Optimization of the methane production from Mangifera Indica (mango) and Manihot Utilissima (cassava) leaves in co-digestion

agro bio tech Philippe Mambanzulua Ngoma *1,2, Serge Hiligsmann ¹, Eric Sumbu Zola³, Philippe Thonart¹

- 1. Walloon Centre for Industrial Biology. University of Liege, B40. B-4000 Sart-Tilman. BELGIUM
- 2. Department of Base Sciences, Faculty of Pharmaceutical Sciences, University of Kinshasa, PO. Box 212, Kinshasa XI, DR Congo
- 3. Department of Chemistry and agricultural Sciences, Faculty of agricultural Sciences, University of Kinshasa, PO. Box 117, Kinshasa XI, DR Congo

*mail: pmambanzuluangoma@student.ulg.ac.be - tel: +32(0)485963679

- \triangleright Clean renewable energy (no CO_2 to atmosphere)
- Biofertilizers
- > Vegetable solid wastes management

Objective and research strategy

Objective

Simple and less expensive technique for a rapid anaerobic digestion of leaves

Strategy

- >Biochemical methane potential (BMP) assay of: leaves and their active substances
- >Identification of inhibitory factors of the leaves biodegradation
- >Optimization of the leaves anaerobic digestion
- >Bioreactors assay

BMP assay

Results 1 and discussion

Methane production from 9,2g of leaves

→ No VFAs accumulation

→ VFAs accumulation

Results 3 and discussion

Mixture of cassava leaves (75%) and mango leaves (25%) leads to C/N ratio of 9.3

No VFAs accumulation

Conclusions

Anaerobic co-digestion of both organic matter for the methane production enables:

- >1.2-fold higher yields for cassava leaves
- >114-fold higher yields for mango leaves (non-biodegradable alone)