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We address a number of issues raised by a manuscript of Klein, Toublan, and Verbaarschot (hep-
ph/0405180) in which the authors introduce a random matrix model for QCD with two colors, two
flavors, and fermions in the fundamental representation. Their inclusion of temperature terms differs
from the approach adopted in previous work on this problem (Phys. Rev. D 64, 074016 (2001).) We
demonstrate that the two approaches are related by a transformation that leaves the thermodynamic
potential invariant and which therefore has no effect on physical observables.
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A number of model calculations of QCD at finite temperature and non-zero baryon density have revealed the
existence of a rich phase structure [1–4]. A particularly interesting possibility arises when cold nuclear matter is
brought to densities sufficiently large for quark degrees of freedom to become important. It is thought that, due
to quark Cooper pairing, cold and dense quark matter behaves like a color superconductor [1, 2]. The system is
characterized by a variety of color superconducting order parameters which have been studied as a function of, e.g.,
the total number of flavors, the quark masses, the quark chemical potentials, and temperature [3]. These results have
not been confirmed satisfactorily by lattice simulations. Such calculations are difficult to perform and interpret at
finite baryon densities. The fermion determinant appearing in the partition function is complex for non-zero baryon
chemical potential, and standard Monte Carlo methods can no longer be applied. As a consequence, our theoretical
understanding of the QCD phase diagram at non-zero baryon density remains incomplete.

Random matrix theory can provide interesting elementary models that capture important aspects of the thermo-
dynamic competition among different order parameters and produce robust results. Such models respect the global
symmetries of QCD but mimic the detailed dynamics of the interactions with a form that can be treated analytically.
When supplemented by additional physical insight regarding the form and relative importance of order parameters,
random matrix theory can efficiently model the physics of systems with non-trivial phase diagrams. In its usual
implementation, the fermion kinetic energy is ignored; only the interactions and their symmetries are retained. Such
models are thus intrinsically theories of low-energy degrees of freedom which are treated at the mean field level. Near
critical regions, random matrix results are similar to those obtained in a Landau-Ginzburg approach [4, 5].

The effects of baryon density and temperature must be included in a manner that respects the structure of QCD. In
the finite temperature formalism, the quark chemical potentials, µf , and the temperature, T , enter the QCD partition
function via the finite Matsubara frequencies µf +ωn = µf + i(2n+1)πT (with n = 0,±1,±2, . . .). In random matrix
theory, the inclusion of density effects through the addition of a chemical potential term, ψ†µγ4ψ, in the Lagrangian
is straightforward. In contrast to lattice calculations, the resulting random matrix partition function can be evaluated
analytically. Its extremization leads to gap equations which are polynomial in the condensation fields, and which can
thus be solved analytically or numerically.

Different schemes have been proposed in the literature for the inclusion of temperature effects. We note first
that, since the theory describes low-lying energy excitations, much of the critical physics is captured even if the sum
over fermion frequencies is restricted to the two lowest terms, ωn = ±iπT . When this truncation is adopted in a
chiral random matrix theory with µf = 0, for example, the resulting model shows a second-order phase transition
independent of the number of flavors [6, 7]. Taking into account all terms in the frequency sum does not change
this result fundamentally. The sole effect on the phase diagram is the introduction of a temperature mapping that is
inhomogeneous (i.e., it depends on T ) but monotonic [8, 9]. The critical temperature is thus modified, but neither the
topology of the phase diagram nor the order of the transition are affected. It has also been shown that the microscopic
spectral correlations retain their zero-temperature form, provided that the microscopic variables are rescaled by the
temperature dependent chiral condensate [10]. In the following, we will only consider cases where the Matsubara sum
is truncated to the two smallest terms.

In an early random matrix model of color superconductivity in QCD with two flavors [9, 11], we employed a
partition function for which the pairing fields had opposite frequencies, ωn. This choice was dictated by the physical
observation that the pairing condensate, 〈ψT (iσ2)flavor(iσ2)color(iσ2)spin ψ〉 (with iσ2 the antisymmetric Pauli matrix),
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is independent of time. A Fourier decomposition selects opposite frequencies for the two flavor fields. This frequency
selection is operative independent of whether one is modeling SU(3)-QCD or SU(2)-QCD. A seemingly different
temperature dependence, based on the symmetries of the interactions, was recently introduced by Klein, Toublan,
and Verbaarschot [12, 13]. The temperature scheme proposed there reflects the structure of the zero-temperature
chiral random matrix models. For SU(2) with fundamental fermions, which is characterized by real matrix elements,
the temperature terms are chosen to be real. Similarly, both the temperature terms and the random matrix elements
are complex for SU(3) with fermions in the fundamental representation.

