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SUMMARY

This paper presents an original approach to the numerical modelling of unilateral contact by the finite
element method. The main point is the development of mixed contact finite elements in which the
displacement field and the contact stress field (pressure and friction shear) are discretized independently. The
theory, based on variational principles, is first presented in the framework of infinitesimal deformations and,
subsequently, is extended to large inelastic strains.

I. INFTRODUCTION

The numerical modelling of unilateral contact with friction leads to a very wide variety of
solutions, especially in the context of large strains. The main differences appear at two levels: the
choice of a constitutive equation for contact {Coulomb, Tresca, etc.) and the algorithm used to
solve the inequalities of contact (direct solution of the inequalitics, penalty method, Lagrangian
muitipliers, augmented Lagrangian method, etc,).

A special issue of the Journal of Theoretical and Applied Mechanics,! specially devoted to
unilateral contact modelling, gives an account of the present state of knowledge in this field.

Usually, in a finite element context, the contact inequalities are written in terms of nodal
co-ordinates. For example, it is expressed that the finite element nodes belonging to the boundary
of the discretized solid may not penetrate into a rigid second body, named here the foundation.

This approach can be qualified as ‘compatible or displacement-type approach’ since the
discretized displacements of the solid are the basic variables.

However, it does not prevent the overlapping of the discretized solid and the foundation
{Figure 1), even when the nodal inequalities are solved exactly.

In this paper, an alternative solution is proposed, in which the contact stresses and the
displacement field on the solid boundary are discretized independently. It is based on mixed
variational principles and allows to control the average overlapping between the solid boundary
and the foundation.

It is also shown that, in some particular cases, the mixed contact finite elements based on this
formulation are equivalent to underintegrated compatible elements in which the contact inequali-
ties are expressed at integration points on the solid boundary (Figure 2). Such elements were
developed previously' 2 on an intuitive basis and proved to be very effective. They are given here
a theoretical basis.

The basic advantage of such mixed contact elements is that the contact condition is naturally
smoother than with the compatible approach. In the latter method, a stiffness or an out-
of-balance force is attributed to a node only when contact has taken place. On the contrary, in the
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former method, it will be seen that a stiffness matrix and out-of-balance forces are computed for
the mixed contact element, even when it is only partially in contact. In other words, a node which
is not yet in contact but only close to contact is ‘informed’ by its neighbours that contact is going
fo occur soon. '

The proposed discretization method does not have any influence of the interface rheology. The
finite clements are based on the penalty method for solving the unilateral contact and slip
conditions and on the Coulomb model for the friction strength. This approach has been
extensively developed during the last ten years, especially in general incremental non-linear finite
element codes {see for example References 1--5). Curnier® has made a nice synthesis of the contact
and friction constitutive equations. More recently, some new developments™” ¢ have been made on
the penalty coefficients, which are based on experimental evidences. But the choice of the penalty
coeflicients remains a controversial question, which will not be discussed in this paper. Generally,
it is required to keep the numerical values of the bodies penetration small relative to the finite
element. Fluctuations of this penetration are related to the pressure variations along the contact
surface. Separation between the bodies after contact is analysed on the basis of pressure
evolution,

When slipping contact appears, the constitutive equation of the contact element is unsymmet-
ric. Therefore, an unsymmetric solver is used.

The mixed approach is applied to the developments of a serics of two-dimensional friction
contact finite element. The extension to the three-dimensional state is straightforward.

Finally, two applications are presented. The first one is concerned with an axisymmetric
forging problem and the second one with a three-dimensional shear-bond test.

2, MIXED VARIATIONAL PRINCIPLES

2.1, Hypotheses

For the sake of simplicity, we will start the development in a very restrictive framework: the
deformable solid is linear elastic, its deformations are infinitesimal and the foundation is rigid.
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Furthermore, it is assumed that the contact surface between the solid and the foundation is
known and that no sliding is allowed (sticking contact).

Subsequently, these hypotheses will be removed in order to consider the case of an inelastic
solid (elastoplastic, elastic viscoplastic) undergoing large strains, contact with sliding and friction,
and unknown contact surface.

