Brief Communication

Fluorodeoxyglucose F18 Positron Emission Tomography Coupled With Computed Tomography in Suspected Acute Renal Allograft Rejection

P. Lovinfosse1,1, L. Weekers2,1, C. Bonvoisin2,, C. Bovy2,3, S. Grosch2,3, J.-M. Krzesinski2,4, R. Hustinx1 and F. Jouret2,4,*

1Division of Nuclear Medicine, Department of Medical Physics, University of Liège Hospital, Liège, Belgium
2Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
3Division of Renal Pathology, Unilab, University of Liège Hospital, Liège, Belgium
4Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
*Corresponding author: Francois Jouret, francois.jouret@chu.ulg.ac.be
†These authors contributed equally to this work.

Management of kidney transplant recipients (KTRs) with suspected acute rejection (AR) ultimately relies on kidney biopsy; however, noninvasive tests predicting nonrejection would help avoid unnecessary biopsy. AR involves recruitment of leukocytes avid for fluorodeoxyglucose F18 (18F-FDG), thus 18F-FDG positron emission tomography (PET) coupled with computed tomography (CT) may noninvasively distinguish nonrejection from AR. From January 2013 to February 2015, we prospectively performed 32 18F-FDG PET/CT scans in 31 adult KTRs with suspected AR who underwent transplant biopsy. Biopsies were categorized into four groups: normal (\(n = 8\)), borderline (\(n = 10\)), AR (\(n = 8\)), or other (\(n = 6\), including 3 with polyoma BK nephropathy). Estimated GFR was comparable in all groups. PET/CT was performed 201 ± 18 minutes after administration of 3.2 ± 0.2 MBq/kg of 18F-FDG, before any immunosuppression change. Mean standard uptake values (SUVs) of both upper and lower renal poles were measured. Mean SUVs reached 1.5 ± 0.2, 1.6 ± 0.3, 2.9 ± 0.8, and 2.2 ± 1.2 for the normal, borderline, AR, and other groups, respectively. One-way analysis of variance demonstrated a significant difference of mean SUVs among groups. A positive correlation between mean SUV and acute composite Banff score was found, with \(r^2 = 0.49\). The area under the receiver operating characteristic curve was 0.93, with 100% sensitivity and 50% specificity using a mean SUV threshold of 1.6. In conclusion, 18F-FDG PET/CT may help noninvasively prevent avoidable transplant biopsies in KTRs with suspected AR.

Renal AR is associated with recruitment of activated leukocytes into the transplant, and this process is at the basis of the conventional Banff classification (10,11). Activated leukocytes are characterized by high metabolic activity and increased uptake of glucose analog fluorodeoxyglucose F18 (18F-FDG), which can be measured by positron emission tomography (PET) (12,13). Hence, 18F-FDG PET is

Introduction

Kidney transplantation currently represents the best available treatment for patients with end-stage renal disease (1); however, its full benefits remain undermined by acute rejection (AR), which may be cellular or antibody mediated (2). Because immunosuppressive drugs treat AR efficiently, an early diagnosis of such a reversible cause of graft failure is essential. In clinical practice, the detection of AR depends critically on assessments of serum creatinine, an insensitive measure of renal injury (3). Ultimately, AR diagnosis relies on renal transplant needle biopsy. Examining kidney samples provides well-characterized and gold standard criteria for renal AR (4); however, such an invasive procedure is associated with a significant risk of bleeding and graft loss and is limited by sampling error and/or interobserver variability (5,6). Moreover, repeated biopsies to evaluate a renal graft’s status pose challenges, including practicability and cost. Consequently, other sensitive and less invasive modalities, including gene expression profiling and omic analyses of blood and urine samples as well as in vivo imaging, are currently under investigation to reinforce our clinical armamentarium for AR diagnosis (2,7–9). Likewise, it would be useful to noninvasively predict nonrejection in kidney transplant recipients (KTRs) with acute renal dysfunction and suspected AR, thereby avoiding unnecessary transplant biopsy.

