

the value of this project. As shown in Figure 7, the market data of each benchmark medicine is

provided in quarters. Hence, by assumption, we consider that the underlying process, Ct, defines

the quarterized net cash flow stream. Then, we simulate each path considering a time increment of

∆t = 1/4, that is quarterly increment. The discrete cash flow at any time t is given by equation

[18]. Once the marketing approval is granted, the marketing and production cost are accounted into

the net cash flow process. Therefore, discounting all the discrete cash flows up to market launch

and summing them up could yield an aggregated negative value, for that reason it is considered an

abandon option at market launch although there is no further investment in developing the drug.

Note that the probability of an aggregated negative cash flow at market launch is the consequence

of considering an Arithmetic Brownian Motion process plus the impact of the Fourier component

over such process, therefore such probability tends to decrease as the economic state improves.

Accordingly, at market launch the abandon option is given by

V
(

tML, Ct, It; Φ
(j)

)

= Max

{

T
∑

t=tML

Ct · e−r(t−tML) , 0

}

(37)

where tML and T represent the market launch and patent expiration time, respectively.

The exercise time for the subsequent abandon options is defined on yearly basis and the option

is evaluated conditional on not having been abandoned before, therefore the time increment during
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the development phase is give by ∆t∗ = 1. The backward procedure consists on discountingc the

project value to the exercise time and evaluating the optimal abandon option, that is

V
(

t, Ct, It; Φ
(j)

)

= Max
{

V
(

t+∆t∗, Ct+∆t∗ , It+∆t∗ ; Φ
(j)

)

· e−(r+λ)∆t∗ − It , 0
}

(38)

The procedure continues rolling back up to the present time for those paths that are not optimally

abandoned on previous interactions.

Considering 100.000 path simulations and following the above mentioned procedure, the expected

patent value conditional to each state in the economic state vector is given as in Table 7

[TABLE 7 AROUND HERE]

Note that, considering the state mass probability function and equation [23], the unconditional

Patent value is given by

Patent Value with abandon option = 4374 × 1/3 + 2045 × 1/3 + 2901 × 1/3

= 3106 Millions $ (39)

Patent Value without abandon option = 3864 × 1/3 + 1564 × 1/3 + 2854 × 1/3

= 2761 Millions $ (40)

Just as expected, we can clearly see that the abandon option has a significant effect over the

overall project value. Moreover, comparing panel A with B, and C with D in Table 7, we can disag-

gregate the abandon option effect by state. Although, the abandon option has a deep impact over

states 1 and 2, the effect over state 3 is rather small. Since the three states share the same investment

cost schedule, the small influence of the abandon option over state 3 arises as a combination of two

parameter, in this particular case a high initial cash-flow (C0 = 500 Million $) and a rather small

volatility (σ = 75 Million $). The effect of the initial cash-flow over the abandon option is fairly

obvious, but the incidence of the volatility is somehow subtle. Increasing the volatility parameter

derives in a much uncertain state, meaning that the cash flow stream could yield a much larger or

smaller than expected value. The upside risk, that is the risk of obtaining a higher than expected

cash flow, increases the project value. On the other hand, the downside risk, that is the risk of

obtaining a smaller than expected cash flow or even a negative cash flow, is limited by the abandon

cNote that during the development phase the discount factor is given by e
−rdt = e

−(r+λ)t, where λ represents the

annual rate of failure and can be considered as a technical or technological risk premium.
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option. Hence, in terms of real options valuation, increasing the volatility derives in a higher project

value because we are increasing the upside risk while the downside risk is limited, this effect is mea-

sured by the greek “Vega” which will be analysed in further detail later on. Furthermore, comparing

panel A with C, and B with D in Table 7 we can analyse the effect of the economic force over

each state. As stated in the previous section, the impact of the economic force might varies across

projects and states. Indeed, we can see that the economic force boosts the value of states 1 and 2,

notoriously it has a negative effect over state 3. This effect might be explained by the sensitivity of

each Pharmaceutical company to economic and market conditions, we have to remember that states

1 and 2 correspond to the benchmark medicines Januvia and Janumet, respectively, both of them

commercialized by Merck & Co., Inc. On the other hand, state 3 corresponds to Humalog which is

commercialized by Eli Lilly and Company.