2.2, Local and global co-ordinates

We consider a solid of volume ¥ and boundary A. Let Ay, 4; and Ac be the parts of 4 on
which displacements, surface tractions and unilateral contact conditions are imposed, respect-
ively. At each point S of A, local co-ordinates are defined {(Figure 3), with e; normal and e,, e,
tangent to A¢, which is assumed to be smooth. At point S, the displacement of the material
particle of the solid, with respect to some reference configuration, is

Mg — Hg; €y (1)

and the stress tensor is denoted by o5,
If p is the contact pressure and 74, 7, the contact shear stresses at point §, the surface equilibrium
conditions give

Osir +p=0
Og31 + Tp = 0 (2)
Os3y +13=90

where oy, 052, 0535 are components of o in the local frame (eg, €1, €3).

Finally, if point $ of the solid is in contact with point F of the rigid foundation, the
displacement of the latter is;

UE = U € (3)
On the other hand, for internal points or for points belonging to Ay or Ay, we will use a global
Cartesian reference system E,, E,, E;. For such points, the co-ordinates are X |, X,, X5, and o, g,

u, T, F are the stresses, strains, displacements, surface tractions and body forces, respectively, the
components of which are expressed with respect to E,, E,, E;. For example,

u = K, 4

Figure 3
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2.3. Matrix notation

For points belonging to Ac, the following notations will be used:

(U511 P
Os = | 0s21 |» Oc} T2
L 0531 T3
[ tisy Hpy
Ug=| Mgy |, Wp=|HUrz |5 Ec=WUs— Up
L Msa Up3

Hence, the surface equilibrium condition on A¢ become

o5 +oc =0 (5)
For points belonging to Ay, Ay or ¥, we will write
[o11] ey ] [ duyf0x; ]
G322 €22 Bta/0x,
5= J33 Ce= €313 ou= u3/0x 5
023 2623 Suy/oxs + duzfx,
- PP 2844 Sy /x5 + Ousfdx,
| 512 | \_2812_ | duy/0x; + OuzfOxy |
"1y 7T Fy
u=lu, |, T=|T2} F=|F,
| 1y | T3 F,
CH Gy + H2032, + H3O 33 80 ,/0x; + 8621/0x; + 0031/0x;
O, =] 1,042 + Na03s + 303y |, 86 = | 00,5/0x1 + 8022/0X5 + 0032/0x3
a3 + 1203 + 0303 g 3/0xy + 8043/0x; + d033/0X;

where n = n;E; is the normal to the solid boundary on 4y or Ay.

2.4. Sticking-contact law

As mentioned in the Introduction, we start with the simple case of sticking contact. However,
we will use a penalty formulation: a small relative displacement between the contact points S and
F is allowed. Hence, the contact constitutive law may be written as follows:!

0o = Kcsc (6)
where

K

2

Kc =

0
K, Q)
0

A o oo

-

0
0
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is the diagonal penalty matrix; K, and K, are penaity coefficients. With the hypotheses of Section

2.1, this constitutive law transforms the contact problem into that of a solid on an elastic
foundation.

2.5, The functional 1

The following functional is defined:

e = f { Welee) + o&fug — up ~ ec]}dAe
Ag

+ j {W(e)+ o"[0u—g] ~ Fru}dV
l/

- f TfudA; — f oflu—]dAy 8
Ay Ay

In this functional, i are the displacements imposed on Ay;

Welee) = 3 88 Keec ©
is the contact strain energy density;

Wie)=4+eTCe (10)
is the strain energy density in the solid; C is Hooke’s elastic tensor written in matrix form, so that
¢=Cst (1

In the functional Tl¢, the independent fields are @, &, u, 6¢, ¢, uc.

2.6. Variation of Tl

We express that the above functional is stationary: §Fl = 0.

Taking the variation of I1¢ with respect to the independent fields is straightforward. The results
are summarized in Table 1. It is seen that all the field equations are recovered in the solid as well
as on its boundary,

Table 1. Variation of Tl

Variable Region Equation Interpretation

¢ Ac 6 = Kcge Constitutive law at contact

6¢ Ac €0 =1l — Up Compatibility condition at contact

U Ag 6c+65=0 Surface equilibrium at contact

€ Vv o=0Ce Constitutive law in the solid

o vV £=du Compatibility in the solid

] v do+F=0 Equilibrium in the solid

o Ay u=a Compatibility with the imposed
displacements on A

u AU 0=0 —_

! Ay o,=T Surface equilibrium on A,
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2.7. The functional Tl¢;
Let us assume that the following equations:
g=0u inV
g=Ceg inV (12)
u=d ondy
are satisfied a priori.
Introducing these conditions in Il¢ gives a new functional
Mg, = J.A {Welee) + og[us — up — ec]}d Ac + L [W(u) — FTuldV — L TrudAr (13)

where W(u) is the strain energy density in the solid, expressed as a function of the independent
field u. ‘

In the functional ¢, the independent fields are u, 6¢, &c. It must be noted that ug is not an
independent field since it is the restriction of u on Ac. This fact must be taken into account when
the variation of Il¢, is calculated.