There would thus appear to be two different ways to treat temperature effects, one based on a selection of the
frequency couplings that are physically allowed, and another one based on the global symmetries of the interactions.
It turns out that, for the restricted region of the external parameter space that was considered in Ref. [9] (equal quark
chemical potentials, leading to equal chiral condensates and no pion condensate), the two approaches of Ref. [9] and
Ref. [13] produce the same effective thermodynamical potential. This hints at an intimate relationship between the
two temperature treatments. The purpose of this paper is to demonstrate that both temperature schemes are related
by a unitary transformation and are thus equivalent. After summarizing the two temperature schemes in Sec. I, we
consider the transformation that relates them for the case of QCD with two colors in Sec. II. The case of QCD with
three colors is discussed in Sec. III.

I. TEMPERATURE SCHEMES

Random matrix models that are capable of studying the competition between chiral, diquark, and other condensa-
tion channels are extensions of the chiral random matrix models [4, 6, 14, 15]. In the sector of zero topological charge
and for Nf flavors of fermions with masses mf , the partition function has the form

Z0 =
∏

f

∫

Dψ†
fDψfDW e−

nβΣ
2

2
Tr WW †

exp





Nf
∑

f=1

ψ†
f (D[W ] +mf )ψf



 , (1)

where W is an n× n matrix which models the interaction. The elements of W are drawn on a Gaussian distribution
of inverse variance Σ. Here, n is a measure of the number of low energy degrees of freedom and is to be taken to
infinity at the end of the calculations (i.e., in the thermodynamic limit). The Dirac operator, D[W ], respects the
chiral symmetry of QCD, {D, γ5} = 0. In the basis of the eigenstates of γ5, D[W ] can be decomposed as

D[W ] =

(

0 iW
iW † 0

)

. (2)

For random matrix models of QCD with SU(3) and fermions in the fundamental representation, W is complex.
This choice corresponds to a chiral unitary ensemble characterized by a Dyson index β = 2. The QCD Dirac operator
in SU(2) with fermions in the fundamental representation satisfies an additional anti-unitary symmetry,

[C(σ2)colorK, iD] = 0, (3)

with (C(σ2)colorK)
2

= 1. (C is the charge conjugation operator, σ2 the antisymmetric color matrix, and K the
complex conjugation operator.) This leads to a particular basis of states in which D is real. Accordingly, W is chosen
real in chiral random matrix models for SU(2), and the model belongs to the chiral orthogonal ensemble with an index
β = 1 [16]. The essential difference between the unitary and orthogonal ensembles lies in the number of independent
random variables that are allowed per matrix element. (I.e., A complex number has two degrees of freedom; a real
number has only one.) This difference is important in determining the statistical properties of the Dirac operator
and, in turn, influences the phase diagram.

The inclusion of quark chemical potentials, µf , and the temperature, T , follows from the frequency representation
of the partition function in the finite temperature formalism [6, 17]. The path integral is evaluated for fermion fields
that obey antiperiodic boundary conditions in Euclidean time. Thus, the Fourier decomposition

ψ(τ) = T
∑

ωn

e−ωnτψ(ωn) (4)

contains only the odd Matsubara frequencies

ωn = i(2n+ 1)πT. (5)
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The dependence on µf and T appears as a component of the Lagrangian of the form

L1 =

∫

d4x
∑

f

ψ†
f γ4(∂τ + µf )ψf , (6)

whose Fourier representation is given as

L1 = T
∑

n

∫

d3~x
∑

f

ψ†
f (ωn) γ4(−i(2n+ 1)πT + µf )ψf (ωn). (7)