Moreover, Table 8 disaggregates by state and period the number of paths optimally abandoned,

that is the number of abandon options exercised. We have already stated that the first exercise

date is at market launch. Since the net cash flow stream takes into consideration not only the sales

revenues but also the production and marketing cost this variable can, and indeed does, become

negative for some paths. Hence, it may be optimally exercised the abandon option although there is

no further investment in developing the drug at market launch. In fact, out of 100.000 simulations

this is the case for 17.997, 22.277, and 2.837 paths in the Φ1, Φ2, and Φ3 state, respectively. Of

course, the likelihood of exercising the abandon option at market launch increases as the economic

state worsens and vice versa. Conditional on not having been abandoned before, the abandonment

decisions at each period are fully determined by the investment schedule and the economic state.

Furthermore, the aggregated abandon rate by state is 20.65%, 27.56%, and 5.01% for the Φ1, Φ2,

and Φ3 state, respectively.

[TABLE 8 AROUND HERE]

Tables 9 to 11 present the conditional state value variation with respect to changes in C0 and σ,

while Figures 8 to 10 show the consequent sensitivity surface. From the option pricing literature we

know that the greek “Vega” tells in what direction and to what extent the option price will move

if there is a positive change in the volatility parameter, and only in this parameter. Furthermore,

we also know that Vega is always positive regardless if it is a put or call option. Looking the tables

by columns, that is the patent value for different choices of the volatility parameter and fixed initial

cash flow, we can clearly see that in every case the patent value increases as the volatility does.

A more obvious result is revealed looking the tables by rows, that is the patent value for different

choices of the initial cash flow parameter and fixed volatility, we see that the patent value increases

as the initial net cash flow does.
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[TABLES 9 TO 11 AROUND HERE]

[FIGURES 8 TO 10 AROUND HERE]

Besides, Figure 11 presents a stress test analysis, that is how the patent value reacts to changes

in the mass probability function. We can see that the mass probability space is a triangle where is

always true that
∑

j g
(

Φ(j)
)

= 1. This figure is quite revealing, indeed it covers the whole economic

subspace and tells us how the patent value varies to any possible combination of intensities in the

economic force. However, for any economic state vector with more than three components, that is

j ≥ 4, the figure will produce a hyper-volume in a j−dimensional space.

[FIGURE 11 AROUND HERE]

Finally, Figure 12 presents the cash flow histogram by state at two different points in the market

phase, these are Market launch and Patent expiration. The dispersion in the distribution is a direct

consequence of the estimated volatility, thus state 1 presents a much more dispersed distribution

than state 3, both at Market launch and Patent expiration, deriving in a higher value of the abandon

option. Furthermore, the red dotted line represents the mean cash flow distribution, which is fully

determined by the economic impact and the initial cash flow.

[FIGURE 12 AROUND HERE]

6 Concluding remarks

In this paper we have developed a novel valuation model and methodology to value a pharmaceutical

R&D project based on real options approach. The posited model takes into account the interaction

of market and economic forces, and the effect of these risk factors in terms of asset pricing. In

Section 3, we have identified those economic risk factors driving the stock return process and the

risk premium associated with each individual factor. For this endeavour we have analysed two major

economic forces, namely the term yield spread and the VIX index, and we have disentangled the

interaction of risk factors via spectral analysis. Our findings show that exposure to those factors

with period 2.4, 5.5, and 8 years provide significant premium rewarded and should be consider in

the valuation process.

In order to incorporate these risk factors and account for economic risk, we have incorporated

a novel economic state vector where each economic state captures the interaction among different

market and economic forces using Fourier series as the particular basis for the economic function

space. In this sense, Fourier series allows us to properly define an economic scenario where the

project will be developed and it is considered as an aggregate of forces playing a relevant role in
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the process evolution and determining the cash flow structure. On this regards, Fourier series is a

powerful mathematical instrument which allows us to define the economic state scenario as much

sophisticated as we want increasing the number of forces affecting the evolution of the project. In

fact, Fourier series provides a great deal of flexibility as, by Carleson’s theorem, it converges almost

everywhere for a L2 function.