2.8. Variation of T,

Expressing the stationarity of ITc, restitutes the field equations that were not satisfied a priori,
that is,

O = KCSED £c = Ug — Ug, O¢ + 05 = 0 on Ac

6+ F=0in¥ and o,=Ton Ay

2.9 The functional g,

A further simplification can be obtained as follows: we assume that, in addition to (i2), the
constitutive law at the contact is satisfied a priori:

Ep = K(-_‘.lﬁc on AC (14)
Then, the contact complementary strain encrgy density is defined as
We(oc) = oec — Welee) (15)
where &¢ is computed by (14). With these conditions, the following functional is obtained:
Me, = j {6f[us — up) — Wél(oc)}dAc + j [W(u) — Flu]dV - J TTud Ay (16)
Ac 14 Ay

The independent fields are u and o¢. Here again, ug is the restriction of u on Ac.

2.10. Variation of Tlc,
Expressing the stationarity of Ilc, yields the following natural conditions:
Ug — Up = KEJ'G'C =g on AC (i?)

oct+o5=90 on Ac (18)
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de+ F=0 in ¥V (19)
o, =T on At (20)

2.11. The functional Iz,
The last simplification is to assume that, in addition to (12) and (I4), the compatibility
condition {17) is satisfied a priori. Introducing these conditions in {13) gives

nmuj Welus)dAc + f [W(w) — Fru]dy - f TTudAy 21)
Ae 4

Ax

in which there is only one independent field u.

2.12. Variation of ¢,

The stationarity of [Ty gives the following natural conditions:

oc+os=0 on Ac 22)
do+F=0 inl 23}
6.=T on A (24)

3. CONTACT FINITE ELEMENTS BASED ON MIXED VARIATiONAL PRINCIPLES

3.1. General formulation

In the preceding section, four variational principles were obtained. They can be used to develop
several types of finite elements. Here we concentrate on the simplest functional I, which is
sufficient to illustrate the basic features of mixed contact finite elements.

The deformable solid is discretized with classical finite elements {isoparametric, for example):

u=NU, ¢=BU (25)

where U are the nodal displacements, N the interpolation functions and B their derivatives.

At the contact boundary, we develop contact elements the nodes of which coincide with those
of the underlying solid element (Figure 4). Hence, the discretization of ug is deduced from that of
the solid:

Ug == Ncuc (26)
COV ™. same
.
g / / nodes

7

Figure 4
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where Uc are the nodal displacements of the contact element and Nc are the interpolation
functions, obtained by the restriction of N on the solid element boundary.
Finally, the ‘stress’ field ¢ in the contact element is discretized by

oc = Pg (27)

where g are contact stress discretization parameters and P are the correspending interpolation
functions. q are not necessarily the nodal values of the contact stresses.
The variation of I, gives

5“(;2 = j‘ {(SD'Z [“s — U;:] + UECSUS - (SUEKEIGC}CIAC
Ag
-{—’[ [GTﬁa—FTau}dV-—.[ Tr'éudAr =0 (28)
v Ar

This variational principle is applied to one solid element and the corresponding contact clement.
Its discretized form is obtained by introducing (25)-(27) into (28).
The calculation is straightforward. The result is

where
Mg = PTNcdA¢ {30)
JAc
o= PT KE 1PdAC {3£}
LY AC
Ve=1{ PTupdAc (32)
JAc
Ks— | B'CBdV (33)
JV
Fs=| NTFdV + j NT'TdAr {34)
JV Ay

In these integrals, ¥ is the volume of the solid element and Ay is the surface of its boundary, while
Ac is the surface of the contact element. It must be noted that U and Ug are not independent,
since the nodes of the contact element coincide with some nodes of the solid element. This can be
expressed by

Uc= AU (35)

where A is an assembly operator. Hence, the independent variables in {29) are U and ¢. The
coeflicient of g must vanish. Then

McUc - #cg — Vr = 0 (36)