There is a certain freedom associated with the introduction of such a term in random matrix models. Equation (7)
suggests that we should add a deterministic term with the block structure of γ4 to the Dirac operator of Eq. (2).
With Euclidean matrices, this gives

D[W ] → D[W ;µf , T ] =

(

0 iW + ω+(µf , T )
iW † + ω−(µf , T ) 0

)

, (8)

where ω± are n×n matrices. Here, n is a compound index which combines random matrix and Matsubara frequency
indices. Because the ensemble of matrices W is invariant under unitary (β = 2) or orthogonal (β = 1) basis
transformations, many equivalent forms of ω± can be adopted, and their detailed form cannot be specified uniquely.
(We will also consider another transformation below.) We know, however, that the eigenvalues of ω± must be those of
the operator in Eq. (7). In the following, we restrict ourselves to the two lowest Matsubara frequencies, ωn = ±iπT .
The appropriate forms of ω± must then have two series of n/2-degenerate eigenvalues µf ± iπT .

We now turn to the various schemes proposed for implementing temperature dependence. In an early model of
diquark condensation [9, 11] in QCD with two flavors, we considered random matrix interactions that included spin
and color quantum numbers explicitly. This choice leads to an expanded block structure

W =

3
∑

µ=0

3
∑

a=1

(σµ ⊗ σa)Aµa, (9)

where σµ = (1, i~σ) represents spin degrees of freedom with the Pauli matrices ~σ, while σa are the SU(2) color matrices.
The interactions are to be integrated over the real matrices Aµa whose elements are drawn on a Gaussian distribution.
The W appearing in Eq. (9) is complex independent of the number of colors. Because the dependence on spin and
color is deterministic, the model nevertheless has the appropriate number of degrees of freedom per matrix element.
For example, for Nc = 2 the Dirac operatorD[W ] in Eq. (2) with the block structure of Eq. (9) satisfies the antiunitary
symmetry of Eq. (3). More generally, we have shown that for Nc = 3 and Nc = 2 the eigenvalues of the Dirac operator
D[W ] exhibit the spectral correlations expected for the chiral unitary and orthogonal ensembles, respectively [18].

The deterministic part of the Dirac operator is given as

ω+(µf , T ) = ω−(µf , T ) = (1spin ⊗ 1color) (µf + isfπT ) , (10)

where the choice of sf = ±1 follows a selection rule. First, sf is taken positive for flavor f = 1 and negative
for flavor f = 2. The contribution from the opposite choice, s1 = −1 and s2 = 1, is then added to obtain the
thermodynamic potential. (In Refs. [9, 11], we considered the limit µ1 = µ2; in that case, the two contributions
to the thermodynamic potential are identical and the sum over pairs amounts to a factor of two.) This procedure
is suggested by the Fourier expansion of the condensates in a microscopic theory. The chiral condensate is given
by the equal time correlator Cσ ∼ 〈ψ̄(τ)ψ(τ)〉, which is also time independent. A frequency decomposition of the
fields, Eq. (4), leads to an expression which contains a sum over all frequency pairs. Since the correlator Cσ is time
independent, the only non-vanishing terms are those for which the Fourier components ψ̄(ωn) and ψ(ωm) have equal
frequencies (or m = n): Cσ ∼ T 〈∑n ψ̄(ωn)ψ(ωn)〉. Similarly, the diquark condensate is given by the equal-time
correlator C∆ ∼ 〈ψT (τ)(iσ2)color(iσ2)spin(iσ2)flavor ψ(τ)〉 and is constant in time τ . A Fourier decomposition now
selects opposite frequencies for the two fields, which necessarily correspond to different flavors because of (iσ2)flavor.
This mechanism was implemented in the random matrix model through the selection of appropriate pairs (s1, s2).