In Section 5, we have illustrated the application of this model and methodology with a simple

numerical example which attempts to value an R&D project to engineer a new diabetes medication.

To keep the example as simple as possible we have only considered three different states in the

economic state vector, each of them represents an economic benchmark determined by the top-3

best selling diabetes medicines commercialized by American Pharmaceuticals, these are Januvia,

Janumet, and Humalog, the first two commercialized by Merck & Co., Inc., and the third one by Eli

Lilly and Company. Under this framework, we have performed 100.000 path simulations for each

economic state and we have valued the aforementioned project. Furthermore, we have performed a

sensitivity and stress test analysis for some relevant parameters and we have compared the valuation

results with the project value obtained with and without the economic risk factors and with and

without the abandon option.

The model and methodology presented in this paper constitute a powerful and yet simple valu-

ation instrument with strong practical applications. As stated above, the pharmaceutical industry

is extremely complex and competitive and most companies have to choose with financial wisdom

each project. There are several forces, both economic and technical, driving the drug development

process that are not fully understood. On this regards, our proposed model tackles all those forces

playing a significant role in the project valuation process in a very simple manner and provides a

comprehensive tool for the decision making process. The model and methodology here proposed can

be easily extrapolated to any other industry or corporate project.
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Appendix of tables

Parameters estimates. Term Yield Spread

Estimates

A1 = 0.4509(0.0056)

φ1 = 6.2129(0.0164)
f1 = 0.0302 Period ≈ 33 years

A2 = 0.9256(0.0074)

φ2 = 3.4761(0.0079)
f2 = 0.1209 Period ≈ 8 years

A3 = 0.6949(0.0076)

φ3 = 0.4706(0.0154)
f3 = 0.1813 Period ≈ 5.5 years

A4 = 0.3704(0.0074)

φ4 = 3.8037(0.0198)
f4 = 0.4231 Period ≈ 2.4 years

Table 1: This table presents the four terms Fourier expansion parameters estimates for the Term Yield

Spread time series.

Parameters estimates. VIX index

Estimates

B1 = 6.8246(0.0846)

ϕ1 = 0.3535(0.0237)
g1 = 0.0970(0.0003) Period ≈ 10 years

Table 2: This table presents the one term Fourier expansion parameters estimates for the VIX time series.
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Factors premium

Period (years) - 33 8 5.5 2.4 10

1 Factor λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

Mean 0.9654 0.1194 - - - -

t-stat 1.5817 0.6528 - - - -

Mean 1.1648 - 1.3547 - - -

t-stat 2.7970 - 2.4566 - - -

Mean 1.0749 - - 0.7097 - -

t-stat 2.6499 - - 2.6681 - -

Mean 1.3411 - - - -0.8503 -

t-stat 3.0361 - - - -2.2970 -

Mean 2.6163 - - - - 1.7877

t-stat 3.3248 - - - - 2.6027

Table 3: This table presents the estimated premium rewarded to a particular risk factor exposure.
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Factors premium

Period (years) - 33 8 5.5 2.4 10

5 Factors λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

Mean 1.9564 -0.3236 -1.4373 1.4821 -0.8993 -0.7369

t-stat 2.3342 -1.2012 -1.0422 2.1351 -2.3204 -0.7079

4 Factor λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

Mean 2.1609 - -1.2958 1.5219 -0.8353 -0.6421

t-stat 2.4200 - -1.0125 2.1019 -2.3579 -0.6550

Mean 1.9656 -0.3079 - 1.5327 -0.8895 -0.8114

t-stat 2.3660 -1.1727 - 1.8712 -2.4153 -0.6541

Mean 2.1254 -0.2685 -1.2407 1.4610 -0.8711 -

t-stat 2.4934 -1.0687 -1.0605 2.1741 -2.3909 -

3 Factors λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

Mean 2.5676 - - 0.2685 -0.8984 1.6996

t-stat 2.3745 - - 0.7618 -2.4194 1.5496

Mean 0.9642 - -3.8231 2.4420 -0.6819 -

t-stat 2.4057 - -1.6268 2.1164 -1.9421 -

Mean 2.3439 -0.3112 - 0.9700 -0.9092 -

t-stat 2.5206 -1.1811 - 2.8070 -2.4006 -

Table 4: This table presents the estimated premium rewarded for several combinations of risk factors

exposure.
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Development phase schedule