This result expresses that the compatibility at contact (17} is satisfied in a weighted-average sense.
From (36)

q= %! {McUc — Vr} (37
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Introducing (37) into (29) gives

oMy = dUc{keUe — fc} + SUT(K U — Fs} =0 (38)
where
ke =Mgxe ' Mc (39)
fe=MTzc Ve (40)
Finally, taking account of (35), {38) becomes
oe, = SUT{KU — Fg} =0 (41)
or
KU = Fg (42)
where
K = KS + AchA (43)
Fp=Fs+ ATl (44)

It is seen that k¢ is the stiffness matrix of the mixed contact element and fc the corresponding
nodal force vector. Equations (43) and (44) represent nothing else than the assembly of the contact
element with the corresponding underlying solid element.

For comparison, the formulation of a compatible contact element based on Tl¢; is explained
briefly. The variation of the first term of T1c, gives

(0Ic3) = J del KeecdAc = J dul Kefus — up]d Ac
Ag Ac
=0UT [k¥Uc—f¥] (45)
where
ki = L NiKcNedAc {46)
f¥ = L NEKcup dAg (47)

are the stiffness matrix of the compatible contact element and the corresponding nodal force
vector, respectively,

3.2. First example

As a first application, we consider, in the two-dimensional case, a contact element with linear
displacement field and constant contact stress field (Figure 5).

U
a
+
v

;:—1
1

- 2a
F

JL X 3

Figare 5
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The discretization of the displacement field {22} becomes, here

Us
N 0 N 0 Ul
BRI
Uy 0 N, 0 N, uU?
v2
with
Ny=3(1-¢); Ny=3(1+¢) (49)

The discretization of the contact stress field (27} becomes

1o V] (5‘”

In this particular case, q are the constant values of the contact stresses on the element.
Assuming, for simplicity, that the motion of the foundation is a translation, one computes

successively:
K, 0 I/K, ©
Kc=[ ? ], Xc=20[/ ? :l, VF=2a["F"]
0 K, 0 1/Kz Ury

K, 0 K, 0 K Mgy
0 K, 0 K, K. g,
ke =2 , fe=al T (51)
2|k, 0 K, © K ptigy
0 K, 0 K, K. ug,

On the other hand, if the stifiness matrix (46) and the nodal force vector (47) of a compatible
contact element are computed by reduced numerical integration with only one integration point
located at & = 0 (Figure 2), one gets

k& = 2a[Nefé = 0T Kc[Nelé = 0)), £& = 2a[Ne(¢ = 0] Ke{up(¢ = 0)}

[Nc(zzouzi[o o 1], {uFﬁé:O)}{::]

with

An elementary calculation shows that the result is exactly the same as (51}. Hence, the mixed
contact element with constant stress field is equivalent to the compatible contact clement
underintegrated with one integration point at £ = 0.

We have seen that (36) expresses the average compatibility at contact. Applying (36) for this

example gives
aUy ~ U] [2ep/K, | [ 2aup | _ 0
alUt —U} 2at/K, 2aug, |
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Hence
p=K,[3(U} + UZ) — up,]
T= Kt[%(U}I + Uf) - qu]
The terms between brackets represent the penetration of the middie point (¢ = 0) of the element

into the foundation. This is another proof of the equivalence between the mixed contact element
and the underintegrated compatibie clement.

3.3. Second example

We consider a parabolic displacement field and a constant contact stress field (Figure 6). The
discretized displacement field is

Ut
U,
Ui
U3
Uz
U3

= ¥

0 N,

N 0 N 0
)= [% - 59
y 0 N,

0 N, 0 N,

with
Ny =381—¢&), Na=1-8 Ny=1¢1+¢) (55)

The discretized stress field is given by (50). The stiffiness matrix and the nodal force vector are

K, 0
0 K,
a [4K, ©
kc =
18| 0 4K,
K, 0
L 0 K,

4K
0
16K
0
4K
0

4

p

P

0
4K,
0
16K,
0
4K

T

K

P

0
4K
0
K
0

P

4

0
K,
0
4K,
0

K; |

K,
K.
4K,
4K,
KP
K,

lips |
Uy
Ury
ipy

ey

UEy J

(56)

For this element too, the application of (36) is interesting, After some calculations, one gets
p=K,[3(Us +4UF + U3) — ug]
1=K [¢(U; +4U} + U}) — uy,]

§='1
1
:

Za

Figure 6
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The terms between brackets are the average penetration of the contact element into the
foundation. But here they are not the penetration of any particular point of the element, so that
this mixed element is not equivalent to any underintegrated compatible element.