In recent work [12, 13], Klein, Toublan, and Verbaarschot treated the chiral random matrix ensembles, studying
diquark condensation for the case Nc = 2 only. The zero temperature and zero µf version of their model follows
Eq. (1) with W complex for the unitary ensemble and real for the orthogonal ensemble. In their approach, the
dependence on µf and T follows the symmetries of the chiral ensembles. For the unitary ensembles, ω± are complex.
In the appropriate sub-basis of frequency states, they assume the diagonal form

ω+(µf , T ) = ω−(µf , T ) =

(

µf + iπT 0
0 µf − iπT

)

, (11)
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where each block matrix has dimension n/2 × n/2. For the chiral orthogonal ensembles, the antiunitary symmetry
of Eq. (3) is imposed, which leads to a particular basis for which the ω± matrices are real. Ensuring that their
eigenvalues are given as µf ± iπT , the proposed dependence is

ω+ =

(

µf πT
−πT µf

)

,

ω− = ωT
+, (12)

where the dimensions of the block matrices are again n/2 × n/2.
At first sight, the two forms of ω±, Eqs. (11) and (12), seem different from that of Eq. (10). There thus appears

to be a disagreement between the temperature dependence that is obtained from a generic structure suggested by
symmetry and one which is based on the physical knowledge of the frequency couplings that are allowed. In the next
section, we consider the case Nc = 2 and show that the dependence expressed by the selection rule in Eq. (10) leads
to the same effective thermodynamic potential as that obtained with the dependence of Eq. (12). We comment on
the correct form to be used for Nc = 3 in Sec. III.

II. EQUIVALENCES BETWEEN THE TEMPERATURE SCHEMES FOR TWO-COLOR QCD

It is useful to compare the temperature schemes of Eqs. (10), (11), and (12) in a common framework. To this end,
we recast the model developed in [9, 11] in a form close to that of Refs. [12, 13]. We consider a model for Nc = 2, two
flavors, and zero quark masses. We work with an interaction W having the expanded block-structure of Eq. (9) and
derive the thermodynamic potential for the partition function of Eq. (1). After integrating over the random matrices
Aµa and performing a Fierz transformation, we obtain the partition function [11]

Z =
∏

f

∫

DψfDψ†
f exp (Y ) exp





∑

f=1,2

ψ†
f

(

0 ω+(µf , T )
ω−(µf , T ) 0

)

ψf



 , (13)

where Y represents the four-point interaction. If only the chiral and diquark channels are retained,

Y =
3

4nβΣ2

((

ψ†
R1 · ψR1

) (

ψ†
L1 · ψL1

)

+
(

ψ†
R2 · ψR2

)(

ψ†
L2 · ψL2

)

+

(

ψ†
R1 · P∆ · ψ∗

R2

) (

ψT
L2 · P∆ · ψL1

)

+
(

ψ†
L1 · P∆ · ψ∗

L2

) (

ψT
R2 · P∆ · ψR1

))

. (14)

Here, we have adopted the notation φ · χ ≡ ∑n
i=1 φiχi, where i is the random matrix index, and have introduced the

projector P∆ = (iσ2)spin(iσ2)color.
Following [6] and [13], bosonic auxiliary variables are introduced via a Hubbard-Stratonovich transformation that

accounts for the different combinations of spin, color, and flavor quantum numbers. This transformation is given by

eY =

∫

DAe−nβΣ
2

6
Tr AA†

eY(A), (15)

where A is a complex, antisymmetric 16 × 16 matrix, and Y(A) is the bilinear

Y(A) =
∑

f=1,2

1

2

(

ψf
R

ψf∗
R

)T

(A† ⊗ 1n)

(

ψf
R

ψf∗
R

)

+
∑

f=1,2

1

2

(

ψf
L

ψf∗
L

)T

(B ⊗ 1n)

(

ψf
L

ψf∗
L

)

. (16)

Here, 1n represents the identity matrix in the combined space of random matrix/frequency indices and B is given as

B =

(

0 1
1 0

)

A

(

0 1
1 0

)

. (17)

In a basis of states (ψf , ψ
∗
f ) = (ψ1 , ψ2 , ψ

∗
1 , ψ

∗
2), the matrix A assumes the form

A =







0 ∆RP∆ σ∗
1 0

−∆RP∆ 0 0 σ∗
2

−σ∗
1 0 0 −∆∗

LP∆

0 −σ∗
2 ∆∗

LP∆ 0






, (18)
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where each block is 4×4 (two spins × two colors), and the auxiliary variables ∆L,∆R, σ1, and σ2 are complex scalars.
The temperature and chemical potential terms of Eq. (13) can be arranged as

∑

f=1,2

ψ†
f

(

0 ω+

ω− 0

)