Development Preclinical Clinical Clinical Clinical Regulatory

stage testing Phase I Phase II Phase III review

Period 0 1 2 3 4 5 6 7 8 9

Investment 60 60 82 82 196 196 174 174 174 11

Table 5: This table presents the work schedule and budget for the whole development process including the regulatory approval.

Intensity parameters estimates. Meds

Estimates

Factor 2 Factor 3 Factor 4
Medicine ~1

Period ≈ 8 years Period ≈ 5.5 years Period ≈ 2.4 years

Januvia Â1
0 = -608.0681 (43.9219) Â1

2 = 8.1830 (3.1416) Â1
3= -19.3515 (4.1493) Â1

4 = -18.0127 (10.1329)

Janumet Â2
0 = -558.3166 (11.1398) Â2

2 = -0.9269 (0.7596) Â2
3= -2.8288 (0.2174) Â2

4 = 0.3097 (1.2646)

Humalog Â3
0 = 87.8557 (0.6163) Â3

2 = -4.8234 (0.9429) Â3
3 = -8.3032 (0.0000) Â3

4 = 11.8428 (0.6504)

Table 6: This table presents the intensity parameters estimates to a particular economic risk factor for a particular benchmark medicine.
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Conditional Expected Patent Value

Economic Panel

State A B C D

V
(

t, Ct, It; Φ
(1)

)

4373.5044 (12.2098) 3864.3235 (14.6124) 3615.1780 (11.3771) 2851.5395 (14.7052)

V
(

t, Ct, It; Φ
(2)

)

2044.6319 (6.5133) 1564.4866 (8.4452) 1452.3542 (5.6570) 699.4146 (8.4700)

V
(

t, Ct, It; Φ
(3)

)

2900.8647 (5.2686) 2853.5092 (5.5206) 2953.2034 (5.2786) 2917.4724 (5.5200)

Patent Value (error) 3106.3337 (4.9358) 2760.7731 (5.9191) 2673.5785 (4.5863) 2156.1422 (5.9484)

Table 7: This table presents the patent value conditional to each state in the state vector.

Panel A: With Fourier component and with abandon option

Panel B: With Fourier component and without abandon option

Panel C: Without Fourier component and with abandon option

Panel D: Without Fourier component and without abandon option28



Abandon rate

Development Preclinical Clinical Clinical Clinical Regulatory Market

stage testing Phase I Phase II Phase III review launch

Period 0 1 2 3 4 5 6 7 8 9 10

Investment 60 60 82 82 196 196 174 174 174 11 0

336 295 320 239 489 357 253 201 159 6 17997
Scenario 1

20652 20316 20021 19701 19462 18973 18616 18363 18162 18003 17997

721 560 597 558 894 685 537 396 327 12 22277
Scenario 2

27564 26843 26283 25686 25128 24234 23549 23012 22616 22289 22277

363 249 261 182 369 297 198 145 101 6 2837
Scenario 3

5008 4645 4396 4135 3953 3584 3287 3089 2944 2843 2837

Table 8: This table presents the number of optimally abandoned projects out of 10.000 path simulations. In light gray the disaggregated by

state and period number of paths optimally abandoned. In gray the aggregated by period number of paths optimally abandoned.
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Φ1 Sensitivities