3.4, Third example

We consider a parabolic displacement field (Figure 6) and a linear constant stress field. The
discretized displacement field is given by (54) and (55} and the discretization (27) of the contact
stress field gives

P
[P]:[Pl 0 P3 0] Ty (59)
t 6 Py 0 P Ps
T3
with :
PiEy=3(1-¢), Ps&)=3(1+8) (60)

Here q are the values of p and 7 at nodes 1 and 3 of the contact element.
The calculations are straightforward and give

2K, 0 2k, 0 —-K, 0 K, ug,
0 2K, 0 2K, 0 — K, K. ug,
ke = a 2K, 0 8K, 0 2K, 0 o= a 4K, up,
9 0 2K, ¢ 8K, 0 2K, 3 4K, upy
-K, 0 2K, 0 2K, 0 K, e,

i 0 - K., 0 2K 0 2K, | | K, gy

The application of (36) gives
p1 = K,[4QUL + 202 — U3) — ti]

(61)
Py = Kp[%( — Ualc -+ 2U€ + 2U33c} - ”Fx]

and similar relations for 7; and 3.
Is there an equivalent underintegrated compatible contact element? To answer this question,
we must search for poinis ¢ such that

P(&) = Kp{“.\cié) - HFx}

with
pE)= P& py + P3&)pa, = Ny(&YUL + NAOUZ + N;(©) U

This gives the equation
P[AQUL+ 202 — U3 — ue] + Pal3(— Uy + 20U + 2U3] - 4]
ﬁNﬁ U}f'f‘NzU%‘f'NgU?c*qu
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which also writes
Us[3P, — 4Py — N1+ U2[LP, +4P,—N,}
+U.\3-[*§P1+%P2—N3]““Fx(Ps+P2)+”Fx:0

Since Py + P, = 1 for any ¢, this equation is satisfied if the terms between brackets vanish. This
happens for

=+
= + 75
This means that the mixed contact element developed in this section is equivalent to a parabolic
compatible contact element underintegrated with two Gauss points.

3.5. Fourth example

The last example is a contact element in which the displacement field and the contact stress
field have the same degree. Again, the two-dimensional case and the translation of the founda-
tions are assumed for simplicity. The calculations of k¢ and f are straightforward and are not
interesting. However, the application of the average compatibility equation (36) gives again an
interesting result. For example, for parabolic fields (3 nodes), one obtains

1

Py Ux — Upy
2

P2 = Kp Ux — Upy
3

f2E) U — upe

and a similar equation for contact shear stresses 1,, 7,, 73. This shows that compatibility at
contact between solid and foundation is ensured at the nodal points of the mixed contact element,
An equivaient compatible element could be obtained by using a numerical integration scheme in
which the integration points coincide with the nodes.

4. EXTENSION OF THE THEORY

4.1. Corotational formulation

If the solid is submitted to large inelastic strains and if there is sliding with friction at contact,
the formulation presented above has to be modified as explained hereafter.

In the solid, the equilibrium is expressed in the current configuration in terms of Cauchy
stresses, whether in fixed co-ordinates (which implies the choice of an objective stress rate in the
incremental constitutive equation,® '° or in a corotational local reference frame rotating with the
material particle (which implies the choice of an appropriate spin.') Then, the equilibrium in the
current configuration of the solid simply writes

6+F=0, ,=T (62)

where the derivatives are taken with respect to the current co-ordinates, F are body forces per
unit current volume and T are surface traction per unit current area,

At contact, we chose a corotational formulation: the local co-ordinates e, e,, e, {Figure 3)
rotate with the corresponding surface element.? In this local frame, the incremental contact law
with sliding and friction writes

‘-"C = KCT E':c (63)



1694 $. CESCOTTO AND R. CHARLIER
with
Ec =g — Uf {64)

In (63), the contact constitutive matrix K¢y is usually non-symmetric.!? In the same frame, the
equilibrium at contact is

o5+ 0 =0 (65)

4.2. Mixed variational equation

In non-linear analysis, the functionals are replaced by variational equations. In particular,
I, is replaced by

j 6¢ dug dac + J [ug — up — &c 7 8o¢ dac

+J. [GTSSFTﬁu}dv—I TT dudar =0 {66)
where & is a function of o obtained by integration of (63) along the equilibrium path:
& = ﬁ) [Ker] ™! 6cde (67}
and similarly
Ug — Up = J: (s — ] ds (68)