Abbreviations: 18F-FDG, fluorodeoxyglucose F18; 99mTc, technetium Tc 99m; ANOVA, analysis of variance; AR, acute rejection; CT, computed tomography; KTR, kidney transplant recipient; PET, positron emission tomography; ROC, receiver operating characteristic; SC, sulfur colloid; SUV, standard uptake value; VOI, volume of interest

Received 10 May 2015, revised 10 June 2015 and accepted for publication 21 June 2015
physicians blinded to the results of renal transplant biopsies. Four volumes CT images were read independently by two experienced nuclear medicine were done before any modification of immunosuppressive regimens. PET/CT procedure was performed within a 48-hour period of the ultrasound-guided renal transplant biopsy under fasting conditions and without administration of contrast agent or diuretics. All 18F-FDG PET/CT scans were performed using cross-calibrated Philips Gemini OH) at 201 ± 18 minutes following intravenous injection of a mean dose of 3.2 ± 0.2 MBq/kg of body weight of 18F-FDG. The mean cumulative exposure dose for PET/CT imaging was 5.41 ± 0.79 mSv. The mean values of SUV from four renal cortical VOIs reached 1.5 ± 0.2, 1.6 ± 0.3, 2.9 ± 0.8, and 2.2 ± 1.2 in histopathological categories normal, borderline, AR, and other, respectively (Figure 2A). One-way ANOVA did not show any difference in estimated GFR between groups of patients (p = 0.31) (Table 1).

PET/CT imaging was performed within 201 ± 18 minutes after intravenous administration of 3.2 ± 0.2 MBq/kg of body weight of 18F-FDG (Figure 1). Mean glycemia at the time of 18F-FDG injection was 100.8 ± 18.4 mg/dl. One PET/CT procedure was not interpretable because of paravenous injection of 18F-FDG. The mean cumulative exposure dose for PET/CT imaging was 5.41 ± 0.79 mSv. The mean values of SUV from four renal cortical VOIs reached 1.5 ± 0.2, 1.6 ± 0.3, 2.9 ± 0.8, and 2.2 ± 1.2 in histopathological categories normal, borderline, AR, and other, respectively (Figure 2A). One-way ANOVA demonstrated a significant difference in mean SUVs among groups (p < 0.01). The mean SUV of biopsy-proven AR was significantly higher than that for normal cases (p < 0.01). There were no significant differences between biopsies with normal
versus borderline or AR versus other histopathology. Similar observations were made using either maximal SUV from four renal cortical VOI or SUV ratios to aorta or psoas muscle activity (data not shown). Statistical analyses highlighted a positive correlation between mean SUVs and increasing grades of leukocyte infiltration in renal allograft interstitium were associated with increasing mean SUVs (from 1.6 ± 0.3 to 2.9 ± 1.1, p < 0.05) (Figure 2C).

To further assess the usefulness of 18F-FDG PET/CT in clinical practice, we statistically evaluated the threshold of mean SUVs that would discriminate nonrejection.