ψf =
∑

f=1,2

1

2

(

ψf
R

ψf∗
R

)T (

0 −ωT
+

ω+ 0

) (

ψf
L

ψf∗
L

)

+
∑

f=1,2

1

2

(

ψf
L

ψf∗
L

)T (

0 −ωT
−

ω− 0

) (

ψf
R

ψf∗
R

)

. (19)

Combining Eqs. (13), (15), and (19) and integrating over the fermion fields, we finally obtain

Z =

∫

DAe−nβΣ
2

6
Tr AA†

exp









1

2
Tr log









A† ⊗ 1n

(

0 −ωT
+

ω+ 0

)

(

0 −ωT
−

ω− 0

)

B ⊗ 1n

















. (20)

For later discussions, it is important to note that the diagonal blocks of the argument of the logarithm are given as
an exterior product with 1n. Different Matsubara frequencies will thus correspond to the same auxiliary matrix, A†

or B.
Equation (20) is the central expression which we will use to compare the different temperature schemes. We will

concentrate on the same condensation channels as those considered earlier [9, 11]. We take equal quark chemical
potentials, µ1 = µ2 = µ. The chiral condensate is considered to be flavor independent so that σ1 = σ2 = σ. Moreover,
we have 〈ψT

2RP∆ψ1R〉 = 〈ψT
2LP∆ψ1L〉, and the auxiliary fields satisfy the equality ∆R = ∆L = ∆.

A. Selection rule scheme

The temperature dependence proposed in Refs. [9, 11] can now be represented as (µ1 = µ2 = µ)















ω+(µ1, T ) = ω−(µ1, T ) =

(

µ+ iπT 0
0 µ− iπT

)

Matsubara

ω+(µ2, T ) = ω−(µ2, T ) =

(

µ− iπT 0
0 µ+ iπT

)

Matsubara

.
(21)

Inserting this form in Eq. (20) leaves us with a straightforward evaluation of a trace. We obtain

Z =

∫

DA e−4nΩ, (22)

with an effective thermodynamic potential

Ω(σ,∆) =
2βΣ2

3

(

σ2 + |∆|2
)

− log
(

(σ − µ)2 + |∆|2 + π2T 2
)

− log
(

(σ + µ)2 + |∆|2 + π2T 2
)

. (23)

(The inclusion of a quark mass mf = m would amount to replace σ by σ +m in the argument of the logarithm.) In
the thermodynamic limit n → ∞, one can evaluate the partition function integral exactly by a saddle point method
and obtain

lim
n→∞

Z ∼ e−4nΩ(σsaddle,∆saddle) (24)

where the fields σsaddle and ∆saddle are solutions of the gap equations

∂Ω

∂σ
(σ,∆) = 0, (25)

∂Ω

∂∆
(σ,∆) = 0. (26)

Although the potential in Eq. (23) has been obtained using a formalism different from that used in Ref. [9], we recover
the earlier result. This form of the potential is also obtained in Ref. [13] if one takes µ1 = µ2 = µ, σ1 = σ2 = σ, and
ignore the possibility of pion condensation. We now turn to other temperature schemes.
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B. A selection rule scheme with explicit flavor symmetry

At first sight, the temperature dependence in Eq. (21) might seem to violate flavor symmetry. However, this is not
the case. The sign reversal in T for flavor 2 can also be expressed as a permutation of the two Matsubara frequencies,
since

−
(

iπT 0
0 −iπT

)

=

(

0 1
1 0

) (

iπT 0
0 −iπT

) (

0 1
1 0

)

. (27)

Therefore, we can go to an equivalent representation by permuting the frequency states for flavor 2. The selection of
opposite frequencies applies to diquark and antidiquark bilinears for which the projector P∆ is sandwiched between
the flavor fields as in Eq. (14). Hence, the effect of permuting positive and negative frequencies for flavor 2 transforms
P∆ into

P∆ → P̃∆ = P∆

(

0 1
1 0

)

Matsubara

= (iσ2)spin ⊗ (iσ2)color ⊗
(

0 1
1 0

)

Matsubara

. (28)

By contrast, the chiral bilinears are unaffected by the frequency permutation, e.g., ψ2†ψ2 = ψ2†
+ ψ

2
+ + ψ2†

− ψ
2
−. The

sole effect of permuting the frequencies for flavor 2 is thus to make the frequency selection mechanism appear in
the structure of the order parameter through the projector P̃∆. This new form of the order parameter respects the
required flavor symmetries.