In (66), the integrals are taken over the current configuration of the solid; du are virtual
displacements and 8¢ the corresponding virtual strains; 8o are virtual contact stresses. The
development of (66) immediately restores the equilibrium equations (62), (65) and the compatibil-
ity condition (64). Therefore, the variational equation (66) generalizes the approach of Sections 2.9
and 2.10 to the case of frictional contact between a rigid foundation and an inelastic solid
undergoing large strains. The fact that the contact zone ac is unknown a priori is not a special
problem because of the step-by-step solution in non-linear analysis. At each iteration, a simple
search algorithm*? is used to determine the current contact surface ac to be used in the integrals
of (66).

4.3. Mixed finite element
Using the same notations as in Section 3.1, the discretization gives
Su=NB8U, oc=BSU, 80.=Pdq; dug=NcdU;, 8Uc=AdU
With the following definitions

F,= | BTody, FS:I NTde+J NTT day
~
FC = NEGC dac, V= J‘ PT [us - “F:] dac
EC = PTSC dﬂc

viac
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the variational equation (66) gives the discretized equilibrium equation
Fi—Fs+ ATFc=0 (69)
and the discretized compatibility equation
Ec=V (70}

Both are non-linear functions of the discretization parameters U, ¢ and of the loading history.
Their solution can be obtained by the classical step-by-step method with Newton-Raphson
iterations. To this end, the incremental forms of (69) and (70) must be derived. While doing this,
we must take care of the fact that v, ar and ac are also incremented during a time step. However,
the isoparametric concept makes things easy. For example, in the two-dimensional case (contact
along a line) we write

+1
EC:J PTSCJdé
-1

where J is the Jacobian of the isoparametric transformation.
- The increment of J can always be expressed by a relation of the form

j=GTI.JC
Then
. +1 +1 .
EC:J PTéch§+J Ple g d¢
-1 -1
Or . .
Ec = ycr§ + GeUe
with
+1
XCT=I PTKCTPdaC, GC=J< PTSCGng
ac -t

Similarly, we obtain
V= MU + Gy U - Vp, Fo= Miq+ G Uc
with

+1

MC = J. PT NC dac, GV = J\ PT [us - uF] GT dé
ac 1

+1
Ngﬂ'cchf
1

VF:J PTﬁFdﬂC, GF:j

Finally, we write

Fl = KS’T U

where Ksy is the tangent stifiness matrix of the solid element (see Reference 13 for example), and
we assume, for simplicity, that the forces acting on the solid are conservative.
Introducing these results into (70), we obtain

§=1%ct [[Mc + Gy ~ G Ug — Vi ] (71)
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Then, from (69) and {71}, we get
K U =Fg (72)
with ] ) ]
Ky =Kgr + ATker A, Fp=Fg+ATfc 73
where . is the incremental nodal force vector of the mixed contact element
fe = MEx&t! Vi (74)
and key is its tangent stiffness matrix
ker = MEygar Mc + Méxer [Gv — Gel + G - (7%

The first term is due to the material non-linearity and the second is due to the geometrical
non-linearity, that is the evolution of ac during the deformation process.

5. APPLICATION

Contact finite elements based on the preceding theory have been implemented in the large-strain
finite element code LAGAMINE developed at the M.S.M. department of the University of Liége.
In two-dimensional analysis, parabolic line elements with linear contact stress field and rectilin-
ear elements with constant or linear contact stress field were developed. In the three-dimensional
case, four-node and eight-node surface elements with constant or bilinear contact stress field are
used.

Two applications are given below to illustrate the effectiveness of the method.

5.1. Axisymmetric forging problem

An example of realistic forging is presented showing the validity of the method. We first use 120
PLSLS elements (eight-node isoparametric elements with four integration points) to discretize the
workpiece submitted to compression between dies of arbitrary*shapes (Figure 7) in axisymmetric
state. An elastic-viscoplastic constitutive law for solid elements has been applied with following

Figure 7. Initial mesh for the forging problem
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parameters:

g2
F= \/K . Ja=136848y

If \/ J, < K then elastic Hooke’s law; else

Gij = Cijkl(éki — &)

1
& = BUFY —— &
J \/Jz :)
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where ci"gj is the objective derivative of the deviatoric part of the Cauchy stress tensor, &, the total
strain rate, £f; the inelastic strain rate, r = 9259, B=0034, E = 112x 10° MPa, v =04,

k = const = 0-5 x 10° MPa, no hardening is considered.