Discussion

In the present cohort of 32 18F-FDG PET/CT procedures performed in 31 KTRs presenting with suspected AR, biopsy-proven AR was characterized by significantly higher 18F-FDG uptake in the renal transplant cortex in comparison to normal biopsies. Mean SUV appeared to be significantly correlated with the severity of leukocyte infiltrates, as assessed by conventional Banff score. Finally, ROC curve analyses suggested that a mean SUV threshold of 1.6 discriminates nonrejection with a negative predictive value of 100%. The poor specificity of 18F-FDG PET/CT in detecting AR is primarily due to the nature of the radiotracer.
Using radionuclides to image AR is not new and has been performed previously with radiolabeled sulfur colloid (SC) and fibrinogen as well as gallium citrate Ga\(^67\). Comparative meta-analysis suggested a similar specificity of graft labeling during rejection using either radiotracer (19). Still, in clinical settings within the permissible radiation dose, technetium Tc\(^{99m}\) (\(^{99m}\)Tc) SC appeared to better discriminate AR on the basis of a strictly visual scale (9). Unfortunately, several studies using computer-assisted quantification of \(^{99m}\)Tc SC uptake by the allograft in comparison to the surrounding pelvis showed conflicting results, with false-negative and -positive rates that were too high to make \(^{99m}\)Tc SC useful in predicting renal AR (20). PET/CT using the glucose analog \(^{18}\)F-FDG has been also proposed for the detection of renal transplant AR in experimental rodent models of allogeneic kidney transplantation (8,15). Inflammatory cells are characterized by a high metabolic status and increased uptake of \(^{18}\)F-FDG (13). The advantages of \(^{18}\)F-FDG PET/CT are rapid imaging, high target:background ratio and direct coregistration with low-dose CT without radiologic contrast medium administration (14). \(^{18}\)F-FDG PET/CT can be used safely in patients with renal function including normal to mildly reduced GFR and end-stage renal disease. In rats, the renal clearance of \(^{18}\)F-FDG does not correlate with renal function (15). In particular, acute kidney injury secondary to cyclosporin exposure or ischemia–reperfusion is not associated with significant elevation of renal \(^{18}\)F-FDG accumulation. There is a surprising gap of knowledge in the literature concerning the impact of acute or chronic kidney injury on renal \(^{18}\)F-FDG uptake in humans. In 2007, Minamimoto et al investigated the influence of renal function on \(^{18}\)F-FDG distribution and uptake in 20 healthy volunteers and 20 patients with suspected renal failure (21). Regions of interest were placed over 15 different regions throughout the body, including the left kidney. No significant difference was observed in renal mean SUVs between healthy volunteers and patients with suspected renal failure. In our series, no difference in estimated GFRs was observed between groups of patients categorized based on kidney histology. Limitations of \(^{18}\)F-FDG PET/CT imaging include its relatively high cost and restricted availability as well as patient exposure to radiation originating from both PET and CT procedures. Still, a cumulative exposure dose of 5.41 ± 0.79 mSv, as observed in this study, remains low in comparison to other classical radiological examinations, such as thorax CT (7mSv), abdomen CT (8 mSv), or coronary angiography (16 mSv) (22). Uptake of \(^{18}\)F-FDG is not specific for inflammation and may be increased in other conditions such as tumors or infections (12,23). Furthermore, physiological urinary excretion of \(^{18}\)F-FDG may hamper the measurement of \(^{18}\)F-FDG uptake in the renal parenchyma (24). To overcome this problem and, eventually, to improve the background:noise ratio, we administered a minimal dose of \(^{18}\)F-FDG and performed late acquisitions. PET/CT images were acquired within 201 ± 18 minutes after intravenous administration of 3.2 ± 0.2 MBq/kg of body weight of the radiotracer. In addition, multiple VOIs were drawn in the renal transplant area, and a mean SUV was considered for statistical analyses. We must admit that we were unable to clearly differentiate the activity of renal parenchyma into medulla- and cortex-related tissue activity. The VOIs were located beneath the renal capsule away from the urinary pelvis, which most probably corresponds to the cortex area. The use of multiple independent VOIs distributed in both the upper and lower renal poles aimed to avert sampling error, which represents a main limitation of transplant biopsy (5,6). Furthermore, assessing \(^{18}\)F-FDG activity in cross-sections by image segmentation software (currently under development and validation) might be another option to minimize the sampling error. Similarly, dynamic or dual/multipoint analysis of \(^{18}\)F-FDG PET/CT imaging may be an interesting way to

Figure 1: Representative \(^{18}\)F-FDG PET/CT imaging in kidney transplant recipients with suspected acute rejection. PET (left column), CT (middle column), and combined PET/CT images taken after administration of \(^{18}\)F-FDG are shown for kidney transplant recipients with biopsies showing normal histology, borderline changes, acute rejection or polyomavirus BK nephropathy. The arbitrary scale of SUVs (from 0 to 5) is illustrated on the right side. \(^{18}\)F-FDG, fluorodeoxyglucose F\(^{18}\); CT, computed tomography; PET, positron emission tomography; SUV, standard uptake value.
help differentiate between the different pathologies in KTRs presenting with suspected AR (25).

The mean SUV of borderline biopsies was not statistically different from that of normal biopsies, a finding that is in line with recent comparative molecular phenotyping by microarray profiles (26). Similarly, the mean SUV of biopsy-proven AR was not statistically different from that of biopsies showing alternative causes of acute graft dysfunction, including glomerulonephritis and polyomavirus BK nephropathy. The diagnosis procedure, however, is specific when polyomavirus BK nephropathies or glomerular diseases with proteinuria are suspected in cases of acute renal failure in KTRs. The emergence of polyomavirus BK nephropathy coincided with the advent of potent immunosuppressive therapy (27). BK virus infection can occur under all combinations of immunosuppressive therapy, and the beneficial effects of antiviral agents remain unclear. Graft survival in patients with BK virus nephropathy is poor (28). No standardized protocol currently exists for the management of BK viruria or viremia or established BK virus nephropathy. Current clinical practice focuses on screening for BK virus replication in urine and/or blood specimens and preemptive reduction of immunosuppression in viremic patients (29). The Banff Working Proposal 2009, based on viral load and acute tubular injury instead of interstitial inflammation, does not appear to be superior to alternative schemas assessing renal inflammation (30). In our cohort, mean SUV significantly correlated with the severity of graft inflammation and leukocyte infiltration (r^2 = 0.49). Furthermore, the Banff score for leukocyte infiltration in renal interstitium was statistically associated with increasing values of mean graft SUV. The 18F-FDG PET/CT pattern, however, was unable to identify the cause of graft inflammation and dysfunction. Ultimately, this determination relies on transplant biopsy examination. The small number of patients did not allow us to compare the uptake of 18F-FDG in cellular versus antibody-mediated AR or in cases of chronic allograft failure. None of the 32 renal transplant biopsies performed in our study showed acute tubular necrosis (ATN). Because no study has investigated the renal uptake of 18F-FDG in cases of ATN in human patients, we must admit that we do not know how ATN would be diagnosed by 18F-FDG PET/CT imaging.