C. Antisymmetric temperature dependence

The apparent disagreement between a temperature dependence based on symmetry and one based on selecting
frequency couplings would immediately be resolved by a transformation relating Eqs. (12) and (10). In the antisym-
metric representation of Eq. (12), the basis of states is meant to be that for which all matrix elements of W are
real. This is certainly not the basis set to be used in our model, Eq. (13), since the spin and color dependence of
Eq. (9) makes W complex. Nevertheless, the Dirac operator D[W ] of Eq. (2) satisfies the anti-unitary symmetry
of Eq. (3), and we could in principle choose the appropriate spin and color basis to obtain a real W [9]. This is a
consequence of the fact that the matrix elements contain the proper number of random degrees of freedom. In the
following we are interested in the transformation properties of the deterministic temperature terms ω± and thus do
not consider transformations in spin/color space. We focus instead on the effects of a partial transformation acting
only on frequency indices.

We wish to establish the relationship between the temperature dependence based on the selection rule of Eq. (28)
and an antisymmetric dependence. We start from the representation of Sec. II B, for which

ω± = µ+

(

iπT 0
0 −iπT

)

, (29)

and the diquark order parameter contains the projector P̃∆ of Eq. (28). We rewrite the diagonal temperature form as

(

iπT 0
0 −iπT

)

= Um

(

0 πT
−πT 0

)

U †
m, (30)

where

Um =
1√
2

(

1 −i
1 i

)

(31)

is unitary. We then perform the transformation

ψR,L = U ψ
′

R,L, (32)

ψ∗
R,L = U∗ ψ

′∗
R,L, (33)

with

U =

(

Um ⊗ 1n/2 0
0 Um ⊗ 1n/2

)

⊗ 1spin ⊗ 1color ⊗ 1flavor. (34)
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This transformation leaves the partition function of Eq. (20) unaffected. Since U only acts in frequency space, it does
not affect the quadratic term, TrAA†. The logarithmic term is also unaltered since Tr logM = log detM , and the
determinant is invariant under the transformation

M →M
′

=

(

UT 0
0 U †

)

M

(

U 0
0 U∗

)

. (35)

Hence, the transformation, U , brings the temperature representation of Sec. II B to an equivalent representation with
an antisymmetric temperature dependence.

We now examine the transformation of the bilinear form of Eq. (16) bearing in mind that we started with the

representation of Sec. II B, for which the diquark terms contain the projector P̃∆ of Eq. (28). Mesonic bilinears

of the form ψ†
iψj (where i and j represent some combination of spin/color/flavor indices) are invariant under the

U -transformation as

ψ†
iψj = ψ†′

i U
†Uψ

′

j = ψ†′

i ψ
′

j . (36)

By contrast, diquark bilinears of the form ψT
i P̃∆ψj are transformed to

ψT
i P̃∆ψj = ψ

′T
i P

′

∆ψ
′

j , (37)

with

P
′

∆ = UT
mP̃∆Um = P∆, (38)

where again, P∆ = (iσ2)spin(iσ2)color is block diagonal in frequency space.
To summarize, the temperature dependence in the new basis is antisymmetric, while the diquark order parameter

no longer contains an explicit frequency selection operator. This is precisely the form proposed in Ref. [13]. We thus
have shown that it is equivalent to the selection rule of Eq. (28) and, by extension, to the one originally proposed in
Ref. [9, 11]. To complete the proof, it is readily verified that the various temperature schemes of Eqs. (10), (12), and

(28), used with the corresponding forms for the diquark projector (P∆, P
′

∆ = P∆, or P̃∆), all yield the thermodynamic
potential of Eq. (23).