A Coulomb dry friction law has been chosen as the constitutive law for unilateral contact. The
simulation has been performed from t = 0:0 to 70x 10™*s, which implies a reduction in height

from 0-5316 to 0-3143 cm (408 per cent),

t=3,5 10" sec.

t=62 10" sec.

LY LA
Figure 8. Deformed mesh
t=35 10" sec,
c
A B
E
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t =62 10 sec.
[ D
A B
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Figure 9. Diagrams of contact stresses
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Because of the high distortion of the finite elements, three remeshings have been applied (see
References 14 and 15 for more information). The deformed mesh is presented in Figure 8 at two
stages, t = 348x 10" *s and t = 620x 107 *s.

The contact stress vectors are presented in Figure 9. They are quite regular under the central
and plane part A-B of the tool. But the tool bump modifies dramatically the evolution of the
contact. For the first illustrated state (¢ = 3-5 x 10~ 2 5), some gaps appear on the B-C section. For
the later state {t = 62 x 10~ 2 5), the same situation holds on the E-F section. Contact exists there
only at few integration points and this induces a disturbed diagram of contact pressure and,
following the Coulomb friction law, a disturbed diagram of friction stresses.

5.2. Shear-bond test

Shear-bond tests are used to predict the nature of the composite interaction between many
materials. Advantages of these tests are that they are easy to perform and that the resulis may
easily be incorporated into a theoretical analysis. Here we consider a shear-bond test (called
*push-off” test) for predicting the full-scale behaviour of cold-formed steel-concrete composite
slabs. Figure 10 presents a push-off test for composite slabs. Two concrete blocks are cast with

SIEEL SHEETHNG

4 % 150 = 660

I i
I 60 |£L5J ! \/\‘

HIBOND 55

Figure t1. Sheeting geometry: cross-section and embossment pattern
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Figure 12. Solid {a} and contact (b) meshes for the shear bond test

Figure 13, 3-D view of the discretized problem
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sheeting placed on opposite faces. The length of sheeting in contact with concrete is generally
300 mm,

Rib geometry and embossments can vary from one steel sheeting to the other. Figure 11 gives
the cross-section and the embossment pattern of the profiled sheeting (type HIBOND-55) used in
the finite element simulation. The sheeting thickness is equal to | mm.

The steel sheeting discretization consists of 88 volume clements of degree two (20 nodes), with
one element over the thickness, and 88 contact elements connected with the upper face of the
sheeting. Concrete is assumed to be infinitely rigid. Tt is discretized by a spatial set of 372
triangular segments, representing the foundation of this problem. Figure 12 represent the
discretization of the volume and contact elements.

As we want to treat the case of an infinite number of embossments, we have discretized only
a small part of the profiled sheeting (two half-embossments), and we have imposed the condition

Pou = 5860, N

(b)

Figure 14. Contact forees (a) 00001 mm displacement (b} 4 mm displacement
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that nodes along the side X = constant C, have the same equations as the corresponding nodes
located along the opposite side (X = constant C,). To have a best sight of the steel sheeting with
embossments, we have repeated several times, just for drawing and not for calculation, the studied
structure. The result is shown in Figure 13,

The whole foundation is completely fixed and a uniform displacement in the X-direction is
imposed on all the nodes along the sides X = constant. We suppose that the steel sheeting
remains elastic (E = 2£0-000 N/mm?, v = 0, 30) during the simulation. The contact between
concrete and steel is assumed, in first approximation, to be without friction, the coefficients K
and K. of the penalty method being equal to 20000 N/mm?>,

The finite element simulation has been carried out till the steel sheeting displacement in the
X-direction reaches 4 mm,

Plate i(a) and 1(b) gives the contact pressures between steel and concrete when the structure
displacement in the X-direction equals 107* and 4 mm, while Figure 14 shows the contact forces
for these same displacements. In these figures we can notice that, during the simulation, contact
between structure and foundation is concentrated only on the top of embossment’s extremities;
the steel sheeting comes, therefore, off concrete, contact regions remaining very limited. Plate 1(c)
shows the structure deformations after 4 mm displacement.

4
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Plate | (a) contact pressure after a displacement of 4mm (b) contact pressure after a displacement of 0.0001mm
(c) deformed mesh afier a displacement of 4mm.