Φ1
C0

440 450 460 471 480 490 500 510 520 530

σ

150 3796 3860 3900 3981 4038 4089 4137 4205 4250 4329

160 3850 3922 3968 4032 4073 4124 4189 4264 4303 4376

170 3913 3960 4019 4088 4120 4191 4260 4310 4348 4435

180 3980 4031 4093 4138 4192 4261 4294 4352 4435 4478

190 4031 4075 4162 4204 4253 4314 4399 4410 4478 4541

200 4110 4161 4225 4275 4320 4374 4404 4471 4541 4596

210 4183 4238 4282 4372 4402 4436 4497 4549 4600 4650

220 4284 4319 4364 4404 4474 4511 4571 4611 4652 4766

230 4324 4386 4434 4474 4537 4577 4627 4679 4755 4800

240 4412 4450 4508 4560 4613 4644 4707 4756 4799 4861

Table 9: This table presents the conditional to state Φ1 patent value sensitivity with respect to σ and C0.
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Φ2 Sensitivities

Φ2
C0

130 140 150 160 170 180 190 200 210 220

σ

85 1579 1642 1691 1742 1801 1847 1896 1957 2006 2054

95 1666 1719 1773 1813 1876 1925 1969 2024 2077 2130

105 1734 1794 1848 1894 1939 1979 2034 2085 2133 2195

115 1823 1877 1916 1966 2045 2055 2109 2173 2223 2266

125 1915 1970 1999 2053 2094 2151 2192 2231 2289 2331

135 1993 2042 2085 2136 2183 2214 2287 2316 2380 2418

145 2083 2118 2170 2222 2266 2315 2348 2393 2436 2500

155 2180 2203 2257 2289 2343 2366 2431 2481 2527 2578

165 2247 2295 2328 2389 2438 2463 2496 2580 2604 2660

175 2340 2398 2429 2481 2508 2561 2611 2652 2698 2723

Table 10: This table presents the conditional to state Φ2 patent value sensitivity with respect to σ and C0.
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Φ3 Sensitivities

Φ3
C0

450 460 470 480 490 500 510 520 530 540

σ

35 2525 2597 2661 2722 2791 2864 2929 3002 3068 3135

45 2533 2594 2664 2728 2796 2866 2931 2997 3066 3134

55 2544 2602 2662 2736 2804 2878 2934 3000 3069 3141

65 2550 2619 2681 2751 2815 2878 2946 3005 3078 3147

75 2586 2643 2712 2768 2832 2901 2975 3020 3093 3147

85 2613 2677 2742 2814 2867 2931 3001 3062 3112 3184

95 2661 2731 2781 2835 2907 2968 3025 3080 3148 3204

105 2711 2776 2834 2898 2962 3004 3074 3117 3192 3247

115 2770 2821 2875 2936 3000 3049 3112 3185 3239 3287

125 2823 2900 2935 2999 3065 3113 3169 3211 3278 3340

Table 11: This table presents the conditional to state Φ3 patent value sensitivity with respect to σ and C0.
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Appendix of figures
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Figure 1: This figure presents the demeaned term yield spread time series and its power spectral density.
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Figure 2: This figure presents the demeaned VIX index time series and its power spectral density.
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Figure 3: This figure presents the demeaned term yield spread time series versus the fitting with two terms in the Fourier expansion.
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Figure 4: This figure presents the demeaned term yield spread time series versus the fitting with four terms in the Fourier expansion.
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Figure 5: This figure presents the demeaned VIX index time series versus the fitting with one terms in the Fourier expansion.
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Figure 6: This figure presents a general pharmaceutical process for the development of a new drug
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Figure 7: This figure presents the historical quarterly sales revenue stream of each benchmark drug, that is; Januvia, Janumet, and Humalog
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Figure 8: This figure presents the conditional to state Φ1 patent value sensitivity with respect to σ and Y0
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Figure 9: This figure presents the conditional to state Φ2 patent value sensitivity with respect to σ and Y0
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Figure 10: This figure presents the conditional to state Φ2 patent value sensitivity with respect to σ and Y0
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Figure 11: This figure presents the unconditional patent value sensitivity with respect to the mass probability

function.
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Cash Flow Histogram at Market Launch

Cash Flow Histogram at Patent Expiration

Figure 12: This figure presents the cash flow histogram by state at both market launch and patent expiration. The red dotted line represents

the mean cash flow distribution.
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