Figure 2: Statistical analyses of fluorodeoxyglucose F18 positron emission tomography and computed tomography imaging in kidney transplant recipients with suspected acute rejection. (A) Mean SUVs in kidney transplant recipients with biopsies showing normal histology (n = 8), borderline changes (n = 10), AR (n = 7), or other diagnostics (n = 6). *p < 0.01 between normal and AR. (B) Correlation study between mean SUV in renal transplant and acute composite Banff score. (C) Mean SUVs in kidney transplant recipients with biopsies showing increasing Banff score of leukocyte infiltration in the interstitium: grade 0 (n = 13), grade 1 (n = 7), grade 2 (n = 4), and grade 3 (n = 7). *p < 0.05 between grade 0 and grade 3. AR, acute rejection; SUV, standard uptake value.

Figure 3: ROC curve using fluorodeoxyglucose F18 positron emission tomography and computed tomography imaging in kidney transplant recipients with suspected acute rejection. The ROC curve was drawn after discriminating kidney transplant recipients with biopsies showing or not showing (ie, normal and borderline histology) acute rejection. ROC, receiver operating characteristic.
Lovinfosse et al

On the basis of this pilot study, we postulate that 18F-FDG PET/CT imaging may help selected patients avoid undergoing renal transplant biopsy. Our observations are preliminary, given the small number of events and the absence of prospective validation of a mean SUV threshold. Still, the negative predictive value of 18F-FDG PET/CT imaging with a mean SUV threshold at 1.6 reaches 100%, thereby significantly discriminating nonrejection in KTRs presenting with suspected AR. Consequently, transplant needle biopsies may be limited to KTRs in whom 18F-FDG SUV exceeds this threshold. In our series, nine transplant biopsies (28.1%) showing normal (n = 4) or borderline (n = 5) histology were associated with a mean SUV inferior to 1.6. Validation cohorts and additional large prospective series are needed to further test whether a mean SUV threshold for 18F-FDG-PET/CT imaging, in combination with blood and urinary biomarkers (2,7), may help dictate the need for transplant biopsy in KTRs presenting with suspected AR.

Acknowledgments

The authors cordially thank the surgeons (M. Meurisse, C. Coimbra Marques, A. De Roover, O. Detry, E. Hamoir, P. Honoré, L. Kohnen, N. Meurisse, and J-P Squifflet), the physicians (L. Vanovermeire and P. Xhignesse), and the members of the local transplant coordination center (Mme M-H Delbouille, M-H Hans, J Mornard) for their commitment to kidney transplantation at the University of Liège Hospital in Liège, Belgium. We are grateful to F. Delanaye, and C. Ricour for their help with statistical analyses. F.J is a Fellow of the Fonds National de la RechercheScientifique (Research Credit 3309), and received support from the University of Liège (FondsSpéciaux à la Recherche) and from the Fonds Léon Fredericq, as well as from the Royal Academy of Medicine of Belgium (Prix O. Dupont).

Disclosure

The authors of this manuscript have no conflicts of interest to disclose as described by the American Journal of Transplantation.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Figure S1: Representative analysis a fluorodeoxyglucose F 18 positron emission tomography and computed tomography image in a kidney transplant recipient with suspected acute rejection. Four 1-ml VOIs (white circles) are drawn in the cortex area of both upper and lower poles of the renal transplant. Maximal and mean standard uptake values (SUVs) are independently measured in each VOI. In the present case, maximal SUVs in VOIs 1–4 were 1.88, 1.71, 1.52 and 1.55, respectively, whereas mean SUVs in VOIs 1–4 were 1.41, 1.32, 1.44, and 1.41, respectively. The biopsy of this patient showed normal histology. VOI, volume of interest.