D. Pion condensates

Although the temperature dependence in Eq. (10) produces the correct result for modelling diquark and chiral
condensation, it is inconvenient if one also wishes to consider the possibility of forming a pion condensate, 〈ψ†γ5(iσ2)ψ〉.
Pion bilinears must be taken between fields of equal frequencies and opposite flavors, whereas elements associated
with diquark bilinears require opposite frequencies and opposite flavors. Considering both channels thus leads to
some tedious bookkeeping. However, the equivalent form of Eq. (28) can be implemented much more easily and
extended to the inclusion of pion bilinears. The resulting form takes a diagonal temperature dependence, considers
diquark bilinears with an off-diagonal projector P̃∆, while it leaves both the chiral and pion bilinears diagonal in
frequency space. We now show that such prescription gives the same results as those obtained with an antisymmetric
temperature dependence.

A Fierz projection of the random matrix interactions on the pion condensation channel yields a four fermion
component

Yπ =
3

32nβΣ2
(ψ†γ5(iσ2)flavorψ)2. (39)

Using again a Hubbard-Stratonovich transformation to introduce an associated auxiliary variable, ρ, one is led to
consider the auxiliary matrix

A =







0 ∆RP∆ σ∗
1 ρ

−∆RP∆ 0 −ρ σ∗
2

−σ∗
1 ρ 0 −∆∗

LP∆

−ρ −σ∗
2 ∆∗

LP∆ 0






. (40)

As previously, the frequency selection rule is introduced by replacing P∆ by P̃∆ in the diquark and antidiquark
bilinears of Eq. (16) or equivalently in the argument of the logarithm of Eq. (20). Such a temperature scheme is
completely consistent with the spirit with which we derived the temperature dependence in Refs. [9, 11]; we have
verified that it produces the same thermodynamical potential as that obtained with an antisymmetric temperature
dependence. The result is identical to that of Ref. [13].
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III. DISCUSSION AND CONCLUSIONS

For Nc = 2, we have resolved the apparent disagreement between the dependence based on an antisymmetric
temperature term and that based on a frequency selection rule. The two representations are related by a unitary
transformation which leaves the thermodynamic potential unchanged and which therefore does not affect physical
observables. The change of basis is, however, reflected in the structure of the diquark order parameter or, equivalently,
in the expression for the frequency selection rule.

Technically, temperature enters through the imposition of an antiperiodic boundary condition on the fermion fields.
There is a certain degree of freedom in representing temperature terms in a random matrix model. However, as soon
as one imposes a given block structure (e.g. diagonal or antisymmetric), one is actually selecting a specific basis for
the frequency states. As a result, attention must be paid to the physical meaning of the basis states when solving
for the partition function and, accordingly, in the structure of the order parameter. If a change of basis appears
useful for mathematical convenience, one must naturally keep track of the effects of such transformation on the states
and transform the order parameter accordingly. From a general point of view, any transformation with the block
diagonal form of Eq. (34) with Um unitary leaves the thermodynamic potential invariant. There are thus many
equivalent Matsubara bases which can be chosen and correspondingly many correct associated forms of ω± and of
the diquark order parameter. Among these forms, the antisymmetric one appears to be particularly convenient since
the corresponding diquark projector is block diagonal in frequency space. The price to be paid for working with a
different form is merely the need to rely on the knowledge of the physical meaning of the basis states and on which
frequency couplings are allowed. This will determine the form of the corresponding diquark projector.

The situation is not very different for QCD with Nc = 3. If one chooses a diagonal temperature term, one still
needs to select opposite frequencies for the fields involved in the diquark condensate. In this case, however, the
frequency selection mechanism cannot be revealed by symmetry arguments alone since QCD with Nc = 3 does not
satisfy an antiunitary symmetry. As above, there are many correct forms of ω± which can be used together with the
corresponding prescriptions for the frequency couplings. In Ref. [12], the authors used the diagonal form of Eq. (11)
but did not consider diquark condensates. Thus, there was no need for specifying a diquark projector, and the choice
of a diagonal form of ω± was as correct as any other. On the other hand, diquark condensation was investigated
in Ref. [9, 11] using a diagonal form. There, it was necessary to supplement the temperature dependence with an
explicit frequency selection rule.

In conclusion, the proper temperature dependence to be used in a given random matrix model depends primarily
on the form of the condensates that may develop. Symmetry arguments are useful in identifying the mechanism for
selecting appropriate frequencies, but they are not always sufficient.
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